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ABSTRACT 

The finite-temperature Hartree-Fock-Bogoliubov (FTHFB) equations 

are derived, For the pairing Hamiltonian FTHFB simplifies to finite-

temperature BCS (FTBCS), The solution of the FTBCS equations for the 

degenerate model displays a temperature-dependent pairing "phase 

transition." 

[
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I. INTRODUCTION 

1 The conventional HFB theory is a zero-temperature theory in which 

the ground state is a quasiparticle vacuum. By including a cranking 

constraint, high-spin states along the yrast line can be described by HFB. 

This is because the excitation energy of yrast states is produced by 

collective rotations rather than statistical thermal excitations. 

Consequently the yrast band has a temperature T"" 0. Each yrast state 

is described by a quasiparticle vacuum which is re-defined for each spin. 

Heavy-ion reactions produce nuclei which lie far above the yrast 

line. Since the time required to establish thermal equilibrium within 

a nucleus appears to be small compared to the de-excitation time of the 

nucleus, one can attempt to describe the region above the yrast line by 

temperature-dependent mean fields, It is therefore very desirable to 

derive a finite-temperature HFB (FTHFB) theory, Such a theory will 

be capable of describing temperature-dependent shape transitions and 

pairing "phase transitions." The FTHFB theory will include the interplay 

between single-particle, rotational, pairing and thermal degrees of 

freedom in a fully self-consistent fashion. For example, it will be 

possible to investigate the conjecture that the demarcation between the 

statistical decays which de-excite the nucleus down towards the yrast 

line and the collective rotational decays which de-excite the nucleus 

parallel to the yrast line is determined by a critical temperature above 

which the nucleus does not have a well-defined deformation. 

It will be demonstrated that the FTHFB equations have exactly the 

same form as the conventional HFB equations. No additional terms are 

introduced into the definitions of the HF and pair potentials, That this 



should occur is not obvious, since the FTHFB theory includes not only 

the quasiparticle vacuum energy, but also the quasiparticle excitation 

energies, and the interactions between the quasiparticles (see Appendix 1). 

The essential effect of introducing a finite~temperature is to produce 

a Fermi~Dirac distribution of quasiparticle excitations, so that the 

quasiparticles no longer have a zero occupation probability. This 

alters the equations for the particle densities. 

The BCS limit of FTHFB is derived, and the FTBCS equations are 

solved for a simple model to illustrate the temperature~dependent pairing 

"phase transition. 11 

II, REVIEW OF THERMODYNAMICS AND 

STATISTICAL MECHANICS 

Those elements of thermodynamics and statistical mechanics which 

are essential for deriving FTHFB are now presented, 

For a system which undergoes a transformation in which the chemical 

potential Jl remains constant, the first law of thermodynamics is 

6E (2.1) 

t..rhere 6E is the change in the internal energy E, I::,Q is the net amount 

of heat absorbed by the system, 6W is the net amount of work done by 

the system, and 1::, N is the change in the number of particles N, If the 

transformation occurs at a constant temperature T, then the second law 

of thermodynamics is 

(2.2) 

where 6S is the change in the entropy S. Define the grand potential 



n = E - TS - ~N 

By combining the first and second laws, it follows that 

For a mechanically isolated system, ~W ~ 0, so that 

~n ~ o 

(2.3) 

(2.4) 

(2 '5) 

Consequently, for a system which is mechanically isolated and maintained 

at constant temperature and constant chemical potential, the equilibrium 

state minimizes the grand potential. The equilibrium condition is 

(2. 6) 

This variation may be used to define the density operator D, which 

has the property that 

TrD = 1 (2. 7) 

The expectation value of any operator 0 is given by an ensemble average 

of 0 in the grand canonical ensemble 

< 0) Tr(DO) 

The trace implies a sum over all states with any number of particles 

(or quasiparticles). 

(2.8) 

The internal energy E, the entropy S, and the particle number N 

are defined by 

E (H) = Tr (DH) (2.9) 

s ( -k 5/,n D} = -kTr (D R-n D) (2.10) 

N Tr(nfh (2 .11) 



where H is the Hamiltonian, k is Boltzmann's constant, and 

A 

N 
J. 

I c'. c. 
1 1 

(2.12) 
i 

The variational principle (2.6) is realized by2 

0 (2.13) 

where the constraint (2.7) must be satisfied. The solution to Eqs. 

(2.13) and (2.7) is 

D 
1 -S(H- tJN) 

e (2.14) 

z (2.15) 

where Z is the grand partition function and 8 1/kT. 

III. INDEPENDENT QUASIPARTICLE MODEL 

The HFB theory approximates the Hamiltonian H by an independent 

quasiparticle Hamiltonian 

H""" ~FB (3 .1) 

where E
0 

is the energy of the quasiparticle vacuum, Ei is a quasiparticle 

energy, and t a. is a quasiparticle creation operator 
1 

t 
a. 

1. 
j 
I (u .. c~ + v .. c.) 

1] J 1J J 

The HFB density operator is obtained by substituting Eq. 

Eqs. (2.14) and (2. 15)' so 

DHFB = 

that 

~1 

exp ( ~ S L E . ~ . ) 2HFB . 1 1 
1 

Tr [exp (-S I Ei ni) J 
i. 

(3. 2) 

(3 .1) into 

(3. 3) 

(3, 4) 



where the number operator ni is 

t a. a. 
l l 

(Notice that the E
0 

term cancels.) 

The grand partition function (3.4) is 

(3. 5) 

(3. 6) 

where {na} denotes a complete set of quasiparticle occupation numbers 

n
1
n

2
n

3 
••• , and each na is either 0 or 1. There is no restriction on the 

number of quasiparticles, Ina, so that the trace in Eq. (3.4) sums 
a 

over the quasiparticle vacuum, one~quasiparticle states, two-quasiparticle 

states, etc. By expanding the exponential in Eq. (3.6) and noting that 

"m A ni "" ni, where m is any positive integer, it follows that 

(3. 7) 

Inspection verifies that the sum and product can be inter~changed 

(3. 8) 

so that the independent quasiparticle grand partition function is 

(3. 9) 

i 

The density operator is evaluated by expanding the exponential in 

Eq. (3. 3) 

(3.10) 



and substituting Eq, (3.9), 

where f. is defined as 
1 

rr [Ln. + (1- L)(l- n.)J 
i 1 1 1 1 

1 

-Define the single-quasiparticle density matrix p 

With the HFB approximation (3.1) it follows that 

0 ij fi 

(3.11) 

(3' 12) 

(3.13) 

(3.14) 

Consequently the quantity fi defined in Eq. (3, 12) is shown to be the 

quasiparticle occupation probability. At zero-temperature (S~oo), all 

fi equal zero, and the density p=O represents the quasiparticle vacuum. 

At finite-temperature, 0 < fi < 1, and p represents a statistical 

-mixture of quasiparticle excitations. The quasiparticle pairing tensor t 

is defined as 

Tr (D a. a,) 
J 1 

With the HFB approximation (3.1), it follows that 

t = 0 

(3.15) 

(3.16) 

The single-particle density matrix p and the particle pairing tensor t 

are defined by 

t 
pij = < cj ci > (3' 17) 

t,' < cj 
1] 

(3. 18) 



The HFB approximation to these particle densities is obtained by inverting 

the quasiparticle transformation (3,2) and inserting the quasiparticle 

densities (3.14) and (3.16), with the result that 

p = u f u* + vt (1 ~ f)V (3.19) 

t = (3. 20) 

where the tilde signifies transpose and L.=o .. f .. 
:lJ l.J 1 

At zero~temperature, 

f = 0, and the particle densities reduce to their usual form. 

The internal energy (2.9) is given by the expectation value of 

H (3.21) 

ij ijki 

At finite-temperature a statistical ensemble of quasiparticle excitations 

is obtained, and the quasiparticle vacuum can no longer serve as a 

reference state to define normal products. Consequently Wick's theorem 

no longer applies for operators. However, Wick's theorem remains valid 

3~6 
for the ensemble average of operators, such as 

(3. 22) 

Consequently the internal energy is given by 

E (3. 23) 

vJhere Tr here denotes the normal trace, The HF Hamiltonian Jf, the HF 

potential r, and the pair potential 6 are defined by 

Jf T ~ lJ + r (3 0 24) 

r .. I vikji PQ,k 1] 
k.Q, 

(3.25) 

6 .. !z I v ij kQ, tki 1] ki 
(3.26) 



Observe that the energy (3.23) and the potentials (3.24- 3.26) have the 

same form at finite-temperature as they do at zero-temperature. An 

alternative derivation of Eq. (3.23) is given in Appendix 1. 

The entropy (2.10) and the particle number (2.11) are evaluated 

with the HFB approximation (3.1) 

S = -k I [fi Jl,n fi + (1- fi) Jl,n (1- fi)] 
i 

N = Tr p 

The grand potential (2.3) is obtained from Eqs. (3.23)-(3.28) 

(3.27) 

(3.28) 

+ ~ L vi'kJI, t~. tkJI, + kT L [f. 2-n f.+ (1- f.) Q.n (1- f.)] . 
ij k£ J lJ i 1. 1. 1. l 

(3.29) 

IV. FTHFB EQUATIONS 

The FTHFB equations are derived by minimizing the grand potential 

or~ = o (4.1) 

7 This variation has been considered by Lee and Das Gupta. However, they 

did not obtain the FTHFB equations. The quantities to be varied are U, 

V and f. Consider the infinitesimal variations 

u' u + ou (4.2) 

v' v + av (4. 3) 

f + of 



~10~ 

Since the quasiparticle transformation 

(at) ( u v)(ct) 
a v* u* c 

(4 '5) 

is required to be unitary, the variations ou and ov are not independent. 

To find oU and 6V, consider the infinitesimal unitary transformation 

(

U' 

v'* 
v' )( ct) 
u'* c 

,(4.6) 

where 

t 
E: 1 = -E 1 (4' 7) 

The variations 6U and 6V are determined by substituting Eq. (4.5) into 

Eq, (4. 6), 

(4' 8) 

6V = (4 '9) 

The transformed particle densities are obtained by substituting U', V' 

and f' into Eqs. (3.19) and (3,20), 

p' p + 6p t I t + at (4.10) 

6p (4.11) 

ot (4.12) 

where 

cSp "' of + [f, c~t (4.13) 

(4.14) 



The terms op and eSt equal the variations in the quasiparticle densities 

caused by the infinitesimal transformations (4.4) and (4.6). The 

variation in the grand potential is found by substituting p', t' and f' 

into Eq. (3.29), 

where 

Equation (4.19) can be inverted to give 

f. 
l. 

1 

8Ei 
1 + e 

(4.19) 

(4.20) 

It should be noted that H
11 

and H
20 

have the same definitions as 

in the T"' 0 case, except that JC and 1::. are now temperature~dependent. 

Are op and ot independent variations? From the definitions (4.13) 

and (4.14) it follows that 

Cop) ii "' of. 
:1 

(4.21) 

(op) ij * "" (fi -f.)(E:l) .. 
J 1] 

(i ,. j) (4.22) 

-
(at) ii 0 (4.23) 

(eSt) .. "' (fi + fj - 1) (c;)ij 
1J 

(i ,; j) 
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Now E
1

, E2 and of are varied independently. Therefore, except for the 

accidental case where f. - f. "" 0 or f. +f. - 1 = 0, it follows that 6p 
1 J 1 J 

and ot are independent variations. The variational principle oQ = 0 

therefore requires that the coefficients of op and 6t vanish 

(4. 25) 

(4.26) 

The remainder of the derivation is the same as for T = 0 and is 

8 
given here for the sake of completeness. Define the matrices 

(4.27) 

(4.28) 

Then the complex conjugates of Eqs. (4.25) and (4.26) are 

(ua* + vB*)E E (4.29) 

(US + Va)E = 0 ( 4. 30) 

The unitarity constraints on the quasiparticle transformations are 

1 (4.31) 

- ~ uv + vu 0 (4 '32) 

By comparing Eqs. (4.29) and (4.30) to Eqs. (4.31) and (4.32), it is 

obvious that a solution to Eqs. (4.29) and (4.30) is 

a = u B = v (4.33) 

Substitute Eq, (4.33) into Eqs. (4.27) and (4.28) 



~ ~ -
;KU + !:J.V = UE 

-= VE (4.35) 

or 

(4.36) 

where u~ denotes the vector (U. , U. , ... ) , and similarly for V .. 
... :11 :12 :l 

Equation (4.36) is the finite-temperature HFB equation. Observe that 

the Ei which appears in fi of Eq. (4.20) is indeed the quasiparticle 

energy. 

The FTHFB equations have the same form as the T = 0 HFB equations. 

Also the HF Hamiltonian (3.24), the HF potential (3.25), the pair potential 

(3.26), and the internal energy (3.23) have the same definitions as for 

zero-temperature. The only difference between the T = 0 and the T ':1 0 

cases is that the quasiparticle occupations of Eq. (4.20) differ from 

zero at finite-temperature. Consequently the particle densities p and t, 

which are given by Eqs. (3.19) and (3,20), have different values at 

finite-temperature than for zero-temperature. 

The FTHFB self-consistency conditions are that, (i) the U and V 

produced in successive iterations be the same, and (ii) the f produced 

in successive iterations be the same. The second condition is new and 

arises because the quasiparticle occupation fi depends upon the quasi-

particle energy Ei through Eq. (4,20), while Ei depends upon £1 through 

Eqs. (3.19) and (3.20). Otherwise the solution of the FTHFB equations 

proceeds in the same fashion as the T"" 0 HFB equations. As usual the 

chemical potential J.l is adjusted so that the number constraint (3. 28) 

is satisfied. 
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High-spin states at finite-temperature are easily obtained by 

including a cranking constraint. One should minimize 

(4,37) 

with the constraint 
1 

[I(I+l)]~ (4,38) 

The resulting FTHFB-cranking equations are obtained from Eq, (4.36) by 

replacing the HF Hamiltonian JC with 

(4.39) 

It is interesting to note that the zero-temperature variation 

produces Eq. (4,26), but not Eq. (4,25). The T = 0 convention is to 

arbitrarily choose the quasiparticle transformations so that H
11 

is 

diagonal. However, for the finite-temperature case, the variational 

Eq. (4.25) requires that H11 equal the diagonal matrix E. The reason for 

this difference is easily seen by considering the generalized particle 

density matrix R and the generalized quasiparticle density matrix Q 

Rij 
t = ( d, d,) 
J 1 

(4.40) 

Q., 
1] 

<b~b-> 
J 1 

(4.41) 

where 

dt Ct) bt (:t) (4.42) 

These densities are related by the quasiparticle transformation z 

c * :·) R ztqz z = zzt = 1 

(4.43) 



The quasiparticle operators are given by the eigenvectors of R. 

At zero-temperature 

(4.44) 

and consequently, 

R (T"" 0) (4.45) 

So at T = 0, Q and R are highly degenerate with eigenvalues of 0 and 1. 

This degeneracy is the cause of the arbitrariness in defining the quasi-

particle transformations at T = 0. For T #- 0, 

(4.46) 

so that 

(T # 0) (4.47) 

At finite-temperature the degeneracy is broken. The eigenvalues of Q 

and R equal Except for accidental degeneracies in f., 
1 

the quasiparticle transformations are therefore uniquely determined 

when T#O. 

V, FINITE-TEMPERATURE BCS 

It is instructive to derive the BCS limit of the FTHFB equations. 

Consider the pairing Hamiltonian 

H 

i ij > 0 
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where II> is the time-reverse of li>, is equal to e:1 , e:
1 

includes 

the chemical potential -~. and it is assumed that the only non~zero 

matrix elements v ijk,!l, are 

j -G .. 
l.J 

(5.2) 

As usual, the contribution of G to the HF potential is neglected, so 

that f = 0, and the HF Hamiltonian is 

J(ij (5.3) 

The pair potential (3.26) reduces to 

(5.4) 

(5.5) 

Just as in the T"' 0 theory. the FTHFB energy matrix (4.36) separates 

into 2 X 2 subs paces with eigenvalues 

2 2 k 
E. = E-:- "' [e:. + 11.)2 

1 l. l. l. 
(5.6) 

and eigenvectors 

t t - v. C-:-a. ui ci 1 1 l. 
(5. 7) 

t a";" "" 1 

t + v. c. ui ci 1 1 
(5.8) 

where 

2 
~ (1 + E/Ei) "" (5.9) 

2 
~ (1 e:./E.) v. "" -

1 1 1 
(5.10) 

So far this derivation is the same as for T"" 0. The only difference 
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between finite-temperature BCS and zero-temperature BCS is in evaluating 

the pairing tensor tkk' which is given by Eq. (3.20). The matrices U, 

V, and f are block diagonal in each two~dimensional subspace consisting 

of Ji> and ji>. These matrices are 

u v f 

(5' 11) 

Since E-:- = E., therefore f-: = f., The pairing tensor is evaluated by 
1 1 1 1 

substituting Eq. (5.11) into Eq. (3.20), 

where 

1- 2f' 
1 

u 'v' (1 - 2£.) 
1 1 1 

(5.12) 

(5 .13) 

( 5' 14) 

The FTBCS equations are found by substituting Eqs. (5.12)-(5.14) 

into Eq. (5.5), 

2 
~j 

!z G .. E 
1J J' 

j>O 

tanh (!zSE.) 
J 

(5.15) 

When T = 0, the factor tanh (!z BE. ) 
J 

equals 1, and Eq. (5.15) reduces to 

the zero-temperature BCS equation. When T +oo , tanh(!z SE.) 
J 

equals 0, 

and the pair gap ~i vanishes, Pairing correlations are destroyed by 

increasing the temperature. 

The number conservation constraint (3.28) is given by substituting 

Eq. (5.11) into Eq. (3.19), 

N 2 2 (5. 16) 

i > 0 



The FTBCS equations (5.15) simplify for the pairing force 

Gij = G (5.17) 

Then the pair potential has the same value for all states 

b.i .. b. "" ~G 2 t.- (5. 18) 
. 0 Jj 
J> 

and the gap equations are 

G 2 
tanh(~ BE.) 

1 J (5.19) "' 2 
j >0 Ej 

VI. THE DEGENERATE MODEL 

The manner in which temperature destroys pairing correlations and 

the critical temperature at which the pair gap disappears will now be 

discussed. Consider the simple pairing Hamiltonian for one half-filled 

degenerate j-shell, 

H = -G t t c C- C-, c I m m m m (6.1) 

Then t:: = 0 and 1J = 0, so that all quasiparticle energies equal b.. The 
m 

gap equations (5.19) then simplify to 

where 

(2j + 1) % 

is the T"' 0 gap. The critical temperature Tc at which the gap 8 

vanishes is determined by Eq. (6.2). 

(6.2) 

(6.3) 



lim 
1::.+0 

tanh(~ B !::.) c 1::.0 

2 

The gap equation (6.2) provides the function ~(T), which is given in 

(6.4) 

Fig. 1. Increasing the temperature produces a "phase transition" from 

a paired state to a normal state. 

VII. CONCLUSION 

The finite-temperature HFB equations have been derived by minimizing 

the grand potential. The HFB equations as well as the HF and pair 

potentials have the same form for finite-temperature as for zero~temperature. 

The only difference between the T # 0 and T = 0 cases is the presence of 

non-zero quasiparticle occupations when T # 0. This results in different 

expressions for the particle densities. The BCS limit of FTHFB was 

obtained. The FTBCS equations were solved for the degenerate model, 

demonstrating that a "phase transition" from a superfluid state to a 

normal state is caused by raising the temperature. 

In a separate article the FTHFB~cranking equations are solved for 

the two-level R(S) model, and various nuclear properties, such as the 

pair gap and the moment-of-inertia, are presented as a function of spin 

and temperature. 



APPENDIX 1 

The internal energy E of Eq. .23} was obtained by using the 

finite~temperature Wick's theorem. Alternatively, the particle Hamiltonian 

(3.21) can be expressed in terms of the quasiparticle operators (3.2) 

where 

and 

H "" 
ll 

ij 
L (H ) .. a~ a. 

11 :tJ 1 J 

(u* x vt _ v* .," * ut + u* A ut *A * t ) o "'-o uo - V uo V ij ' 

(A. 1) 

(A. 2) 

(A. 3) 

(A.4) 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 

(A. 9) 

(A.10) 



(!:;,0) ij "' ~ I V. okJ(, (to )kJ(, 
k.R. l.J 

(A.ll) 

Po = vtv (A.l2) 

t ~ vt u 
0 

(A. 13) 

Since 

(H2o) 0 (A.14) 

it follows that 

(A. 15) 

At finite-temperature the independent quasiparticle term H
11 

and the 

quasiparticle interaction H22 both contribute to the energy, whereas 

at zero-temperature their averages vanish. These contributions are 

{H22} = I [<H22)ijij -· (H22)ijji] fi fj 
ij 

L vi]ok.R,G(p- po).R.]o (p- po)ki + ~(t- to)~Jo (t- to)k.Q,J, 
ij kQ. 

(A.l7) 

where p and t are defined by Eqs. (3.19) and (3.20). The internal 

energy (A.l5) is 

(H) = Tr [(T + ~f)p + ~~tt J (A.l8) 

where r and ~ are defined by Eqs. (3. 25) and (3. 26). Observe that 

Eq. (A.18) agrees with Eq. (3.23). 
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Fig. 1. Pairing gap versus temperature in the degenerate model. 

The quantity 6
0 

is the gap at T "" 0. 




