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Abstract of the Dissertation 

 

Development of a Label-free Optical Analysis Platform for Cells and Tissues 
 

 
by 

 

Anthony A. Fung 

 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2023 

Professor Lingyan Shi, Chair 
 

 

In instances where tissue availability is limited or surgical risks to the patient are 

significant, the application of multiplexed biomedical imaging can be a challenge due to 

limitations in spectral bandwidth of fluorophores and histological stain chroma. This 

dissertation presents a label-free multimodal optical imaging platform that combines stimulated 

Raman scattering (SRS), second harmonic generation (SHG), and multiphoton fluorescence 

(MPF) in a single microscopy setup. Using this home built multimodal microscopy, the 

dissertation investigates subcellular organelle morphology, their molecular composition, and 

metabolic dynamics in triple negative breast cancer cells under tandem nutrient modulation, 
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as well as assesses various biomarkers such as 3D mesangial expansion, collagen fiber 

thickening, oxidative stress, and lipid dysregulation in diabetic kidney disease. From 

subcellular to tissue levels, the platform provides spatial, biomolecular, and metabolic insight 

across disease models without relying on exogenous labels or serial sectioning. Developing 

and employing analytical techniques such as chemometric spectro-microscopy such as 

relative entropy, penalized reference matching, and stimulated Raman histology, this work 

advances quantitative bioimaging while preserving the flexibility of traditional methods through 

its non-destructive properties. Ultimately, this custom platform optimizes informatics while 

minimizing sample utilization and disruption, unlocking novel biological insights that were 

previously reliant on more intricate sample preparation, expensive reagents, and abundant 

tissue availability.



1 

 

Chapter 1: An Introduction to the Label-free Optical 
Platform and its Development 

This chapter first introduces the relevant concepts and technologies, highlighting recent 

developments in the literature that champion biomedical applications. The following section 

presents the development of tools and methodologies employed by the label-free optical platform 

in subsequent chapters. Experimental approaches and considerations related to platform 

development are then presented, and the chapter concludes with a discussion of the dissertation 

aims. 

1.1 Label-free Imaging Concepts and Technologies 

Spontaneous Raman scattering is a non-destructive process that involves the inelastic 

scattering of light by molecules, resulting in a shift in the frequency of the scattered photons. The 

shift in frequency corresponds to the vibrational energy of the molecule, providing information 

about the chemical composition and molecular structure of the sample. Raman scattering was 

first demonstrated by Indian physicist C.V. Raman, who in 1930, received the Nobel Prize in 

Physics for his discovery. As a spectroscopic technique, it has been used extensively in various 

fields including chemistry, physics, and biology and has undergone significant development in 

instrumentation and analytical methods. In recent years, Raman spectroscopy and stimulated 

Raman scattering microscopy has gained attention in the biomedical field due to its non-invasive 

and label-free nature. The technique has been used for a range of applications, including cell 

characterization [1, 2], disease diagnosis [3, 4], drug development [5, 6], and tissue imaging [7].  

Raman scattering is a natural phenomenon and is referred to as “spontaneous” because 

the scattered light is emitted spontaneously, without the need for an external stimulation or 

excitation. When incident radiation in the form of a monochromatic laser with known wavelength 

interacts with the molecules of interest, there is a transfer of energy due to the electric field of the 
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incident laser photons. This transfer can either decrease or increase the scattered photon energy, 

and is referred to “Stokes” (red-shifted Raman spectrum) and “anti-Stokes” (blue-shifted Raman 

spectrum), respectively, and depends on whether the molecules were in a ground or excited state 

initially. This dissertation exploits Stokes Raman scattering by measuring the scattering 

frequencies excited from a ground state.  

A simple diatomic model is often used to describe energy levels. In this model, the atoms 

and electrostatic forces are represented as bodies with mass m and position u, connected by a 

massless spring of constant k. The photons electronic field induces a temporary change in 

polarizability by inducing an internuclear displacement Q. In reality, biomolecules of interest are 

more complex and contain many bonds, but the harmonic oscillation of the model system can be 

described by classical equations 1.1-1.3 below, assuming Maxwell-Hookean mechanics. The set 

of forces acting at all points of the system is a function of the stiffness k, and flexibility constants 

c in the direction of the applied forces. The total work of the system W is stored as energy, and is 

both positive and definite.  

𝑭𝒊
(𝒆)

= 𝒎𝒊𝒖𝒊𝒊̈ + ∑ 𝒌𝒊𝒋
𝒏
𝒋=𝟏 𝒖𝒋         1.1 

𝑸𝒊 = 𝒌𝒊𝒏𝒄𝒊𝒏𝑸𝒏            1.2 

𝑾 =
𝟏

𝟐
∑ ∑ 𝒄𝒊𝒋

𝒏
𝒋=𝟏

𝒏
𝒊=𝟏 𝑸𝒊𝑸𝒋        1.3 

Here we can clearly see the work done on the system is proportional to the square of the 

symmetric internuclear distance Q. It is important to note that because energy is quantized and 

the exact position of an electron is unknown at any time, energy is represented not as a 

continuous function, but instead as probabilistic quantities. Figure 1.1 below shows an energy 

diagram of Stokes Raman scattering of an anharmonic oscillator model of this system. A perfect 

harmonic oscillator is shown by the dashed lines, but is not representative of an actual diatomic 
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molecule because bond breakage occurs beyond a certain internuclear distance, unlike the 

Maxwell-Hooke models used to describe it. 

 

Figure 1.1 Energy diagram of Stokes Raman scattering 
The work stored as strain energy is quadratically proportional to the internuclear distance, Q, of the 
diatomic molecule model. The perfect harmonic oscillator case is shown as a dashed parabola, but solid 
lines are represented to include the potential of bond breakage beyond a certain internuclear distance. 
The incident photon has a much higher energy than the scattered photon, and excites the molecule to a 
virtual energy state, Evib. The scattering frequency is the difference in energy between the energy levels, 
and the Raman shift, expressed in wavenumbers is proportional to the change in frequency v0-vm divided 
by the speed of light. 
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The amount of energy transferred depends on the molecules of interest and their rho-

vibrational modes. These modes refer to the polarizability of the molecules and degrees of 

freedom in their structures. A more polarizable molecule will have greater Raman scattering 

capability because incident radiation will cause a change in the induced electric field by exciting 

electrons to a virtual energy state. These states are very temporary and do not correspond to 

actual energy levels of a molecule that emit new photons during relaxation. There are many ways 

a molecule can vibrate such as symmetric or asymmetric stretching, scissoring, bending, rocking, 

and twisting. In contrast to infrared (IR) spectroscopy, which also probes these vibrational modes, 

Raman scattering focuses on scattering and not absorption. Additionally, Raman spectroscopy is 

more sensitive to polarizability changes, while IR spectroscopy is more sensitive to changes in 

dipole moment, allowing for better detection of certain molecules. In either case, the result is a 

spectrum in which the abscissa is the difference between the excitation wavelength and the 

scattered wavelength, called a Raman shift, and is represented by wavenumbers [cm-1]. The 

ordinate is proportional to the number of scattering molecules N, the scattering cross section (the 

polarizability, α and vibrational amplitude, Q), the laser frequency, and incident laser power. This 

is summarized in equation 1.4 below. 

𝑰𝑹 ∝ 𝝂𝟒𝑰𝟎𝑵(
𝝏𝜶

𝝏𝑸
)
𝟐
      1.4 

These spectra can be used to identify the molecular composition of an analyte. However, 

this process is slow, relative to fluorescence imaging, due to the weak Raman scattering cross 

section. That is, the probability for a molecule to inelastically scatter light is low, which results in 

longer acquisition times and higher laser powers. Much progress has been made in the effort to 

improve Raman signals, including advances in detectors, resonance enhancement using 

nanoparticles and substrates, and of course non-linear stimulation.  
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1.1.2 Stimulated Raman Scattering Microscopy 

Unlike spontaneous Raman scattering, a Stimulated Raman Scattering (SRS) system 

uses two lasers, a pump beam and a Stokes beam. These beams are overlaid in space and time, 

and the pump beam excites the specific vibrational frequency while the Stokes beam stimulates 

the scattered photons in a coherent fashion. Since both beams of different energy are involved in 

the vibrational transition of the analyte molecule, the signal intensity is greater than the 

spontaneous process alone. This affords faster scanning times of about three orders of magnitude 

[8]. For this reason, SRS is more appropriate for acquiring image data than spontaneous Raman 

scattering. SRS can be achieved either by measuring stimulated Raman gain (SRG) or stimulated 

Raman loss (SRL). In this document, only SRL, which measures the attenuation of pump beam 

energy and filters out the Stokes beam, was used for SRS imaging. While both SRG and SRL are 

considered “background-free” due to their coherent nature, SRG may require a reference 

measurement of the pump beam energy. Both spontaneous and stimulated Raman scattering are 

chemometric techniques that can generate Raman spectra. Spontaneous Raman scattering 

captures a full Raman spectrum at a single user-defined point on a sample, while SRS captures 

a single Raman shift at many spatial points. A hyperspectral image (HSI), a three-dimensional 

array in which each pixel of the image is a spectrum of intensities, can be acquired with either 

SRS or spontaneous Raman scattering, but there is typically a trade-off between spectral 

resolution, spatial resolution, range, and imaging speed. In this document, HSI’s are acquired 

using SRS due to the faster imaging speeds, and encompass the CH stretching region with a 

spectral resolution of about 10-20 cm-1. Full Raman spectra are acquired using a commercial 

spontaneous Raman scattering microscope (XPloRa plus, HORIBA) with a spectral resolution of 

2-5 cm-1. 
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SRS serves multiple functions in this optical platform including the analysis of metabolic 

activity, pseudo-colored digital histology, and label-free multimolecular detection. As such, 

several steps were necessary in the development of the platform. 

1.1.3 Two-Photon Fluorescence Microscopy 

Two-photon fluorescence (TPF), like SRS, is a second-order non-linear optical process 

and involves the simultaneous absorption of two photons, each with half the energy of the 

corresponding single-photon absorption event. The emission intensity is proportional to the 

square of the excitation intensity, which allows for weaker incident laser powers and thus mitigates 

photodamage and photobleaching effects [9]. These harmful effects can permanently alter 

structural information through sample burning, or lose biomolecular information through 

conformational changes in fluorescent molecules that prevent them from fluorescing. Penetration 

depth generally increases when using longer wavelengths which are scattered less efficiently, 

and spatial resolution improves because both photons must be intersected at the same point in 

space and time to excite the fluorophore. 

These advantages are integral for label-free imaging because endogenous compounds 

like NAD[P]H and Flavins have a weaker fluorescence intensity than many commercial probes. 

This phenomenon is known as autofluorescence, a property shared among all cells, and upon 

which this dissertation capitalizes. 

1.1.4 Second Harmonic Generation Microscopy 

Another second order non-linear optical process is second harmonic generation (SHG). 

Here, two photons of equal energy interact with non-centrosymmetric material through an 

oscillating electromagnetic field and emits a new photon with twice the energy of the incident 

photons. In this document, all SHG imaging uses a two photon 1031 nm laser and a 515 nm filter 

to probe type I – III collagens, which are highly ordered structures that lack centro-symmetry. 
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Collagen can be an indicator of several diseases such as renal fibrosis, fatty liver disease, 

glaucoma, and melanoma. Due to the wide variety of applications, this optical platform 

incorporates methods to characterize collagen through SHG microscopy such as anisotropy 

analysis [10] and fiber thickness analysis [11–13].  

1.2 Developing a Label-free Optical Imaging Platform 

1.2.1 Relative Entropy Development for Spontaneous Raman Spectroscopy 

The output of the spontaneous Raman scattering microscopy employed in this document 

takes the form of a spectrum. This spectrum describes the molecular composition at a point in the 

sample selected by the user, and can be used to characterize experimental groups through 

changes in Raman intensity in various regions of the spectrum. Experiments with a large number 

of experimental groups and many independent variables may be sensitive to multivariate effects. 

As a result, plotting all spectral groups and comparing them in a fully-connected pair-wise manner 

can be cumbersome and less quantitative.  

In developing this optical platform, multivariate problems demand objective solutions. At the 

time of writing, the current literature often highlights spectroscopic differences between 

experimental groups arbitrarily. This also entails that every spectrum or group of spectra be 

displayed juxtaposed, which can be cumbersome in experiments with many groups and 

independent variables. Put simply, differences in Raman peak intensities between the mean 

spectra of two experimental groups do not imply significance. In multiplexed experiments with 

many independent variables, discerning which Raman features contribute most to the 

discrimination of experimental groups is even more challenging. Techniques such as t-distributed 

stochastic neighbor embedding (t-SNE), principal component analysis (PCA), and uniform 

manifold approximation projections (UMAP) are non-linear dimensionality reduction tools to 

visualize how distinct groups of data, like Raman spectra, can be separated. However, they do 
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little to explain which variables within the data contribute to these separations. To quickly rank 

and visualize all the wavenumber variables that may have been influenced by a particular 

treatment, the Kullback-Leibler divergence (DKL), a simple metric for the distance between two 

distributions for classification problems [14], at each Raman shift can be plotted for each 

independent variable. This method is also known as relative entropy. 

For binary classification systems, the amount of data lost in classifying data B as data A 

is described by the one-dimensional cross entropy equation 1.5 below. 

𝑯(𝐀, 𝐁) = −∑ (𝒑𝐀〖(𝒗〗𝐢) 𝐥𝐨𝐠𝒑𝐁(𝒗𝐢))
𝒏
𝒊        1.5 

where, H(A,B) is the cross-entropy, 𝑝A(𝑣i) and 𝑝B(𝑣i) are probability vectors from the distributions 

of intensity values a wavenumber variable 𝑣i. Probability vectors can be derived from various 

distributions, but only Gaussian (or, normal) distributions were used in this study. The DKL is 

related to cross-entropy as it is the additional entropy beyond the entropy of the data A. Since 

both distributions are already labeled and we are not interested in generating probability vectors, 

but rather supply them, the DKL is described by Equation 1.6 below. 

𝑫𝑲𝑳(𝐀||𝐁) =∑ (𝒑𝐀(𝒗𝐢)𝐥𝐨𝐠⁡(
𝒑𝐀(𝒗𝐢)

𝒑𝐁(𝒗𝐢)
)

𝒏

𝒊
        1.6 

This divergence is made symmetric by equation 1.7 below. For this analysis probability 

vectors are of length 107 

𝑫𝑲𝑳 =
𝑫𝑲𝑳(𝐀||𝐁)+𝑫𝑲𝑳(𝐁||𝐀)

𝟐
               1.7                                         

For multiclass situations in which the number of groups exceeds two, the average 

divergence is calculated following equation 1.8 [15, 16]. 
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𝑫(𝑷𝟏…𝑷𝒌) =
𝟏

𝒌(𝒌−𝟏)
∑ ∑ 𝑫𝑲𝑳(𝑷𝒊||𝑷𝒋)

𝒌

𝒋

𝒌

𝒊

                 1.8                         

Relative entropy is an excellent method for quantifying the relative importance of a 

wavenumber in the discrimination of spectral datasets because it is computationally fast and 

capitalizes on the tremendous chemometric potential afforded by the spectral resolution of 

modern spontaneous Raman systems. Below shows an example in which two experiments each 

compares four groups of Drosophila antennal lobe tissues along two dimensions, sex and age, 

and sex and genetic strain, respectively. In the first experiment, t-SNE plots, initialized with PCA 

and preserved global structure, are able to display the separation of groups with the age 

dimension having greatest separation between clusters (Fig. 1.2A). However, even with this 

dimensionality reduction, it is still not clear which Raman features contribute to this separation 

until the relative entropy is plotted along these dimensions (Fig. 1.2C). By regrouping the spectra 

along these dimensions and comparing them using relative entropy, the amide I, amide III, and 

saccharides Raman bands appear to have great discriminatory power, and warrant further 

investigation. Likewise, when the amyloid precursor protein (APP) overexpressed Drosophila 

tissues are grouped along the sex and strain dimensions, the relative entropy shows slightly 

higher discriminatory power in the amide I and amide III regions as well. However, as reflected in 

the t-SNE plot (Fig. 1.2B), the overall relative entropy is lower in this experiment (Fig. 1.2.D). 
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Figure 1.2 Relative Entropy in Raman Spectroscopy  
(A) t-SNE analysis was conducted on the AL Raman spectra from 5-day (5d) and 45-day (45d) female and 
male flies, respectively. PCA initialization was performed, and global structure was preserved. (B) t-SNE 
analysis was conducted on the AL Raman spectra from WT and APP overexpression female and male flies. 
M, male; FM, female. PCA initialization was performed, and global structure was preserved. (C) Relative 
entropy plots of age and sex dimensions with overlaid plots of grouped and normalized spectra with 1-
sigma error bands. The Amide I region has the highest entropy among the spectral features, and an overall 
higher entropy along the age dimension. (D) Relative entropy plots of APP expression and sex dimensions 
with overlaid plots of grouped and normalized spectra with 1-sigma error bands. The APP expression 
dimension has an overall higher relative entropy than the sex dimension, with the highest Raman feature 
being the Amide I band. 

 

 

1.2.2 Multimodal Metabolic Feature Selection 

To detect metabolic activity, deuterium oxide (D2O), also known as heavy water, was used 

as a bio-orthogonal probe. Previous studies have shown that sparse metabolic incorporation of 

deuterium (D) in macromolecules such as lipids, proteins, and DNA allows for their visualization 
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in the Raman cell silent region [17]. This is because carbon-deuterium (C-D) bonds have a unique 

vibrational mode around 2150 cm-1 to 2200 cm-1, allowing for the visualization of newly 

synthesized macromolecules. Along with this metabolic feature, other Raman features were 

selected as described in figure 1.3 below, and are elaborated in Chapter 2. 

 

Figure 1.3 Multimodal Imaging Feature Selection 
Hyperspectral Image (HSI) format is shown conceptually to convey the multi-modal approach to quantitative 
optical analysis. Vibrational modes are color coded, with an example image of a HSI of MCF10A control 
cells. 

 

1.2.3 Stimulated Raman Histology 

One of the most widely used pathological detection methods is histology. Cancers, 

infections, neurodegeneration, and arthritis are among the many diseases that can be visually 

detected using stained biopsies. Despite the years of training required of histopathological 

diagnoses, there is a drawback. Limited biomolecular insight. Even with more recent 

immunofluorescence probes, there is a limit to the number of simultaneous markers due to the 

overlap of stain hues and chroma, and fluorescent probe excitation and emission wavelengths. 
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Modern workflows can incorporate sequential wash steps to bind stains and probes individually, 

but these multiplexing methods can be costly in time and money. Additionally, they have certain 

drawbacks such as altered molecular distribution due to the size and hydrophobicity of the probe 

itself, or the reagents and washing processes themselves. It is common practice to serially slice 

tissue and independently stain each slice, but the morphologies are not the same, and may be 

subject to deformations that can make co-registration of these slices difficult.    

To address this issue, stainless staining can be employed. Stainless staining is a form of 

digital histology that pseudo-colors the sample image based on spectrally acquired data. This can 

be done using fluorescence, FT-IR imaging, SRS, and others. With respect to SRS, it is referred 

to as stimulated Raman histology (SRH) [18]. Using this method, various views of the same 

sample can be generated without any physical staining. Since a major tenet of this optical platform 

is that it maintains the flexibility of traditional methods, and does not preclude these methods, 

SRH is a critical part of this platform development.  

Two common histological stains, hematoxylin and eosin (H&E) and periodic acid–Schiff 

(PAS), were tested. First, SRS HSIs of the CH stretching region were acquired, followed by 

physical staining of the samples (Fig. 1.4 A, D). Images were carefully co-registered by hand, but 

future experiments may employ useful tools such as the ImageJ plugin; stack-reg (Biomedical 

Imaging Group - EPFL). For the H&E stain, which is comprised of two main colors, a blue-purple 

nuclei stain (Hematoxylin), and a pink interstitial stain (Eosin). These colors can be easily 

segmented in the L*a*b* color space to generate ground truth masks (Fig. 1.4 B). From these 

masks, the pixel spectra of the nuclei and cytoplasm can be visualized (Fig. 1.4 C). Of note, three 

Raman peaks of interest comprise the majority of the variance: 2850 cm-1, 2880 cm-1, and 2935 

cm-1. Eosin pixels contained a much high ratio of 2850 cm-1 to 2935 cm-1, which is what is typically 

employed in the literature. Therefore, the H&E SRH modality is constructed from unmixing these 

Raman shifts, applying custom lookup tables (LUTs), blending them, and normalizing them. First, 

the protein (2935 cm-1) and lipid (2850 cm-1) SRS images are unmixed using previously published 
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methods [17]. Nuclei were segmented from the ratiometric result by thresholding pixels with the 

highest lipid to protein ratio. The nucleic mask is then de-speckled, closed, and hole-filled using 

standard ImageJ binary functions. Custom LUTs are applied to the unmixed protein and lipid 

images and blended together in the RGB space in a similar fashion to other studies [18, 19]. To 

ensure the nuclei and background have enough contrast, the pixels within these masks have their 

L* decreased and increased, respectively, and their b* chromacity slightly decreased. Finally, 

RGB histogram normalization may be applied to ensure clarity and consistency [20]. 

For the PAS SRH implementation, the stained ground truth images were preprocessed by 

enhancing contrast (raising the lower threshold by 10% and decreasing the upper threshold by 

10%), and increasing the blue channel’s chroma and saturation by 10% each (Fig. 1.4 D). This is 

done to provide a greater separation between the nuclei counterstain and the PAS aldehyde 

chroma. Once the image is converted to the L*a*b* color space, the PAS can be readily analyzed 

(Fig. 1.4 E). Unlike the Eosin, which stains almost everything the same color, and can then be 

scaled in brightness proportionally with the Raman intensity, the hue and chroma of the PAS stain 

is more of a gradient. Period acid first oxidizes glycol groups found on saccharides in 

glycoproteins and mucin such as in basement membranes. The aldehyde product can then bind 

with Schiff’s reagent, and upon the release of a sulfonic group in washing steps, a reddish hue 

develops. The chroma of this hue is more red where the concentration of Schiff’s reagent is higher, 

however it unfortunately doesn’t scale linearly with Raman intensity. In the L*a*b* space, the 

areas with higher PAS staining correlate logarithmically with the difference between a* and b* 

chroma, as indicated by the red arrow in Fig. 1.4 E. Several snapshots of the thresholded PAS 

image along this red arrow are also shown for reference. Plotting the pixel spectra from various 

groups of a*-b* values shows that the PAS stain correlates logarithmically with the ratios of 2850 

cm-1 and 2880 cm-1 to 2935 cm-1, as well as with the AUC of the Raman spectra. 

It should be noted that other color spaces such as Hue Saturation Value (HSV) may also 

be used, however the L*a*b* space was implemented because Cartesian coordinates are easily 
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interpretable with Raman intensity, and the histological stains employed are well suited to the a* 

and b* chromaticity representation. These axes measure green-magenta, and blue-yellow 

opponent colors, respectively. The chroma becomes redder with positive increasing a*, and bluer 

with negative decreasing b*. For images with another color gamut, a different segmentation 

method may be necessary. Unlike the more common RGB and CMYK color-spaces, the L*a*b* 

color-space is device independent. This offers advantages in color normalization methods to 

standardize datasets and establish uniform stain-augmentation in the future – a critical 

consideration for co-registration of spatial molecular imaging modalities. 

 
Figure 1.4 Stimulated Raman Histology Platform 
(A) After a HSI is acquired, the same sample is stained using Mayer’s H&E (Thorlabs). Scale bar 50 
microns. (B) The H&E stained image serves as the ground truth, and is converted to the L*a*b* color space 
to segment background, eosin, and hematoxylin masks. (C) The masks are used to acquire pixel spectra 
from the SRS HSI, which are plotted with 1-sigma error bands. (D) After a HSI is acquired, the same sample 
is stained with PAS stain. Scale bar 75 microns. (E) The stained image undergoes [10%-90%] contrast 
enhancement, and the blue channel saturation and chroma is increased by 10% to make the nuclei more 
distinct. This image serves as a ground truth and is then converted to the L*a*b* color space. The mucin 
stain becomes a gradient, with logarithmically increasing mucin chroma along the a*-b* axis. Snapshots of 
the L*a*b* thresholded image along the red arrow are shown above. (F) Several groups of pixels with 

indicated a*-b* quantities are plotted with 1-sigma error bands. 
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 Nuclei may also be segmented in the phasor space, which transforms a spectrum into a 

real and imaginary component that correspond to amplitude and phase, respectively. This 

technique has been demonstrated in figure 1.5 below using methods published in the literature 

[21]. 

 
Figure 1.5 Phasor segmentation can isolate nuclei and other components 
(A) Phasor plot of pixel spectra with segmented regions drawn. (B) An overlay of the segmented pixel 
masks from (A). (C) Cytoplasmic component segmented via phasor only. (D) Nuclei component 
segmented via phasor only. (E) Nucleoli component segmented via phasor only. (F) Lipid droplet 
component segmented via phasor only. Scale bar 10 µm. 

 

1.2.4 Penalized Reference Matching 

Mapping spatial distributions of biomolecules remains a persistent challenge for any 

optical platform, especially for label-free platforms. Spatial molecular visualizations can be 

achieved through destructive methods such as Matrix Assisted Laser Adsorption Deposition 

Ionization (MALDI), gas chromatography mass spectrometry (GCMS), or digestive assays. These 

methods allow the user to directly measure the presence of a given standard analyte within the 

sample, at the cost of permanently altering the sample. Recent work has demonstrated label-free 
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unmixing of molecules using multivariate curve resolution alternating least squares (MCR-

ALS),which allows the user to unmix a SRS-HSI into probabilistic or proportional component 

spectra to visualize relative concentrations [22]. Albeit label-free, there is no guarantee that the 

unmixed component spectra correspond to an analyte of interest. Furthermore, the processing 

time can take 30 minutes to process a 512 x 512-pixel hyperspectral image and presupposes the 

number of chemical species in a sample. The result displays a pixel’s identity by its relative 

proportional composition of reference species. However, this is not always feasible in a complex 

biological sample. Singular Value Decomposition (SVD) can estimate the number of components, 

but analytical results may be sensitive to slight deviations from the exact number of components. 

Therefore, there is sorely needed solution that allows for direct visualization of a selected analyte 

like MALDI-TOF, while retaining the label-free non-destructive abilities of MCR-ALS. Finally, the 

solution should be robust enough to account for differences in spectral position that may vary 

across instruments, such as between the spontaneous Raman spectrometer and SRS 

microscope. 

To address these issues, spectral angle mapping, also called reference matching or 

cosine similarity, was modified with a penalty term to allow, but penalize, small differences in 

spectral position. This method allows for the selection of a reference spectrum, such as that of an 

analytical standard or a specific lipid subtype, acquired by a spontaneous Raman spectrometer, 

and visualize relative concentrations within a HSI acquired by a SRS microscope.  

SRS HSI pixel spectra and reference spectra were linearly interpolated such that the 

spectral interval is 1 wavenumber. This ensures that the inner product, which requires vector 

dimensions to be the same, is possible. After all spectra were adjusted to the same interpolated 

resolution, they were simplex normalized using equation 1.9, 

𝑰𝟏 =⁡
𝑰−𝑰𝒎𝒊𝒏

𝑰𝒎𝒂𝒙−𝑰𝒎𝒊𝒏
        1.9 
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where Imin is the minimum value and Imax is the maximum value in the pixel spectrum. This 

normalization is done prior to reference matching so that the process generates results that are 

solely based on spectral shape without being affected by any intensity fluctuation. The normalized 

pixel spectra were then divided by their Euclidean norm as shown in equation 1.10 

𝑰𝟐 =
𝑰𝟏

||𝑰𝟏||𝟐
             1.10 

where I2 is the interpolated signal of the pixel spectrum. Reference spectra from spontaneous 

Raman acquisitions follow the same pre-processing steps as the HSI pixel spectra, as shown in 

equations 1.11 and 1.12 below. 

𝑰𝟒 =⁡
𝑰𝟑−𝑰𝟑,𝒎𝒊𝒏

𝑰𝟑,𝒎𝒂𝒙−𝑰𝟑,𝒎𝒊𝒏
         1.11 

𝑰𝟓 =
𝑰𝟒

||𝑰𝟒||𝟐
              1.12 

where I3 denotes spontaneous Raman spectra, and I5 is the interpolated signal of the reference 

spectrum. Due to the nature of Raman spectral intensity, similarity scores between each pixel 

spectrum and the reference spectrum were calculated using the dot product of I2 and I5. 

These spectroscopic methods have been deployed for several decades, but due to high 

false positive rates, direct label-free characterization of multiple lipid subtypes in cells and tissues 

has not been achieved by using optical imaging. To address this, we added a penalty term to the 

canonical cosine similarity algorithm, which decreases the false positive rates by proportionally 

reducing the similarity score with the positional discrepancy to the best spectral match (Fig. 2A-

C). This process is summarized as  

𝒔𝒄𝒐𝒓𝒆 = 𝐦𝐚𝐱
𝒊∊[𝟏,𝑵]

(𝒖𝒊 ∙ 𝒗 − 𝛂∆𝒙𝒊
𝟐⁡) ⁡             1.13 

where u represents the interpolated signal of a pixel’s shifted spectrum at various positions; v 

represents the interpolated signal of the reference spectrum; α is the penalty coefficient, with a 

unit of [cm2]; Δxi is the deviation in position of the spectrum in ui from the initial observed position; 

and N is the number of interpolated signals, which depends on the spectral resolution of the HSI. 
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The penalty term αΔx2 inherently addresses the slight positional deviations due to the diverse 

chemical environment, as well as the variations in instrumentation (such as thermoelectric noise, 

lensing, and other interference). Without this term, even if the spectral shape of a pixel matches 

the reference spectrum, the final similarity score may still be low when the positions of the peaks 

differ greatly. An example is shown below, in which two spectra are compared with varying relative 

positions (Fig. 1.6 A-B). With the penalty term, all pixel spectra are evaluated as they occur at 

multiple Raman shifts, and the highest similarity score is returned in a pixel-by-pixel manner. In 

this case, the maximum score was 0.9866. 

By leveraging positional information in addition to peak shape, the breadth of similarity 

score is increased or decreased, akin to a change in contrast. This ensures that pixels with similar 

shapes and positions are scored accordingly.  

Most images collected in this study were taken from the Raman CH stretching region 

(2700 cm-1 to 3150 cm-1) with 75 total Raman shifts (a spectral distance of 6 cm-1 between 

images). The position deviation Δx was the shift of peaks in the spectrum. We assessed several 

values for the penalty coefficient and chose α =1x10-4 empirically. This is because if the penalty 

is too low, the pixel and reference spectra are free to shift themselves relative to each other until 

the highest similarity score is returned, no matter how far that shift may be from the original 

position. For full justification and examples, see Chapter 3. 
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Figure 1.6 Penalized Reference Matching Principle 
(A) Two spectra of lipid standards, Cardiolipin (Blue) and TAG 18:1 (Green), are plotted, along with 
spectrally shifted relative positions along the wavenumber axis to simulate positional differences between 
microscopy setups. (B) The similarity score is calculated using the above equations at every spectral shift 
in (A), and plotted (Blue). The penalty term is proportional to the square of the spectral shift, with an 
amplitude of 10-4. The penalty term is plotted in red. The final penalized similarity score is calculated by 
subtracting the penalty term from the raw similarity score, and is plotted in yellow. Since the similarity score 
cannot be negative, all negative scores are automatically zero. 

 
Since Raman spectra contain molecular bond information that correlates with 

concentration, similarity scores may be used to estimate the relative levels of different molecules, 

such as different lipid subtypes. When the Raman spectra of a sample exhibit a high degree of 

similarity to that of a reference standard, it will suggest a higher concentration of that reference 

molecule in the sample. Different biomolecules may have the same types of chemical bonds, and 

the cumulative mixture of various molecules may result in a spectrum that displays the same 

spectral shape as an unrelated molecule. From a macromolecular perspective in biological 

samples, however, we find that factors such as the diversity of the analyte composition do not 

necessarily void the correlation between relative ratios and similarity scores. Validation trials using 

lipid standards purchased from Sigma Aldrich show that various ratios of lipid standards are 

reflected in the similarity score under ideal conditions with two lipid standards (Fig. 1.7 A-B), with 

high background contamination (Fig. 1.7 C-D), and with three lipid standards (Fig. 1.7 E-F). 

Importantly, these measurements correlate with relative, not absolute, concentration, and are thus 

more visually intuitive when normalized (Fig. 1.7 F). 
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Figure 1.7 PRM Measures Relative Lipid Concentrations 
(A-B) Spontaneous Raman spectra and corresponding similarity scores of mixtures of ceramide and TAG 
(C2-C10) (Sigma 17810-1AMP-S) at the indicated ratios. (C-D) The experiment repeated with the addition 
of equal volume of methanol-washed tissue lysates, showing a deterioration of similarity scores but a 
preservation of trend. (E) Experiments with three-lipid mixes (CER, TAG and cardiolipin) at various ratios 
were also conducted. Raw similarity scores (middle panel) and relative similarity scores normalized to the 
first group with equal ratios (right panel) are shown. (F) Plotting both raw and normalized (relative) similarity 
scores using each component as an axis, show similar patterns to the actual concentrations. All spectra 
were acquired on the same instrument (HORIBA XploRa plus). The highest similarity scores were achieved 
with a spectral shift of 0. 



21 

 

We further compared PRM with pseudo-inverse matrix (PINV) multiplication, which is 

another technique with similar functionality that is commonly used in spectra platforms. We found 

that both PRM-based similarity scores and PINV-derived coefficients correlated with relative ratios 

of lipids, with the PINV coefficients having a more linear relationship (Fig 1.8 A-B). However, the 

PINV calculation using the documented MATLAB function was much slower (Fig 1.8 C) PINV-

derived coefficients can have negative values and have unbounded ranges (Fig. 1.8 D-E).  
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Figure 1.8 Comparison of PRM and pseudo-inverse matrix multiplication  
(A) The data shown in Fig. 1.5 A-B were analyzed using pseudo-inverse (PINV) matrix multiplication and 
the resulting coefficients were plotted in blue. The similarity scores obtain by PRM were in orange. Pseudo-
Inverse matrix coefficients have a linear relationship with relative ratios of the components but have 
negative coefficients and a theoretically unbounded range. (B) The data shown in Fig. 1.5C-D were 
analyzed using PINV and the resulting coefficients were plotted (blue) against those using PRM (orange). 
PINV shows a better linear relationship than PRM similarity scores but retains the negative and unbounded 
range. (C) Comparison of computation time for PRM and PINV with single processing unit and no spectral 
shifts shows that PINV takes much longer time to compute compared with PRM. PINV is also a one-liner 
that is difficult to split to parallel processing units, and does not allow for the input matrix to be split into 
more manageable sizes because the rank sums would not be equal. (D) The data shown in Fig 1.5E-F 
were re-analyzed using PINV, and the linear relationship is also observed, but additional rescaling steps 
removing negative values were required to obtain concentration-corelated results. (E) The three-lipid 
mixtures from (D) are plotted in 3D, showing that both PRM and PINV  can obtain results similar to the 
ground truth. 
 
 

To speed up the PINV calculation, one can avoid the built-in checks for invertibility through 

manual inverse multiplication, but the speed is still slower that inner product calculations with 

PRM (Fig 1.9 A). Additionally, the results correlate almost linearly between PRM and PINV (Fig. 
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1.9 B). Therefore it is natural to prefer PRM over PINV given typical HSI sizes can range from 

512x512 pixels to 1024x1024 pixels and span hundreds of Raman shifts. Although similarity 

scores for Raman spectra in the CH-stretching region are typically close to 1, the variance within 

pixels of a pure sample is much lower (see chapter 1.3.4). This result suggests that SRS HSI are 

suitable for PRM analysis. Furthermore, since HSI have various pixel sizes, the spectral dataset 

is subject to corresponding changes to PINV coefficients due to the assumptions of linear 

combination. Therefore, changes in the spectral dataset such as a pixel value or removal in a HSI 

can alter the PINV result (Fig. 1.9 C-F), while the PRM result is more robust. Finally, the nature 

of inner product multiplication allows for the spectral dataset to be easily split into smaller subsets 

for parallel computing.  
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Figure 1.9 PRM vs PINV Correlation and Robustness 
(A) Comparison of calculation times with the addition of manual inverse multiplication to bypass internal 
invertibility checks in the standard documented pinv() MATLAB function. (B) Density scatterplot of PINV 
and PRM results on a randomly generated array of spectra. (C) A dummy set of 5 spectra meant to mimic 
a Raman spectral feature. (D) PRM and PINV scores calculated for the dummy spectra. After removal of 
one of the dummy spectra in the dataset, the PINV result changes for every spectrum in the dummy set 
with respect to the first spectrum. (E) Further altering a single value in the second spectrum. (F) Further 
alterations observed in the PINV result, while the PRM result only changes with respect to the intended 
spectrum. 
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1.2.5 Optical Redox Ratio 

Oxidative stress is a precursor to many disease states including fibrosis and cancer. 

Detecting this biomarker would enhance early diagnosis accuracy, but measuring the redox status 

of a sample can be expensive. Superoxide dismutase (SOD) or Glutathione (GSH) antibody labels 

can cost thousands of US dollars per milligram, and may preclude other imaging modalities due 

to the sensitive nature of these proteins. Certain tissue processing methods such as DMSO 

washes used in CODEX imaging would generate free radicals that would alter the native levels 

of these proteins. Total antioxidant capacity (TAC) assays are destructive and sacrifice spatial 

information. A label-free optical technique called the normalized optical redox ratio capitalizes on 

the endogenous NAD[P]H and Flavin autofluorescence to calculate the redox status of a sample 

(Fig. 1.10A). NAD[P]H are co-factors in cellular respiration via glycolysis and TCA cycle, and 

redox maintenance through the pentose phosphate pathway (PPP) and its reduction of 

glutathione. Flavins are a class of proteins involved in many processes, including cellular 

respiration and lipid peroxidation. Under oxidative stress, flavin enzymes may target poly-

unsaturated lipids, which act as buffers to oxidative stress. The autofluorescence of Flavin and 

NADH are measured with an excitation/emission pair of 340nm/460nm and 430nm/515nm, 

respectively (Fig. 1.10B). This is done so there is minimal overlap of quantum yield between these 

biomarkers due to the negligible absorption of NAD[P]H at 430nm [23]. Together, they culminate 

in the normalized optical redox ratio described in equation 1.13 below. 

𝑶𝑹𝑹 =
𝑰𝑭𝒍𝒂𝒗𝒊𝒏

𝑰𝑭𝒍𝒂𝒗𝒊𝒏+𝑰𝑵𝑨𝑫[𝑷]𝑯
         1.14 

 In developing this optical platform, a crucial aspect of the protocol is to capture the ORR 

first, before the SRS and SHG modalities. This is because endogenous fluorophores such as 

NAD[P]H and Flavins are sensitive to photobleaching effects – the gradual and sometimes 

permanent alterations in fluorescence intensity. Figure 1.10C highlights this effect on MCF7 
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human HER2- breast cancer cells. SRS, however, is less sensitive to longer imaging times. 

Therefore, all ORR images are acquired first, prior to SHG and SRS imaging. 

 

 
Figure 1.10 Optical Redox Ratio Platform Development 
(A) MCF7 breast cancer cells in vitro imaged using 50mW two-photon laser and narrow band RNDDs. 
Scalebar 10 microns. (B) Average intensity of cells with 1-sigma error bands collected from a multichannel 
spectral sweep with NAD[P]H and Flavin autofluorescence captured simultaneously using the indicated 
two-photon excitation wavelengths. (C) Diminishing fluorescence intensity of a single region of interest 
imaged over time using 25mW and 50mW incident power. New regions of interest were used for each laser 
power. 

 

 A more accurate representation of oxidative stress can be developed by incorporating 

Fluorescence liftetime imaging (FLIM) which can distinguish between NADH and NADPH pools 

[24]. Modular and open-source development steps have also been developed, making this more 

attainable [25]. 

 

1.2.6 Collagen Anisotropy Analysis 

 Collagen anisotropy is a spatial metric of relative orientation. Fibrotic tissues may exhibit 

a more isotropic fiber orientation, as well as fiber density. Therefore, it is critical for an optical 
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platform to be able to capture this orientation at multiple scales. To that end, a FFT/PPSID 

software was created and successfully applied in the literature to diseases such as glaucoma and 

to characterize structures in the optic nerve [10, 26]. A more directional and ordered collagen 

signal will result in a higher anisotropy value. By adjusting the bin size of pixels used to generate 

the polar vector angle, the effect of the different amounts of regional averaging also varies, and 

consequently various structures can be isolated. Figure 1.11A below shows a slice of a 3D SHG 

image of human kidney tissue, and the corresponding polar vector map with colors scaled to the 

anisotropy value using a 16x16 pixel bin size. This capability can be extended to 3D views as well 

(Fig 1.11 C-D), showing promise in deep tissue imaging analysis. It is important to note that the 

main polar vector angles shown in the map representations are simply the longest vector, and are 

mainly used when there is a definite uniaxial orientation. This angle can also be influenced by 

excessive noise. Future work incorporating fast single-frame deconvolution algorithms may be 

instrumental for more sophisticated angle detection. This may also aid in the computation of the 

degree of fiber recruitment around a single preferred direction, which needs robust optimization 

between different tissues. 
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Figure 1.11 Collagen Anisotropy of 3D Human Kidney Images 
(A) A 2D plane of the human kidney SHG image, showing the collagen 1-3 fibers surrounding the 
glomerulus and tubulointerstitial space, as well as a medullary ray. Scalebar 200 microns. (B) The 
corresponding polar vector map for (A) showing the polar vector angles in the 16x16 pixel bins. The color 
of the angles corresponds to the anisotropy value. (C) 3D view of A. (D) 3D interpolated view of (B) with 
only the bin color, and not the angle shown. 

 
 

1.2.7 Collagen Fiber Thickness Analysis 

Collagen fiber thickness is correlated with SHG intensity [11, 12], but can also be 

measured spatially. This is important because it has also been demonstrated that different types 
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of collagen exhibit different SHG intensity [27]. For highly disarrayed structures like in the kidney 

(Fig. 1.12 A), generating a distribution of all fiber measurements is a challenge. Several methods 

can be employed to address this issue. First, a sweep through various bin sizes can be applied 

to the SHG image to obtain the polar vector map (Fig. 1.12 B). From this map, a perpendicular 

axis can be drawn across each bin, and the intensity profile plotted (Fig. 1.12 C). This way, it 

ensures that measurements such as the full width half maximum (FWHM) distance of the SHG 

intensity plot is the perpendicular distance. Unfortunately, this method requires some supervision 

since the ultimate choice of bin size is subjective, especially in samples with diverse fiber 

diameters. A more direct method to estimate the fiber thickness is to transform the SHG to a 

distance map. To do this, the SHG image is thresholded such that there is a defined background 

with a zero value. Then each pixel in the image is converted to the shortest Euclidean distance 

between that pixel and the background (Fig 1.12 D). Pixels in the middle of the fiber will have 

higher values because they are furthest from the background. Isolating these values by finding 

regional maxima (Fig 1.12 E) provides a list of half diameters. These can be used to estimate the 

distribution of all fiber thicknesses (Fig. 1.12 F). In some instances, with highly varied distances, 

a morphological top-hat filter is applied to avoid distortion of the thickness distribution. This is 

because the regional maxima algorithm may double-count areas with high thicknesses, and 

neglect areas with low thicknesses. 
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Figure 1.12 Collagen Fiber Diameter Measurements 
(A) A 2D plane of a human kidney SHG image, showing the collagen 1-3 fibers. Scalebar 200 microns. (B) 
Polar vector map of the same region. Main angles are color coded from low to high anisotropy following the 
jet LUT in MATLAB. A dotted magenta line perpendicular to the average fiber angle of the lower right 
quadrant is overlaid. (C) The SHG intensity profile is plotted along the dotted magenta line in (A) and (B). 
The FWHM is calculated using the findpeaks() function in MATLAB, and shows a fiber thickness of about 
5-10 microns. (D) The distance map transformation of (A) in which pixel intensity corresponds to the 
distance of SHG signal to the nearest (Euclidean) background pixel. (E) Local maxima were found using 
imregionalmax() function in MATLAB after a 1-pixel top-hat morphological filter. (F) A nonparametric kernel-
smoothed fitted histogram with density evaluated at 100 equally spaced points throughout the range of the 
data shows the mean fiber thickness to be 5.4 microns, with a standard deviation of 3.1 microns. Scale bar 
50 µm. 

 

1.3 Experimental Procedures and Considerations  

1.3.1 Spontaneous Raman Spectral Acquisition 

A Raman spectrometer (XploRA PLUS, Horiba) attached to a confocal Raman microscope 

was used to measure all tissue samples. A 100x objective lens (MPLN ×100, Olympus) and a 532 

nm diode line focusing laser (∼40 mW) were used. Before the start of all experiments, the laser 

power was tested to avoid any damage to the samples. The signal was detected by a cooled 
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charge-coupled device (CCD) detector mounted on a 2400-slot/mm grating spectrometer. 

Spectra were collected at 30 s acquisitions with an accumulation of 2. Background spectra, 

acquired at the same focal plane for each AL region, were subtracted from the original spectra 

immediately after each data acquisition was completed. The phenylalanine peak at 1001 cm-1 was 

used to normalize the corresponding Amide peaks. The instrument calibration was verified by 

using the silicon line at 520 cm-1. 

1.3.2 Spectral Pre-Processing 

Cosmic Ray removal is automatically applied during acquisition steps using the LabSpec6 

software (HORIBA). 

 Background subtraction is performed by capturing a spontaneous Raman spectrum in the 

same focus plane as the sample, but in a region without sample and only PBS, and then 

subtracting the background spectrum. Rarely, small adjustments are required to ensure the 

background spectra is lower in intensity at all wavenumbers than the sample spectrum. 

Baseline subtraction is performed using ArPLS [28], unless otherwise indicated, to strip 

the peaks from broad fluorescence effects. To ensure accurate baseline estimation, spectra were 

first linearly interpolated at every wavenumber.   

Total intensity normalization (AUC) where the integral of the function is calculated using 

trapezoidal numerical integration. Then each raw intensity value is divided by the integral value 

calculated, giving a new set of values that present the relative proportion of the intensity at each 

data point compared to the overall intensity of the spectrum. These values are then transformed 

to be on a common scale, 0 to 1, between all spectra by subtracting the minimum value and 

dividing by the range. 

Vector normalization is performed where indicated, such as for PRM-SRS, using the 

standard vecnorm function in MATLAB. 
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1.3.3 Stimulated Raman Scattering Imaging Acquisition 

An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water 

objective (XLPLN, WMP2, 1.05 NA, Olympus) was applied for near-IR throughput. Synchronized 

pulsed pump beam (tunable 720–990 nm wavelength, 5–6 ps pulse width, and 80 MHz repetition 

rate) and Stokes (wavelength at 1032nm, 6 ps pulse width, and 80MHz repetition rate) were 

supplied by a picoEmerald system (Applied Physics & Electronics) and coupled into the 

microscope. The pump and Stokes beams were collected in transmission by a high NA oil 

condenser (1.4 NA). A high O.D. shortpass filter (950nm, Thorlabs) was used that would 

completely block the Stokes beam and transmit the pump beam only onto a Si photodiode for 

detecting the stimulated Raman loss signal. The output current from the Si PIN photodiode was 

terminated, filtered, and demodulated in X with a zero phaseshift by a lock-in amplifier (HF2LI, 

Zurich Instruments) at 20MHz. The demodulated signal was digitized and fed into the FV3000 

software module FV-OSR (Olympus) to form the image during laser scanning. All 3D lipid droplet 

images were obtained with a pixel dwell time 40 µs with 3-frame averaging for a total imaging 

speed of ~10-15 min per image stack. Laser power incident on the sample is approximately 

40mW.     

1.3.4 Lipid Subtype Measurements 

Lipid standards such as cardiolipin 14:0 (63988-20-5, Sigma), TAG 18:1 (122-32-7, 

Sigma), and Ceramide 18:1;2/17:0 (67492-16-4, Sigma) were dissolved in 1:1 Chloroform and 

Methanol at indicated proportions and then allowed to dry. The precipitate was analyzed using 

the Spontaneous Raman Spectrometer (XploRA plus, HORIBA) with a 40mW 532 nm laser, using 

1800 slits/mm grating, an acquisition time of 15s, and accumulation of 2. Spectra were 

interpolated at every wavenumber and baseline corrected using ArPLS. GC/MS lipid 

measurement is described in Chapter 3.4. Measured reference spectra are shown in figure 1.13 

and figure 1.14 below. 
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Figure 1.13 Reference Spectra 
List of reference spectra acquired for use in PRM-SRS. Spectra are baseline corrected according to 
section 1.3.2 and normalized from 0 to 1. 
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Figure 1.14 Reference spectra enlarged CH stretching region 
CH stretching region from Fig.1.9 is enlarged to show more detail. 

 

1.3.5 Characterizing Noise in PRM-SRS 

 Noise is a concern for SRS imaging because it can affect the ability to identify the 

molecular signature of the analyte and in turn influence the results of PRM-SRS and other 

methods. An example of a calibration standard is shown below in figure 1.15. Pure ethanol was 

imaged transmissively with the SRS microscope. After conducting PRM-SRS on the HSI, the 

distribution of the similarity score results is plotted (Fig.1.15 B), showing extremely high similarity 

scores with a negligible variance between pixels. 

 Another related concept is bit depth. To fully utilize the 16-bit depth output of our SRS 

signal, the scale and offset parameters used when transforming and digitizing the signal need to 

be considered. Figure 1.16 below shows the relationship between these parameters and the 

image contrast. Since PRM-SRS is a relative estimation of concentration, ratiometric image 

processing is frequently used. If the contrast is not great enough, the ratiometric result will suffer 
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unless an even greater bit depth is used, which can quickly exhaust computer memory. This is 

because if an image of certain bit depth is unable to assign a value to enough decimal places, 

then it is rounded, potentially making it indistinguishable from another pixel which would otherwise 

have a very different result. Adjusting the scale through modulating the gain and resistance of the 

incoming electrical signal from the photodiode also enhances noise. However, we have found that 

using simple frame averaging is enough to combat this issue. 

 
Figure 1.15 Low SRS HSI Pixel Spectral Variance 
(A) All pixel spectra in a 64x64 test SRS HSI of pure ethanol shows very little pixel-wise “noise”. All pixels 
in the image have a relatively consistent spectral profile, as expected. (B) This homogeneity is translated 
into similarity scores, and confirms that the image quality of the SRS HSI is sufficient, considering the vast 
majority of pixels all have nearly perfect similarity scores with respect to a spontaneous Raman spectrum 
of the ethanol standard. 
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Figure 1.16 The effect of scale and offset parameters on SRS image contrast 
Four different scales: 1k, 10k, 20k, and 30k, and 6 different offsets (0, -0.1, -0.2, -0.3, -0.4, -0.5) were 
used. Offset linearly shifts the entire pixel intensity distribution of an image, while the scale parameter has 
a multiplicative effect.  
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1.3.6 Heavy Water Cell Culture 

Normal-like breast epithelial cell line (MCF10A) were cultured in Dulbecco’s modified Eagles’ 

medium (DMEM), supplemented with 5% heat-inactivated fetal bovine serum (FBS) (Hyclone) 

and 1% penicillin/streptomycin (Fisher Scientific, Waltham, MA), and incubated with 5% CO2 at 

37°C. Cell cycles were synchronized using double thymidine block [29]. After passaging at 80% 

confluence, cells were seeded at a concentration of 2×105/mL atop 70% ethanol-soaked cover 

glass in 24-well plates and incubated for 8 hours. Then the growth media was changed to 50% 

heavy water (D2O) and treatment media as follows. Cells were incubated for 48 hours, which 

corresponds to a deuterium-retarded cell cycle. Cyclin dependent kinase 1 (CDK1) inhibitor (RO-

3066, Sigma) was added with 8 hours remaining to arrest growth before mitosis. Cells were gently 

rinsed with 1x PBS with Calcium and Magnesium ions at 4oC (Fisher Scientific, 14040216), and 

finally fixed in 4% methanol-free PFA solution (VWR, 15713-S) for 15 minutes. The cover glass 

was mounted on 1mm thick glass microscope slides with 120 µm spacers filled with 1x PBS 

without calcium and magnesium ions. These samples are stored at 4oC submerged in PBS when 

not in use. 

 

1.3.7 Drosophila Tissue Dissection and Preparation 

The Drosophila lines incorporated into this research were obtained from the Bloomington 

Drosophila Stock Center (BDSC), barring any exceptions otherwise noted. For successive 

generations, these lines have been nurtured on a standard diet consisting of Nutri-Fly medium 

(Catalog Number: 66-113, provided by Genesee Scientific Corporation). The wild-type model 

deployed was w1118 (designated as stock #5905). The expression of UAS-APP (#33797) was 

driven by the mifepristone-inducible expression pan-neuronally ElavGS (#43642). 

Dissection of the drosophila central brain was performed in phosphate buffered saline 

(PBS), followed by fixation using a 4% formaldehyde solution for a duration of 30 minutes at 

ambient temperature. Subsequent to fixation, tissues were subjected to four washes in PBS. The 
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dissected tissue samples were placed on slides along with in PBS, then sealed under number 1 

thickness cover glass to prevent the sample from drying out. 

 

1.3.8 Human Kidney Sample Preparation 

Human kidney samples were obtained from The Kidney Translational Research Center 

(KTRC) at the Washington University School of Medicine in St. Louis under an approved IRB 

protocol. Samples were fixed using 4% PFA and stored in 1x PBS at -20deg C when not in use. 

Samples were sliced using a sliding microtome (HM 450, Epredia) at 200 µm and cleared using 

8M urea for 48 hours at room temperature. Samples were submerged in 1ug/mL Hoechst 33342 

(Thermofisher) for 15 minutes to stain nuclei for co-localization verification. Samples were imaged 

between 1mm thick glass slides and number 1.5 thickness cover glass (Erie Scientific). A tunable 

780nm-810nm pump laser with 50mW incident power was modulated with a 1031nm stokes laser 

of 30mW incident power (PicoEmerald, APE) to illuminate the sample. 

For FFPE samples, a deparaffinization step was conducted to remove strong CH 

stretching contamination. Briefly, samples were warmed to 55degC for 5 min using a slide warmer 

(Cole-Palmer) and submerged in pure xylene for 10 min with gentle rocking. Slides then 

underwent sequential washes in graded concentrations of ethanol in xylene from 20% to 100% 

and then rehydrated in decreasing concentrations of ethanol in water from 100% to 20%. OCT 

embedded samples were soaked in 1x PBS without calcium and magnesium ions overnight with 

gentle rocking, and quickly rinsed in dH2O for 1 min. Samples are stored in PBS without calcium 

and magnesium ions at 4degC when not in use.  

Relevant tissue preparation reagents are also measured (Figure 1.17 below)  
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Figure 1.17 Raman spectra of common tissue sample preparation reagents 

 

 

1.4 Dissertation Aims 

 In driving the adoption of any platform, two main approaches exist: technological 

developments and novel applications. This dissertation aims to combine various label-free optical 

imaging techniques into a cohesive and powerful platform contained in a single microscopy setup, 

and determine the extent to which it is able to reveal novel insights at both the cellular and tissue 

levels. To this end, development and fine-tuning of methodologies, as well as their applications 

to novel biomedical questions were conducted. Specifically: 

• Chapter 2: Triple negative breast cancer (TNBC) subtypes were analyzed in 1D 

(spontaneous Raman spectroscopy), 2D, and 3D in situ with heavy-water under various 

levels of insulin and methionine concentration. Lipid droplet (LD) spectra reveal that unlike 

normal breast epithelial cells, TNBC express significant interdependence of insulin and 

methionine in tandem. Biochemically, excess insulin and methionine up-regulate de novo 

lipogenesis, particularly of saturated fatty acids. Morphologically, the newly synthesized 
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LDs appear larger and more compartmentalized away from Flavin signal and 

mitochondria. 

• Chapter 3: Going beyond lipid saturation, this dissertation aims to characterize the relative 

levels of any lipid in a sample by leveraging SRS HIS. To do this, PRM-SRS was applied 

to multiple cellular and tissue samples and shows excellent correlation with fluorescence 

and GC/MS results. Results indicate that this method is much faster than any label-free 

spectral method published to date, cross compatible with various Raman instruments, and 

preserves the ability to later perform GC/MS, IF staining, and histological staining after 

being imaged with this platform. 

• Chapter 4: Combining the 2D and 3D multimodal methods employed in Chapter 1 with 

the hyperspectral analysis methods employed in Chapter 2, this platform was then applied 

to ex vivo human kidney biopsies. Multiple biomarkers such as mesangial expansion, 

collagen fiber thickening, oxidative stress, and lipid saturation were revealed, all without 

the use of labels. 

In summary several novel experiments have been conducted at multiple levels, from 

subcellular organelles to entire tissue units, and at multiple dimensions, from 1D to 3D. 

Throughout this dissertation, an emphasis is placed on the unique ability to visualize both 

structural and biomolecular phenotypes and produce novel insights and reveal biomarkers without 

the need for any labeling. 
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Chapter 2: Single Cell Analysis of Tandem Nutrient Control 
in Human Breast Cancer   

2.1 Introduction 

Breast cancer is the most reported form of cancer in biological women, but its 

pathophysiology is rife with subtypes that have material consequences on clinical outcomes. 

Triple negative breast cancer (TNBC) is a particularly aggressive cancer subtype that accounts 

for approximately 15% of all breast cancer cases and its epidemiology reveals a discriminating 

predilection for non-Hispanic African women [30, 31] (Supplementary Fig. 2.11). Although the 

genomes and proteomes of these breast cancer subtypes are distinguishable, little is known about 

their metabolic phenotypes and the consequential prognoses they manifest. 

Recently, lipid metabolism has emerged as a major indicator of cellular stress, phenotypic 

state, and disease status in biological research and medicine. Dysregulation of lipid metabolism 

and heightened lipid synthesis are hallmarks of cancer, as varying demands of lipids for energy 

maintenance, metastasis, and angiogenesis warrant transcriptional changes that contribute to the 

metabolic phenotype [32–34]. The quantity and diversity of lipids and their functions have been 

instrumental in profiling cancers as well. For example, membrane lipid compositions of  

cholesterol, phosphatidylcholine (PC), and phosphatidylethanolamine (PE) are essential to cell 

membrane fluidity, which has become a target for cancer treatments [35–38]. Additionally, the 

degree of saturation of lipid content in a cell may provide further insight into its state of stress, as 

breast cancer cells may produce more saturated and monounsaturated membrane lipids to guard 

against oxidative stress [39–41]. To interrogate lipid metabolism, lipid droplets (LD) were the 

primary organelle of interest since their ubiquitous structures not only serve as energy stores, but 

are also involved in protein folding and trafficking, signaling pathways, and have diverse spatial 

and chemical information that may reflect oxidative stress, metabolic flux, and disease status [39–

47]. However, direct visualization of LD metabolism manipulated by tandem nutritional 
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interventions at a subcellular level has not yet been reported in TNBC cells, which is partially due 

to a lack of spatial resolution in conventional lipidomic modalities. Optical techniques such as 

spontaneous Raman spectroscopy and SRS imaging microscopy are well suited to both the 

chemometric and spatial dimensions for imaging LD metabolism; they can analyze not only the 

size, number, and distribution of LDs, but also their protein and lipid diversity and metabolism at 

subcellular resolution. 

Despite the many mysteries of TNBC, a documented hallmark is its hyperactivity of 

mammalian target of Rapamycin (mTOR) pathways, which play important roles in glucose, 

protein, and lipid metabolism [48–52]. Insulin and L-methionine (an essential amino acid involved 

in protein translation, genetic/epigenetic control, nutrient sensing, and redox homeostasis) [53] 

are both involved in mTOR pathways but have not been directly studied in tandem to date [54–

59]. This is due, in part, to previous studies that observed MDA-MB-231 cells to be insulin 

insensitive to mitogenic effects, despite having many receptors that bind insulin [60]. Other studies 

observe insulin effects in the same cell line, and there is currently no consensus on the 

independent effects of insulin. With respect to TNBC, insulin and methionine both independently 

drive cancer proliferation [61–64] and affect lipid metabolism [54, 63, 65–69], and separate 

studies indicate insulin metabolism directly affects the uptake of amino acids in yeast and dogs 

[70, 71]. Given the well-documented relationships between insulin, methionine, and mTOR, it is 

possible that TNBC’s mTOR hyperactivity exhibits a unique lipidomic response to insulin and 

methionine manipulation. The conceptual pathway detailing macroscopic mTOR-mediated lipid 

response to insulin and methionine (Fig. 2.1) highlights the points discussed in this paper. Lipid 

peroxidation, de novo synthesis, and chemical diversity can all be investigated using optical 

techniques that provide subcellular spatial and chemical information. Given that TNBC has been 

an archetype for methionine dependence [64], and that PI3K/AKT/mTOR is a key driver of the 

aggressive biology of TNBC [52], the interplay between methionine and insulin, coupled with the 

perspective of lipid biology, may illuminate promising directions for future therapeutic research. 
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Figure 2.1 Hypothesized Insulin and Methionine Pathway Interaction Mediated Through mTOR 
Hypothesized pathway illustrating a potential methionine and insulin interaction mediated through mTOR. 
Bi-directional control of methionine and mTORc1 depicts general mechanisms by which methionine is 
sensed by and activates mTORc1. Insulin also activates mTORc1 by phosphorylating TSC2, and 
consequently affecting mTORc1 regulation of methionine. Insulin stimulates SREBP mediated lipid 
synthesis and metabolism. Methionine stimulates SAM PC and PE membrane lipid synthesis. Increased 
production of reduced glutathione via SAM is thought to reduce the extent of lipid peroxidation. 
 

Non-linear optical techniques such as coherent Raman scattering microscopy and two-

photon fluorescence (TPF) microscopy have been used to profile breast cancer metabolism by 

revealing correlations between cancer metastasis and cellular redox state, and lipid metabolism 

[72]. Recent studies have identified several metabolites implicated in tumorigenesis and lipid 

metabolism in cancer, such as glutamine [73–75] and serine [76] dependence. Raman 

spectroscopy/microscopy coupled with D2O probing allows for direct visualization of metabolic 

dynamics of a variety of biomolecules including lipids, protein, and DNA in cells, C. elegans, 

zebrafish, and rodents by highlighting the newly synthesized macromolecules [17]. In this study 

we first employed spontaneous Raman spectroscopy to differentiate molecular signatures within 
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LDs between TNBC and normal cells. Using D2O probing and SRS (DO-SRS) imaging we then 

examined the impacts of methionine and insulin on lipid metabolism in cancer cells. The effects 

of methionine and insulin on cellular respiration and lipid peroxidation were also examined by 

using TPF microscopy. To analyze the rich chemometric dataset and inspire targeted image 

analyses, we applied a relative entropy approach to Raman spectra for the first time. This 

method can quickly highlight distinct or tandem effects of independent variables in any Raman 

spectroscopy study. 

2.2 Results 

2.2.1 Lipid Droplet Metabolism 
 

We first examined the effects of methionine on LD metabolism in TNBC cells (MDA-MB-

231), luminal A breast cancer cells (MCF-7), and normal breast epithelial cells (MCF10A, as a 

control) by adding excess (20x) methionine to the growth media supplemented with 50% D2O. 

Cells were scanned by using a spontaneous Raman spectroscopy, and revealed that TNBC cells  

most starkly contrasted MCF10A cells with respect to overall lipid content (CH2 stretching at 

2850cm-1). This attenuated lipid:protein ratio difference between excess and physiological 

methionine concentrations is shown in Fig. 2.2 A. This absence of marked differences is also 

personified by poorer ReLu neural network classification between TNBC cells with and without 

excess methionine (Supplementary Fig. 2.12, 2.13). Despite the absence of insulin in TNBC cell 

culture growth media recipes [77], we then added various concentrations of insulin (1mg/L, 

10mg/L, and 20mg/L, correspondingly, 0.1x, 1x and 2x) to the media and evaluated its interaction 

with methionine in both cell lines. In this second part, insulin concentration in growth media was 

modulated in tandem with methionine, and augmented effects in several Raman spectral regions 

were observed, including the C-H stretching region, which illustrates the relative contents of CH2 

(lipid) and CH3 (protein) (Fig. 2.2 B). TNBC contrasted MCF10A cells which exhibited decreased  
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lipid:protein ratios in the presence of excess methionine at all insulin concentrations. Importantly, 

it was found that the difference in lipid:protein ratio between excess and physiological methionine 

increased with the addition of insulin in TNBC. Fig. 2.2 C highlights this effect, marked by orange 

arrows in Fig. 2.2 B, and supports potential interactions between insulin and methionine. A 

significant interaction term was confirmed by 2-way ANOVA (Supplementary Table 2.1) in 

TNBC.  

 
Figure 2.2 Cell type and Condition Dependent Responses to Excess Methionine 
(A) Average CH stretching region spectra for TNBC with highlighted CH2 and CH3 (2850cm-1 and 2935cm-

1) levels ascribed to total lipid and protein content, respectively. Regular and excess methionine groups 
refer to 0.03g/L and 0.6g/L respectively. Of note, TNBC did not exhibit significant relative lipid and protein 
changes in the presence of excess methionine. One standard deviation is indicated by shaded areas 
surrounding the lines. (B) With tandem insulin control CH2:CH3 peak ratios at each insulin and methionine 
concentration group are shown. 2-way balanced ANOVA results for TNBC cells highlights significance of 
methionine and insulin-methionine interaction term in lipid:protein ratios. Error bars indicate one standard 
deviation. (C) The difference in CH2:CH3 ratios for the 15x methionine and 1x methionine groups of the 
MDA-MB-231 subtype is negligible at the lower insulin concentration but is increased ten-fold in the 2x 
insulin case. Error bars are propagated in quadrature from (B). 

 

In TNBC cells, the ratio of total lipid-to-protein did not change with the increase of 

methionine concentration alone, but slightly decreased in normal cells (Fig. 2.2 B). With the 

addition of insulin, this difference was augmented with higher concentrations of insulin (Fig.  2.2 

C). At this point, it is still unclear whether de novo lipid synthesis increased alone, or if protein 

synthesis decreased, or some combination of both. Perhaps de novo lipid synthesis decreased, 

but not as much as protein synthesis. This clarity entails DO-SRS, which provides insight into de 

novo synthesis. As cells incorporate deuterium from heavy water into macromolecules such as 
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lipids and proteins, the C-D bonds in the newly synthesized molecules become visible in the cell 

silent region around 2150 cm-1. Even though lipids and proteins are the main biomolecular 

constituents of cells, the CH2 and CH3 peaks may only paint part of the picture. Fig. 2.3 A, B 

shows average Raman spectra of both cell lines treated with D2O and different concentrations of 

methionine and insulin. These spectra are consistent with previous LD studies using Raman 

spectroscopy, which display minute protein peaks in the fingerprint region such as the 

phenylalanine peak at 1000cm-1 and amide I-III peaks at 1660cm-1, 1450cm-1, and 1200-1300cm-

1, respectively, as well as elevated CH2 stretch at 2850cm-1, saturated CH2 stretch at 2880cm-1 

(typical of cholesterol and other saturated lipids) [78], and H-C= stretch at 3010cm-1 (typical of 

unsaturated lipids) [79]. Common lipid components of LD are shown in Fig. 2.3 C in descending 

order of prevalence. The structure of LDs is such that a phospholipid monolayer surrounds a core 

of neutral lipids such as cholesterols and TAGs. Less prevalent lipid species such as ceramides, 

sphingolipids, and their metabolites only account for a small percentage of LD composition, but 

have gained increasing significance in LD physiology and diseases [80]. Furthermore, there are 

hundreds of apo-lipoproteins on or near the surface of LDs, which may contribute to the observed 

Raman spectra of LDs. The presence of the C-D peak in the spectra confirm de novo synthesis. 

Some Raman shifts of interest are shown, but minute differences may be difficult to discern by 

raw visual inspection alone.  
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Figure 2.3 Average LD Spectra of Treated MCF10A and MDA-MB-231 
(A) MCF-10A and (B) MDA-MB-231 cells under various methionine and insulin concentrations. Manual 
identification of potential Raman peak targets is highlighted with vertical lines and labels. For example, the 
CDLipid peak in the cell silent region at 2135cm-1 has a noticeable increase relative to the CDProtein peak at 
2180cm-1 in the excess methionine groups. This could indicate preference for de novo lipogenesis in excess 
methionine environments. (C) Raman spectra of common lipid species in LD, in descending order of 
prevalence. 
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Although the delineated Raman shifts in Fig. 2.3 A, B highlight several aspects of lipid 

and protein metabolism, there are others ascribed to lipids and other important molecules as well. 

Principal component analysis (PCA) shows that 12 principal components (PCs) account for nearly 

all the variance in the 6 groups of MDA-MB-231 LD spectra. To visualize this while avoiding over-

fitting, a t-SNE diagram of the top 10 PCs is shown in Fig. 2.4 A, B. There exists at least one 

dimension that discriminates insulin effects and methionine effects on Raman spectra of TNBC 

LD. Importantly, this demonstrates that LD, alone, contain sufficient chemometric data to 

discriminate cell phenotypes. This confirms the ability of LDs to reflect cellular state. To date, 

label-free chemometric demonstrations of this ability are sparse. PCA initialization can be a robust 

step to reduce dimensions, denoise data, and preserve global structure in t-SNE visualizations, 

but even though PCA can vectorize these values, the PCs themselves do not take the form of 

Raman peaks suitable for direct assignment of methionine and insulin effects individually. 
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Figure 2.4 LD Spectra Discriminates Cell Phenotype with t-SNE and Relative Entropy 
(A) tSNE separates experimental groups for MCF-10A and (B) MDA-MB-231 tSNE plots of the top 10 PCs 
from PCA of LD spectra. Global structure is preserved, and no exaggeration was applied. Each point 
represents the average of 5 LD spectra taken from a single cell of the corresponding sample. (C) Relative 
entropy provides a metric for ranking features (Raman peaks) by their ability to classify the spectra as 
belonging to 20x methionine or 1x methionine groups, as well as 0.1x, 1x, 2x insulin groups. Raman peaks 
that appear to be influential in both classification schema are denoted in purple text labels for clarity. Note: 
These cell subtype plots are aligned manually for clarity. Subplots are not generated in such a fashion 
automatically.  
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Statistical quantification of independent variable effects at every Raman shift entails a new 

measure in which the separation of insulin and methionine effects, as well as relative significance 

in class attribution is shown. To quickly rank and visualize all the wavenumber variables that may 

have been influenced by a particular treatment, the Kullback-Leibler divergence (DKL), a metric 

for the distance between two distributions for classification problems [14], at each Raman shift is 

plotted for each metabolite manipulation (Fig. 2.4 C). This method is also known as relative 

entropy. 

KL divergences of Raman spectra were plotted on the same axes for MCF10A and MDA-

MB-231 with selected wavenumbers labeled for clarity (Fig. 2.4 C). From Fig. 2.4 C, it is apparent 

the lipid peak of MCF10A cells at 2850cm-1 was heavily influenced by both insulin and methionine 

concentrations, while the protein peak at 2935cm-1 seems to be more heavily influenced by insulin 

concentration. This contrasts with the MDA-MB-231 TNBC cells in which divergences at most 

wavenumbers were dominated by the delineation of methionine concentration. Although these 

representations are not perfect, this is especially useful when simultaneous treatment groups 

have both compound and independent effects. For example, MCF10A spectra (Fig. 2.4 A) exhibit 

changes in the unsaturated lipid peak (3010cm-1) under either insulin or methionine manipulation, 

while the TNBC spectra (Fig. 2.4 B) exhibit changes here (3010cm-1) mainly under methionine 

manipulation. This can be easily seen though the relative entropy at that Raman shift in Fig. 2.4 

C, in which MCF10A has high relative entropy at 3010cm-1 when examined along either the insulin 

or methionine dimension, while TNBC shows a higher relative entropy when examined along the 

methionine dimension.  

While excess methionine appears to decrease the lipid-to-protein ratio in MCF10A cells 

and increase the ratio in MDA-MB-231 cells, the results do not necessarily indicate discrepant 

rates of de novo lipogenesis since these values are affected by both synthesis and degradation 

of lipid and protein. For instance, the decreased lipid-to-protein ratio might be due to enhanced 
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lipid utilization. To explore how much lipid and protein were synthesized, we quantitatively 

examined the carbon-deuterium (CD) peaks at 2135cm-1 (de novo synthesized lipids, CDL) 

relative to 2180 cm-1 (de novo synthesized proteins, CDP), and 2850cm-1 (total lipids, CH2) for 

each treatment group [81] (Fig. 2.5 A, B). Fig. 2.5 C shows that excess methionine stimulates de 

novo lipogenesis in TNBC. Together, Fig. 2.5 illustrates both direct and relative de novo lipid and 

protein synthesis and metabolism, and informs the potential reasons for the discrepant 

lipid:protein effects of excess methionine on TNBC and normal-like breast cells. 

 

Figure 2.5 Quantitative de novo lipid synthesis under methionine and insulin control  
(A) Normalized CDL intensities show excess methionine stimulates de novo lipogenesis. (B, C) CDL Ratios 
show violin box-plots of de novo lipid synthesis CDL ratios for MCF10A and MDA-MB-231, respectively. 
CDL : CH2 illustrates the relative de novo lipid synthesized to total ascribable lipid content. Balanced 2-way 
ANOVA with constrained sum of squares results of CDL ratios shows methionine concentration significantly 
influenced the CDL: CDP ratio in both MCF10A and MDA-MB-231 lipid droplet spectra with rejection levels 
of #P < 0.05 and ####P < 0.0001, respectively. (D, E) CDL: CDP illustrates the relative de novo lipid and 
protein synthesized biomolecules for MCF10A and MDA-MB-231, respectively. Values were taken from 
spectra of lipid droplets only. while. There was no significant evidence of interactions between these two 
independent variables for these ratios. Balanced 2-way ANOVA with constrained sum of squares results of 
CDL ratios indicate insulin significantly influenced the CDL: CH2 ratio in MCF-10A lipid droplet spectra with 
a rejection level of ####P < 0.0001, but no significant evidence of interactions between these two 
independent variables. However, in TNBC insulin, methionine, and the interaction term significantly 
influenced the CDL : CH2 ratio in MDA-MB-231 lipid droplet spectra with a rejection level of ####P < 0.0001 
and #P < 0.05 for the individual and interaction terms, respectively. 
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Two-way ANOVA (Supplementary Table 2.2) confirms a significant interaction term for 

methionine and insulin concentrations in TNBC for the de novo synthesized lipids relative to the 

total lipids (Fig. 2.5 A, B Right). Contrarily, only the insulin independent variable was significant 

for the MCF10A in the de novo synthesized lipids relative to the total lipids (Fig. 2.5 A, B Right), 

but no interaction term, or even a significant methionine term. Only in TNBC did the methionine 

term have a significant impact on this ratio, which lead us to believe the discrepant effects on 

CH2:CH3 ratios we observed (Fig. 2.2 B) might arise from differential de novo lipogenesis, rather 

than protein synthesis and metabolism. Since the excess methionine stimulated de novo 

lipogenesis (Fig. 2.5 C) and was a significant term in the ratio of de novo synthesized lipids to 

proteins for both cell lines (Fig. 2.5 A, B), methionine is likely to preferentially stimulate lipid 

production more than protein production. Despite these findings, the relative proportion of lipids 

to proteins in MCF10A still decreases under excess methionine (Fig. 2.2 B). Therefore, either the 

pool of proteins must be getting larger, or the lipid utilization must increase. Excess methionine 

did not stimulate lipid utilization because CDL:CH2 did not significantly increase (Fig. 2.5 A Right). 

This leads us to believe that the protein signal must increase excess methionine. However, 

excess methionine did not stimulate protein production faster to a greater extent than lipid 

production since the CDL:CDP slightly increased under excess methionine (Fig. 2.5 A Left). If there 

was no relative increase in protein nor decrease in lipids, then MCF10A may not breakdown 

proteins as much in the presence of excess methionine, or uptake and retain the excess 

methionine itself more efficiently than TNBC. The hydrophobic amino acid can interact with the 

acyl chains of the fatty acids in lipid droplets, and since the excess methionine supplied was not 

deuterated, this protein would not appear in the cell silent region. This way, the excess methionine 

can affect the CH3 peak without affecting the CDP peak, and explain the behavior observed in Fig. 

2.2 and Fig. 2.5. Excess methionine can also incite endoplasmic reticulum stress due to complex 

interactions with cysteine pathways since both are sulfur containing and are critical in protein 
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folding due to disulfide bonds. These misfolded proteins may be sequestered by LDs differently 

across subtypes. 

2.2.2 Morphological Changes in Lipid Droplet 
 

3D SRS images were taken for each individual cell at 2850cm-1 (Fig. 2.6 A-D) to assess 

the size and number of LDs more accurately. LDs were computationally segmented using 

MATLAB (Fig. 2.6 E-H) to acquire individual LD volume and number of LDs per cell. The addition 

of excess methionine produced the most noticeable changes in lipid droplet morphology – a 

decrease in lipid droplet number but increase in volume. This effect was observed in both 

MCF10A and TNBC cells (Fig. 2.6 I, J). Of note is the insulin restricted case in TNBC cells, which 

had no discernible change to lipid droplet number or size. Qualitatively, the lipid droplets also 

appeared more clustered in excess methionine cases. Lipid droplet volume was also observed to 

slightly increase from restricted insulin (0.1x) to physiological and excess insulin (1x and 2x) in 

TNBC under excess methionine conditions. This corroborates the potential interplay between 

insulin and methionine in TNBC. 
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Figure 2.6 3D SRS image lipid droplet analysis  
(A-D) 3D isosurface reconstructions of the single cell SRS images taken at 2850cm-1. (E-F) LD 
segmentation shows representative maximum intensity projections of SRS image stacks shown in (A-D) 
with lipid droplets highlighted in blue outlines. (I-J) Quantitative LD structure summary shows average lipid 
droplet number and volume for each experimental group. Excess methionine groups display decreased 
lipid droplet number and increased size. Lipid droplets also appear qualitatively more clustered in excess 
methionine as well. Scale bar is 20 µm. Two-tailed t-tests were performed between each pair of bars to 
highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for LD number: 
*P<0.05, **P<0.01. Octothorps ‘#’ correspond to the following p-values for LD volume: #P<0.05, ##P<0.01. 
Scale bar is 20 µm.  

 

Lipid droplet distribution can be a major indicator of cell cycle status, nutrient availability, 

and ER stress [82]. LD size may influence the degree to which beta oxidation occurs in cells and 

be affected by mitochondrial recruitment during LD expansion in nutrient rich environments. 

Regardless, the physical contact between these organelles is thought to mediate their proper 
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function [83, 84]. A label-free approach to identifying mitochondrial presence near lipid droplets 

may be the spectral presence of cytochrome C (cytC), which is found in the intermembrane space 

of mitochondria. Some peaks canonically representative of cytC are the heme backbone at 

1558cm-1 and the side chains of tryptophan, tyrosine, and phenylalanine in alpha structures at 

1610cm-1 [85] which were weakly present near the fingerprint region of the spectra in MCF10A 

and TNBC cells. It was found in Fig. 2.7 A and Fig. 2.8 A that excess methionine cases displayed 

a diminished spectral presence of unmixed cytC peaks. This suggests LDs in excess methionine 

may cluster near other organelles such as lysosomes, or even with other LDs for fusion events, 

instead of co-localizing with mitochondria for energy. Examples of Gaussian-Lorentzian peak 

unmixing for MCF10A and TNBC (Fig. 2.7 B and Fig. 2.8 B), respectively, with quantitative 

summaries in the form of bar graphs (Fig. 2.7 D and Fig. 2.8 C, D). The number of unmixed 

peaks was optimized such that the overall fit is accurate, while the unmixed peaks are easily 

ascribed to canonical protein and lipid deformations. The Amide II’ region contains various CH2 

and CH3 deformations such as wagging, stretching, scissoring, and twisting [86, 87]. The Amide 

I region contains secondary structure information and has been used to study proteins such as 

collagen [88]. Between these peaks lies the C-C bond of the heme backbone. MCF10A and TNBC 

exhibited distinct peak shapes in all areas of this region. In MCF10A, the Amide II’ peak had a 

narrower shoulder at 1458cm-1 under excess methionine (Fig. 2.7 C), while TNBC had a narrower 

Amide I peak under excess methionine (Fig. 2.8 E-G). The Amide I and II’ regions also contain 

protein and lipid information and have various assignments in the literature. Fig. 2.8 G quantifies 

the width and prominence of the Amide I peak in TNBC with and without excess methionine. 

Results indicate altered protein folding, in which methionine plays crucial roles. Methionine is not 

only a protein translational initiator, but its metabolism is also involved in purine synthesis, 

epigenetic control, and secondary disulfide bond formation [53]. Misfolded proteins have tangible 

effects on ER stress and lipid droplet distribution and chemistry [42], as these proteins have been 

shown to accumulate in LDs destined for proteasomal breakdown [82]. In this manner, LDs may 
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serve as reservoirs and chaperones to mitigate lipid and protein toxicity. Although further 

investigations are required to confidently assign the phenomenon observed herein, the fact that 

consistent alterations in these areas were observed using label-free vibrational imaging 

techniques sets the stage for more in-depth studies of dietary methionine-controlled protein 

folding in breast cancer cells. Fig. 2.7 C quantifies the changes in the Amide II’ peak of MCF10A 

and may indicate altered lipid and protein structure as well. Various bond deformations occur at 

slightly different wavenumbers, with CH2 scissoring being red-shifted with respect to CH2 

stretching. Acyl chains of different length and saturation may influence the degrees to which each 

of these deformations take place. Further investigation into purified LD content with other 

techniques such as gas chromatography and mass spectrometry are warranted. Spectroscopic 

data are usually sensitive to baseline correction, background subtraction, and normalization 

methods, and are therefore better suited to relative observations, while chromatography and 

spectrometry offer absolute quantification and detailed chemical structure. Conjugating these 

techniques is beyond the scope of this label-free optical platform, but is promising and critical step 

in progressing this technology. 
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Figure 2.7 Spontaneous Raman Spectroscopy detects CytC presence and protein folding  
(A) normal vs excess methionine Expanded view of lipid droplet spectra grouped by methionine 
concentration shows a high relative entropy in the 1550cm-1 region, ascribable to the heme backbone of 
cytochrome C. (B) Unmixing Peaks with four peaks using a Gaussian-Lorentzian blend yields an error of 
2.367% and an R2 of 0.98854. (C) Amide II’ Peak Shoulder shows an expanded view of normal and excess 
methionine groups’ Amide II’ regions highlight a relatively narrowed shoulder at 1458cm-1. Unmixed peaks 
follow the overall shape of the average Amide II’ peaks, with the error and correlation coefficient reported 
in the table below. Width and area information is also summarized in the table to clearly communicate the 
disparate shoulder widths. (D) Quantitative summary of the heme backbone unmixed peak intensities for 
each experimental condition of MCF-10A cultures shows decreased spectral presence. Two-tailed t-tests 
were performed between each pair of bars to highlight excess methionine effects. Asterisks ‘*’ correspond 
to the following p-values: *P<0.05, **P<0.01. 
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Figure 2.8 Raman Spectroscopy detects CytC presence and protein folding differences  
(A) normal vs excess methionine shows expanded view of lipid droplet spectra grouped by methionine 
concentration shows a high relative entropy in the 1550cm-1 and 1650cm-1 regions, ascribable to the heme 
backbone of cytochrome C and side chains of tryptophan, tyrosine, and phenylalanine, respectively. (B) 
Unmixing peaks with four peaks using a Gaussian-Lorentzian blend yields an error of 2.620% and an R2 of 
0.98544. (C-D) Quantitative summary of the unmixed peak intensities for each experimental condition of 
MDA-MB-231 cultures shows decreased spectral presence of cytochrome C. (E-F) Amide I peak width 
shows an expanded view of lipid droplet from 1x Methionine (LEFT), and 20x Methionine (RIGHT) 
experimental conditions. Two-tailed t-tests were performed between each pair of bars to highlight excess 
methionine effects. Asterisks ‘*’ correspond to the following p-values: *P<0.05, **P<0.01. (G) Peak analysis 
shows that the peak prominence and peak width at half prominence is significantly narrower at the Amide 
I region in excess methionine lipid droplet spectra. 
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2.2.3 Lipid Peroxidation Status 
 

Another global lipid response to excess methionine takes form in the lipid peroxidation 

status. Under oxidative stress, long chain unsaturated fatty acids can undergo a vicious cycle of 

lipid peroxidation [79]. Several Raman shifts have been used to describe the degree of 

unsaturation of fatty acids, including the one near 3010 cm-1 that corresponds to the H-C= 

stretching region [79]. Interrogating the relative entropy plot in Fig. 2.4 C, we find that the 

saturated lipid peak at 3010 cm-1 and the lipid peak at 2850 cm-1 both rank highly for both cell 

types, but TNBC is more heavily influenced by methionine concentration. That is, we can see 

from the spectroscopic data that MCF10A, whether L-methionine was normal or in excess, 

expressed relatively different levels of unsaturated lipids depending on the level of insulin. This 

suggests that de novo synthesis of branched chain fatty acids, or perhaps their accumulation in 

LDs was upregulated in excess insulin conditions. So, while insulin was critical in influencing de 

novo synthesis of lipids in TNBC, it may not influence lipid peroxidation as much as methionine 

does. Fig. 2.9 shows the effects of excess methionine in TNBC using multi-modal optical 

techniques. 

Conjugated SRS and TPF microscopy display spatial distributions of points of interest 

regarding excess methionine effects in TNBC cells (Fig. 2.9 A-G). These results also corroborate 

with the spectroscopic data. Fig. 2.9 B reveals that the cells undergo enhanced de novo 

lipogenesis under excess methionine with respect to control groups. Contrary to expectations, the 

unsaturated lipid signal in the excess methionine group was weaker than the control overall but 

was stronger near the large lipid droplets (Fig. 2.9 C). This information is lost in spectral 

acquisitions alone because spectra were obtained from lipid droplets only. Excess methionine 

treated cells exhibited larger cross-sectional area (Fig. 2.9 J) and may be due to the cells being 

more spread out and flatter. Due to the point spread function of the confocal laser scanning 

microscope, this spreading out of the cells may contribute to an apparent decrease in 

concentration of unsaturated fatty acids because the scattering cross section along the beam path 
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is smaller. Consistent contrast makes it difficult to discern the abundance of smaller lipid droplets 

in the control images without oversaturating the excess methionine images. There were no 

discernible differences in spatial distribution of heme groups at the 1580 cm-1 (Fig. 2.9 D), but co-

localisation algorithms may help in future studies. The indicator of crystalline arrangement in lipids 

corresponding to the symmetric:antisymmetric CH2 stretching ratio indicates that the excess 

methionine group may have less lipid saturation near the plasma membrane (Fig. 2.9 E). Higher 

ratios would indicate a lower concentration of 2880 cm-1 species, which has been ascribed to the 

Fermi resonance of CH methylene groups [78]. This ratio has been found to inversely correlate 

with thermodynamic stability, and when the ratio is larger, there may be less lattice order in the 

structure [89]. In the context of cell membranes, fluidity and saturation are critical functional 

properties, and the decreased lipid saturation score near the plasma membrane may also 

contribute to the observed “flattness” of the cells with excess methionine, as the cells may be able 

to spread out more easily. 

Different areas of the cells provide niche microenvironments, in which lipid peroxidation 

may vary. Three subcellular regions of interest include where all lipids exist (Fig. 2.9 H, region 1), 

where flavins are more present (region 2), and where newly synthesized lipids are present (region 

3). As shown in Fig. 2.9 H, I, these regions do not necessarily overlap. Flavins have been shown 

to report on oxidative stress, and certain flavin enzymes have been associated with lipid 

peroxidation as well. The quantitative image analyses of unsaturated lipids (3010cm-1) and the 

lipid arrangement indicator ratio (2850cm-1:2880cm-1) are summarized in Fig. 2.9 K, in which 

distinct regions are separately quantified. Fig. 2.9 J highlights a larger cross-sectional area of the 

imaged cells, which may be afforded by a more fluid cell membrane. In certain cells, oxidative 

stress has been found to increase lipid saturation for protection. Furthermore, the presence of 

higher ratios near LDs suggests there is less synthesis of saturated lipid species as well. Finally, 

flavin autofluorescence decreased in the presence of excess methionine (Fig. 2.9 F), while NADH 

autofluorescence remained more consistent (Fig. 2.9 G). The flavin/(NADH + flavin) ratio has 
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been shown to be an indicator of oxidative stress and estimator for NAD+:NADH [90]. Results 

corroborate with previous studies in which this ratio was used to differentiate breast cancer cell 

lines [91], with the TNBC having relatively weaker flavin autofluorescence than the normal-like 

cell type. Under oxidative stress, this ratio has been shown to increase. A decrease here (Fig. 

2.9 L) may demonstrate the antioxidant properties of methionine. Flavin autofluorescence data is 

summarized in Supplementary Fig. 2.14. 
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Figure 2.9 Multi-modal optical analysis of MDA-MB-231 methionine response with insulin 
(A-G) Multichannel Images illustrate SRS and TPF image channels of interest for lipidomic responses to 
excess methionine. (H) Overlaid Composite Regions image of the 15x Methionine lipid (CH2), flavins, and 
de novo synthesized lipids (CDL). Channels were masked according to the indicated thresholds using 
ImageJ and contrast was adjusted for optimal clarity. (I) Intensity profile plot depicts the intensities of pixels 
along the dotted yellow line shown in (H) of each of the three composite channels. (J) Composite intensity 
histograms of the unsaturated lipid channel (3010cm-1). Bolded distribution outlines represent the average 
frequency of pixel intensities among the cells in each group. Shaded areas around the bolded distribution 
outline represent the standard error of the mean of each bin of pixel intensities. Each distribution curve 
represents the pixel intensities of a cell sampled from the experimental condition. (K) Quantitative Lipid 
saturation summary depicts the 3010cm-1 pixel intensities (Left axis) in each of the three regions shown in 
(H) of a typical cell from the indicated experimental condition. Additionally, the lipid arrangement indicator 
ratio (2850cm-1:2880cm-1) for each of the regions in (H) is also depicted for the typical cell from each 
experimental condition. Two-tailed t-tests were performed between each pair of bars to highlight excess 
methionine effects. Asterisks ‘*’ correspond to the following p-values for the unsaturated lipid peak (3010cm-

1) intensities: **P<0.01, ***P<0.001, ****P<0.0001. Octothorps ‘#’ correspond to the following p-values for 
the Lipid Arrangement Indicator (2850cm-1: 2880cm-1) intensities: #P<0.05, ##P<0.01. (L) ORR for the 
typical cell from each experimental condition. Results corroborate and extend spectral data findings, as well 
as previous third-party studies. Scale bar is 50um. Two-tailed t-tests were performed between each pair of 
bars to highlight excess methionine effects. Asterisks ‘*’ correspond to the following p-values for the 
unsaturated lipid peak (3010cm-1) intensities: ***P<0.001. 
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2.3 Discussion 

 For the first time, the unique lipid metabolism of triple negative breast cancer was 

studied under tandem excess methionine and insulin conditions, and revealed key insights that 

span the metabolic, spatial, and biochemical dimensions. Not only did this study confirm lipid 

droplets are reflective of cellular phenotypes and demonstrate their efficacy in classifying breast 

cancer subtypes, and even phenotypes, it improves morphological analysis using 3D imaging, as 

opposed to 2D, and efficiently displays relevant chemical disparities using the first demonstration 

of relative entropy for Raman data. Considering the critical impact lipid metabolism has on the 

progression of diseases such as cancer, the analyses on lipid saturation and peroxidation, optical 

redox status, and LD size and distribution solidify the effects of methionine and insulin, which may 

prove to be therapeutic targets for breast cancer in the future.   

These experiments demonstrate the power of nearly label-free optical techniques to probe 

LD phenotypes for the study of TNBC’s unique metabolism. Methionine dependence, also known 

as the Hoffman effect, has been explored in TNBC and other cancers, but fewer studies explored 

the effects of excess methionine, and fewer still, the tandem manipulation of methionine and 

insulin. Upon the addition of insulin in TNBC growth media, macromolecular changes appeared 

in the CH stretching region of excess methionine treated cells, as the CH2:CH3 ratio increased in 

TNBC, but decreased in MCF10A control cells. A potential pathway that involves both insulin and 

methionine in LD metabolism may be mediated by TNBC’s elevated mTOR activity, and was 

explored through the chemometric, spatial, and molecular imaging dimensions with subcellular 

resolution. Currently the stoichiometric mass action of this pathway remains to be investigated in 

these breast cancer subtypes, but several studies have linked methionine, mTOR, and insulin 

signaling pathways [54–59], albeit transitively. Paramount in this investigation is the implication 

of these metabolites in the pursuit of TNBC diagnosis and treatment. Unmixing the interplay 



67 

 

between insulin and methionine may afford targeted therapies that address the rampant lipid 

metabolism that facilitates breast cancer progression. 

LD chemical composition also demonstrated excellent classification ability, as lipid and 

protein Raman cross sections are not only larger, but also very diverse and highly implicated in 

metabolic cellular states. Classification of breast cancer subtypes, and even more so their 

phenotypic states, can be critical in improving patient outcomes due to the necessity of early 

diagnosis. MCF10A cells may exhibit differential protein metabolism by retaining scavenged 

methionine or not metabolizing proteins as much as TNBC, which is due, in part, to very different 

doubling times. Several other considerations including LD size may also contribute to these 

disparities, as larger LDs have a greater volume:surface area ratio, and thus a greater lipid:protein 

ratio since the apolipoproteins stud the phospholipid surface of the lipid core. LD fusion can affect 

this as well, since newly synthesized LDs may have a diluted CD signal if fused with older LDs. 

Further investigation is warranted to uncover the details of differential lipid metabolism in breast 

cancer subtypes using LDs, but this platform has set the stage for macroscopic observations 

using efficient optical techniques. 

Both TNBC and MCF10A cells exhibited similar spatial information of LDs under these 

treatments as excess methionine conditions generally decreased the number of lipid droplets 

while increasing their volume in both cell types, while insulin generally increased both size and 

number of LDs. Insulin restriction appeared to increase LD number as well, and in TNBC, 

appeared to attenuate the effects of excess methionine on LD number. This interesting pattern 

not only suggests that TNBC has unique insulin-mediated lipid metabolism, but that insulin and 

methionine may have more complex concentration-dependent interactions in general as well. LD 

distribution also seemed to be more clustered in the excess methionine cases, and we intuit from 

the diminished spectral presence of cytC that these lipid droplets were less co-localized with 

mitochondria. Finally, the antioxidant properties of methionine expectedly diminished flavin 

autofluorescence and resulting lipid droplet spectra showed higher degrees of lipid unsaturation. 
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In Fig. 2.9 K, l the optical redox ratios and the lipid arrangement indicator ratios indicate that 

methionine plays a large role in lipid peroxidation and saturation. The degree of saturation of lipids 

is a critical consideration for cell membrane fluidity, especially in aggressive cancers that can alter 

their extra cellular matrix (ECM), or those that metastasize and migrate rapidly. For the first time, 

the dynamics of lipid saturation and peroxidation under nutritional control has been imaged with 

label-free subcellular resolution.  

To broaden the scope of the investigation and capitalize on the rich chemical data of the 

Raman spectrum, relative entropy was used to rank the features that exhibited the greatest 

variance between different groups. As expected, there are several areas other than the CH 

stretching region that offer strong classification ability despite lower Raman intensities. This may 

be attributed to the higher intensity deviations at higher intensities typical of multiplicative 

scattering effects. Additionally, the effects of individual nutritional manipulations become clearer 

with all Raman peaks being visible simultaneously. From this insight, the interrogation of 

pathways with Raman spectra can be done more efficiently, as the relative entropy scores for 

each Raman shift can be seen at once, reducing the number of spectra and subplots that need 

to be displayed. With this demonstration of efficacy, more critical quantitative analyses, as well 

as algorithmic improvements will be conducted. For example, incorporation of directional shifts in 

intensities can be made visible on the relative entropy plot, as opposed to absolute distance 

metrics alone. This will not only identify discriminating variables but will also circumvent the need 

to manually determine significant ratios, ratio differences, and other trends as well. Further, this 

relative entropy plot may be useful in feature reduction, so that fewer hyperspectral images may 

be required for discriminating LD microenvironments and subpopulations. Other methods more 

directly identify the wavenumbers that contribute the most to a spectrum’s classification, such as 

the hybrid variable combination population analysis (VCPA) and iterative retaining important 

variables (IRIV) approach [92]. However, due to the large number of variables, IRIV can be time 

and resource intensive.  
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The diverse pathophysiology of breast cancer may have important mechanisms 

involving methionine and insulin that can be studied with optical techniques such as 

spontaneous Raman spectroscopy and SRS/TPF microscopy. This study also emphasizes that 

LDs are organelles diverse in structure and function and can yield rich metabolic information 

when interrogated by Raman techniques. Future studies that involve automated high-throughput 

acquisitions of spectra and images at more finely tuned concentrations of insulin and methionine 

may increase the power of the results discussed here. Different distribution fits for the relative 

entropy algorithm, displaying directionality of peak intensity changes, as well as the multiplexing 

of dietary manipulations such as glucose, pyruvate, and glutamine may paint a clearer picture of 

the metabolic dynamics in breast cancer [93, 94]. This will also help make hyperspectral 

imaging more efficient in terms of disk space and clustering ability. Utilizing morphological 

characteristics and intensity changes to augment classification has not been performed in this 

study but will be a prudent next step in developing these optical techniques for classification 

purposes. Additionally, spatial distribution of LD by size and chemometric composition, as well 

as quantitative descriptions of LD distribution and co-localization would further enrich this 

investigation. This kind of quantitative hyperspectral image data will bolster the utility of LD 

analysis in the study of breast cancer, and ultimately improve not only our understanding of the 

complex disease, but patient outcomes in eventual translation as well. 

2.4 Materials and Methods 

 

2.4.1 Experimental Design 
 

An experimental outline is shown below (Fig. 2.10). First, three cell subtypes were grown 

in media with either 1x methionine (0.03g/L) or 20x methionine (0.6g/L). Then the experiment was 

repeated with the addition of 3 insulin concentrations for each of the groups to investigate their 

relationship. 
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Figure 2.10 Experimental Design 
Graphical illustration of the groups in this study. Only methionine concentration is modulated at first, and 
then insulin and methionine were modulated in tandem. DMEM used in this experiment already contains 
0.03g/L of L-methionine, which corresponds to the 1x methionine group. NOTE: in part 2, the excess 
methionine concentration is 20x for the Raman spectroscopy, and 15x for SRS imaging. 
 

2.4.2 Cell Culture 
 

Human triple negative breast cancer cell line (MDA-MB-231) and normal-like breast 

epithelial cell line (MCF10A) were cultured in Dulbecco’s modified Eagles’ medium (DMEM), 

supplemented with 5% fetal bovine serum (FBS) and 1% penicillin/streptomycin (Fisher Scientific, 

Waltham, MA), and incubated with 5% CO2 at 37°C. Cell cycles were synchronized using double 

thymidine block [29]. After passaging at 80% confluence, cells were seeded at a concentration of 

2×105/mL atop 70% ethanol-soaked cover glass in 24-well plates and incubated for 8 hours. Then 

the growth media was changed to 50% heavy water (D2O) and treatment media as follows. 

For MDA-MB-231 and MCF10A cell culture media, 57 mg/L and 42 mg/L L-methionine 

(M8439, Sigma Aldrich) was added to DMEM for the excess methionine group for spontaneous 

Raman spectroscopy and SRS imaging (20x and 15x concentration), respectively. The DMEM 
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powder used in this study already contains 0.03g/L (1x concentration) L-methionine and 

corresponds to the physiological concentration group. The reason for lowering the excess 

methionine concentration for SRS imaging analysis is because the cell morphological changes 

were more varied and poorer with 20x methionine, making it more difficult to acquire quantitative 

metabolic activity from images on a per-cell basis. Insulin (Sigma Aldrich, St. Louis, MO) was 

added at 1µg/mL, 10 µg/mL, and 20 µg/mL for the 0.1x, 1x, and 2x insulin groups, respectively. 

Cells were incubated for 48 hours, which corresponds to a deuterium-retarded cell cycle. 

Cyclin dependent kinase 1 (CDK1) inhibitor (RO-3066, Sigma) was added with 8 hours remaining 

to arrest growth before mitosis. Cells were gently rinsed with 1x PBS with Calcium and 

Magnesium ions at 4°C (Fisher Scientific, 14040216), and finally fixed in 4% methanol-free PFA 

solution (VWR, 15713-S) for 15 minutes. The cover glass was mounted on 1mm thick glass 

microscope slides with 120 µm spacers filled with 1x PBS without calcium and magnesium ions. 

These samples are stored at 4°C submerged in PBS when not in use. 

2.4.3 Spontaneous Raman Spectroscopy 
 

Spontaneous Raman scattering spectra were obtained by a confocal Raman microscope 

(XploRA PLUS, Horiba) equipped with a 532 nm diode laser source and 1800 lines/mm grating. 

The acquisition time is 30 s with an accumulation of 4. The excitation power is ~40 mW after 

passing through a 100x objective (MPLN100X, Olympus). The background spectra were taken 

for each LD at the same focus plane as the LD and were subtracted from each LD spectrum 

immediately. Spectra were preprocessed using vector normalization and simplex normalized. 

Peaks were normalized to the protein peak at 2935cm-1. Previous studies suggest Raman 

microspectroscopy can quantify lipids non-invasively [95].  

2.4.4 Stimulated Raman Scattering Imaging Microscopy 
 

An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water 

objective (XLPLN, WMP2, 1.05 NA, Olympus) was applied for near-IR throughput. Synchronized 



72 

 

pulsed pump beam (tunable 720–990 nm wavelength, 5–6 ps pulse width, and 80 MHz repetition 

rate) and Stokes (wavelength at 1032nm, 6 ps pulse width, and 80MHz repetition rate) were 

supplied by a picoEmerald system (Applied Physics & Electronics) and coupled into the 

microscope. The pump and Stokes beams were collected in transmission by a high NA oil 

condenser (1.4 NA). A high O.D. shortpass filter (950nm, Thorlabs) was used that would 

completely block the Stokes beam and transmit the pump beam only onto a Si photodiode for 

detecting the stimulated Raman loss signal. The output current from the photodiode was 

terminated, filtered, and demodulated in X with a zero phaseshift by a lock-in amplifier (HF2LI, 

Zurich Instruments) at 20MHz. The demodulated signal was fed into the FV3000 software module 

FV-OSR (Olympus) to form the image during laser scanning. All 3D lipid droplet images were 

obtained with a pixel dwell time 40 µs with 3-frame averaging for a total imaging speed of ~10-15 

min per image stack. Laser power incident on the sample is approximately 40mW.  

2.4.5 Two Photon Fluorescence Microscopy 
 

Autofluorescence of flavins was excited at 820 nm and autofluorescence of NADH was 

excited at 780nm using the same tunable picosecond laser described in chapter 1.3. Epi-detected 

emission of flavin autofluorescence was collected using a 460 nm filter cube (OCT-ET460/50M32, 

Olympus), and NADH was collected using a 515nm filter. These images were also 512x512 pixels 

and were acquired with a 12.5 µs/pixel dwell time using a 300mW power at the laser shutter. 

Autofluorescence images were background subtracted using a rolling ball algorithm with a radius 

of 50px, which is intended to approximate cell size in these images. 

2.4.6 Data Analysis 
 
Spectral Clustering 

Previous studies have shown these breast cancer subtypes have unique Raman features 

[45, 96]. Machine learning was conducted to determine the extent to which these features can be 

used to segregate these subtypes and be augmented using the metabolic dimension of excess 
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methionine. Neural network classification was done using a simple multi-layer perceptron (MLP) 

model with 100 neurons in the hidden layer and a rectified linear unit (ReLU) activation function 

for each neuron. An L2 regularization term with hyperparameter α=0.0002 penalizes the model 

for incorrect classification during learning with cross-entropy loss minimization. The classification 

is stochastically optimized using an adaptive moment estimation algorithm called Adam. 

Advantages of this choice of activation function and solver in an MLP include invariance to 

rescaling gradients, the ability to learn non-linear models, and a natural simulated annealing to 

optimize the gradient [97]. MLP are, however, sensitive to parameter tuning, and all spectra were 

normalized to have the same range. 

The input for the MLP model consists of a matrix of Raman spectra, and a vector of target 

classes. In this study, target classes are of categorical type and correspond to the cell subtype 

and metabolite concentration groups. Each spectrum Xi is represented as a vector containing m 

wavenumbers which are each input into a first layer of neurons. Each neuron in the hidden layer 

accepts the weighted linear combination of input features and applies the ReLU activation 

function, outputting the data to the output layer. Softmax is used to probabilistically determine the 

target class of the multiclass model. The model is trained via backpropagation to minimize cross-

entropy loss with a maximum of 200 iterations in which subsequent weight vectors reflect a 

subtracted loss gradient according to equation 2.1 below. 

𝑾𝒊+𝟏 = 𝑾𝒊 − 𝝐𝛁𝑳𝒐𝒔𝒔𝑾
𝒊                      2.1                                                        

where, ε corresponds to the learning rate. A python implementation of model is readily available 

from scikit-learn v0.24.1 [98]. The width of the hidden layer, k=100, as well as its depth of 1 single 

layer, are tunable depending on the dataset. Larger datasets may require more neurons and 

deeper networks to perform better. The geometric mean of input variables and classes roughly 

totaled 100, and an underlying assumption of a simple binary effect of excess methionine and 

very distinct Raman spectra was comfortable with only a single layer. However, multiplexing of 

variables such as cell subtype, methionine concentration, and other manipulations may intuitively 
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justify additional hidden layers in future experiments. Classification in this study mainly attempts 

to highlight the higher dimensionality of methionine’s non-linear effects on breast cancer 

subtypes, and discuss potential pathway interactions for further investigation. That is, if all breast 

cancer subtypes responded similarly and to a similar degree, more complex neural nets may not 

be necessary to achieve good performance. 

Principal component analysis (PCA) is performed using Orange 3.26 on the pre-processed 

data. The first 10 PCs are used as the vectors for tSNE visualization without any exaggeration 

and a perplexity of 30. 

2.4.7 Selected Raman Feature Analysis 
 

Spectroscopic data is extracted using MATLAB and is plotted using MATLAB. To visualize 

the influence of all Raman peaks on classification simultaneously, the relative entropy method 

described in section 1.2.1 is employed. To date, this method has not been previously reported 

on Raman spectroscopy applications. Second derivative barcode analysis may be coupled with 

this method, and improve it, as barcode analysis contains both amplitude and width information 

[99]. 

2.4.8 Image Analysis 
 

Images were processed using MATLAB and ImageJ. 3D image stacks of lipid droplets 

underwent bandpass filtering to suppress horizontal noise artifacts from laser beam scanning, 

and smoothed. Lipid droplets received a sphericity score based on Euclidean distance from 

perfect spheres emanating from the center of mass of the lipid droplet to the surface of the lipid 

droplet. Those with low sphericity scores were discarded. Autofluorescence images underwent 

sliding paraboloid background subtraction before manual cell segmentation and measurement 

was conducted via ImageJ. 
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2.5 Supplementary Material 

 
Figure 2.11 Epidemiology of breast cancer 
Breast cancer prognosis may be heavily influenced by subtype. Subtypes may be classified by membrane 
proteins that afford hormone sensitivity but may be further delineated by other aspects of the proteome 
and metabolic phenotype. TNBC affects non-Hispanic black women more frequently than any other race, 
but the exact reasons for this discriminatory behavior are not currently known. 
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Figure 2.12 Preliminary classification architecture of breast cancer cells 
(A) Input for the MLP neural network classification model. All n spectra are labeled as strings which are 
stored in target vector Y with n categorical variables. All spectra contain the same number of features, 
so that the final input matrix has size n x m corresponding to number of spectra, and wavenumber 
variables, respectively. (B) MLP model for multiclass prediction of breast cancer subtypes and 
metabolic phenotypes. Raman intensities are sent to the input layer, multiplied by a weight vector of 
the same size as wavenumbers, and summed in each hidden layer neuron. A ReLU activation function 
determines what value is sent to the output layer, where the hidden layer neuron outputs are summed 
for each class. Softmax calculates the predicted target class ŷ based on the which z corresponds to the 

highest probability. The model learns by minimizing cross-entropy loss in which the gradient 𝑊𝑖+1 =
𝑊𝑖 − 𝜖∇𝐿𝑜𝑠𝑠𝑊

𝑖  . 
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Figure 2.13 Simple breast cancer classifier results 
Confusion matrix illustrating the 10-fold cross validation accuracy of the ReLU neural network. 100 neurons 
in the hidden layer and 200 iterations with the Adam solver achieved AUC: 0.9811, CA: 0.82, F1: 0.812, 
Precision: 0.823, Recall: 0.82. Classification between dietary methionine concentrations in TNBC cell line 
MDA-MB-231 was the poorest. 

 
Table 2.1 2-way ANOVA of lipid:protein ratio affected by insulin and methionine in TNBC 
2-way ANOVA of Fig. 4B shows significant interaction term Insulin*Methionine in TNBC. 
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Table 2.2 2-way ANOVA of de novo lipogenesis affected by insulin and methionine 
From Fig. 2.5 A-B, Relative lipid metabolism characterized by the ratio of de novo synthesized and total 
lipids was not significantly sensitive to methionine concentration in normal-like breast cells, while there is a 
significant interaction term Insulin*Methionine in TNBC. In both cell types, methionine concentration was 
the significant independent variable in terms of relative lipid and protein synthesis. 

 

 

Figure 2.14 Flavin autofluorescence affected by insulin and methionine 
Quantitative summary of flavin autofluorescence from TPF image analysis. Excess methionine generally 
decreased flavin autofluorescence, whereas higher insulin concentrations generally increased flavin 
autofluorescence in both MCF10A (left) and MDA-MB-231 (right). 
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Chapter 3: Multimolecular Lipid Subtype Detection Using 
PRM-SRS in Cells and Tissues 

3.1 Introduction 

Current lipidomic technologies, such as shotgun lipidomics, can quickly identify hundreds 

of lipids from small samples. Albeit highly sensitive, such methods rely on mass spectrometry 

(MS), nuclear magnetic resonance (NMR), or other techniques that are destructive to cells and 

tissues [100–103]. Conventional matrix-assisted laser desorption/ionization (MALDI)-MS imaging 

enables label-free lipid imaging but it has a lateral resolution on the order of cell diameters (~10 

µm) and destroys the sample during the imaging process. In addition, 3D MALDI imaging relies 

on serial sections of the sample, and the lipid species that are resolvable are limited to those with 

the highest ion yields. Other optical techniques have been developed to non-destructively 

visualize spatial distributions of lipid pools [104] as well as metabolic flux [105] at the subcellular 

resolution, but they rely on markers such as fluorescently labeled antibodies and transfected 

biosensors, which may alter the native distribution of lipids in cells or tissues. It is difficult to use 

labeled optical imaging to differentiate diverse molecular species simultaneously, since the 

diversity of lipid species far exceeds the specificity and availability of optical tags and dyes. 

Therefore, label-free optical imaging is instrumental. Stimulated Raman scattering (SRS) 

microscopy has demonstrated advantages of non-destructive 3D imaging with subcellular 

resolution in a label-free manner [106, 107]. Recent work has even demonstrated quantitative 

mass concentration measurements of lipids, proteins, and water [108]. For label-free SRS 

imaging microscopy, multiple subcellular organelles can be the chemical specificity is achieved 

through hyperspectral imaging (HSI) or training of a deep learning model [109]. Lock-in free 

multiplex SRS imaging can rapidly extract hundreds of morphological or metabolic features in situ 

to understand lipid metabolism in cancer cells [110]. Despite these advancements, there has been 
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no report on distinguishing multiple lipid subtypes in cells and tissue samples by using 

nondestructive label-free optical imaging methods.  

In addition to imaging technologies, post-processing methods/algorithms also contribute 

to producing high resolution and high-quality images. Recent work on Raman HSI analysis using 

multivariate curve resolution alternating least squares (MCR-ALS) algorithm has demonstrated 

effective unmixing of chemical species without disturbing the native distribution of biomolecules 

[22]. However, a higher spectral resolution may entail prohibitively long imaging time. In addition, 

unmixing lipid species using unsupervised methods can be computationally expensive and lack 

the ability to directly identify a chemical species without manual association posteriori. For 

example, the MCR-ALS approach converts a complex spectrum to a linear combination of 

component spectra, but it can take 30 minutes to process a 512 x 512-pixel hyperspectral image 

and presupposes the number of chemical species in a sample. The result displays a pixel’s 

identity by its relative proportional composition of reference species. However, this is not always 

feasible in a complex biological sample. Singular Value Decomposition (SVD) can estimate the 

number of components, but analytical results may be sensitive to slight deviations from the exact 

number of components. Clustering and segmentation of image pixels may be informed by MCR-

ALS, however, the precise molecular identities of the highlighted pixels may still be unknown, as 

there is no guarantee that the unmixed components correspond to a specific molecular type.   

 Spectral reference matching approaches, also known as spectral angle mapping, have 

been widely applied to Raman spectral analyses by quantifying the spectral similarity between an 

image pixel spectrum and a known reference spectrum [111]. Fig. 3.1 shows the general process 

of reference matching approach applied to hyperspectral imaging. First, spectra of the target 

analytes (the reference standards of interest) are acquired using spontaneous Raman 

spectroscopy (Fig. 3.1 A) and preprocessed for background removal and normalization (Fig. 3.1 

B, see Methods for details). Hyperspectral Raman microscopy imaging is next performed on the 
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sample of interest, in which each pixel contains specific spectral information (Fig. 3.1 C-D). Then 

each pixel’s spectrum is preprocessed in the same way as the reference spectrum (Fig. 3.1 E) 

and is analyzed with respect to the reference spectrum by calculating the cosine similarity score 

(Fig. 3.1 F). 

 

 

However, the general spectral reference matching approach has low specificity and the 

high incidence of false positives makes it difficult to implement in vibrational spectroscopy. This 

is because the peak position and intensity differences of spectra generated by various equipment 

can produce uncertainty that overshadows the subtle differences between lipid subtypes. To 

enhance the specificity for accurately distinguishing lipid species, we developed a Penalized 

Reference Matching (PRM) algorithm and applied it to SRS (PRM-SRS) microscopy, and 

accumulated a diverse library of more than 38 biomolecules for potential detection. This method 

is efficient and can process a 512 pixels x 512 pixels x 76 hyperspectral image stack within one 

Figure 3.1 General Reference Matching Method 
(A) A reference spectrum of a lipid subtype standard is acquired by spontaneous Raman spectroscopy and 
(B) preprocessed to remove background and normalize.  (C-D) A sample is imaged using SRS to generate 
a HSI. (E) Each pixel of the HSI is a vector of intensity values that represent the Raman spectrum at that 
pixel. (F) Similarity scores are calculated between each pixel and the reference spectra 
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minute. In this study, we demonstrate broad applications of PRM-SRS on differentiating lipid 

subtypes and mapping their spatial distributions in cells and tissues. This new method will provide 

quantitative and qualitative insights into different roles of lipid species in multiple biological 

processes and can augment other unmixing techniques as well. 

3.2 Results 

Most images collected in this study were taken from the Raman CH stretching region 

(2700 cm-1 to 3150 cm-1) with 75 total Raman shifts (a spectral distance of 6 cm-1 between 

images). The position deviation Δx was the shift of peaks in the spectrum. We assessed several 

values for the penalty coefficient and chose α =1x10-4. At a higher value (4x10-4) of α, the image 

contrast was too high to show the full-range signals whereas a lower α (0.25x10-4) caused over-

saturation in images (Fig. 3.2 A-C). This is because if the penalty is too low, the pixel and 

reference spectra are free to shift themselves relative to each other until the highest similarity 

score is returned, no matter how far that shift may be from the original position. 

 

Figure 3.2 Empirical Determination of the Penalty Coefficient 
(A) Images of the PRM-SRS result of cardiolipin standard detected in a mouse dentate gyrus SRS HSI. A 
penalty term that is too low causes over saturated images. (B) The empirically chosen penalty coefficient 
provides a satisfactory contrast. (C) A penalty term that is too high prevents the adjustment of spectral 
position, causing pixels that would otherwise have correspondent spectra to yield an artificially low 
similarity score. Scale bar 200 microns. 
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3.2.1 Mapping cholesterol levels in Drosophila fat body using reference spectra 

As a proof of concept, we applied the PRM algorithm to detecting and comparing 

cholesterol levels in fat body tissues of young and old Drosophila. Analogous to mammalian liver 

and adipose tissue, Drosophila fat body has been used extensively to study lipid metabolism. We 

collected fat body tissue spectra from young and old flies using spontaneous Raman 

spectroscopy and compared them to reference spectra of cholesterol at the fingerprint (750 cm-1 

to 1650 cm-1) and CH-stretching (2700 cm-1 to 3150 cm-1) regions (Fig. 3.3 A-D). Although the fat 

body is known to be enriched in triacylglycerides (TAGs), PRM enabled us to extract cholesterol-

matched signals in a TAG-rich environment using the cholesterol reference standard. Compared 

to samples from young flies, fat body samples from old flies showed significantly higher similarity 

scores to the cholesterol reference spectra in both regions (Fig. 3.3 E-F), indicating elevated 

cholesterol content in old flies. This result is consistent with the published data [112]. This analysis 

demonstrates our PRM algorithm as an effective method for rapid in situ lipid mapping in tissues. 
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Figure 3.3 Spectral PRM cross correlation in the fingerprint and CH stretching regions 
(A, B) Raman signals from fat body tissues of young and old Drosophila in the fingerprint and CH regions. 
(C, D) Raman signals of the cholesterol reference standard in fingerprint and CH stretching regions, 
respectively. (E) Fingerprint region similarity scores of young and old Drosophila fat body samples to the 
cholesterol reference standard. p = 4.85x10-4 by Wilcoxon rank sum test. (F) CH-stretch similarity scores 
of young and old Drosophila fat body samples to the cholesterol reference standard. p = 0.0037 by Wilcoxon 
rank sum test. **, p<0.01; ***, p<0.001. 
 

Depending on the biological questions to address and Raman scattering equipment 

available, either the CH-stretching or fingerprint region in a Raman spectrum may be the focus of 

a study. Both regions can be used to analyze changes in biomolecule distribution, pathological 

structures (such as amyloid plaques), and other morphological characteristics [2, 113–115]. 

Although both spectral regions yielded similar results, the fingerprint region generated results with 

a lower rejection level of p<0.001 (Fig. 3.3). This is likely because the fingerprint region contained 

more definitive features, and the CH-stretching region possessed low intensity shoulders below 

2800 cm-1 and above 3000 cm-1, which may lead to a higher similarity score between samples 
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since both spectral data sets matched in those regions where the intensity was zero. Importantly, 

this demonstrates that similarity scores generated from spectra data by PRM-SRS can be used 

to estimate the levels of biomolecules in the samples.  

 

 

3.2.2 Using PRM-SRS to detect cardiolipin changes in cells 

After validating the efficacy and robustness of PRM on spontaneous Raman spectral 

analyses, we next extended the algorithm to the analysis of Stimulated Raman scattering (SRS) 

images. To evaluate the spatial accuracy and quantitative approximation of PRM-SRS, we first 

benchmarked it against fluorescence microscopy images. Using PRM-SRS imaging, we 

examined cardiolipin (CL), an essential phospholipid in the inner mitochondrial membrane, in 

cultured HEK293 cells. CL is synthesized in the inner mitochondrial membrane in consecutive 

reactions catalyzed by enzymes including phosphatidylglycerophosphate synthase 1 (PGS1), 

phosphatidylglycerophosphate phosphatase (PTPMT1) and cardiolipin synthase (CLS1) [116, 

117]. PGS1 is essential for CL synthesis, and expression of an enzyme-deficient mutant PGS1 

leads to a reduction of PGP (Phosphatidylglycerophosphate) and CL in CHO cells [118]. We 

generated stable HEK293 cell lines with downregulated PGS1 (shPGS1). PGS1 down-regulation 

was confirmed by immunofluorescence analysis using a PGS1-specific antibody 

(Supplementary Fig. 3.9). Following staining using nonyl acridine orange (NAO), a fluorescent 

dye with high affinity for CL [119], cells were analyzed using both two-photon fluorescence (TPF) 

microscopy and PRM-SRS. To demonstrate the specificity of SRS signals for CL, we compared 

control HEK293 cells with shPGS1 cells. PRM-SRS analysis of the hyperspectral images was 

consistent with TPF images in both control and shPGS1 cells (Fig. 3.4 A-B). Quantitative 

analyses of both PRM-SRS images and fluorescence images showed significant decreases of CL 

signals in shPGS1 cells compared with control cells (Fig. 3.4 C-D). Importantly, the similarity 

score image of the reference-matched CL is distinct from any single Raman shift images in the 
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CH symmetric stretching regions (Supplementary Fig. 3.9 C). These results demonstrate the 

ability of PRM-SRS to quantitatively detect CL changes in cells, and its potential for visualizing 

protein/lipid metabolic dynamics at the subcellular scale. 

 

Figure 3.4 PRM-SRS and fluorescence staining show similar results 
(A, B) Comparison of PRM-SRS and fluorescence staining in control cells expressing shCtr (Ctr; A) and 

PGS1 knockdown (shPGS1; B) HEK293 cells. Panels on the left, two photon fluorescence microscopy 

(TPF) images following nonyl acridine orange (NAO)-labeling of CL. Panels on the right, label-free SRS 

hyperspectral images of CL at the CH-stretching region. Quantitative analyses of NAO staining signal 

intensity (C) and PRM-SRS imaging signal intensity (similarity score in eight-bit integer image) (D) of CL in 

control and shPGS1 cells. Significantly decreased signals in shPGS1 cells were detected by both TPF and 

PRM-SRS microscopy. Data are presented as mean ± SEM and analyzed by One-way ANOVA with 

Bonferroni post hoc test; ****p<0.0001. Scale bar, 10 µm.  

 

3.2.3 PRM-SRS Visualizes Clinically Relevant Lipid Subtypes in Human Kidney 
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We then applied PRM-SRS to characterizing lipid subtypes in human kidney tissues, a 

structurally and functionally highly complex tissue composed of more than 50 cell types [120]. 

Cholesterol, ceramides (Cer), and triacylglycerides are among the most abundant lipid species in 

the kidney. Dyslipidemia is frequently observed in nephrotic syndrome (NS) and various types of 

chronic kidney disease (CKD) [121]. The glomerulus, the filtration unit of the nephron, is a network 

of capillaries that sequesters lipid species as an initial step of filtration and is decorated with lipid 

droplets. Wrapping around the capillary of the glomerular tuft are podocytes, making up the 

epithelial lining of the Bowman’s capsule. We used healthy human kidney tissue sections as a 

control to showcase the application of our PRM-SRS in imaging different lipid subtypes in 

structurally complex tissue samples. 

SRS imaging detected the overall distribution of lipids in the morphologically distinct 

structures in these kidney tissues, such as glomeruli, tubules, and blood vessels (Fig. 3.5 A). 

Using PRM-SRS, we estimated relative concentrations of lipids in different structures, such as 

lipid droplets in podocytes, and eosinophilic bodies near tubules (Figs. 3.5 A-B). PRM-SRS 

imaging revealed distributions of distinct lipid subtypes in the glomerulus and surrounding 

structures in situ, including TAG, cholesterol, cholesterol ester, and C12 ceramide, with the 90th 

percentile similarity scores to the corresponding pure lipid reference spectra (Fig. 3.5 C).  

Dyslipidemia is manifested as elevated levels of serum TAGs, cholesterol, and very low 

to intermediate density lipoproteins. Common initial abnormalities include decreased production 

and activity of lecithin-cholesterol acyltransferase which decreases high-density lipoprotein (HDL) 

levels and maturation of HDL cholesterol [122]. The regulation of HDL cholesterol is tightly 

controlled by several organs, but generally entails the esterification of cholesterol into cholesterol 

esters, which move towards the center of HDL particles, along with neutral TAGs. This maintains 

a favorable cholesterol gradient as these HDL particles become enriched by sequestering 

cholesterols and fatty acids from other lipoproteins. Although mature lipoproteins are too large to 

pass the glomerular filtration barrier, lipids and lipid-bound proteins from lipoproteins may affect 
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overall renal lipid metabolism [123]. Our ratiometric imaging revealed that there is a greater 

amount of non-esterified cholesterol in the lipid particles than neighboring structures. These pools 

of cholesterol may represent those yet to be enriched or ectopic deposits (supplementary Fig. 

3.10). Ceramides are also abundant in the kidney and play a crucial role in regulating cellular 

processes and binding cholesterol and other lipoproteins [124]. Ceramides, e.g., C12 ceramide, 

show high similarity with pixel spectra in lipid droplets and lipoprotein particles (Fig. 3.5 C). In 

nephropathies, ectopic lipid deposits in the glomerular mesangium and proximal tubules are 

typically concurrent with low HDL levels [122]. Other characteristics of glomerular nephropathies 

are depicted in Fig. 3.5 D. The ability of PRM-SRS to track the lipidomic profile in tissues collected 

from patients at various stages of diseases will generate critical data for changes in these 

macromolecules over time, and with associated biological variables. Such studies will provide 

insights into assessing severity, progression or prognosis of various lipid metabolic diseases.  
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Figure 3.5 PRM-SRS Detection of Lipids in Kidney Biopsy 
(A-B) SRS image of a human kidney tissue section at 2850 cm-1. Panel B shows the enlarged image of 
the boxed area in panel A. Hollow arrowheads, intracellular lipid droplets in tubules. Solid arrowheads, 
eosinophilic bodies. Circles, lipid droplets sequestered by podocytes in the glomerulus. Scale bar, 200μm. 
(C) PRM-SRS spectra (top panels) and images (bottom panels) of different lipid subtypes of interest show 
the distribution of the similarity scores, each with the same contrast levels. Spectra of the top 10% of 
similarity score pixels overlaid on the reference spectrum for each lipid subtype show consistent matches. 
Resulting similarity score images were background subtracted to improve the contrast. (D) Schematic 
diagram of glomerular pathologies associated with dyslipidemia in kidney diseases. (Adapted with 
permission from [125]). Scale bar, 200 µm. 

 

3.2.4 Mapping lipid subtype distributions in Drosophila fat body  

Using maximum intensity projection (MIP) of the PRM-SRS hyperspectral image of total 

lipids, we visualized lipid droplets in Drosophila fat body cells (Fig. 3.6 A). We also detected lipid 

subtypes using different lipid reference standards, including TAG and phosphatidylethanolamine 
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(PE). In addition to detecting lipid subtypes, PRM-SRS can also provide information on subcellular 

distribution, including co-localization, of different lipid subtypes. Comparison of MIP of the PRM-

SRS hyperspectral image of total lipids (Fig. 3.6 A) with mono-unsaturated triacylglycerol (TAG 

18:1) reference-matched image (Fig. 3.6 B) revealed abundant TAG in lipid droplets (Fig. 3.6 A, 

B). A critical tenet of unmixing techniques such as PRM is that spectral shape, not intensity, is 

what drives the similarity score of normalized spectra. The MIP in Fig 3.6 A shows several lipid 

droplets with non-uniform maximum intensities, yet the TAG reference matched image shows a 

more uniform result. This was because despite intensity differences that may have arisen from 

the sample focus plane, the spectral shapes were still consistent. 

Drosophila fatbody cells contain lysosome-like structures that regulate their lipid 

anabolism and were detected using reference spectra of lysosome-like structures of fatbody (Fig. 

3.6 C). These spectra, unlike the lipid subtypes, have a more dominant CH3 stretching peak at 

2935 cm-1, and a more pronounced olefinic peak at 3065 cm-1. PE is one of the most prominent 

lipid subtypes in cell/organelle membranes and can be visualized by taking PRM-SRS images 

using their corresponding reference standard. Fig. 3.6 D shows the spatial distribution of the ratio 

of the PE and TAG similarity scored images. Upon closer inspection, Fig. 3.6 F shows the spectra 

of the apparent pixels are similar to TAG, and therefore appear darker in those regions in both 

the TAG and PE similarity scored images. However, the lipid cores have a greater disparity in 

these similarity scores, with an even greater similarity to TAG and lesser similarity to PE. 

Therefore, the apparent pixels are visible because of relative concentrations, as discussed in 

supplementary. The intensity profiles (Fig. 3.6 G) support the notion that signal intensity of images 

based on similarity scores varies by spectral shape, whereas signal intensity in SRS images 

varies by chemical bond concentrations. Thus, a lipid droplet core may appear more uniform in a 

TAG reference-matched PRM-SRS image than in an original SRS image of the CH2 stretching 

region. Together, these data demonstrate that PRM-SRS is useful in detecting different lipid 

subtypes and their distribution at the subcellular scale. 
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Figure 3.6 PRM-SRS Detection of Lipid Subtypes in Drosophila Fatbody 
(A) Maximum intensity projection (MIP) of the PRM-SRS hyperspectral image of total lipids reveals lipid 
droplets. (B) PRM-SRS detected TAG in lipid droplet cores. (C) Lysosome-like structures detected by PRM-
SRS using reference spectra measured from lysosome-like structures in drosophila fatbody. (D) PE:TAG 
ratiometric images show that the interstitium between lipid droplet cores and lysosome-like structures has 
higher relative levels of PE. (E) PRM-SRS subtype images are merged to detect co-localization of different 
lipid subtypes. (F) Similarity scores from areas marked by red circles 1 and 2 in the lower part of panel D 
highlight the necessity of evaluating relative concentrations as opposed to absolute concentrations.  (G) 
Intensity profiles along the dotted white lines in (A) and (E), upper and lower panels respectively, show how 
signal intensity varies with spectral shape, rather than concentration in a PRM-SRS image. Scale bar is 20 
µm. 

3.2.5 Analyzing lipid subtypes in mouse brain samples  

We next applied PRM-SRS to analyzing lipid metabolism in the context of the aging using 

mouse hippocampal samples. We visualized and compared cholesterol, PC, and PE levels in 

hippocampal samples from young (3 months) and old (18 months) mice (Figs. 3.7 A-C; F-G). We 

also generated ratiometric images for quantitative analysis, since the signal intensity has a linear 

relationship with the concentration of chemical bonds of the molecules detected. Ratiometric 

imaging analyses showed increased Cholesterol/PE ratio in subregions of granule cell nuclei (Fig. 

3.7 D, I; red circles). This increase in the Cholesterol/PE ratio was more prominent and detected 
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in more granule cells in the old brain samples as compared with the young ones (compare Fig. 

3.7 D with 7I), indicative of altered cholesterol and/or PE metabolism in the old brains. These 

results show that ratiometric PRM-SRS imaging can detect changes in differential spatial 

distribution of various lipid subtypes even when such changes are not obvious in images of 

individual lipid subtypes.  

Ratiometric images of PC/PE showed higher levels of PC relative to PE in the granule cell 

nuclei of the dentate gyrus in both young and old mice, but lower levels outside the nuclear regions 

(Fig. 3.7 E, J). Compared to the young brain sample, the old brain sample showed no significant 

changes in the average PC or PE levels in the granule cells in both individual imaging channels 

(Fig. 3.7 B, C, G, H) and ratiometric images (Fig. 3.7 E, J). This is consistent with the results from 

Gas Chromatography Mass Spectrometry (GC-MS) (see Fig. 3.7 K, L).  However, we noticed 

spatial distribution differences in the PC to PE ratio between young and old samples. The 

ratiometric images reveal that more granule cell nuclei had uniformly higher PC/PE ratio in the 

old brain sample, whereas the nuclei in the young sample showed less even distribution of the 

PC/PE ratio (red areas; see those nuclei marked by purple arrows) (Fig. 3.7 E, J). These data 

suggest altered synthesis, accumulation or clearance of PC and/or PE in the granule cells in the 

old brains, consistent with a previous report [126]. Since PE is a precursor of PC, higher PC to 

PE ratios inside the older hippocampal granule cells suggest that aging brains may have altered 

CTP:phosphocholinecytidylyl transferase (CCT) activity – a rate limiting PC synthesis enzyme 

with a predominantly nuclear localization [127]. This finding is significant because both PRM-SRS 

imaging and GC-MS analysis show that the younger brain samples contain less cholesterol 

relative to PE than old ones. However, only through ratiometric analysis were we able to detect 

differential subcellular distribution of lipids, including cholesterol/PE and PC/PE ratio in the nuclei 

(Fig. 3.7 D, I, E, J).  

For comparison, we analyzed the same samples using GC-MS to quantify cholesterol/PE 

and PC/PE ratios (Fig. 3.7 K), which demonstrated an increased cholesterol/PE ratio and no 
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changes in the PC/PE ratio in in old brain samples compared with young ones. The PRM-SRS 

images of nuclei in the tissues were manually segmented using ImageJ for quantification of 

cholesterol/PE and PC/PE ratios (Fig. 3.7 L). These data suggest that PRM-SRS may be used 

for quantitative lipidomic imaging analyses in tissue samples in the future. 

 

Figure 3.7 PRM-SRS imaging of mouse hippocampus 
(A-J) PRM-SRS hyperspectral detection of cholesterol, PC, and PE in hippocampus samples from young 
and old mice. Overall intensity of detected lipid subtypes shows distinct patterns, with old brains showing 
higher cholesterol to PE ratio, but relatively consistent levels of PE and PC. (D, I) Ratiometric images of 
cholesterol to PE shows more nuclei with higher cholesterol/PE ratio in the old brains. Selected nuclei are 
marked by red circles (E, J) Ratiometric images of PC relative to PE show higher PC/PE ratio in granule 
cell nuclei of both young and old brains, but the spatial distribution of the ratio is more heterogeneous in 
young samples (see nuclei marked by purple arrows). Scale bar, 20µm. (K, L) Mass spectrometry (K) shows 
results consistent with that obtained by ratiometric PRM-SRS imaging (L). Summed concentrations of lipids 
were simplex normalized and displayed in the ratio form. (L) Ratiometric image intensities, corresponding 
to the ratio of PRM similarity scores of lipid subtypes, are plotted. Error bars represent standard deviation. 
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3.2.6 Detecting lipid subtype distributions in human brain tissues 

Sphingosine is another crucial lipid subtype whose metabolic alteration has been 

suggested as a biomarker for neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and 

Huntington’s diseases [103, 128]. To visualize individual cells, we used label-free optical SRS 

histology (SRH) imaging of human brain sample (supplementary Fig. 3.11) to create virtual 

histology images similar to that of hematoxylin-and-eosin (H&E) staining as previously reported 

[129]. Using PRM-SRS, we visualized sphingosine and CL simultaneously in the human brain 

tissue sections (Fig. 3.8 A-B). Superimposition of sphingosine and CL images illustrates their 

relative distribution in brain cells (Fig. 3.8 C-D). Ratiometric imaging (Fig. 3.8 E) and quantitative 

analyses (Fig. 3.8 F) demonstrated a clear reduction in the CL to sphingosine ratio inside the 

nucleus, consistent with the fact that CL is mainly localized at the inner mitochondrial membrane 

but not in the nucleus. These results show that PRM-SRS can be used to visualize the subcellular 

distribution of different lipid subtypes.  
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Figure 3.8 PRM-SRS Detection of Cardiolipin and Sphingosine in Human Brain Biopsy 
(A) Sphingosine signals in the brain tissue; (B) CL in the same region of interest; (C) merged image of CL 
and Sphingosine; (D) Zoomed-in image of a single brain cell with CL and Sphingosine signals. (E) 
Ratiometric image of CL to Sphingosine signals. (F) Intensity profile of (E) along the indicated white dashed 
line. Scale bar, 10 µm 
 

3.3 Discussion 

In this study, we developed a PRM algorithm that can efficiently unmix and distinguish a 

variety of lipid subtypes from single SRS HSI stacks. Compared with fluorescence imaging, our 

PRM-SRS platform shows advantages of multiplexed lipid subtype visualization from single label-

free HSI sets. This also represents a significant expansion in applications compared with 

traditional SRS imaging, which often relies on detecting total lipids in the CH-stretching mode at 

2850 cm-1. 

With an improved contrast, PRM-SRS imaging enables us to identify different lipid 

subtypes.  The spectra of lipid subtype standards collected from spontaneous Raman scattering 
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microscopy can be utilized in analyzing HSI data collected from SRS microscopy. Our PRM-SRS 

can generate both co-localization and ratiometric data of individual lipid subtypes simultaneously 

by mapping their spatial distributions and quantifying their relative concentrations. In this study, 

we established a Raman spectra library with 38 lipid subtype standards and demonstrated the 

simultaneous detection of a few selected lipid subtypes by PRM-SRS in cells and tissues. 

Analyses of human kidney tissue samples indicate that PRM-SRS can be used to identify different 

lipid subtypes associated with renal diseases, suggesting potential application of PRM-SRS in 

diagnosis and prognosis of these diseases, including those associated with dyslipidemia. Such 

label-free methods may be instrumental in early detection of kidney diseases by detecting and 

measuring relative levels of different lipid biomarkers without the need to stain biopsied samples 

or perform destructive imaging, especially on limited clinical samples. Analyses of Drosophila fat 

body samples show that PRM-SRS can be used effectively in mapping spatial distributions of lipid 

subtypes at the subcellular scale. These results highlight the ability of PRM-SRS to selectively 

visualize multiple lipid subtypes in a single image with ease and freedom akin to individual-

subtype labeled imaging without the need to actually label them. Analyses of mouse and human 

brain tissues demonstrate the importance of measuring relative lipid concentrations through 

ratiometric imaging, which reveals regionally different concentrations of lipid subtypes that may 

not be readily apparent in single-channel images. Although lipid subtypes are not measured in 

absolute concentrations, their relative levels are consistent with results from other modalities such 

as mass spectrometry (MS).  

The brain is a lipid-rich organ. Lipid subtypes such as cholesterol and sphingolipids are 

important components of the brain. Alteration in lipid subcellular distribution and metabolism 

impact on brain cell function have been associated with neurological diseases. Our analyses of 

mouse and human brain tissues illustrate the capability of PRM-SRS in quantitatively mapping 

and analyzing distribution of different lipid subtypes within single cells. These analyses confirm 

the cross-applicability of the fingerprint and CH-stretching spectral regions for quantitative 
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analyses. Further, our PRM-SRS imaging shows that sphingosine, a catabolic product of 

sphingomyelin, has a predominantly nuclear localization. Nuclear sphingomyelinase and 

sphingosine kinases regulate the release of ceramides and sphingosine, as well as the conversion 

of sphingosine to sphingosine-1-phosphate. These processes regulate cell proliferation and cell 

death [130]. Sphingosine kinases may shift from a cytosolic to a nuclear localization in brain 

samples from Alzheimer’s disease patients [131]. Development of new technologies in imaging 

distinct lipid subtypes and their metabolism will enhance our ability to investigate molecular 

mechanisms underlying different brain disorders.  

PRM-SRS has sufficient capability to provide quantitative information on lipid subtype 

distribution. Theoretically, the similarity scores and concentrations of dominant molecules have a 

linear relationship in a certain dynamic concentration range. However, spectral shifts caused by 

multiple interfering factors (such as changes chemical environment or instrumentation) may 

distort the relationship between the similarity scores and concentrations. Since the spectral shifts 

can be caused by multiple factors, it is difficult to define an exact function of a spectral shift. 

Nevertheless, such spectral shifts can be corrected by using the penalized regression analysis. 

In brief, the penalty term helps us calculate the similarity score to more precisely describe the 

linear relationship with concentration. Depending on the equipment used and the samples of 

interest, careful tuning of the penalty term in the PRM algorithm is necessary. At present, the 

PRM-SRS platform should be used in well controlled experiments to limit external chemometric 

dimensions. In this way, spectral signals are more likely from molecular subtypes in the samples, 

rather than from noises. Since Raman peak intensities are multiplexed in the sense that a specific 

peak shape may be influenced by multiple molecules, it is critical that molecular makeup is as 

consistent as possible when using PRM-SRS to estimate relative concentrations of different 

molecular subtypes. In the current PRM platform, users should determine the optimal penalty 

coefficient experimentally to avoid artificial increases or decreases of similarity scores. An 

extremely low penalty coefficient would allow the comparison between reference spectra and pixel 
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spectra to occur at any offset, which may inflate the overall similarity score. For example, 

ceramide has a notably high peak at 2880 cm-1, while pixel spectra typically have the most 

prominent peak at the 2935 cm-1 area. Allowing spectral offsets without penalty may result in a 

high similarity score because the ceramide reference could yield a high similarity score with the 

pixels with a sharp 2935 cm-1 peak.  On the other hand, an extremely high penalty coefficient 

would be akin to not allowing spectral offsets during comparison at all, which would be similar to 

traditional reference matching. This is disadvantageous because spectra acquired with different 

equipment may not be exactly calibrated on the same x axis, which could artificially decrease the 

similarity scores. While these cases do not occur often, the greatest similarity score does occur 

at very small offsets. Fig. 3.2 shows PRM-SRS images with different penalty coefficients. 

Although the PRM-SRS pipeline can be further enhanced by including more comprehensive 

reference standards and further increasing analysis speed, this platform is robust for analyzing 

different lipid subtypes. Reference matching could also be a useful tool to detect the presence of 

representative mixtures of compounds, not simply individual molecules.  

The main advantages of PRM-SRS include multiplexed molecular subtype visualization, 

positive values and fast speed of similarity score calculation. Similarity scores are always positive 

values since Raman intensities cannot be negative. On the other hand, pseudo-inverse matrix 

(PINV) coefficients can be negative, which will make it difficult to normalize the output. Our 

similarity score calculation is faster than other methods, such as the pseudo-inverse matrix (Fig. 

1.9). PRM and PINV show similar results in correlation with relative concentrations. However, 

PINV-based calculation time increases exponentially with the number of spectra in the original 

matrix and image size. When analyzing 1024x1024 hyperspectral images using PINV, there are 

millions of spectra in a single experiment. On the other hand, similarity score calculation using 

PRM-SRS is based on the inner-product, which is easily vectorized and split in a parallel pool. 

The calculation time difference between PRM and PINV is shown in Figure 1.9. Considering the 

number of spectra in a single HSI stack, the calculation speed is an important factor as a practical 



100 

 

analysis tool for image analysis. Although the PRM-SRS result cannot provide absolute 

concentrations as precisely calibrated linear unmixing methods, this approach clearly shows 

advantages over other methods. 

PRM-SRS can also be used together with other chemometric methods, such as GC-MS 

for cross validation, as the incidence of false positive may still be high. Finally, detection of the 

vast variety of lipid subtypes may require further improvement in unmixing methods and spectral 

resolution, as the lipid subtype reference library is expanded, and more lipid subtypes are further 

evaluated. With some adjustments, such as using different reference libraries, this PRM-SRS 

platform can be extended to analyzing other molecules, including proteins, nucleic acids, and 

even clinically relevant molecular complexes (such as protein aggregates or oligomers).Using 

heavy water (D2O) probed SRS (DO-SRS), metabolic imaging can also distinguish de novo newly 

synthesized biomolecules, including lipids, proteins, and DNA [17, 129, 132], from old existing 

biomolecules in cells and tissues at the subcellular resolution. This ever-expanding library of 

molecular subtype references may warrant broader spectral regions, including the fingerprint, CH-

stretching, and O-H stretching regions to increase the chemometric dimensions. Integration of 

statistical denoising and regression methods will help increase the power of molecular subtype 

matching. Application of higher order signal manipulations such as digital derivatives and wavelet 

analyses, will enhance the ability to extract the most prominent as well as subtle but important 

features. 

In summary, this study presents a new hyperspectral imaging platform - PRM-SRS - that 

allows for direct identification of multiple molecular species in situ with subcellular resolution and 

high chemical specificity by leveraging the cross-applicability of spectral reference libraries and 

HSI methods. This PRM-based method can be applied to various microscopy setups, such as 

SRS, FTIR, and spontaneous Raman scattering spectroscopy. Compared with existing HSI 

methods, PRM-SRS shows a much-enhanced speed and efficiency. With appropriate reference 

spectra established, PRM-SRS can be used to detect a wide range of different biomolecules. This 
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new platform can also be applied to studying metabolism of diverse types of biomolecules in cell 

and tissue samples, which will be highly useful for investigating metabolic changes under different 

pathophysiological conditions. With its easy implementation, PRM-SRS can be combined with 

high-throughput methods, such as microfluidic/nanofluidic devices and single-cell apparatuses, 

or with large-area HSI mapping methods. The application of deep learning algorithms, such as 

DeepChem, may further improve the imaging speed in femtosecond SRS imaging [109]. PRM-

SRS could benefit from additional instrumentation improvements, such as distortion-free polygon 

scanning and spectral focusing, as well as from machine learning to enhance the SNR [133]. 

Finally, PRM could easily augment other unmixing methods, including MCR-ALS by providing fast 

initial component spectra. Thus, PRM-SRS has great potentials in multiplex cell and tissue 

imaging with a broad spectrum of applications. 

3.4 Materials and Methods 

 

3.4.1 HEK293 Cell Cultures 
 

The parental HEK293 cell line was obtained from the American Type Culture Collection 

(ATCC). Cells were cultured in DMEM supplemented with 5% fetal bovine serum (FBS), 1% 

penicillin/streptomycin (Fisher Scientific, Waltham, MA).  

The control shRNA construct was as previously described [134]. A shPGS1 construct was 

designed PGS1 by expressing shRNA against PGS1 (target sequence: 5’-

TCGGGTTCCATCCGTTTAAAT-3’) in the plasmid vector Tet-pLKO-puro (Vector Builder Inc.) to 

specifically down-regulate expression of PGS1. The control and shPGS1 constructs were 

transfected into HEK293 cells using lipofectamine (Invitrogen). Following transfection, cells were 

selected using puromycin (1ug/ml) and stably expressing cell clones were obtained. Control and 

shPGS1 cells were passaged at 80% confluence and plated on #1 thickness laminin coated 

coverglasses (GG12-laminin, VWR). After allowing cells to adhere to the coverglasses for 2 hours, 
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cells were fixed using 4% v/v PFA for 15 min and stained with 100 nM NAO in the dark for 30 min. 

Cells were SRS imaged transmissively through coverglasses. 

Immunofluorescence staining was performed following using a polyclonal rabbit anti-

PGS1(Sigma-Aldrich, Cat# AV48896) and secondary antibody conjugated with Alexa-488 

(Abcam, Cat# ab150081). 

 

3.4.2 Human Kidney Tissue Preparation 

De-identified human kidney tissue sections (30μm) were prepared from 4% v/v PFA-fixed 

frozen biopsy samples using a Compresstome (VF-210-0Z, Precisionary). The kidney cortex was 

isolated for imaging. Samples were imaged between 1mm thick glass slide and #1 thickness 

coverglass, submerged in 1x PBS.  

3.4.3 Human Brain Tissue Preparation 

De-identified post-mortem autopsy human brain sections (6 μm ) were prepared from formalin-

fixed and paraffin-embedded cortex tissue of control subject without detectable neuropathology 

as previously published [135, 136]. The sections were deparaffinized following a published 

protocol [111]. Subsequent SRS imaging was conducted with the tissue sections sandwiched in 

PBS between 1mm thick glass slides and #1 thickness cover glass. 

 

3.4.4 Mouse Brain Tissue Preparation 

Young (3 months) and aged (18 months) mice were euthanized with 5% isoflurane, and 

then perfused with 4% paraformaldehyde. The brains were harvested and fixed in 4% 

paraformaldehyde at 4°C for overnight. The fixed brains were washed with PBS and cut into 120-

μm thickness slices with Vibratomes (Precisionary). The brain slices were placed in the center of 

a spacer and sandwiched between glass slides and coverslip for hyperspectral SRS imaging.  
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3.4.5 Drosophila Fat body Samples 

Wild type (w1118 stock #5905) were originally obtained from the Bloomington Stock Center 

and have been maintained in the lab for several generations. Fat bodies were dissected from 

day 7 adult flies and fixed in 4% PFA (in 1xPBS) for 15 min. Samples were imaged immediately 

using SRS microscopy for hyperspectral imaging. 

3.4.6 Spontaneous Raman Spectroscopy 

Spontaneous Raman scattering spectra were obtained by a confocal Raman microscope 

(XploRA PLUS, Horiba) equipped with a 532 nm diode laser source and 1800 lines/mm grating. 

The acquisition time is 30 s with an accumulation of 4. The excitation power was ~40 mW after 

passing through a 100x objective (MPLN100X, Olympus). Output spectra were background 

subtracted and vector and simplex normalized. The pure lipid reference standards were placed 

on glass slides for spontaneous Raman spectra measurement.  All lipid subtype reference spectra 

were acquired in the same manner. 

3.4.7 Stimulated Raman Scattering Microscopy 

An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water objective 

(XLPLN, WMP2, 1.05 NA, Olympus) was applied for near-IR throughput. Synchronized pulsed 

pump beam (tunable 720–990 nm wavelength, 5–6 ps pulse width, and 80 MHz repetition rate) 

and Stokes (wavelength at 1032 nm, 6 ps pulse width, and 80 MHz repetition rate) were supplied 

by a picoEmerald system (Applied Physics & Electronics) and coupled into the microscope. The 

pump and Stokes beams were collected in transmission by a high NA oil condenser (1.4 NA). A 

high O.D. shortpass filter (950 nm, Thorlabs) was used that would completely block the Stokes 

beam and transmit the pump beam only onto a Si photodiode for detecting the stimulated Raman 

loss signal. The output current from the photodiode was terminated, filtered, and demodulated in 

X with a zero phase shift by a lock-in amplifier (HF2LI, Zurich Instruments) at 20 MHz. The 

demodulated signal was fed into the FV3000 software module FV-OSR (Olympus) to form the 
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image during laser scanning. All SRS images were obtained with a pixel dwell time 40 µs and a 

time constant of 30 µs. A stack of 512 pixel x512 pixel x76 images in the C-H stretching region 

took approximately 15 minutes to acquire. The PRM analysis of this image-stack took less than 1 

min. Laser power incident on the sample was approximately 40mW.  Stimulated Raman histology 

was performed following published protocol [137].  

3.4.8 Gas Chromatography Mass Spectrometry (GC-MS)  

Hippocampal slices (n=4 per group) from 3 month old and 18 month old mice were 

homogenized in ethanol/water1:1 (v/v) and the homogenate were sent to Lipotype GmbH 

(Dresden, Germany) for mass spectrometry-based lipid analysis [138]. Lipids were extracted 

using a two-step chloroform/methanol procedure [139]. Samples were spiked with internal lipid 

standard mixture containing: cardiolipin 14:0/14:0/14:0/14:0 (CL), ceramide 18:1;2/17:0 (Cer), 

diacylglycerol 17:0/17:0 (DAG), hexosylceramide18:1;2/12:0 (HexCer), lyso-phosphatidate 17:0 

(LPA), lyso-phosphatidylcholine 12:0 (LPC), lyso-phosphatidylethanolamine 17:1 (LPE), lyso-

phosphatidylglycerol 17:1(LPG), lyso-phosphatidylinositol 17:1 (LPI), lyso-phosphatidylserine 

17:1 (LPS), phosphatidate 17:0/17:0 (PA), phosphatidylcholine 17:0/17:0 

(PC),phosphatidylethanolamine 17:0/17:0 (PE), phosphatidylglycerol 17:0/17:0 

(PG),phosphatidylinositol 16:0/16:0 (PI), phosphatidylserine 17:0/17:0 (PS), cholesterolester 20:0 

(CE), sphingomyelin 18:1;2/12:0;0 (SM), triacylglycerol 17:0/17:0/17:0 (TAG) and cholesterol D6 

(Chol). After extraction, the organic phase was transferred to an infusion plate and dried in a 

speed vacuum concentrator. First step dry extract was re-suspended in 7.5 mM ammonium 

acetate in chloroform/methanol/propanol (1:2:4, V:V:V) and 2nd step dry extract in 33% ethanol 

solution of methylamine in chloroform/methanol (0.003:5:1; V:V:V). All liquid handling steps were 

performed using Hamilton Robotics STARlet robotic platform with the Anti Droplet Control feature 

for organic solvents pipetting. 
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Samples were analyzed by direct infusion on a QExactive mass spectrometer 

(ThermoScientific) equipped with a TriVersa NanoMate ion source (Advion Biosciences). 

Samples were analyzed in both positive and negative ion modes with a resolution of 

Rm/z=200=280000 for MS and Rm/z=200=17500 for MSMS experiments, in a single acquisition. 

MSMS was triggered by an inclusion list encompassing corresponding MS mass ranges scanned 

in 1 Da increments [140]. Both MS and MSMS data were combined to monitor CE, DAG and TAG 

ions as ammonium adducts; PC, PC O-, as acetate adducts; and CL, PA, PE, PE O-, PG, PI and 

PS as deprotonated anions. MS only was used to monitor LPA, LPE, LPE O-, LPI and LPS as 

deprotonated anions; Cer, HexCer, SM, LPC and LPC O- as acetate adducts and cholesterol as 

ammonium adduct of an acetylated derivative [141]. Data were analyzed with in-house developed 

lipid identification software based onLipidXplorer [142]. Data post-processing and normalization 

were performed using an in-house developed data management system. Only lipid identifications 

with a signal-to-noise ratio >5, and a signal intensity 5-fold higher than in corresponding blank 

samples were considered for further data analysis. 

3.4.9 Image Processing 

SRS images were converted to unsigned 16 bit images via MATLAB, and were filtered using 

a morphological top-hat algorithm with 8 structuring elements, where appropriate. Unless used in 

ratiometric calculations, images for display were background subtracted using a sliding paraboloid 

with a radius of one tenth the image length. Intensity profiles and color maps were generated from 

ImageJ. All images within a figure have the same contrast unless specified otherwise. Ratiometric 

and overlaid images were created using the Image Calculator function and Overlay function, 

respectively, in ImageJ. Statistical analyses were performed using SPSS. 

 

3.4.10 Penalized Reference Matching Algorithm Computation 

 Computation was conducted as described in the main text using MATLAB R2021b using 

an 8 Core Intel i9-9880H CPU, NVIDIA Quadro RTX 4000, and 64GB of RAM. Spectra were 
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intensity normalized from 0 to 1 following baseline correction using arPLS (if background 

spectra were not available for subtraction). All spectra were interpolated at every integer 

wavenumber using the interp1 function to avoid dimension mismatch errors during inner product 

calculations. Spectra were also Euclidean normalized using the standard vecnorm or norm 

functions in MATLAB. If a spectral shift of the reference spectrum exceeded the range of the 

original analyte spectrum, it was padded with zeros on the leading side, and trimmed on the 

lagging side. For timing and efficiency calculations, no parallel workers were used to split the 

spectral dataset for processing, but more workers are possible in MATLAB if supported by the 

hardware if the dataset is exceptionally large. 
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3.5 Supplementary Material 

 

 
Figure 3.9 IF staining of PGS1 expression in shPGS1 HEK cells 
(A) Immunofluorescence staining of stable shPGS1 cells using the specific PGS1 antibody. (B) 
Quantification of immunofluorescence signal intensity in images shown in panel A. Compared to the control 
group, the PGS1 protein level was significantly reduced by shPGS1 following induction with tetracycline 
(Tet). (C) TPF (following NAO staining), SRS, and PRM-SRS images from Fig. 4 demonstrate that the 
similarity score-based PRM-SRS image for CL distribution is similar to that shown by NAO staining (TPF) 
but distinct from single Raman shift SRS images. Scale bar: 10 µm 
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Figure 3.10 HSI and Ratiometric image of Free to Esterified Cholesterol PRM-SRS images 
(A) Hyperspectral image frames of the human kidney tissue section from 2750cm-1 to 3050cm-1. (B) 
Cholesterol:cholesterol ester ratiometric image. Ratio values are based on the similarity scores from 
the PRM-SRS images. Higher similarity scores for free cholesterol occur intracellularly in tubules and 
glomerular epithelial cells that line the arteriole and capillaries of the mesangium, as well as the larger 
deposits indicated by solid arrows in Figure 5B. 
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Figure 3.11 SRH (virtual H&E) image of the human brain temporal cortex sample 
Scale bar: 10 µm. 

 

Acknowledgements 

Chapter 3, in full, is a reprint of the material as it appears in BiorXiv 2022. Anthony 

A. Fung1+,  Wenxu Zhang1+, Yajuan Li1+, Zhi Li1#, Hongje Jang1#, Honghao Zha1, Xiaoping 

Chen2,  Fangyuan Gao3, Jane Y. Wu2, Huaxin Sheng4, Junjie Yao5, Dorota Skowronska-

Krawczyk3, Sanjay Jain6 & Lingyan Shi1*. The dissertation author was the primary 

investigator and author of this paper. Additionally, we thank Drs. K. Zhang, C. Metallo, F. 

Liu, and G. Schmid-Schoenbein for helpful discussions. We are grateful for the support of 

the Washington University Kidney Translational Research Center (KTRC) for kidney 

samples and the HuBMAP grant U54HL145608. We thank Dr. E. Bigio and Dr. M-M. 

Mesulam from Mesulam Center for Cognitive Neurology and Alzheimer's Disease 

(MCCNAD) for providing the de-identified autopsy brain samples; and MCCNAD is 

supported by NIH P30 AG013854. 

 



110 

 

Chapter 4: Tissue-Level Analysis of Diabetic Kidney 
Disease 

4.1 Introduction 

Metabolic disorders such as diabetes can affect kidney redox balance, lipid regulation, 

and collagen homeostasis.  With over 40% of diabetic patients developing diabetic kidney disease 

(DKD), the leading cause of chronic kidney disease (CKD) [143], diabetes is one of the most 

significant risk factors in kidney-related mortality. Independent reports of both glomerular [144] 

and tubulointerstitial [143, 145] changes in DKD include hyalinosis of capillaries and arterioles, 

collagen accumulation, glomerular basement membrane (GBM) thickening, glomerular 

mesangium volume fraction (Vv(Mes/Glom)) increases, and ectopic lipid accumulation. In 

practice, however, there are two major limitations to the conventional staining methods. First, 

multiplexing capabilities are limited by the chroma of the stain or absorption/emission wavelengths 

of the fluorescent probe. Several washes in alcohols and various acids or alcohols [146, 147] may 

be required to re-color the sample with a different stain, altering the native lipid distribution [148], 

and affect future fluorescent staining. To circumvent this, adjacent sections are used,but may not 

necessarily exhibit the same morphologies and require larger biopsies from the patient. Second, 

the power of morphological analysis is greater with 3D imaging. Both limitations may require 

excessive tissue availability to increase the power of the analyses, imposing additional risk to the 

patient. To address these issues, a label-free imaging platform using a single microscopy setup 

(Fig. 4.1A) was developed to capture spatial biomolecular aspects of DKD in 2D and 3D (Fig. 

4.1B). With this platform, multiple views of the same sample are achieved (Fig. 4.1C), and can 

be extended to 3D samples without the need to co-register and stitch serial sections. Using this 

platform, morphological and biochemical differences in DKD tissues were identified, such as 

collagen anisotropy, collagen fiber thickness, mesangial proliferation, lipid subtype accumulation, 

and diminished optical redox ratio and lipid saturation scores. 
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Figure 4.1 Label-free multimodal imaging platform analyzes human kidney biopsy 
(A) a single microscope and laser system with back-scattered fluorescence and SHG photodiode, and 
transmissive SRS photodiode. (B) Example outputs from the platform including 2D and 3D SRS, SHG, and 
TPF. (C) SRH of pseudo-colored H&E stain. (D) SRH of pseudo-colored PAS stain. (E) Overlaid Collagen 
type 1-3 SHG and ORR. (F) Lipid saturation SRS ratio. Scale bar 200 microns. 
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Morphological differences in DKD include inflamed Vv(Mes/Glom) - the ratio of the 

capillary mesangium to the entirety of the glomerulus, including the Bowman’s space – and thicker 

collagen fibers. Studies show that CKD tissues exhibit a larger Vv(Mes/Glom), as the mesangial 

cell matrix expands [149–151]. This phenomenon has also been linked to high density cholesterol 

dyslipidemia [152–154]. However, this volume ratio is often measured from cross sections of 

tissue using pixel density, point sample intercept (PSI), or lineal analysis [155–158]. In a biopsy, 

however, glomerular units are often found in different focal planes, which may complicate 

diagnoses by reducing the statistical power of the analysis. Studies show that with sufficient 

sampling, variations within a patient sample become negligible [159], but presently there is no 

study comparing various 2D glomerular volume fraction estimation methods with 3D imaging 

results [160]. Briefly, the PSI method, also referred to as the Cavalieri method, reports a smaller 

volume than most other estimation methods, including 3D methods based on serial section 

reconstruction [160, 161]. This method relies on random sampling, encompassing both medial 

glomerular slices with a high mesangial volume fraction, and polar slices with a low mesangial 

volume fraction. Interestingly, mesangial expansion is relatively slow to develop and is typically 

more considered for advanced CKD, rather than DKD, although it has been frequently reported 

[144, 162]. Could this be due to the large variance in  Vv(Mes/Glom) measurements? More 

recently, it was found that 2-plane sections, 20 microns apart, are sufficient to estimate mean 

glomerular volume [163]. In the context of mesangial matrix volume fraction, however, there is an 

intuitive chance that the physical slicing could distort these structures or fail to capture 

representative sections of glomeruli, thus increasing the reliance on more random sampling to 

account for this variance. This is less problematic for larger cross sections, but there is also the 

added step of ensuring the slices are co-localized during analysis. In figure 1 below, a stimulated 

Raman scattering (SRS) microscopy image of the CH3 stretching region (2935cm-1) shows a 

human kidney biopsy with glomeruli in various focal planes (Fig. 4.2A). The glomerulus in the 

middle represents an ideal case, with the maximum cross-sectional area and arteriole present. In 
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the upper left and right sides of Fig. 4.2A, polar slices of glomeruli can be seen, which have starkly 

contrasted mesangium-to-glomerulus area ratios. Serial slices on the order of 10 microns can 

cause significant differences in this area fraction as shown in Fig. 4.2B. Therefore, a focus on a 

more inclusive field of view is critical to fully utilize precious biopsy samples.  

 

Figure 4.2 2D human kidney biopsy highlights variance of mesangial fraction 
(A) glomeruli in various focus planes. White dashed box shows a glomerulus that was perhaps sliced distal 
to the arteriole, indicated by the white dashed line on the glomeruli sliced near the center. Yellow dashed 
box shows glomerulus that was perhaps sliced proximally to the arterioles, indicated by the yellow dashed 
line. (B) focus planes of a single glomerulus only 15microns apart from each other show significant 
differences in the area fraction of the mesangium (highlighted in green) in the glomerulus (highlighted in 
red). Scale bar 200um. 

Biomolecular differences include lipid dysregulation, proteinuria, or altered NAD[P]H and 

flavin levels. These features are not entirely disjoint from the morphological differences. 

Fibrogenesis is heavily influenced by endothelial cell function, particularly in peritubular 
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microvessels [164]. In mice, the mitochondrial deacetylase, Sirtuin 3 (SIRT3), is not only a tight 

regulator of glucose and lipid metabolism, but a key metabolic programmer of renal fibrosis as 

well [165]. Kidney tissue has a relatively low level of fatty acid synthase so much of the lipid 

metabolism is undertaken by the incorporation of exogenous lipids and the mitochondrial-

mediated breakdown of fatty acids. Dyslipidemia is frequently observed in nephrotic syndromes 

and kidney diseases and often presents as elevated levels of LDL cholesterol and decreased 

levels of HDL cholesterol in sera [166]. Oxidative stress has been associated with both fibrosis 

and lipid peroxidation. Previous studies have used the normalized optical redox ratio (ORR) as 

an indicator of oxidative stress, and can be measured using the label-free autofluorescence of 

NAD[P]H (390nm/460nm) and flavins (430nm/525nm) [167]. 

4.2 Results 

4.2.1 Morphological Features of DKD 

One of the most widely used morphological analysis methods involves histopathological 

staining and inspection with inverted light microscopy. To test the stainless staining capabilities 

of SRH, two Raman shifts were used, CH2 stretching (2850 cm-1) and CH3 stretching (2935 cm-

1). These vibrational modes are broadly correlated with lipid and protein biomolecules, 

respectively. Custom lookup tables (LUTs) were applied to these channels and blended in 

MATLAB to reveal subcellular morphologies such as the nucleoli within the epithelial cells of 

tubules in a similar fashion to H&E histology. (Fig. 4.3A-B). This method was extended to 3D 

volumetric scanning of glomeruli (Fig. 4.3C-D) to analyze the structure of these functional tissue 

units. While some studies have delved into the capillary network of glomeruli using scanning 

electron microscopy (SEM) [168], most reports examine these structures in 2D using light 

microscopy (LM) and PSI analysis, which has been shown to underestimate mesangial volume 

by as much as 30 percent, relative to 3D reconstruction methods [161]. Still, these 3D methods 

require separate imaging of serial slices of tissue. Since SRS and two-photon fluorescence 
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microscopies are highly localized multiphoton processes, a 200 micron thick sample can acquire 

glomerular images at many focus planes, like the one shown in Fig. 4.3E by simply adjusting the 

height of the objective lens. Figure 4.3F shows how nuclei of glomeruli and tubules can be 

segmented in 3D images so they can be counted. This would help establish the correlation 

between cell proliferation in the mesangium and disease states such as DKD, but further 

segmentation of cell types within the glomerulus may be required.  
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Figure 4.3 SRH and 3D analysis of glomeruli 
(A) large human kidney ROI and small subcellular resolution (B) in which nucleoli are visible. (C) Confocal 
scanning in the Z-direction can produce 3D pseudo-colored SRH images. (D) Orthogonal projections of (C). 
(E) SRS and TPF images of lipids, protein, and nuclei juxtaposed to the same image slice of the 3D stack 
shows that multiple visualization schema are possible. (F) Glomerular volumes can be segmented to inform 
the number of nuclei within the glomerulus and in the surrounding tubule cortex. Scale bar 200um. (G) a 
schematic depicting the process of obtaining confocal image planes of glomeruli with at least a hemisphere 
within the imaging volume. Image planes between the maximum cross-sectional area and the vanishing 
point are retained. (H) Example of a few image planes of a glomerulus with the mesangium (cyan) and total 
glomerulus (Bowman’s capsule) (magenta) overlaid on the CH3 stretching images. (I) The image planes 
are used to reconstruct volumes in ImageJ and MeshMixer. (J) Summary of glomerular volume ratio 
[Vv(Mes/Glom)] between control samples and DKD samples shows that mean DKD glomeruli have 
significantly higher mesangial volume fractions compared to control specimens (n=4 for each group). Error 
bars represent one standard deviation of the mean. **P < 0.01. 

Glomeruli are relatively spherical tissue structures with a diameter of roughly 200 microns 

[169].Taking a 200 micron thick 3D image of a cortex sample could yield whole glomeruli, but 
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more likely will encompass several hemispheres, or at least as many medial cross sections as a 

2D laminar slice with all glomeruli at exactly the same focus plane. In this thick sample, glomeruli 

were segmented from the image stack between the slice with the largest glomerular cross section, 

and the slice where the glomerulus is no longer visible (Fig. 3G-H). These slices were interpolated 

to a volume using ImageJ and MeshMixer (Fig. 3H). Only glomeruli with at least one hemisphere 

in the kidney biopsy volume, or with a distance of at least 100 microns between the largest and 

smallest cross sectional area, were retained. Results confirmed that DKD specimen glomeruli 

have a significantly greater mesangial volume fraction than control specimens (Fig. 3I-J). 

However, these volume fractions were greater than previously reported results that used fine and 

coarse point counting such as the Cavalieri method [157, 158]. The same samples were also 

analyzed using a single plane, mimicking traditional methods, and each glomerulus’ maximal 

cross section within the volumes. Table 1 below summarizes the comparison between these three 

methods.  

Table 4.1 Comparison of various Vv(Mes/Glom) measurement methods. 
2D single plane measurements were calculated using the ratio of pixels in the mesangium to the entire 
glomerulus in a single plane view, similar to traditional methods. 2D max individual measurements were 
taken from a 3D image of each glomerulus, selecting for the plane with the largest cross-sectional area, 
and using this to calculate the ratio of pixels. 3D hemisphere measurements were taken from 3D images 
of glomeruli with either a defined polar and local maximum cross-section, or those with at least 100 microns 
contained within the 3D image volume. 

 

Interestingly, the DKD samples exhibited a smaller variance between glomeruli in the 2D 

methods. This observation was in tandem with a lower incidence of polar cross sections showing 

a very small Vv(Mes/Glom). The lowest variance in measurements came from the 3D 

hemispherical method, which discarded several glomeruli based on the criteria previously 

described. Although volume measurements are more sensitive to small changes in radii than area 

Control DKD Control DKD Control DKD

Mean Vv(Mes/Glom) 0.5482 0.5833 0.6344 0.7344 0.6167 0.6987

Standard Deviation 0.2138 0.2005 0.1783 0.0762 0.0450 0.0756

Standard Error 0.1073 0.0102 0.0844 0.0117 0.0016 0.0523

2D Single Plane 2D Max Individual 3D Hemispheres



118 

 

measurements due to their cubed dimension, if only hemispheres are collected and analyzed, the 

variance within the population is mitigated, while the variance across populations, such as control 

and DKD, is widened. 

To rapidly identify glomeruli for analysis, unsupervised clustering may also be applied to 

hyperspectral SRS images in the CH stretching region, using SHG of collagen as a mask. The 

unique tubulointerstitial network of type I-III collagen in kidneys provides an excellent natural 

segmentation mask with minimal manual annotation that can be used to watershed these 

structures and intersect them with the SRS image to isolate the tissue pixels from the background 

pixels (Fig. 4.4A-C). This is because tissue samples may have varying proportions of background 

area in the image sets that may artifactually influence the chemometric data of those pixels. Each 

colored area in Fig. 4.4C is a datum that can be classified using k-means initialized with 3 clusters. 

These clusters were segmented and overlaid, along with the collagen SHG, in Fig. 4.4D. The 

spectral profiles of the unprocessed image stack and their corresponding second derivative 

barcodes (Fig. 4.4E-F) show the CH-stretching region of the pixels corresponding to each of the 

segmented images in Fig. 4D. This reiterates how little sample preparation and signal processing 

is required for such a hyperspectral image. A large DKD kidney sample that was processed in 

this manner (Fig. 4.4G) illustrates some broad morphological differences such as a denser 

tubulointerstital collagen network (green), tubules (red) with less space in their centers, and 

glomeruli (cyan) with a seemingly higher mesangial area fraction. While the spectral resolution is 

not sensitive enough to separate tubules, arterioles, collecting ducts, and other structures 

perfectly, unsupervised clustering of SRS HSI shows competitive utility compared with neural 

network models used for the same purpose with histological stains, such as Indica Labs software. 
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Figure 4.4 SRS hyperspectral imaging clusters glomeruli 
(A) collagen SHG, used as a segmentation mask, to separate glomeruli/tubules with a watershed 
segmentation shown in (B). (C) The resulting mask in (B) is intersected with the maximum intensity 
projection of the SRS € to remove background pixels and is then loaded into MATLAB. (D) Overlaid and 
separated pseudo-colored morphologies base on K-means clustering initialized with 4 clusters, with the 
pixels covered by collagen SHG (A) included as wel€(E) A plot of the mean and standard deviation of the 
pixel spectra from each labeled cluster. (F) A second derivative barcode improves the visualization of the 
wavenumbers of intere€in (E). (G) Diabetic Kidney sample analyzed with the same method reveals a much 
denser collagen intertubular network and inflamed tubule epithelial cells. Scale Bar 600um 

Renal fibrosis is another morphological hallmark of renal failure and kidney diseases and 

has been studied using fluorescent probes for both collagen and collagen binding protein [170]. 

However, spatial analysis of tissue is often described by area covered by collagen fluorescence 

and manually-measured fiber thicknesses using correlative SHG and TEM [11]. Collagen fibrosis 

has other dimensions such as orientation and relative density. Anisotropy analysis of SHG images 

has been used to quantify collagen fiber orientation and recruitment to assess alterations in ocular 

microstructure [171],. Types 1-3 collagen fiber angles can be quantifiably visualized using polar 

vectors and label-free SHG imaging using the same stokes beam (1031nm) used in 

aforementioned SRS imaging. From this analysis alone, distinct regions of highly oriented fibers 

and tubule interstitium are highlighted (Fig. 4.5A-B). These regions, separated by a large vessel, 
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correspond to the cortex and medulla of the kidney, from left to right. For tissues with complex 

collagen structures like the kidney, binning the image into smaller areas can capture more 

structural information (Fig. 4.5C). Furthermore, regions without fibrillar collagen can be masked 

out using thresholded intensity images or anisotropy itself to avoid including background pixels in 

the Fourier analysis (Fig. 4.5D). Whole-slide collagen SHG images were transformed into 

distance maps with pixel intensity corresponding to distance to background. Even at this high 

level, DN samples are nearly 25 percent thicker than the control samples, with higher SHG 

intensity as well. By applying anisotropy analysis to fiber thickness measurements of a large 

tissue sample dataset, it is feasible to address the complexity of the collagen network by acquiring 

region-specific fiber thickness measurements. This may distinguish between fibrosis near 

glomeruli, in the tubulointerstitial matrix, or of medullary rays, each of which have distinct local 

anisotropy. Future studies will likely marry anisotropy analysis and machine learning algorithms 

to segment structural aberrations and aid in fibrosis diagnoses. 
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Figure 4.5 Collagen SHG anisotropy and diameter analysis 
(A) SHG image of collagen in a 50 micron-thick human kidney sample using a 1031nm stokes laser. (B) 
Fourier-based analysis of collagen fiber orientation represented as polar vector plots (plot separation: 80um 
x 80um). Plot shapes reveal preferential directions of fibers, whereas colors reflect anisotropy scaling 
(warmer colours = higher anisotropy) (C) Bin sizes can be varied to capture polar vector representations of 
different portions of tissue. (D) Anisotropy can be thresholded using either the collagen signal intensity 
(depicted) or polar vector length to eliminate unwanted signal. (E) Collagen fiber thickness can be measured 
either manually via intensity profile (i-ii), or the image as a whole by selecting the local maxima of a distance 
map (iii). DN samples had a mean collagen fiber thickness 24.4% greater than the control samples (iv). 
Scale bar 500um. 
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4.2.2 Biomolecular Features of DKD 

As the link between structural and metabolic alterations in DKD becomes clearer, the next 

goal is to determine whether label-free imaging is capable of visualizing altered lipidomic profiles 

in the kidney tissues that expressed such drastic structural differences.   

 

Figure 4.6 Label-free Lipid subtype visualization in situ using PRM-SRS 
(A) A depiction illustrates common DKD nephropathies in relation to a hypothesized link with high free 
cholesterol and low serum HDL caused by lack of HDL enrichment. (B-C) SRS images of human kidney at 
the CH2 stretching peak (Left) and PRM-SRS images of reference-matched lipid subtypes of interest 
showing the spatial distribution of similarity scores at the same contrast level. (D) HSI profile (Left) shows 
the Raman Spectra for all pixels in the HSI, with a red dashed line to indicate the 2850cm-1 image above. 
Spectra of the top 10% of similarity score pixels overlaid on the reference spectrum for each lipid subtype 
show confer PRM-SRS images. (E) Ratiometric image of cholesterol and esterified cholesterol similarity 
scores show highest levels in eosinophilic bodies and within tubule endothelial cells, and not glomerular 
capillaries and podocytes. DKD tissues show higher relative free cholesterol in the tubulointerstital region, 
and lower relative free cholesterol in the glomeruli. This may be due to hyaline or albuminuric material in 
the glomerulus of DKD, leading to poorer reference matching of lipid subtypes in that region. Scale bar, 200 
µm. 



124 

 

The differences in lipid subtype levels in DKD may also affect the lipid metabolism within 

the tissue. In addition to multi-modal imaging capabilities (Fig. 4.7A), metabolic indicators become 

clearer when certain images are analyzed with respect to each other in the form of ratios. Two 

metabolic indicators that have been associated with lipid peroxidation are the normalized optical 

redox ratio and the lipid saturation score indicator [167]. Both indicators are lower in DKD tissues 

(Fig. 4.7 B-E). A lower normalized ORR may indicate less oxidation of fatty acids. A lower lipid 

saturation score may indicate higher levels of saturated fats relative to unsaturated fats, which 

can be typical of poorer diet and impaired HDL maturation. 
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Figure 4.7 Oxidative stress and lipid saturation 
(A) Glomerular subregion images using SRS and TPF imaging (B) Normalized Optical Redox Ratio as a 
measure of oxidative stress and metabolism in healthy and diabetic kidneys. (C) Quantitative image 
analysis of multiple ROI’s. (D) Lipid saturation ratiometric images of healthy and diabetic kidneys. (E) 
Quantitative image analysis of multiple ROI’s. Scale bar, 150 µm. 

In certain tissues such as the heart, liver, and kidneys, a lower redox ratio has been found 

to correlate with disease states such as diabetes. This could be counter-intuitive because a 

greater pool of NAD[P]H reductive potential may warrant less oxidative stress, yet the opposite is 

observed. In diabetes, the reduced forms of pyridine nucleotides such as NADH and NADPH 

were elevated [172]. This could be due to a shift toward anaerobic pathways and away from 

oxidative phosphorylation. Furthermore, in studies that examined oxidative stress and renal 
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fibrosis, it was found that NOX activity was elevated in fibrotic cases [173]. Together, these studies 

suggest that greater levels of NAD[P]H contribute to oxidative stress and renal fibrosis.  

Likewise, a decrease in flavins such as riboflavins, flavin mononucleotide (FMN), flavin 

monooxygenase (FMO), and flavin adenine dinucleotide (FAD), could also account for a lower 

ORR. In diabetic retinopathy, for example, a flavin deficiency hampers the production of 

glutathione, a primary antioxidant defense [174]. . In DN, which is known to undergo oxidative 

stress, it is therefore unsurprising that the tissue exhibits a lower optical redox ratio. 

4.3 Discussion 

 To our knowledge, at the time of writing this study is the first label-free multi-modal imaging 

analysis of structural and molecular biomarkers in diabetic kidney disease, using a single 

microscopy platform. It highlights the potential to uncover a multiplexed data to improve patient 

outcomes by conserving tissue samples, and to inspire new research into the connection between 

dyslipidemia and kidney disease.  

Structurally, we demonstrated 3D digital histology and segmentation of nuclei in distinct 

structures, as well as verified mesangial matrix expansion in DKD glomerulopathy using 3D 

confocal SRS imaging. This platform better preserves the native orientation of the tissues by 

avoiding excessive physical slicing and allows for more representative volumetric data of the 

mesangium volume fraction. Furthermore, hyalinosis and inflammation of the tubulointerstitial 

matrix and collagen fibrosis were confirmed without any labels or dyes. Anisotropy bin sizing and 

thresholding may also be a useful tool to dissect region-specific collagen metrics to examine 

fibrosis in DN in greater detail. 

Biochemically, DKD tissues appear to have different relative lipid subtype levels. DKD 

samples have more intense PRM-SRS images for some of the most relevant lipid subtypes, 

indicating that their pixels have a more “lipid-like” hyperspectral profile. Furthermore, DKD 
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samples appear to have a slightly higher degree of cholesterol esterification in the tubulointerstitial 

matrix than in the glomeruli, though this result should be cross-validated using other methods. 

The glomerulus also had a more intense CH3-symmetric stretching signal, which may indicate 

albuminuria. Finally, the normalized optical redox ratio and lipid saturation score suggest DKD 

kidneys have dysregulated lipid metabolism, with less oxidation of lipids and a higher degree of 

lipid saturation and oxidative stress in the DKD samples. 

Future studies may iterate on these first demonstrations. For example, 3D digital histology 

may benefit from further segmentation of cell types, not just nuclei in certain regions. The isolation 

of glomeruli and their mesangial matrices could also be automated using AI, such as the HALO 

Platform (Indica Labs) [175], to further improve the efficiency of these measurements. Additional 

stains can also improve diagnostic power and fully leverage the label-free hyperspectral imaging 

platform. These stains can be further improved using cycle generative adversarial networks (cycle 

GANs) to make these SRH images appear more standardized so that a database can be 

established. It should be noted that SHG of collagen only visualizes types 1-3 due to their non-

centrosymmetric structure, and thickness measurements and SHG signal intensity depend on 

fiber orientation and position relative to the focal volume. Since collagen fibrosis is tightly 

regulated by lipid metabolism and oxidative stress, future studies are necessary to determine the 

extent to which the SHG intensity and collagen anisotropy may predict other nephropathies such 

as lipid subtype differences, normalized optical redox ratio, and mesangial volume fraction.  

 

Finally, since the biomarkers examined in this study don’t require staining, the big question is 

whether the tissue needs to be excised at all. The samples examined above were of the outer 

kidney cortex. It is exciting to think about future endoscopic probes that may be able to observe 

these biomarkers using a epi-detection back-scattering configuration, thus circumventing the 

need for tissue excision, transit to pathology departments, sample preparation, and analyses.  
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4.4 Materials and Methods 

 

4.4.1 HEK293 Cell Cultures 

Human kidney samples were obtained from The Kidney Translational Research Center 

(KTRC) at the Washington University School of Medicine in St. Louis under an approved IRB 

protocol. Samples were fixed using 4% PFA () and stored in 1x PBS at -20deg C when not in use. 

Samples were sliced using a sliding microtome (HM 450, Epredia) at 200 µm and cleared using 

8M urea for 48 hours at room temperature. Samples were submerged in 1ug/mL Hoechst 33342 

(Thermofisher) for 15 minutes to stain nuclei for co-localization verification. Samples were imaged 

between 1mm thick glass slides and number 1.5 thickness cover glass (Erie Scientific).  

 

4.4.2 3D Microscopy 

An upright laser-scanning microscope (DIY multiphoton, Olympus) with a 25x water 

objective (XLPLN, WMP2, 1.05 NA, Olympus) was applied for near-IR throughput. Synchronized 

pulsed pump beam (tunable 720–990 nm wavelength, 5–6 ps pulse width, and 80 MHz repetition 

rate) and Stokes (wavelength at 1032nm, 6 ps pulse width, and 80MHz repetition rate) were 

supplied by a picoEmerald system (Applied Physics & Electronics) and coupled into the 

microscope. The pump and Stokes beams were collected in transmission by a high NA oil 

condenser (1.4 NA). A high O.D. shortpass filter (950nm, Thorlabs) was used that would 

completely block the Stokes beam and transmit the pump beam only onto a Si photodiode for 

detecting the stimulated Raman loss signal. The output current from the photodiode was 

terminated, filtered, and demodulated in X with a zero phase shift by a lock-in amplifier (HF2LI, 

Zurich Instruments) at 20MHz. The demodulated signal was fed into the FV3000 software module 

FV-OSR (Olympus) to form the image during laser scanning. All SRS images were obtained with 



129 

 

a pixel dwell time 40 µs and a time constant of 30 µs. Laser power incident on the sample is 

approximately 40mW.  

Second Harmonic Generation (SHG) was used to capture type 1-3 collagen images. The 1031nm 

stokes laser described above, with 300mW and a dwell time of 10us per pixel, was used with 5-

frame averaging. Backscattered SHG signals were filtered using 465nm filter. 

NADH and Flavin autofluorescence images were captured using the 800nm pump beam 

with 350mW and a pixel dwell time of 10us/px with 5-frame averaging. Backscattered signals 

were filtered using a dual filter cube of 465nm and 515nm. All wide-view tile-stitching and confocal 

z-scanning was controlled by the Fluoview software (Olympus). 

4.4.3 Stimulated Raman Histology 

Stimulated Raman histology was performed following section 1.3.3. For 3D 

representations, the opacity of white interstitium was achieved using a sigmoidal transfer function 

in the MATLAB VolumeViewer alphamap field.  

 

4.4.4 Collagen Anisotropy and Diameter Measurements 

Collagen fiber direction and anisotropy, along with total collagen fiber signal, was 

extracted into 80um x 80um regional bins using a bespoke MATLAB code. Details of the methods 

are published elsewhere [10]. In brief, the method applies a 2D discrete Fourier transform (DFT)–

based algorithm to the SHG images and features a novel integrated periodicity plus smooth image 

decomposition to correct DFT edge discontinuity artefacts, minimizing the loss of peripheral image 

information that limits more commonly used DFT methods. Collagen fiber thickness 

measurements were achieved by transforming whole-slide SHG images into distance maps in 

which pixel intensity values correspond to its distance to the nearest background pixel using the 

bwdist function in MATLAB. Local Maxima was recorded and multiplied by 2, since the pixel 
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distance is half the thickness. Background subtraction was done using a flatfield correction and 

top-hat filter in MATLAB with a disk morphological structuring element.   

 

4.4.5 3D Vv(Mes/Glom) 

The CH3 Raman shift (2935cm-1) was used for the 3D image analysis of glomeruli because of 

its high intensity and optimal contrast. Glomeruli were manually identified and the planes between 

their maximal cross-sectional area and vanishing point were analyzed. The thickness of the 

glomerulus is the distance between those focus planes. The radius of the glomerulus is the 

average distance from the centroid of the glomerulus to the edge of the Bowman’s capsule at the 

plane with the maximum cross-sectional area. If no maximum cross-sectional area could be 

defined (i.e. the plane with the largest area occurs at the first or last plane of the 3D image) then 

the radius is assumed to be 100 microns. Those glomeruli that showed thicknesses of less than 

90 percent of their respective radii were discarded. These may have been due to the region being 

a polar slice (less than a hemisphere), or the glomerulus not fully contained within the imaging 

volume, respectively.  

Auxiliary analysis using the maximum cross-sectional area plane for the volume fraction 

estimation was also performed. For these measurements, only glomeruli clipped at the edges of 

the image were discarded, just as with the traditional 2D method.3.4.6 Spontaneous Raman 

Spectroscopy 

4.4.6 Glomerular Segmentation 

Single plane hyperspectral SRS images of human kidney were acquired along with the 

collagen SHG images. The SRS hyperspectral image was projected to 2D using maximum 

intensity projection (MIP) for ease of viewing. The collagen SHG image was transformed into a 

mask by maximizing the contrast and closing gaps manually using the pen tool in ImageJ. The 

muscle MorphoLibJ plugin was used to generate a segmentation of the collagen mask, which was 

then intersected with the MIP image and thresholded to remove the empty spaces such as those 
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between tubules. Pixels within the segmented regions correspond to a datum, which were then 

k-means clustered initialized with 3 clusters. Segments were pseudo-colored by cluster identity 

using lookup tables for visualization. 

4.4.7 Spontaneous Raman Spectroscopy  

Spontaneous Raman scattering spectra were obtained by a confocal Raman microscope 

(XploRA PLUS, Horiba) equipped with a 532 nm diode laser source and 1800 lines/mm grating. 

The acquisition time is 20 s with an accumulation of 4. The excitation power was ~40 mW after 

passing through a 100x objective (MPLN100X, Olympus). Output spectra were background 

subtracted and vector and simplex normalized. The pure lipid reference standards were placed 

on glass slides for spontaneous Raman spectra measurement.  All lipid subtype reference spectra 

were acquired in the same manner. 

 

4.4.8 PRM-SRS Lipid Subtyping 

PRM-SRS was conducted according to previously published methods [176]. Briefly, pure 

lipid subtypes such as those shown in figure 1.13 and 1.14 were spectroscopically analyzed using 

spontaneous Raman scattering. These spectra were used as reference spectra. SRS HSI had 

each pixel scored using cosine similarity in the CH stretching region at multiple offsets. Similarity 

scores were had a corresponding penalty that varied according to the offset to account for non-

linear, lensing, or other non-standardized equipment effects. Resulting images contain pixels with 

simplex-normalized similarity scores, whose intensity corresponds to the relative similarity of that 

pixel’s spectrum to the reference spectrum. These relative intensities are interpreted as relative 

concentrations.    

Computation was conducted as described in the main text using MATLAB R2021b using 

an 8 Core Intel i9-9880H CPU, NVIDIA Quadro RTX 4000, and 64GB of RAM. Spectra were 

intensity normalized from 0 to 1 following baseline correction using arPLS (if background 

spectra were not available for subtraction). All spectra were interpolated at every integer 
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wavenumber using the interp1 function to avoid dimension mismatch errors during inner product 

calculations. Spectra were also Euclidean normalized using the standard vecnorm or norm 

functions in MATLAB. If a spectral shift of the reference spectrum exceeded the range of the 

original analyte spectrum, it was padded with zeros on the leading side, and trimmed on the 

lagging side. For timing and efficiency calculations, no parallel workers were used to split the 

spectral dataset for processing, but more workers are possible in MATLAB if supported by the 

hardware if the dataset is exceptionally large. 

 

4.4.9 Statistical Analysis 

 A total of 2 DKD samples and 3 control samples were used in this study. For lipid 

subtype, collagen anisotropy, and optical redox ratio calculations, 5 regions of interest were 

obtained from each sample. For glomerular volume fraction calculations, 5 representative 

hemispherical glomeruli were used in each group. A simple student’s t-test was used for all 

measures of significance.  
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Chapter 5: Concluding Remarks and Outlooks 

Raman scattering was introduced to the world less than a century ago, and to the 

biomedical space in the past few decades. In this fast-growing field it is important to consider the 

translation of these powerful technologies and concepts at every opportunity. The integration of 

multiple modalities, including Raman scattering, culminates in a unique platform capable of 

visualizing and analyzing subcellular organelles such as LDs, and entire FTUs, at both a 

molecular and structural level. Through this platform, breast cancer lipid metabolism was 

characterized under tandem nutrient modulation in vitro, non-destructive lipid subtyping was 

demonstrated, and diabetic kidney disease biomarkers were confirmed ex vivo. 

 While the development of tools such as relative entropy and PRM-SRS can expedite the 

workflow for finding potential molecules of interest and estimate lipidomic changes, there is 

always room for improvement. Due to the small Raman scattering cross section, imaging times 

are still considered slow, especially when a high image quality is demanded. New technologies 

are continuously being developed to improve the Raman signal quality and imaging speed, while 

new algorithms are developed in tandem to improve analytical power and processing time. 

Recently, a super-resolution deconvolution algorithm that can be performed on a single image 

frame was developed, which can achieve high image qualities without excessive imaging times 

[177]. Furthermore, 3D volumetric imaging SRS tomography (SRST) methods have been 

developed to perform label-free deep tissue imaging without the need for a z-scanning stage, 

making 3D imaging as fast as 2D imaging [178]. Future improvements to this label-free optical 

imaging platform will surely incorporate novel algorithms and technological advancements such 

as these. 
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