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Abstract 

Macro-roughness elements such as boulders and bedrock outcrops, collectively referred 

to as large bed elements (LBEs), are key features influencing hydrodynamics and 

morphodynamics in mountain rivers. Where LBEs are abundant and account for a substantial 

portion of total flow resistance, existing geomorphic theory, previous physical experiments, and 

limited field observations support the theory that LBE configurations adjust to maximize flow 

resistance. However, methods to explicitly map individual features along entire river segments 

are lacking, thus limiting analysis of LBE spatial structure in boulder-bedded rivers. In 

addressing these gaps, this study sought to develop a procedure for mapping LBEs from 3D 

point-clouds, explore LBE spatial structure in a real boulder-bedded river, and test the hypothesis 

that LBE configurations were organized to maximize flow resistance. The mapping procedure 

applied a ground classification algorithm to produce a roughness surface model, from which 

LBEs were extracted by a marker controlled watershed algorithm. Implementing the procedure, 

42,176 LBEs were mapped in 13.2-km of the mountainous Yuba River (Northern California). 

Scale and discharge-dependent LBE concentration and spacing metrics were quantified for 

multiple laterally and/or hierarchically nested spatial domains and classified to differentiate three 

flow-resistance based hydrodynamic regimes: isolated roughness, wake interference, and 

skimming flow. Of these regimes, wake interference corresponds to a state of maximum 

resistance, so hypothesis testing involved determining if this regime was dominant. Results 

confirmed 25 of 28 segment- and reach-scale LBE concentrations were in the wake interference 

regime. However, spacing metrics classified 24 of these same spatial domains in the skimming 

flow regime. Concentration metrics, which quantify LBE density in a given spatial area, differ 

from spacing metrics, which represent LBE proximity to one another. While comparison of 

segment and reach-scale regime classifications by each metric concluded concentration was 



  Page 3 of 78 

superior to spacing for regime classification purposes, these disparities leave open questions 

about this extremal model of geomorphic adjustment. Lastly, lateral variability of metrics across 

the river corridor had implications for discharge-dependent resistance. 

Keywords: 

Macroroughness, flow resistance, mountain rivers, lidar, boulders 

Main text: 

1. Introduction 1 

Macroroughness riverbed elements such as boulders and bedrock outcrops differentiate 2 

mountain rivers from most lowland gravel-or-sand bedded rivers (Bathurst, 1978; Grant et al., 3 

1990). Collectively referred to herein as large bed elements (LBEs), these features have a 4 

primary influence on hydraulic, hydrodynamic, and morphodynamic properties of mountain river 5 

channels as well as secondary effects on adjacent landscape processes (Table S1). In laterally 6 

confined coarse-bedded rivers where adjustment of channel planform and gradient are more 7 

restricted, extremal hypothesis, regime theory, physical experiments, and field observations 8 

support the theory that channels adjust bed roughness to maximize flow resistance, as this 9 

corresponds to a state of maximum stability (Davies and Sutherland, 1983; Abrahams et al., 10 

1995; Church et al., 1998; Wohl and Merritt, 2008; Eaton and Church, 2009; Adams, 2020; 11 

Eaton et al., 2020). 12 

Where LBEs are abundant, such as in bedrock or boulder-bedded rivers, the latter defined 13 

as those with D50 ≥ 64 mm (Bathurst, 1982), LBEs account for a substantial portion of total flow 14 

resistance (Chen et al., 2019). Links between LBE spatial structure metrics, such as LBE 15 

concentration and spacing, and flow resistance mean that such metrics can serve as a proxy for 16 
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bed roughness adjustment and address whether LBEs are configured to maximize flow resistance 17 

(Bathurst, 1978; Ferro, 1999; Canovaro et al., 2007; Papanicolaou and Tsakiris, 2017). However, 18 

study of this phenomenon, and the spatial structure of LBEs in natural river segments with 19 

abundant LBEs are still largely absent (Williams et al., 2019; Adams, 2020). This absence arises 20 

in part due to variability in how LBEs are defined and limited availability of continuous and 21 

comprehensive segment-scale LBE datasets (Benda, 1990; Grant and Swanson, 1995; Shobe et 22 

al., 2016). 23 

Existing definitions of LBEs or macroroughness elements vary considerably in the peer-24 

reviewed literature (Table S2), but typically reference fixed lengths or scaled measures of grain 25 

diameter including but not limited to D > 0.5 m, D ≈ bankfull flow depth, and D90 (D is grain 26 

size diameter and the subscript is the percent of grains finer). While arguably of equal import to 27 

the processes describe in the paragraph above (Gippel et al., 1996), the inclusion of large woody 28 

materials (LWM) in LBE definitions has been variable or unclear (Table S2). Inconsistent 29 

definitions complicate LBE mapping, and the interpretation and comparison of LBE related 30 

study findings between rivers. Alternate metrics, such as surface roughness that can account for 31 

LWM, coupled with algorithmic mapping procedures offer opportunity to provide more 32 

consistent, transferable LBE mapping approaches across rivers. However, automated methods to 33 

map these features in natural environments from remotely sensed data products remain limited 34 

(Carbonneau et al., 2004; Resop et al., 2012). 35 

To address these gaps, we developed a semi-automated procedure for mapping LBEs 36 

from three-dimensional (3D) point clouds obtained via an airborne laser system. We then used 37 

results to explore the spatial structure of LBEs in a real boulder-bedded mountain river and 38 

address three specific scientific questions including whether LBEs were configured to maximize 39 
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flow resistance. In the following sections, we first present background on LBE mapping (1.1), 40 

discuss factors influencing LBE spatial structure (1.2), review hydrodynamic influences of LBEs 41 

(1.3), and finally present the questions of this study (1.4). Through objectively and 42 

systematically mapping LBEs, this study generated a large LBE dataset to test hypotheses 43 

providing insight into the spatial structure of LBEs in a real mountain river at multiple scales. 44 

1.1. Mapping LBEs in river corridors 45 

In-situ LBE mapping has been done manually with global positioning system (GPS) or 46 

total station survey equipment (Vallé and Pasternack, 2006). Unfortunately, it may not be 47 

possible to map LBEs at all where access is limited or dangerous, which is a common situation in 48 

mountain rivers. Further, mapping all LBEs would be time consuming if hundreds-to-thousands 49 

of LBEs exist within a survey area, which may be the case at reach (~102-103 channel widths) 50 

and segment scales (~103-104 widths). Field survey methods for LBEs are also subject to the 51 

same problem of surveyor bias that occurs with mapping morphological units. 52 

Remote sensing techniques for studying river sedimentology have a history spanning 53 

over four decades (Piégay et al., 2020). Broadly, we divide remote sensing approaches into those 54 

based on imagery and those based on topographic data. Many image-based techniques have 55 

proven capable of predicting grain-size information from images (e.g., Butler et al., 2001; 56 

Warrick et al., 2009; Purinton and Bookhagen, 2019). However, methods often focus on 57 

predicting representative grain size metrics (D50 or D84), and do not facilitate mapping individual 58 

grains like LBEs. Software, such as Detert and Weitbrecht’s (2012) ‘BaseGrain’ and Purinton 59 

and Bookhagen’s (2019) ‘PebbleCounts’, that include this capability have limited testing in 60 

mountain rivers with heterogeneous surface roughness’s that complicate grain mapping (Pearson 61 

et al., 2017), and appear difficult to apply beyond the reach scale due to computational and input 62 
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data requirements. Alternately, LBEs are commonly manually digitized from aerial images 63 

(Chen et al., 2019; Finnegan et al., 2019). All image-based methods have limited ability to map 64 

submerged LBEs, require high-resolution imagery (<<1 m pixels) to ensure mapping accuracy 65 

(Carbonneau et al., 2004), and do not explicitly measure particle heights (i.e. planimetric two-66 

dimensional [2D] mapping only). 67 

Remote sensing of river topography likewise offers opportunities for studying river 68 

sedimentology and potential to overcome the 2D limitations of image-based methods (Hodge et 69 

al., 2009; Brasington et al., 2012). Generically, these approaches involve developing statistical 70 

models between measured sedimentological characteristics and topographic metrics, such as 71 

roughness height (Gomez, 1993) or the standard deviation, semi-variance, skewness, or kurtosis 72 

of detrended bed elevations within a submeter convolution kernel (Aberle and Smart, 2003; 73 

Schneider et al., 2015). Common topographic data sources include airborne or terrestrial laser 74 

systems (ALS and TLS, respectively) or photogrammetric techniques such as structure-from-75 

motion (SfM). Factors relevant to LBE mapping such as resolution (point density), spatial 76 

coverage, accuracy, post-processing requirements, and cost vary widely between methods 77 

(Tomsett and Leyland, 2019). For example, while TLS and SfM produce greater point densities 78 

than ALS, (~10,000 pts/m2 compared to ~10’s pts/m2 [Brasington et al., 2012]), they have 79 

greater time and labor requirement and may not be feasible in inaccessible mountain regions or 80 

for segment-scale applications (Tomsett and Leyland, 2019; Piégay et al., 2020). A caveat of 81 

nearly all image- and topographic-based grain-size prediction approaches is reliance on statistical 82 

models calibrated with site-specific field measurements. When models are applied outside the 83 

systems in which they’re developed it is common for predictions to perform poorly on novel data 84 

(Pearson et al., 2017). 85 
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To our knowledge, Resop et al. (2012) provide the best example of semi-automated 86 

mapping of LBEs in a natural setting. Using TLS, they applied a series of image-processing 87 

algorithms to a 2-cm digital terrain model (DTM) to segment and map individual boulders (>256 88 

mm) along 100 m of a boulder-bedded river. Their approach, derived from methods for mapping 89 

tree canopies, performed well at mapping the location and shape of boulders compared to field 90 

measurements. A multi-step un-validated GIS approach to map boulders in the mountainous 91 

South Yuba River from a combination of terrestrial ALS, bathymetric sonar, and GPS survey 92 

data is also presented by Pasternack and Senter (2011). Overall, remote sensing offers potential 93 

for new and continued research in river sedimentology including mapping LBEs. 94 

1.2. Organization of LBEs in river corridors 95 

In natural channels, LBE spatial structure, defined as the number, size, and arrangement 96 

of LBEs, evolves as landscapes are acted upon by hillslope, glacial, volcanic, tectonic, fluvial, 97 

and biogeomorphic forces that together produce three key processes: supplying LBEs to the 98 

channel or exhuming them; weathering and attrition of LBEs; and LBE transport, deposition, and 99 

storage (Table S1). Hillslopes and low-order tributaries (1st-3rd order) are the main source 100 

delivering new LBEs to the channel network through landslide related processes (Benda, 1990; 101 

Hungr et al., 2001; Hewitt, 2002). Once in the river corridor, LBEs can remain immobile or only 102 

intermittently mobile for periods lasting 102-106 years (e.g. Williams et al., 2019). On the other 103 

hand, observations support that LBEs up-to several meters in size may still be transported 104 

downstream more frequently (<102 year recurrence intervals) (Grant et al., 1990; Molnar et al., 105 

2010). In-channel LBEs also provide feedback on landscape evolution due to their ability to 106 

mediate incision, shape channel morphology, and influence sediment storage and transport 107 

(Hassan and Reid, 1990; Madej, 2001; Shobe et al., 2016; Golly et al., 2019). In-turn, these 108 
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feedbacks, and associated changes to LBE spatial structure and channel boundaries, modify flow 109 

resistance. Applying the simplifying assumption that channel adjustments are such that when 110 

resistance is low relative to hydraulic forces the channel boundary will adjust to increase 111 

hydraulic resistance and visa-versa, these feedbacks enable trajectories of LBE mediated channel 112 

adjustment toward conditions of maximum resistance while leaving room for more complex 113 

oscillations and non-equilibrium behavior (Chin and Phillips, 2007; Wohl and Merritt, 2008; 114 

Eaton and Church, 2009; Ferguson et al., 2019). 115 

1.3. LBE influence on hydraulics and hydrodynamics 116 

Protrusion of LBEs into a flow-field exert resistance on the fluid via frictional shear 117 

(Bathurst, 1978) and pressure fluctuations (Einstein and Barbarossa, 1952), colloquially termed 118 

skin friction and form drag, respectively. In boulder-bedded rivers, form resistance from LBEs 119 

can account for a substantial portion (>90 %) of total flow resistance (Chen et al., 2019). When 120 

an array of LBEs is present, as is the case in natural channels, the superpositioning of vortices 121 

further affects resistance, wake and turbulent flow structures, and flow-field recovery (Canovaro 122 

et al., 2007; Fang et al., 2017). 123 

Morris (1959) classified these combined effects into three basic hydrodynamic regimes: 124 

isolated roughness, wake interference, and skimming flow. Isolated roughness occurs when 125 

macroroughness feature spacing is large enough that wakes do not interact and the flow recovers 126 

before engaging the next downstream feature. Wake interference occurs when the wake from one 127 

feature extends to the next downstream feature and the flow never recovers. Lastly, skimming 128 

flows occur when features are close enough to form pockets of trapped highly irregular flow 129 

patterns with a relatively smooth flow structure above. 130 
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Morris’s hydrodynamic regimes may be interpreted in terms of flow resistance (Fang et 131 

al., 2017; Papanicolaou and Tsakiris, 2017). When LBEs are widely spaced, such as in the 132 

isolated regime, total form resistance due to LBEs can be estimated as the sum of drag on 133 

individual LBEs (Gippel et al., 1996). As more LBEs occupy the flow-field, the resistance 134 

relationship becomes non-linear typically reaching a peak in resistance followed by a decrease 135 

that eventually plateaus regardless of the presence of additional LBEs. The initial transition from 136 

linear to non-linear behavior is hypothesized to indicate a regime shift from isolated roughness to 137 

wake interference, wherein resistance reaches its peak. The subsequent decrease in resistance and 138 

plateau region are associated with conditions of skimming flow where resistance is 139 

proportionally high but not at a maximum (Ferro, 1999; Canovaro et al., 2007). Thus, the wake 140 

interference regime has been assumed to broadly correspond with conditions of maximum flow 141 

resistance. 142 

Morris’s hydrodynamic regimes have served as a basis in many physical experiments 143 

describing how LBEs influence the flow-field and flow resistance (e.g., Ferro, 1999; Canovaro et 144 

al., 2007; Papanicolaou and Tsakiris, 2017). In these studies, Morris’s regimes have been 145 

represented using LBE concentration (Γ), which varies in how it is calculated but is defined here 146 

as the ratio of planform LBE area to wetted channel area; and/or non-dimensional spacing (𝜆∗), 147 

typically calculated as the distance (𝜆) between LBEs divided by the diameter of the upstream 148 

LBE (Dc). Strong correspondence in the above referenced studies between these LBE spatial 149 

structure metrics and flow resistance measurements allows a direct link connecting metrics with 150 

Morris’s regimes and conditions associated with maximum resistance. Conceptually, provided 151 

availability of a census of LBEs, these same LBE spatial structure metrics may be extended to 152 
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classify Morris’s regimes in natural settings and test the degree that conditions associated with 153 

maximum resistance are present at multiple spatial scales. 154 

1.4. Scientific questions 155 

The sections above highlight three scientific questions concerning the mapping and 156 

spatial structure of LBEs in natural channels. First, can ALS data be used to accurately map sub-157 

meter resolution LBEs along entire river segments? Second, are LBEs configured to maximize 158 

flow resistance, and if so at what typical spatial scales (segment, reach, and cross-section) does 159 

this occur? Third, does LBE spatial structure vary laterally to provide differential discharge-160 

dependent roughness? 161 

2. Study river segment 162 

The field site was a confined 13.2-km segment of the mountainous Yuba River (Northern 163 

California) draining 1853 km2 of the western Sierra Nevada range (Figure 1). It is comprised of a 164 

low sinuosity, boulder-bedded, 5th order mountain river confined within a steep-walled bedrock 165 

and forested hillside canyon, which is common among rivers draining the western slope of the 166 

northern Sierra Nevada range (Guillon et al., 2020). The river has a mean bed slope of 1.96 % 167 

but exhibits localized variability, with many 10–100 m long (100–101 widths) stretches having 168 

slopes exceeding 10 %. Like many bedrock-confined rivers, the study site lacks a contiguous 169 

floodplain having only localized areas supporting accumulation of alluvium at major tributary 170 

junctions, meander bends, or other areas of local valley widening (Fryirs et al., 2016). Despite 171 

this ambiguity, a previously reported morphologically determined bankfull discharge (Qbf) of 172 

10.7 m3/s (YCWA, 2013) was used to enable comparison of metrics across sites respective of 173 
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scale. For analytical purposes, the study site was delineated into six geomorphic reaches on the 174 

sole basis of channel-bed slope breaks (Figure 2). 175 

Based on limited sedimentological data, bed substrates alternate between bedrock and 176 

alluvial sections (YCWA, 2013). Alluvial substrate, where present, is a heterogeneous mixture of 177 

materials dominated by coarse fractions (medium gravel/cobbles and larger). Contemporary 178 

sources of coarse clastic materials result from hillslope process, exhumation of boulders or 179 

bedrock, historic hydraulic mining activities, and in-channel stores. Uniformly steep hillslopes 180 

are present along the study site with large areas exceeding 0.8 m/m, a regional slope threshold 181 

identified by Hurst et al. (2012) for producing landslides and scree cones. Curtis et al. (2005) 182 

also found mass wasting processes to dominate over other erosional processes (e.g. surface 183 

erosion), thus providing a relatively abundant supply of LBEs for delivery to the valley-bottom. 184 

Review of aerial imagery (Google Earth®) from 1957 to present shows landslides, debris flows, 185 

and rock falls throughout the study site. Quaternary glaciation present in the easternmost portions 186 

of the Yuba basin did not extend to the study site, however it is plausible that outwash deposits 187 

remain. 188 

The region’s alluvial-sediment processes are also affected by anthropogenic influences. 189 

New Bullards Bar (NBB) Dam is a 196.6 m high concrete arch dam on the North Yuba River 190 

near Dobbins, CA. Closed in 1969, the dam is a complete barrier to bedload transport into the 191 

study site passing only wash load. Two additional dams, Log Cabin Dam and Our House Dam, 192 

situated upstream of the study site in the Middle Yuba watershed, also act as partial barriers to 193 

downstream sediment transport. 194 
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 195 

Figure 1. Map of study site, tributaries, gages, and infrastructure facilities, Yuba River, CA.196 
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 197 

Figure 2. Longitudinal profile showing the extent and slope (m/m) of geomorphic reaches. 198 

3. Methods 199 

The three scientific questions were answered in order, as they build on each other. To 200 

address the first study question, a field campaign and remote sensing survey were carried out to 201 

collect topo-bathymetric point clouds and locate real LBEs in the study river segment (sections 202 

3.1-3.2). A procedure for mapping LBEs along river channels from ALS 3D point-cloud data 203 

was developed, tested, and applied to map LBEs in a real boulder-bedded mountain river (section 204 

3.3). Question 1 was answered using performance metrics comparing predicted LBEs to 205 

observed LBEs, using two different analyses (section 3.3). Next, to address the second question, 206 

LBE data were coupled with results from a 2D hydrodynamic model (section 3.4) to define LBE 207 

spatial structure metrics within multiple discharge-dependent portions of the river corridor 208 

(section 3.5). Specifically, Γ and 𝜆∗ values were calculated at segment, reach, and cross-sectional 209 
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(0.1 width) scales. These were then compared to thresholds associated with Morris’s wake 210 

interference regime from the literature to test the hypothesis that LBEs were organized to 211 

maximize flow resistance at these three spatial scales, as indicated by LBE spatial structure 212 

metrics corresponding with the wake interference regime. Finally, the third question regarding 213 

lateral distribution of LBE structure and flow resistance was answered by quantifying differences 214 

in LBE spatial structure metrics for different incremental inundation corridors, as defined in 215 

section 3.5.1. 216 

3.1. Topo-bathymetric mapping 217 

Between September 27-29, 2014 ALS data were collected within the study site by a 218 

professional surveying firm (Quantum Spatial, https://www.quantumspatial.com/) using a Riegl 219 

VQ-820-G bathymetric sensor system and a Leica ALS50 Phase II system (near infrared) 220 

mounted in a Cessna Grand Caravan. The initial ground classified point density was 2.3 pts/m2. 221 

Following a process to address misclassification errors, this density was increased to 13.9 pts/m2 222 

(Supplementary Text S3.1). ALS collection was conducted during a period of low discharge 223 

estimated at 1.19 m3/s at the downstream study site boundary. This discharge is exceeded 89.4 % 224 

of the time based on the period October 1968–February 2016 (Wiener and Pasternack, 2016a). 225 

ALS data were supplemented with boat-based bathymetric observations, imagery-derived 226 

bathymetric estimates (e.g. Legleiter et al., 2004), and systematically placed augmented points 227 

(Vallé and Pasternack, 2006). Single beam echo sounding data was collected by kayak between 228 

July 8 and 9th 2015 during low-flow conditions (0.89 m3/s) using an Ohmex Sonarmite. The 229 

boat’s 3D position was tracked using a Trimble 5800 Real Time Kinematic (RTK) GPS tied to a 230 

local base station. Average boat-based point density was 0.53 pts/m2. 231 
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Through verification and merging of individual datasets, an extremely detailed and 232 

accurate topographic map was created (Text S3.1; Wiener and Pasternack, 2016b). The final bare 233 

earth mapping included >21 million points at an average point-spacing of 0.25 m (~16 pts/m2). 234 

Points were used to create a 0.46 m x 0.46 m resolution raster (bare earth DTM), the final map 235 

product used in the study. 236 

3.2. Observed LBE dataset 237 

For the purpose of parameterizing and assessing the study’s LBE mapping approach an 238 

observed LBE dataset consisting of independently mapped LBEs was generated within a portion 239 

of the study segment from high-resolution aerial imagery. Imagery was collected for the 240 

downstream 1.2 km of the study site on September 20, 2016 using a DJI Phantom 3 Professional 241 

quadcopter uncrewed aerial vehicle equipped with on-board GPS, camera, and camera gimbal. 242 

The discharge on this day was estimated at 1.02 m3/s (a low flow) at the downstream boundary. 243 

Images were processed and a 2.6 cm resolution composite orthomosaic photograph was 244 

generated using Agisoft Photoscan Professional version 1.3 (Photoscan) following methods 245 

described by Carey et al. (2019). No terrain products were produced from the captured images. 246 

The composite orthomosaic photograph, which contained numerous visible LBEs, was 247 

georeferenced to align with the study’s ALS data. Next, LBEs visible in the orthomosaic 248 

photograph were manually digitized. Selecting which LBEs to digitize was done by randomly 249 

panning to different portions of the orthomosaic and digitizing all LBE that were clearly visible 250 

and differentiable from the bare earth and water. Digitizing was capped at a single 8-hour day 251 

effort. A total of 1194 digitized LBEs overlapping the region of topographic data collection 252 

(section 3.1) served as the LBE dataset (LBEo) (Figure 3). 253 
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 254 

Figure 3. Portion of orthomosaic with manually digitized large bed elements (LBEo) outlined by 255 
black lines. Only a portion of visible LBEs were digitized. 256 

3.3. LBE mapping 257 

For this study, we do not propose a universal definition for LBEs. Instead we developed 258 

and applied a novel procedure (Figure 4) for mapping terrain features, in this case sub-meter 259 

scale LBEs, from 3D topographic point clouds. The procedure takes into consideration existing 260 

LBE definitions, site-specific sedimentology, and establishing consistent methods for parameter 261 

specification to aid transferability of the mapping procedure. The procedure comprised two main 262 

steps, generating a roughness surface model (RSM) and extracting LBEs from the RSM. To 263 

answer the first scientific question the accuracy of both steps required independent and step-wise 264 

assessment. Therefore, multiple RSMs were generated, and then multiple approaches were used 265 

to extract LBEs from the best performing RSM. In each step, test metrics were used to compare 266 

RSM and extraction results and LBE observations and identify the best outcomes. The best 267 
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performing outcomes were vetted against benchmark values reported by Kaartinen et al. (2012) 268 

and Marconi et al. (2019) to determine if they met scientific norms to be considered accurate 269 

representations. 270 

3.3.1 Roughness surface model generation and testing question 1 271 

A RSM is the vertical difference between ‘complete’ and ‘smoothed’ DTMs. The RSM 272 

concept is similar to that of a canopy height model, a common product for mapping tree-crowns 273 

(Popescu and Wynne, 2004; Chen et al., 2006). Here, the complete DTM is the bare earth DTM 274 

described in section 3.1 and the smoothed DTM is essentially the bare earth DTM stripped of 275 

large roughness features, which methodologically differs from detrending the bare earth DTM. 276 

When these surfaces are differenced, the intent is for LBEs to ‘stick-out’ of the resulting RSM, 277 

as this allows them to be extracted in the second step of the mapping procedure. 278 

Absent a unanimously accepted method for creating smoothed DTMs, a series of 279 

smoothed DTM point clouds and associated rasters were generated using the open source 280 

‘lasground_new.exe’ ground classification algorithm (Isenburg, 2016), which applies an adaptive 281 

TIN approach to iteratively classify ground points from an unclassified point cloud based on six 282 

user defined parameters. This approach was selected as it proven to be effective at correctly 283 

classifying ground points in areas of variable terrain (Zhang and Whitman, 2005), is 284 

parametrically flexible, and its parameters (Table 1; Text S3.3) can be related to measurements 285 

meaningful to mapping terrain features. The algorithm was run using the bare earth 3D point 286 

cloud and a range of parameter values informed by physically based metrics (Table 1), such as 287 

site specific representative grain sizes, as inputs, to produce 14 unique smoothed DTM rasters 288 

(Table S3). Smoothed DTM rasters were then assessed heuristically based on visual observations 289 

of: (i) removal of clearly discernable LBEs; and (ii) retaining topographic characteristics of the 290 
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original ground surface such as slope breaks, small-scale terrain undulations, and meso-scale 291 

terrain features. Based on this qualitative assessment, six smoothed DTMs were selected for 292 

further processing and evaluation (Table S3). 293 

The first of these processing steps involved subtracting each smoothed DTM raster from 294 

the complete DTM raster to produce six unique RSM rasters. Next, a binary threshold approach 295 

was used to map discrete sets of preliminary LBEs from each RSM. This was done by assigning 296 

a random selection of 70 % of the LBEo data to a ‘training’ dataset and then calculating the 297 

average RSM value of all raster cells located along the exterior boundary of each LBEo polygon 298 

in the training set for each RSM, independently. Threshold values above which a RSM pixel was 299 

considered LBE were determined by taking the average of these sets of values for each RSM, 300 

respectively (Text S3.3). 301 

Sets of preliminary LBEs were evaluated by comparing predicted LBE polygons with the 302 

remaining 30 % of the LBEo data (‘test data’) using four performance metrics: producers 303 

accuracy (PA), producers overlap (PO), a modified Jaccard similarity index (MJI) and missed-to-304 

excess ratio (MER). The four metrics were chosen to balance sensitivity to omission (i.e. missing 305 

a real LBE) and commission (i.e. mapping an erroneous LBE) errors, whereby PA and PO were 306 

considered to penalize omission and be less sensitive to commission compared to MJI and MER, 307 

which penalize commission while allowing omission (Shao et al., 2019). Jaccard index (JI) and 308 

PA are common metrics in classification exercises whereas PO and MER were devised for this 309 

study. PA, PO, and MJI all range from 0 to 1 and MER ranges from 0 to ∞. Higher values of all 310 

metrics indicate better mapping accuracy but not necessary better precision. Metrics were also 311 

formulated to control for the situation where an LBE was predicted but missed in the observed 312 
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dataset. Details, including numerical formulations, are provided in the supplementary materials 313 

file (Text S3.3). 314 

Metrics were calculated for each preliminary LBE dataset and then independently 315 

rescaled from 0 to 1 using standard normalization techniques. The arithmetic mean of normalized 316 

values was used as a global performance metric to select the best ground classification algorithm 317 

parameter set and associated RSM (‘preferred RSM’). Once identified, performance metrics of 318 

the preferred RSM were evaluated to determine if it could support accurate LBE extraction. 319 

3.3.2 LBE extraction and accuracy testing for question 1 320 

The procedure’s second step involved extracting LBEs from the preferred RSM and 321 

testing the accuracy of the extraction, as the second and more important test to answer question 322 

1. The threshold technique described in section 3.3.1 offered one option for LBE extraction. 323 

However, while this simple and efficient method was considered reasonable for evaluating 324 

ground classification algorithm parameters to select the preferred RSM, both preliminary LBE 325 

mapping assessment and extensive research on tree-canopy mapping indicated alternative LBE 326 

extraction methods could improve mapping accuracy (Kaartinen et al., 2012). Drawing from 327 

forestry research, five LBE extraction approaches were identified for testing: (i) RSM with 328 

vertical threshold; (ii) Gaussian filtered RSM with vertical threshold; (iii) RSM with marker-329 

controlled watershed segmentation (MCWS) algorithm and constant window size; (iv) RSM with 330 

MCWS and variable window size; and (v) Gaussian filtered RSM with MCWS and constant 331 

window size. Comparing tree-crown mapping algorithms, Kaartinen et al. (2012) demonstrated 332 

that MCWS performed equally well or outperformed more computationally expensive and 333 

parametrically complex approaches not tested in this study. 334 
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Approaches differed in regard to computational expense, number of parameters, and 335 

implementation. To evaluate mapping performance, multiple parameter sets were tested for each 336 

approach. Each parameter set was used to generate a set of predicted LBEs for the area covering 337 

the LBEo dataset. Parameter values for each approach were either data-driven (i.e., derived from 338 

the LBEo data) or selected from a range of reasonable physically meaningful values (i.e., LBE 339 

heights). To constrain parameter spaces only data-driven calculations were used for approaches 340 

(ii-v). Ultimately, 12, 6, 10, 2, and 14 parameter sets were specified for approaches (i-v), 341 

respectively, resulting in a total of 44 LBE datasets (LBEp), each a distinct mapping of LBEs 342 

(Table S4). Details of each approach and rationale for parameter selection are provided in the 343 

supplementary materials file (Text S3.3). 344 

Once mapped, LBEp datasets were assessed for accuracy using the same performance 345 

metrics as in step one, but compared to the entire LBEo dataset. In addition to this internal 346 

comparison, PA and MJI scores were also evaluated against benchmark values from forestry 347 

research. Kaartinen et al. (2012) report PA values from past studies between 0.40 and 0.93 and 348 

found matching rates, a metric similar to PA, between 0.28and 0.66 (median of 0.56) when 349 

benchmarking 32 tree-extraction algorithms. For MJI, JI scores from Marconi et al. (2019) were 350 

used for comparison. Their values ranged between 0.056 and 0.340 (median of 0.167). 351 

The suite of performance metrics and summary global performance metric were 352 

informative, but had limitations in identifying a best approach and single parameter set. For one 353 

thing, the LBEo data did not constitute a complete set of all LBEs, therefore the ability to 354 

optimize parameters was unrealistic. Further, the metrics did not address all mapping issues or 355 

errors such as over- or under-segmentation. Thus, metrics were coupled with visually based 356 
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qualitative assessment of mapping performance covering the entire study segment to select one 357 

approach and parameter set used to generate LBEs for whole study segment (‘preferred dataset’). 358 

Mapping performance of the preferred dataset was considered accurate if PA and MJI 359 

scores exceeded the median benchmark values provided above. However, LBEs from the 360 

preferred dataset were still not without uncertainty, which could influence answering study 361 

questions 2 and 3. Therefore, two additional steps were taken to filter out uncertain LBEs (Text 362 

S3.3). First, LBEs were removed where the majority of topographic data was from imagery-363 

derived bathymetric estimates or augmented points (section 3.1; Text S3.1). Second, LBE 364 

polygons were removed where topographic data resolution and/or topographic variability were 365 

relatively low, presuming these would result in poor LBE predictions. This was accomplished by 366 

comparing lidar point densities and mean standard deviation in elevations (𝜎௭തതതሻ within LBEo and 367 

LBEp polygons from the preferred dataset to set thresholds for these metrics below which LBEp 368 

polygons were removed. The final set of LBE polygons was used for all further analysis in this 369 

study. The minimum LBE polygon size was a single raster cell (0.46 m x 0.46 m). Dc values for 370 

each LBE were set as the max RSM value within each polygon.  371 
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 372 

 373 

Figure 4. (a) Flowchart depicting simplified large bed element (LBE) mapping procedure with 374 
(b) detail of ‘RSM generation’ process and (c) oblique views of example complete, smoothed, 375 
and roughness surface model (RSM) digital terrain models (DTMs) from a small portion of the 376 
study site with resultant final predicted LBEs. In (a) and (b) light-gray rounded rectangles with 377 
dark text are output data, gray ovals with dark text are processing steps, dark-gray ovals with 378 
white text are input parameters or input data, and gray rectangles with white text are assessment 379 
steps. Arrows indicate directionality and interactions that generate new outputs or inform process 380 
steps/inputs. Key outputs from step 1 (preferred RSM) and step 2 (preferred LBE dataset) are 381 
outlined in bold.  382 
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Table 1. Ground classification algorithm parameter descriptions, range used in study, and details 383 
for large bed element (LBE) mapping†. 384 

Parameter Description‡ 
Range 
used in 

study (m) 

Information 
used to select 

range 
LBE mapping details‡ 

Step Window size used to 
select points to be 
iteratively classified. 

1.52-4.57 DTM/RSM 
raster cell size 

Controls removal of cohesive 
terrain features such that features 
larger than the window-size are 
preserved in ground classification 
(Zhang and Whitman, 2005). 
Recommend setting larger than 
planform diameter of average LBEs 
but less than maximum LBE 
diameter and/or scale of dominate 
terrain features. Length of ~3-9 
raster cells used to set range in this 
study. 

Bulge Specifies how much 
the TIN is allowed 
to bulge up when 
including points as it 
is getting refined. 

0.03-0.30 Preliminary 
testing and user 
manual 

Typically 1/5-1/10 step size, 
smaller values recommended for 
creating a smoothed DTM. 

Spike Threshold at which 
points forming 
spikes above the 
coarsest TIN get 
removed. 

0.03-0.50 Representative 
grain sizes and 
minimum LBE 
heights from 
previous 
studies 

Length scale(s) collectively control 
if points are classified as ground or 
removed based on how much points 
extend below or protrude above an 
otherwise smooth but variable bed 
surface. Estimated D50 (0.128-0.256 
m) and D16 (0.032-0.064 m) values 
(YCWA, 2013), and two 
representative LBE sizes for 
boulders from the Udden-
Wentworth scale (Wentworth, 
1922), 0.256 m and 0.5 m, used to 
set range in this study. 

Down-
spike 

Threshold at which 
points forming 
spikes below the 
coarsest TIN get 
removed. 

0-0.50 

Offset The maximal offset 
up to which points 
above the current 
ground estimate get 
included. 

0.03-0.50 

Intensity Specifies the search 
level for initial 
ground point 
classification. 

extra-
hyper 

Preliminary 
testing and user 
manual 

Use intense search setting (hyper, 
ultra, extra) for steep, hilly terrains 
and simplified search settings (fine, 
coarse) for flat terrains. 

†Acronyms in table are as follows: digital terrain model (DTM), roughness surface model (RSM), 
triangular irregular network (TIN), and D is grain size diameter and subscript is percent of grains finer. 
‡See http://lastools.org/ for more details 
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3.4. Two-dimensional hydrodynamic modeling 385 

Wetted areas were required to assess the discharge-dependent LBE spatial structure in 386 

different portions of the channel. Wetted areas were generated from steady-state hydrodynamic 387 

simulations performed at ~1-m resolution using the free, public, 2D model, Sedimentation and 388 

River Hydraulics—Two-Dimensional model (SRH-2D) v. 2.2 (Lai, 2008). This is a proven code 389 

capable of simulating hydraulic conditions in mountain rivers with abundant LBEs (Brown and 390 

Pasternack, 2014; Strom et al., 2016). Simulations were run for four discharges (1.54, 10.73, 391 

82.12, and 343.6 m3/s) from an approximate baseflow to a ~3.5-yr flood. Model development, 392 

parameterization, and performance assessment are thoroughly documented in the supplementary 393 

materials file (Text S3.4). The 2D model performed comparably to similar published models 394 

(e.g. Lisle et al., 2000; Pasternack et al., 2006). 395 

3.5. LBE spatial analysis 396 

Having extracted a set of accurate LBE polygons from ALS point clouds, four subsets of 397 

the data were made comprising the set of final LBE polygons that intersected with the wetted 398 

area polygon of each simulated discharge. In this manner, discharge served to hierarchically nest 399 

spatial domains, since lower discharge wetted areas were always located within higher discharge 400 

wetted areas. These data are referred to herein as ‘discharge-dependent LBE datasets’. From 401 

these data, LBE spatial structure was characterized in terms of concentration (Γ) and spacing (λ) 402 

metrics to answer questions 2 and 3. Specifically, metrics were used to classify segment, reach 403 

and cross-sectional spatial domains according to Morris’ hydrodynamic regimes to assess if 404 

LBEs were configured to maximize flow resistance, per question 2. Concentrations were also 405 

analyzed by lateral distribution per question 3. 406 
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3.5.1 Spatially stratified LBE concentrations 407 

Each LBE is a polygon with a plan view (2D) area. To geospatially quantify Γ, it is 408 

defined as the areal proportion of LBE polygons within any larger domain. In this study, the 409 

larger domain varied depending on the analysis. 410 

For question 2, the larger domain was the river’s wetted area at a given discharge clipped 411 

to different portions of the study segment depending on the analysis scale. First, Γ was computed 412 

at the segment scale four times, once per discharge investigated (section 3.4) by clipping the 413 

LBE polygons with a wetted area polygon. This yielded four segment-scale wetted area Γ values. 414 

In addition, 24 more reach-scale wetted area Γ values were computed by clipping each 415 

discharge’s segment-scale wetted area and the LBE polygons with the individual polygon for 416 

each of the six geomorphic reaches. The final segment- and reach-scale spatially stratified 417 

dataset consisted of 28 Γ values. Lastly, longitudinal Γ profiles were generated for the full extent 418 

of each wetted area at abutting 3-m wide, cross-sectional polygons stationed along the river 419 

corridor (Text S3.5). Cross-sectional Γ values were calculated by dividing the area of LBE 420 

within each cross-sectional polygon by the polygon’s area. This cross-sectional analysis provides 421 

the resolution of LBE patterns needed to evaluate local topographic, hydraulic, and 422 

morphodynamic factors compared to what is possible with averages at segment and reach scales. 423 

To answer question 3, the four segment-scale wetted areas were used to create three 424 

incremental inundation corridor polygons. Incremental inundation corridor is defined as the 425 

river’s terrain that is dry at a lower discharge and wet at a higher discharge (Figure 5). LBE 426 

polygons were clipped by each incremental inundation corridor polygon and Γ was computed for 427 

each of these three domains. These domains isolate analysis to the series of adjacent, non-428 

overlapping regions of the river corridor that become successively inundated and geomorphically 429 
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active with increasing discharge. In addition, each segment-scale incremental inundation corridor 430 

was clipped by the geomorphic reach polygons, once again yielding 28 domains (4 flows times 431 

six reaches plus 4 whole-segment flow areas) for testing. 432 

3.5.2 LBE spacing calculations 433 

Next, LBE-to-LBE spacings were used to further evaluate LBE spatial structure and as a 434 

second test of whether LBEs were organized to maximize flow resistance. First, longitudinal 435 

(streamwise) distances between upstream and downstream LBEs (𝜆௟) were estimated using a 436 

channel-oriented, path-based approach (Figure 6; Text S3.5). Distances were non-437 

dimensionalized (𝜆∗
௟ ) by dividing each 𝜆௟ by the Dc value of the upstream LBE. Because multiple 438 

paths could emanate from each upstream LBE, LBEs could have multiple 𝜆∗
௟  values. Thus, a 439 

single spacing value (𝜆∗
௟෡ ) was calculated for each LBE as the median of all 𝜆∗

௟  values. Next, each 440 

LBE was assigned to the discharge-dependent cross-section containing the LBE polygon’s 441 

centroid. Finally, 𝜆∗
௟෡  values for all LBEs originating in each cross-section were averaged yielding 442 

one spacing value per cross-section per discharge (𝜆∗
௟ഥ ). 443 

3.5.3 Hydrodynamic regime and flow resistance inferences 444 

All Γ and 𝜆∗
௟ഥ  values were framed according to Morris’s (1959) hydrodynamic regimes to 445 

evaluate spatial patterns and the dynamic percentage of channel in each regime, and test for 446 

conditions that maximize flow resistance at the designated spatial scales. Synthesizing multiple 447 

studies, bounds for Γ regime classification were set such that Γ < 0.08 (e.g. 8 % percent of spatial 448 

domain) corresponded to the isolated roughness regime, Γ values between 0.08 and 0.30 to the 449 

wake interference regime, and Γ > 0.30 were classified as skimming flow (Nowell and Church, 450 

1979; Ferro, 1999; Papanicolaou et al., 2001; Canovaro et al., 2007; Fang et al., 2017). Regime 451 
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classification for 𝜆∗
௟ഥ  used spacing thresholds reported by Papanicolaou and Tsakiris (2017), 452 

where 𝜆∗
௟ഥ  > 6ꞏDc corresponded to the isolated roughness regime, 𝜆∗

௟ഥ  values between 2 and 6ꞏDc to 453 

wake interference, and 𝜆∗
௟ഥ  < 2ꞏDc to skimming flow (also see Gippel et al., 1996; Tan and Curran, 454 

2012).  Since 𝜆∗
௟ഥ  calculations were done at the cross-sectional scale and it was desirable to have 455 

segment- and reach-scale spacing based regime classifications, individual 𝜆∗
௟෡  values in each 456 

discharge-dependent segment and reach domain were classified using the same 𝜆∗
௟ഥ  regime 457 

thresholds as above. Domains were then classified as the single regime having the highest 458 

percentage of classified 𝜆∗
௟෡ . In this manner each spatial domain was assigned a regime 459 

classification using both Γ and a spacing metric (𝜆∗
௟ഥ  or 𝜆∗

௟෡ ). Conditions of maximum flow 460 

resistance were assumed to correspond to the wake interference regime (Section 1.3). Thus, this 461 

criterion was used to test if LBEs were configured to maximize flow resistance for each metric 462 

for each spatial domain as appropriate to answer question 2. Cross-section regime classifications 463 

were further used to characterize local spatial variability, or lack thereof, in tendencies to 464 

maximize flow resistance. 465 

Lastly, regime predictions from segment- and reach-scale Γ and 𝜆∗
௟෡ , and cross-sectional Γ 466 

and 𝜆∗
௟ഥ  values were compared for consistency in the form of confusion matrices showing the 467 

number of regimes classified similarly and how regime classifications differed between metrics, 468 

if this occurred. To interrogate metric appropriateness, LBE counts and median LBE areas were 469 

calculated at each channel cross-section. These metrics are also linked to local flow resistance 470 

(e.g. Gippel et al., 1996; Canovaro et al., 2007) and serve as an independent check on the ability 471 

of Γ and 𝜆∗
௟ഥ  to characterize LBE spatial structure. These data were stratified by classification 472 

regime for each metric, Γ and 𝜆∗
௟ഥ , independently, and statistical distributions were heuristically 473 
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compared. Interpretation was that less overlap in distributions between regimes for the same 474 

metric was an indicator of better classification accuracy, since regimes correspond to different 475 

levels of flow resistance (Fang et al., 2017). Cross-sectional LBE counts and median LBE area 476 

data were also compared between sections classified the same and differently by each metric to 477 

help explain potential discrepancies in cross-section classifications (Text S3.5). 478 

 479 

Figure 5. Typical output from 2D model simulations showing the baseflow wetted area (blue) 480 
and the subsequent incremental inundation corridors occurring as strips between successive 481 
higher discharges. For example, pink is the incremental inundation corridor between 1.54 and 482 
10.73 m3/s. Flow is from right to left.  483 
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 484 

Figure 6. Arbitrary portion of the study segment illustrating path approach for large bed 485 
element-to-large bed element (LBE-to-LBE) spacing analysis depicting set of offset longitudinal 486 
path-lines for (a) 1.54 m3/s and (c) 343.6 m3/s discharge simulations. (b) and (d) depict zoomed 487 
in views of the inset boxes shown in panels (a) and (c) showing path-lines, LBEs, and densified 488 
vertices used in calculating non-dimensional LBE spacing (𝝀∗

𝒍 ሻ values. Example longitudinal 489 
LBE spacing (λl) measurements along path-lines between upstream and downstream LBEs are 490 
depicted in red in panel (b) and (d). (For interpretation of the references to colour in this figure 491 
legend, the reader is referred to the web version of this article.) 492 

4. Results 493 

4.1. Question 1 results (LBE mapping) 494 

Qualitative assessment of the 14 smoothed DTMs determined certain ground 495 

classification parameter sets performed better than others (Table S3). Generally, larger step sizes 496 

(~3 and 4.5 m), smaller spike and offset values (0.128 m [D50] and 0.064 m [D16] versus 0.5 m), 497 

and intermediate down-spike values (0.128 m, 0.256 m, and 0.15 m) were best at filtering-out 498 

LBEs while maintaining character of the overall terrain. Ultimately, the study site’s estimated 499 
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D50 (0.128 m) was identified as the best measure for the spike and offset parameters, together 500 

with a slightly larger value of ~2ꞏD50 (0.256 m) for the down spike parameter. 501 

Quantitative assessment of preliminary LBEs mapped from the best six smoothed DTMs 502 

found P-LBE-10 to perform best, making the associated RSM the preferred RSM (Table S11). 503 

Preliminary LBEs from this RSM had the best global performance metric and second best MJI 504 

(0.183), MER (0.014), and PA (0.836) scores. PA scores for all six preliminary LBE datasets 505 

were between 0.794 and 0.864 and MJI scores were between 0.107 and 0.212. These values are 506 

near the high end of the benchmark values reported by Kaartinen et al. (2012) and Marconi et al. 507 

(2019), indicating an accurate representation of observations. 508 

Comparing performance metrics between extraction approaches, there were within-509 

approach and between-approach differences, with no one approach being best for all metrics. 510 

Correlations between performance metrics were also weak (r < |0.57|), thus supporting the use of 511 

multiple performance metrics. Selective results from the five LBE extraction approaches are 512 

presented in Table 2 with complete results for all 44 LBEp datasets in Table S12. Between 513 

approaches, Gaussian filtered RSMs generally resulted in lower PA scores but higher PO scores, 514 

suggesting filtering produced fewer predicted LBEs but those that were mapped had good 515 

correspondence with coincident observed LBEs. One issue encountered with Gaussian filtering 516 

was rescaling of RSM values, as this complicated attempts to use physically-based metrics for 517 

parameter selection. With regard to PO, MJI, and global performance metrics, MCWS 518 

approaches (iii–v) performed better than vertical threshold approaches (i and ii). Trends for MER 519 

scores were not consistent, but vertical threshold approaches appeared to outperform MCWS 520 

approaches. No distinction was present between MCWS and vertical threshold approaches for 521 

PA performance as variation was more strongly controlled by within-approach parameters. 522 
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Within approaches, larger parameter values for marker detection and feature extraction in the 523 

MCWS algorithm (Text S3.3) and larger vertical thresholds acted to reduce the spatial extent of 524 

LBE mapping. All else being equal, this had the effect of decreasing PA and PO scores and 525 

increasing MJI and MER scores. The interpretation here is that more constrained LBE mapping 526 

reduced commission errors at the expense of creating omission errors. Overall, tested approaches 527 

performed comparatively well as all datasets exceeded the selected MJI benchmark of 0.164, and 528 

40 of 44 datasets exceeded the PA benchmark of 0.56. However, since MCWS approaches 529 

consistently performed best, they are recommended over vertical threshold approaches when 530 

mapping LBEs or similar landscape features. 531 

Based on performance metrics and visualizing predicted LBE polygons, the MCWS-V-2 532 

dataset from approach (iv), RSM with MCWS and variable window size, was selected as the 533 

preferred LBE dataset. Values for the main MCWS parameters controlling the minimum RSM 534 

value for a pixel to be considered a marker (minimum marker RSM height) and the minimum 535 

RSM value for a pixel to be included in the segmentation (minimum crown RSM height) for the 536 

MCWS-V-2 dataset were scaled to ~2.4ꞏD50 (0.312 m) and ~2.1ꞏD50 (0.272 m), respectively 537 

(Text S3.3.2; Table S12). This dataset had the 27th best PA score (0.756), 33rd best PO score 538 

(0.720), 7th best MJI score (0.45), and 3rd best MER score (0.086) but had the 3rd best global 539 

performance metric score, thus representing a balance between accuracy and precision that 540 

favored avoidance of commission errors over excess prediction. PA and MJI scores also 541 

exceeded the specified benchmark thresholds, thus this dataset’s LBE mapping was considered 542 

satisfactory. Qualitatively this dataset also performed well with regard to LBE segmentation. For 543 

instance, while datasets MCWS-C-6 and MCWS-C-8 from approach (iii), RSM with MCWS and 544 

constant window size, had better global performance metric scores, visualization found resulting 545 
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LBEs were over-segmented (Figure 7). Notably, no approach was able to discern boulders from 546 

bedrock outcrops or fully decouple individual boulders from boulder clusters, meaning, at times, 547 

clusters were aggregated into individual polygons. 548 

Like many predictive sedimentological models there is potential for overfitting parameter 549 

values of the MCWS-V-2 dataset to the LBEo data used for calibration and validation that could 550 

result in poor mapping performance when applied to the study segment as a whole. However, 551 

since the main MWCS parameters only define minimum RSM threshold values for what 552 

constitutes an LBE, mapping performance was consistent across the RSM and would only be 553 

impacted if the definition of an LBE substantially changed between reaches. Based on expert 554 

opinion, the set of observed LBEs was assumed representative of LBEs in the study site, and thus 555 

presumed suitable for specifying parameters to be applied to all study reaches. The fact that 556 

LBEs were mapped in varying abundances throughout the study site with only small areas 557 

lacking any LBEs is taken as reasonable support of this assumption. Qualitative assessment of 558 

mapped LBEs over the whole of the study segment and the fact that MCWS parameters were not 559 

set to optimize performance metrics also reduced potential overfitting. 560 

Prior to filtering, MCWS-V-2 mapped a total of 46,471 individual LBEs in the study site. 561 

Of these, 302 LBEs (0.6 %) were completely removed and an additional 497 LBEs (1.0 %) were 562 

partially removed due to uncertainty in topographic source data. After this initial filtering, an 563 

additional 2722 LBEs (5.9 %) did not meet the identified lidar point density criteria (>2.9 564 

pts/m2) and 3081 LBEs (6.7 %) did not meet the 𝜎௭തതത criteria (>0.03 m) resulting in 3993 more 565 

LBEs (8.6 %) being removed, leaving 42,176 polygons in the final LBE dataset (Text S3.3.2). 566 

Geometrically the final set of LBE polygons had Dc values (i.e., heights) ranging from the 567 

minimum of 0.312 m to 19.7 m and areas ranging from 0.2 to 234.4 m2 (Figure 8). Filtering and 568 
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the tendency to favor low commission over omission errors meant the final mapping 569 

underestimated the total number of LBEs. Lastly, while focus was on mapping boulders and 570 

bedrock outcrops, LWM would be included in the final dataset if features met parametric 571 

mapping criteria, though previous surveys suggest low densities of LWM in the study site 572 

(YCWA, 2013). 573 

Table 2. Selected performance metrics of predicted large bed element datasets with best and 574 
worst global performance score for each mapping approach. Maximum values for each metric 575 
are highlighted in light-gray and minimum values are italicized. Preferred dataset in bold and 576 
underlined†. 577 

ID PA PO MJI MER 

Global 
Performance 
(Normalized 

mean) 
(i) RSM with vertical threshold 
V-1 0.894 0.774 0.269 0.030 0.445
V-11 0.669 0.659 0.371 0.086 0.521
(ii) Gaussian filtered RSM with vertical threshold 
GV-1 0.760 0.705 0.333 0.054 0.458
GV-3 0.611 0.779 0.246 0.051 0.352
(iii) RSM with MCWS and constant window size 
MCWS-C-8 0.798 0.715 0.464 0.083 0.738
MCWS-C-10 0.809 0.828 0.392 0.025 0.581
(iv) RSM with MCWS and variable window size 

MCWS-V-1 0.760 0.715 0.460 0.083 0.714
MCWS-V-2 0.756 0.720 0.450 0.086 0.718
(v) Gaussian filtered RSM with MCWS and constant window size 
GV-MCWS-C-3 0.712 0.810 0.436 0.057 0.674
GV-MCWS-C-14 0.780 0.874 0.339 0.020 0.535
†Acronyms in table are as follows: producers accuracy (PA), producers overlap (PO), modified Jaccard 
similarity index (MJI), missed-to-excess ratio (MER), roughness surface model (RSM), and marker 
controlled watershed segmentation (MCWS). 

  578 
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 579 

Figure 7. Comparison of large bed element (LBE) segmentation performance among algorithms. 580 
(a) uncrewed aerial system image, (b) MCWS-V-2, (c) MCWS-C-6, and (d) MCWS-C-8. Note 581 
tendency for greater polygon segmentation in panels (c) and (d). MCWS-V-2 (b) was selected as 582 
the preferred LBE dataset.  583 
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 584 

Figure 8. Overlain kernel densities of large bed element (LBE) (a) diameter (Dc), and (b) area 585 
probability densities for the four discharge-dependent LBE datasets. Note, x-axis is plotted on a 586 
log-scale. 587 

4.2. LBE concentrations 588 

LBEs were present individually and in clusters throughout the river corridor. Visually 589 

speaking, LBEs conformed to a variety of morphological configurations. Clustered LBEs 590 

appeared in seemingly random as well as organized arrangements often forming transverse 591 

orientations and step-like structures. Reticulate configurations were discernable but more 592 

difficult to identify (Figure 9). 593 

At the segment scale, Γ of each wetted area monotonically increased from 18.2 % at 594 

baseflow to 26.5 % at flood-flow (Table 3). The trend indicates that as discharge increased the 595 

rate at which new LBE area was inundated (e.g. within the wetted area) exceeded the rate that 596 

new portions of the river corridor became inundated. This was facilitated by increasingly higher 597 
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Γ values in each incremental inundation corridor (Table 3) and meant that, on a per-wetted-area 598 

basis, increasingly higher Γ existed along channel margins. 599 

Reach-scale results also found wetted area Γ to increase with discharge, although Reach 6 600 

had nearly uniform values across discharges (Table 3). Changes in reach-scale wetted area Γ 601 

were also strongly influenced by inundation corridor Γ values, such that higher inundation 602 

corridor Γ generally resulted in greater increases in wetted area Γ between discharges (Figure 603 

S9). A Pearson bivariate correlation of 0.86 between the differences in reach-scale wetted area Γ 604 

between subsequent discharges and inundation corridor Γ values supports this interpretation. 605 

Across discharges, reaches showed consistent trends in relative Γ magnitude. For instance, while 606 

each reach’s wetted area Γ values varied with discharge, ranking values at any given discharge 607 

resulted in the same ordering across all discharges. As such, Reach 2 always had the highest 608 

wetted area Γ, whereas Reach 6 was always lowest. This consistent ordering suggests possible 609 

reach-scale wetted area Γ dependencies on hillslope and fluvial geomorphic, topographic, and 610 

geometric factors influencing LBE supply, storage, and/or transport. 611 

Cross-sectional Γ trends for each wetted area varied spatially and with discharge (Figure 612 

10). Mainly, the increased granularity of these results highlight Γ spatial variability and 613 

tendencies for semi-oscillatory and more irregular LBE patterns. Longitudinally, Γ profiles were 614 

characterized by constant high-frequency oscillations of varying amplitude and non-constant 615 

low-frequency fluctuations (Figure 10). The non-parametric Mann-Kendall test indicated slight, 616 

but non-trivial (p < 0.05), decreasing downstream trends in all profiles. Comparison of all 617 

possible profile combinations found relatively high correlations (r > 0.8). Key features recurring 618 

throughout the profiles were sequences of LBE clustering as indicated by rising limbs in the 619 

profiles, which peaked or temporarily plateaued, and subsequently declined along diffusive style 620 
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decay pathways. These patterns were emphasized after processing profiles with a 130 m (5 621 

widths) centered moving-window mean filter.  622 



  Page 38 of 78 

 623 

 624 

Figure 9. Typical configurations of clustered and individual large bed elements (LBEs) within 625 
the study site’s bankfull channel overlain on shaded detrended relief that include (a-c) low 626 
concentration, isolated and clustered LBEs; (d-f) moderate concentration, transverse and step 627 
structures; and (g-i) high-concentration mixtures of steps, transverse structures and possible 628 
reticulate formations. LBEs outside the bankfull channel are partially transparent. Representative 629 
LBE concentration (Γ) and cross-sectionally averaged non-dimensional LBE spacing (𝝀∗

𝒍തതത) values 630 
for each panel are shown. These values were calculated by averaging bankfull cross-sectional Γ 631 
and 𝝀∗

𝒍തതത values for all cross-sections present in each panel.  632 
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Table 3. Discharge-dependent large bed element concentration (Γ) within each simulated wetted 633 
area and inundation corridor for study segment and reaches. Values between 0.08 and 0.30 are 634 
within the wake interference regime and are highlighted in gray. 635 

Reach 

Wetted area Γ  Incremental inundation corridor Γ 

Simulated discharge (m3/s) Discharges bounding inundation corridor (m3/s)
1.54 10.73 82.12 343.6 1.54 - 10.73 10.73-82.12 82.12-343.6 

Segment 0.182 0.211 0.242 0.265 0.321 0.329 0.348
1 0.161 0.181 0.212 0.236 0.257 0.301 0.340
2 0.230 0.269 0.310 0.332 0.411 0.428 0.414
3 0.191 0.218 0.255 0.286 0.346 0.368 0.386
4 0.225 0.261 0.288 0.304 0.372 0.369 0.364
5 0.150 0.178 0.207 0.235 0.295 0.300 0.328
6 0.089 0.098 0.099 0.102  0.167 0.102 0.114

  636 
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 637 

Figure 10. Longitudinal profiles of cross-sectional large bed element (LBE) concentration (Γ) 638 
values for each discharge-dependent LBE dataset. Light-gray lines are values at each cross-639 
section. Black lines are moving average within a 130 m centered moving window. Dashed 640 
horizontal lines are thresholds for Morris’s (1959) hydrodynamic regimes at 0.08 and 0.30, 641 
respectively. Black vertical markers at top show reach breaks. 642 

4.3. LBE spacings 643 

Discharge-dependent streamwise spacing metrics (𝜆௟, 𝜆∗
௟ , and 𝜆∗

௟෡ ) spanned a wide range 644 

but always had positively skewed distributions showing a strong tendency for closely spaced 645 

LBEs (Figure S10). The 𝜆∗
௟෡  results, which were for individual LBEs, depict clear clustering 646 

trends (Figure S10), whereas 𝜆∗
௟ഥ  longitudinal profiles, which depict spacing averaged at the cross-647 

sectional scale, illustrate greater variability in spacing behavior (Figure 11). For instance, 𝜆∗
௟ഥ  648 
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profiles were quite erratic, and like Γ profiles, exhibited high-and-low frequency oscillations of 649 

varying amplitudes and consistencies. 650 

 651 

Figure 11. Longitudinal profiles of discharge-dependent cross-sectionally averaged non-652 
dimensional large bed element spacing (𝝀∗

𝒍തതത) values. Light-gray lines are values at each cross-653 
section. Black lines are moving average within a 130 m centered moving window. Dark dots 654 
along top of plot are cross-sections with zero values. Vertical black bars show reach breaks. Note 655 
the y-axis range is limited to 0-60 for visual purposes despite higher values occurring. 656 

4.4. Question 2 results (maximum resistance) 657 

Segment scale wetted area Γ values were all in the range of values associated with 658 

Morris’s (1959) wake interference regime (Table 3). At the reach scale, 21 of 24 wetted area Γ 659 

results were also within the wake interference regime, signifying LBEs in these spatial domains 660 
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were predominantly configured to maximize flow resistance. Similarly, cross-sectional Γ values 661 

found wake interference to be the most common regime in all segment scale wetted areas and in 662 

18 of 24 reach-scale wetted areas (Figure 12). Across discharges and spatial domains between 42 663 

and 66 % of cross-sections were classified in either isolated roughness or skimming flow 664 

regimes, thus demonstrating localized divergences from the wake interference regime. At higher 665 

discharges the proportion of cross-sections classified as wake interference and/or skimming flow 666 

increased as the proportion classified as isolated roughness decreased. Longitudinal profiles of 667 

cross-sectional Γ show oscillations were commonly around the thresholds of the wake 668 

interference regime (Figure 10). 669 

Classifying segment- and reach-scale domains based on percentages of classified 𝜆∗
௟෡  670 

values found that with the exception of Reach 6, which was always in the isolated flow regime, 671 

all domains were in the skimming flow regime (Table 4). On the other hand, percentages of 672 

classified cross-sectional 𝜆∗
௟ഥ  values found that while skimming flow was the most prevalent 673 

regime in the segment-scale baseflow wetted area, wake interference was most prevalent in the 674 

wetted areas of the three higher discharges (Figure 13). In the study reaches, 8 of 24 wetted areas 675 

had the highest percentages of cross-sectional 𝜆∗
௟ഥ  values in wake interference regime, 10 had the 676 

most in the skimming flow, and six had the most in the isolated flow regime (Figure 13). At 677 

higher discharges the proportion of cross-sections classified as wake interference and isolated 678 

roughness generally increased. 679 

Trends in 𝜆∗
௟෡  and 𝜆∗

௟ഥ  values contrast with results using Γ, which found LBE density to 680 

increase in these same domains. The differences are not mutually exclusive and could result from 681 

presence of high-density clusters of LBEs being relative widely spaced along channel margins as 682 

larger portions of the river-valley were included in the calculations, compared to more closely 683 
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spaced, lower density LBE clusters in the baseflow channel. Sensitivity to the spacing thresholds 684 

used to characterize the regimes certainly exists, however these results support that LBEs were 685 

closely spaced and structured to maximize resistance at certain scales and in certain portions of 686 

the river corridor. Further, like cross-sectional Γ values, oscillations in 𝜆∗
௟ഥ  longitudinal profiles 687 

were commonly around the thresholds of the wake interference regime (Figure 11). In this sense 688 

the wake interference regime may represent an attractor state toward which conditions, on 689 

aggregate, converge. 690 

 691 

Figure 12. Percentages of cross-sectional large bed element (LBE) concentration (Γ) values by 692 
spatial domain classified according to Morris’s (1959) hydrodynamic regimes for each 693 
discharge-dependent LBE dataset. Bars highlighted bold are the dominate regime for each flow. 694 
Labeled bars had majority (>50 %) of cross-sections in one regime. Reaches are ordered from 695 
left to right moving upstream consistent with Figure 10.  696 
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Table 4. Percentage of individual non-dimensional large bed element (LBE) spacing (𝝀∗
𝒍෢) values 697 

classified according to Morris’s (1959) hydrodynamic regimes for each discharge-dependent 698 
LBE dataset. For each domain and flow the regime with the highest percentage of classified 𝝀∗

𝒍෢ is 699 
highlighted in gray and bolded. Abbreviations are such that: IF – isolated roughness; WI – wake 700 
interference; and SF – skimming flow. 701 

Reach 
Simulated discharge (m3/s) 

1.54 10.73 82.12 343.6 

IF WI SF IF WI SF IF WI SF IF WI SF 

Segment 23.68 28.39 47.93 24.25 28.94 46.81 25.47 28.81 45.72 26.25 28.35 45.40 

1 29.14 26.91 43.94 29.07 27.60 43.33 28.50 27.78 43.72 28.98 26.20 44.81 

2 17.33 24.96 57.71 16.95 26.79 56.26 17.13 26.34 56.53 18.01 26.51 55.48 

3 21.75 29.83 48.42 22.80 29.77 47.44 23.91 30.74 45.36 23.64 29.41 46.95 

4 17.54 30.73 51.72 19.19 31.14 49.67 22.41 30.77 46.82 24.16 31.44 44.40 

5 26.42 29.85 43.73 28.14 30.36 41.50 29.53 29.68 40.80 29.61 29.27 41.12 

6 52.81 29.21 17.98 55.97 23.63 20.40 57.89 24.26 17.85 60.95 22.59 16.46 

 702 

 703 

Figure 13. Percentages of cross-sectionally averaged non-dimensional large bed element (LBE) 704 
spacing (𝝀∗

𝒍തതത) values within the study segment and each reach classified according to Morris’s 705 
(1959) hydrodynamic regimes for each discharge-dependent LBE dataset. Bars highlighted bold 706 
are the dominate regime for each flow and study domain. Labeled bars had majority (>50 %) of 707 
cross-sections in one regime. Reaches are ordered from left to right moving upstream consistent 708 
with Figure 11.  709 
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4.5. Comparing hydrodynamic regimes from concentration and spacing metrics 710 

Numerous tests performed for question 2 using Γ and spacing metric results require 711 

reconciliation. Comparison of segment and reach-scale regime classifications by Γ and 𝜆∗
௟෡  found 712 

only 3 domains were classified the same by each metric. The two most common classification 713 

discrepancies were Γ-based wake interference sections classified as isolated and skimming flow 714 

regimes according to 𝜆∗
௟෡  values (Table 5). Comparison of all cross-sections found only 44 % 715 

were classified the same by each metric. The three most common classification discrepancies 716 

were Γ-based wake interference sections classified as isolated and skimming flow regimes 717 

according to 𝜆∗
௟ഥ  values, and Γ-based skimming flow sections classified as wake interference by 718 

𝜆∗
௟ഥ  (Table 5). This resulted in greater portions of the study site classified as skimming flow 719 

according to 𝜆∗
௟ഥ  and 𝜆∗

௟෡  compared to Γ. As mentioned in Section 4.4, uncertainty in regime 720 

thresholds could explain some of the disparity between methods. Adjusting 𝜆∗
௟ഥ  thresholds to 721 

maximize the percent of cross-sections classified the same, with the constraint that wake 722 

interference was within the range of 1 ≤ 𝜆∗
௟ഥ  ≤ 10, improved the percent predicted the same by 723 

both metrics to 51% and resulted in the following thresholds: isolated roughness for 𝜆∗
௟ഥ  > 10, 724 

wake interference for 3 ≤ 𝜆∗
௟ഥ  ≤ 10, and skimming for 𝜆∗

௟ഥ  < 3. Higher 𝜆∗
௟ഥ  values for the upper 725 

bound of the wake interference regime continued to improve consistency between metrics, but 726 

values > 10 for this threshold are not supported by the literature (Canovaro et al., 2007; Tan and 727 

Curran, 2012). 728 

One issue that emerged when using 𝜆∗
௟ഥ  values to classify cross-sections was if only one or 729 

a few LBEs were present per section, and all 𝜆∗
௟෡  values were small (i.e., <2), the section would be 730 

classified as skimming flow despite few LBEs being present. At the other extreme, a lack of 731 
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downstream LBEs would identify a section with potentially high LBE concentrations in the 732 

isolated roughness regime. This issue was highlighted by results of comparing distributions of 733 

cross-sectional LBE counts and median LBE areas classified by Γ and 𝜆∗
௟ഥ , which found 734 

distributions of these metrics were more distinct and generally increased when progressing from 735 

isolated flow to skimming flow for Γ classified regimes, whereas distributions were more 736 

uniform between 𝜆∗
௟ഥ  classified regimes (Text S4.4; Figures S11 and S12). Several patterns also 737 

emerged when comparing LBE count and median LBE area distributions of similarly classified 738 

cross-sections with those having classification discrepancies (Figures S13 and S14). For 739 

instance, LBE counts of sections classified as wake interference by Γ but as isolated roughness 740 

or skimming flow by 𝜆∗
௟ഥ  were lower than for similarly classified sections (i.e. both in wake 741 

interference regime). This is reasonable for isolated roughness regime classification 742 

discrepancies, but unexpected for sections classified in the skimming flow regime. Since median 743 

LBE areas were lower for 𝜆∗
௟ഥ -based isolated roughness sections and higher for 𝜆∗

௟ഥ -based 744 

skimming flow sections compared to similarly classified sections, this suggests 𝜆∗
௟ഥ -based isolated 745 

roughness classification discrepancies might have been driven by lower numbers of smaller 746 

LBEs with longer downstream spacings compared to similarly classified sections, and that 𝜆∗
௟ഥ -747 

based skimming flow classification discrepancies might have been driven by lower numbers of 748 

larger LBEs with shorter downstream spacings (Text S4.4). In light of these issues and the 749 

established relationship between Γ and flow resistance (e.g. Canovaro et al., 2007; Nitsche et al., 750 

2011), Γ is taken as a more reliable metric for the resistance based regime classification of 751 

natural channel cross-sections employed in this study.  752 
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Table 5. Confusion matrix of the number of domains classified into each of Morris’s (1959) 753 
hydrodynamic regimes using (a) segment- and reach-scale large bed element (LBE) 754 
concentration (Γ) (rows) and individual non-dimensional large bed element (LBE) spacing (𝝀∗

𝒍෢) 755 
(columns) values, and (b) cross-sectional Γ (rows) and cross-sectionally averaged non-756 
dimensional LBE spacing (𝝀∗

𝒍തതത) (columns) values. Numbers along diagonals were classified the 757 
same by both metrics. Abbreviations are such that: IF – isolated roughness; WI – wake 758 
interference; and SF – skimming flow. 759 

(a) Segment and 
reach scale 

(n = 28) 

𝜆∗
௟෡  (b) Cross-section 

scale 
(n = 16,832) 

𝜆∗
௟ഥ  

IR WI SF IR WI SF 

Γ 
IR 0 0 0 

Γ 
IR 1346 435 387 

WI 4 0 21 WI 3411 3320 1997 

SF 0 0 3 SF 866 2344 2726 

4.6. Question 3 results (lateral LBE structure) 760 

Wetted area and incremental inundation corridor Γ values served as indicators for how 761 

LBE spatial structure varied laterally in the study segment. In contrast with the results for 762 

question 2, the vast majority, 23 of 28, incremental inundation corridor Γ values were classified 763 

in the skimming flow regime, and only 5 were in the wake interference regime. Incremental 764 

inundation corridor Γ values always exceeded wetted area Γ values for the same domain. As 765 

described in section 4.2 this meant that on a per-area basis more LBEs were located along 766 

channel margins than in the baseflow and representative bankfull channels (Table 3). Within the 767 

same domain, changes in incremental inundation corridor Γ values were variable, at times 768 

increasing (Segment and Reaches 1, 3, and 5), decreasing (Reach 4), or fluctuating (Reaches 2 769 

and 6) as discharge increased. Together, these results indicate LBE spatial structure varied 770 

laterally, thus providing differential discharge-dependent roughness in the study segment. 771 
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5. Discussion 772 

5.1. Mapping LBEs in a mountain river 773 

The study’s semi-automated mapping procedure facilitated a systematic census of LBEs 774 

within a 13.2-km mountain river. Using open-source software and operations that could be 775 

implemented in any GIS, the procedure is transferable across rivers with the caveat that 776 

parameterization will likely be site-dependent. Accurate mapping of LBEs from ALS data is 777 

valuable as these systems are capable of covering broader spatial ranges than other topographic-778 

based remote sensing methods (Tomsett and Leyland, 2019). Compared to imagery-based 779 

methods, mapping LBEs from 3D point cloud data also had the benefit of retaining heights that 780 

LBEs protruded above a smoothed bed, which could be useful for ecological, hydraulic, and 781 

hazard analysis (Brasington et al., 2012). The mapping procedure also allows for mapping of 782 

LWM or other sources of macroroughness, as inclusion of such features is only constrained by 783 

topographic data resolution and algorithm parameters. The study’s 0.46 m DTM resolution and 784 

the site’s lack of LWM likely precluded extensive mapping of LWM as LBEs. However, given 785 

adequate data resolution, parameters could be tuned to map a ranged of desired roughness 786 

features captured by the unique RSM generation process. 787 

The finding that all tested LBE extraction approaches performed well, based on most 788 

LBEp datasets exceeding PA and MJI benchmarks for matching tree-crowns, is motivating given 789 

all approaches were parametrically simple and computationally efficient at the segment scale. 790 

Still, some approaches outperformed others as demonstrated by the range of PA scores (0.416-791 

0.901). Importantly, high PA values alone may be misleading, as simply mapping more LBEs 792 

results in higher PA scores. For example, several LBEp datasets with high PA scores had 793 

relatively low MJI and MER scores, justifying the need for multiple performance metrics (Table 794 
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S12). Further cross-comparison of findings was constrained by absence of studies reporting 795 

performance metrics for LBE mapping. However, aspects of mapping performance were still 796 

interrogated and found the primary factors controlling mapping performance were: (i) parameter 797 

selection for smoothed DTM creation; (ii) approach for LBE extraction; and (iii) extraction 798 

algorithm parameterization. 799 

Establishing physical and/or consistent data-driven methods for setting ground 800 

classification parameters as part of RSM generation is relevant for transferability of the LBE 801 

mapping procedure. As described in section 3.3.1, four physically based length scales informed 802 

the range of several key parameters tested and found D50 was best for parameterizing the 803 

algorithm’s spike and offset parameters, and ~2ꞏD50 was best for the down spike parameter. 804 

These parameters can roughly be thought of in terms of controlling which grains should be 805 

included in the RSM and which should be removed. The outcome of this study was that grains 806 

~D50 in height were retained in the RSM, and those larger were removed. This common 807 

sedimentological length scale provides a physical basis for parameter selection but further 808 

applications are required to evaluate its transferability or universality for smoothed DTM 809 

creation in other systems. 810 

Approaches for LBE extraction varied in terms of mapping accuracy and ease of 811 

implementation. Performance metrics and heuristic assessment found approach (iv), MCWS with 812 

a variable window size, produced the best set of predicted LBEs. Generally, MCWS approaches 813 

(iii-v) outperformed vertical threshold approaches (i-ii) for mapping LBEs or similar landscape 814 

features, however, mapping performance typically varied more within-approaches having 815 

different parameters than between approaches having similar parameters (sections 3.3.2 and 4.1; 816 

Text S3.3.2). 817 
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Similar to the smoothed DTM creation process, consistent methods for parametrizing 818 

feature extraction algorithms aid transferability of the LBE mapping procedure. Data-driven 819 

parameter calculations in this study were simple to implement in any GIS, only requiring a RSM 820 

and a small set (102-103) of observed LBEs. Observed LBEs could be digitized from imagery 821 

sources or field surveyed if necessary. Since MCWS approaches performed best, discussion is 822 

limited to methods for scaling the approach’s minimum marker and minimum crown RSM 823 

height input parameter values (see section 4.1 and Text S3.3 for details). Calculated minimum 824 

RSM values for a pixel to be considered a marker for the top five performing MCWS approaches 825 

scaled between ~2.4-3.3ꞏD50 (0.312-0.423 m). Holding other parameters constant, there was little 826 

difference in global performance metric scores for this range of values, suggesting, sensitivity to 827 

this parameter was low. In the sense this parameter controls the minimum height defining 828 

roughness elements it bears resemblance to Nikuradse’s (1933) equivalent sand-grain roughness, 829 

ks, which is typically related to characteristic grain sizes through various scaling relationships. 830 

The ks parameter is ubiquitous in hydraulic resistance equations and is often scaled by 831 

multiplying D50 by a factor greater than unity based on understanding that the largest particles 832 

present dominate flow resistance (e.g. Powell, 2014). Marker RSM values in this study fall 833 

within the broad range of ks scaling relationships, but are lower than what has been 834 

recommended for coarse-bedded rivers (e.g., 5-7ꞏD50) (Weichert, 2006; Powell, 2014). RSM 835 

values do not have a 1:1 correspondence with grain sizes as the former represents topographic 836 

offsets from a variable but smooth bed surface, which could account for why the minimum RSM 837 

value range was smaller than typical D50 scaling of ks values. The smaller D50 scaling for 838 

minimum RSM values may simply serve to retain a range of smaller LBEs in the mapping 839 

procedure than what is considered in resistance equations with larger ks values. Estimates of the 840 
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minimum RSM for pixels to be included in the segmentation process, essentially a control on the 841 

lateral extent of LBE mapping, for the top five performing MCWS approaches scaled between 842 

~1.5-2.1ꞏD50 (0.192-0.272 m). These values were between ~0.61-0.87ꞏminimum RSM values. 843 

Mapping performance was more sensitive to this parameter, and higher values had better global 844 

performance metric scores. These improvements diminished when values were above ~1.3ꞏD50 845 

(0.169 m) (Tables S4 Table S12). Further applications are required to evaluate the robustness of 846 

these scaling ranges for MCWS based LBE mapping in other systems. 847 

Beyond performance metrics, visualization noted differences in each approach’s ability to 848 

distinguish individual LBEs versus aggregate features (i.e., over- and under-segmentation). 849 

Vertical threshold approaches appeared less capable of segmenting abutting LBEs, whereas 850 

MCWS methods performed better in this regard, as segmentation was an implicit part of the 851 

extraction algorithm. Depending on one’s goals, some amount of LBE under-segmentation may 852 

be acceptable. For instance, mapping particle clusters and/or coarse bedforms such as channel 853 

steps are of interest in many studies (Hassan and Reid, 1990; Wittenberg and Newson, 2005). 854 

Alternately, over-segmentation can serve to differentiate complex LBE forms into discrete 855 

sections, provided each section has a peak identifiable by the marker algorithm. This could be 856 

applied toward the study of LBE granular structures, the differential sculpting of complex 857 

bedrock features, and/or allow classification of different cluster types, as a few examples. 858 

5.2. LBE lateral spatial structure and resistance 859 

Analyzing LBE spatial structure metrics made it possible to gain insight into LBE 860 

organization in the study site at multiple spatial scales. A notable pattern that emerged from 861 

quantifying Γ within wetted areas and incremental inundation corridors of discharges ranging 862 

from baseflow (1.54 m3/s) to a 3.5-yr flood event (343.6 m3/s) was that on a per-area basis more 863 
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LBEs were located along channel margins than in the baseflow and representative bankfull 864 

channels (Table 3). This was true for the segment as a whole and within each reach, confirming 865 

it was neither scale-dependent nor only a localized phenomenon. 866 

One explanation for higher Γ along channel margins is preferential deposition of hillslope 867 

derived LBEs in these areas rather than in the bankfull channel portion of the valley bottom. 868 

Benda (1990) made this observation in the Oregon Coast Range where boulders from debris 869 

flows were deposited before the flow front, thus leaving various disconnected fans, levees, 870 

and/or terraces above channel bottoms. Depositional patterns (e.g. size, shape, and location) of 871 

wasting events are influenced by sedimentological and morphological hillslope properties and 872 

often differentiate by movement type (Hungr et al., 2001). For instance, pre-frontal boulder 873 

deposition is common among debris floods and rock avalanches, whereas coarse materials tend 874 

to be present at the front of landslides and debris flow deposits (Hungr et al., 2001; Hewitt, 875 

2002). The site’s high potential for mass wasting processes (Curtis et al., 2005), provide 876 

abundant possibilities to supply LBEs to the study site’s valley-bottom. However, the degree to 877 

which various modes of wasting and associated depositional mechanics are responsible for 878 

observed lateral Γ patterns remain unclear, and theory suggests fluvial transport among other 879 

factors play a role. For example, mass movements are often conceptualized as being randomly 880 

located along rivers (e.g. Ouimet et al., 2007), which contrasts with the distinct sequences of 881 

high- and low-density LBE clusters in the baseflow and bankfull channels (Figure 10) and more 882 

diffuse and uniformly distributed LBEs along high flow channel margins (Table 3). 883 

Redistribution of channel margin LBEs to more uniformly paved configurations during historic 884 

high magnitude discharges offers one plausible explanation. The fact that LBEs were comprised 885 

of boulders, boulder clusters, and bedrock outcrops could mean Γ differences were simply due to 886 
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the presence of exposed bedrock surfaces along channel margins. Weathering and attrition 887 

leading to more rapid breakdown of baseflow and bankfull channel LBEs could also account for 888 

a portion of lateral Γ differences (Attal, 2017). 889 

While Γ values were highest along margins it is relevant to reiterate that baseflow and 890 

bankfull channel Γ values were still relatively high, often at levels conceptualized to maximize 891 

flow resistance, thus necessitating supply of LBEs to these portions of the valley bottom as well. 892 

Tight hillslope-channel coupling theoretically supports deposition of hillslope derived materials 893 

in the bankfull channel (Whiting and Bradley, 1993). Conceptually, channel margins could act as 894 

interim storage locations for LBEs to enter the channel through destabilization processes 895 

occurring during infrequent high magnitude discharges (Golly et al., 2019). This is one of many 896 

fluvial-hillslope feedbacks known to modulate LBE delivery and depositional processes (Shobe 897 

et al., 2016). In addition to destabilizing channel margins, infrequent high magnitude discharges 898 

also promote disturbance and transport of bankfull channel LBEs and coarse-bedforms, which 899 

are thought to re-organize during smaller more frequent flood events, often achieving oscillatory 900 

or semi-oscillatory patterns similar to those observed in the study sites baseflow and bankfull 901 

channels (Grant et al., 1990). The study site’s largest recorded flood occurred in 1997 at a 902 

magnitude of 2165.6 m3/s. It is assumed this ~34-yr flood was capable of mobilizing LBEs 903 

several meters in size but the geomorphic work performed relative to the above processes and 904 

detangling relative roles of hillslope and fluvial processes driving lateral Γ differences require 905 

additional study. 906 

Regardless of explanatory factors, the nested Γ sequence along the study site’s river 907 

corridor confirmed LBE spatial structure did vary laterally and provides the means for 908 

differential roughness as an increasing density of macroroughness features are encountered as 909 
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discharges increase. This structuring has potential implications toward the commonly held 910 

convention that average resistance decreases as discharge increases, as is the case in lower 911 

gradient channels with well-defined banks and less abundant LBEs (Powell, 2014). In confined 912 

river canyons with abundant LBEs that lack a clear bankfull channel, the discharge-resistance 913 

relation response may differ from convention depending on relative contributions of resistance 914 

from LBEs versus changing hydraulic conditions (Bathurst, 1978; Pagliara et al., 2008). 915 

Hypothetically, if resistance borne by LBEs in incremental inundation corridors increases faster 916 

than the amount lost from increasing width-to-depth ratios and mid-channel LBEs becoming 917 

highly submerged (i.e. flow depth to Dc ratio ~10 [e.g. Weichert, 2006]) and no longer 918 

contributing much resistance it is possible for spatially averaged resistance to increase, remain 919 

constant, or only minimally decrease up to a point these relationships no longer hold (Abu-Aly et 920 

al., 2014; Cassan et al., 2017). In the study site, the latter condition would certainly occur when 921 

the river canyon is inundated and LBEs submerge faster than new LBEs are encountered. 922 

Ferguson et al. (2019) found a similar scenario in a relatively smooth, trapezoidal, bedrock 923 

channel where resistance initially increased with discharge due to increased sidewall roughness, 924 

before subsequently decreasing. Notably, increased LBE submergence in the study site’s 925 

baseflow and bankfull channels at higher discharges would result in substantial resistance 926 

heterogeneity along channel cross-sections, potentially necessitating variable roughness length 927 

scales along different portions of the channel margins such as proposed by Ferguson et al. 928 

(2019). 929 

5.3. Segment and reach resistance maximization 930 

The question of whether LBEs were configured to maximize flow resistance was 931 

answered using LBE concentrations (Γ) and LBE-to-LBE spacing (𝜆∗
௟ ) metrics at multiple spatial 932 
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scales. At segment and reach scales, 25 of 28 wetted area Γ values corresponded to Morris’s 933 

(1959) wake interference regime which served as a hydrodynamic process-based mechanism for 934 

maximizing resistance. On the other hand, based on percentages of classified 𝜆∗
௟෡  values no 935 

discharge-dependent segment or reach scale domains corresponded to the wake interference 936 

regime (Table 4). Between metrics, there is reason to accept Γ is more reliable for this analysis 937 

(section 4.5), therefore the remainder of this section focuses on that metric with the 938 

understanding that 𝜆∗
௟෡  results contribute uncertainty to the supposition that LBEs were configured 939 

to maximize resistance. Interestingly, segment- and reach-scale Γ results did not document any 940 

cases of isolated roughness. 941 

The three Γ values not classified in the wake interference regime had concentrations of 942 

0.31, 0.33, and 0.304, respectively (Table 3). These are just outside the regime’s specified range 943 

(0.08-0.30) but are within a broader range of values reported in the literature that may still serve 944 

to maximize resistance. For example, in 394 runs in a flume with three macroroughness element 945 

configurations (random, transverse stripe, and longitudinal strip), Canovaro et al. (2007) found 946 

flow resistance was maximized at macroroughness concentration of ~30 %. Similarly, Pagliara et 947 

al. (2008) found friction factor increased for macroroughness concentrations up to ~30 %, the 948 

maximum concentration of their 197 experimental runs in a fixed-bed flume with randomly 949 

patterned elements. Powell (2014) reviewed multiple studies, including those above, and 950 

reported resistance was maximized at macroroughness concentrations between 20 and 40 %. 951 

Other experiments, such as those by Nowell and Church (1979) who found resistance maximized 952 

at a macroroughness density of 8.3 %, support the possibility of resistance maximizing at lower 953 

concentrations. The range of Γ corresponding to maximum resistance in these studies contributes 954 

uncertainty to the study’s simplifying assumption that the wake interference regime always 955 
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corresponds to maximum resistance. However, in the absence of unifying Γ-resistance relations, 956 

the interpretation remains that discharge-dependent LBEs in the study segment and most reaches 957 

were configured to maximize or nearly maximize resistance. 958 

Notably, omission and commission errors and over- and under-segmentation in the final 959 

LBE dataset would affect Γ and 𝜆∗
௟෡  values and associated regime classifications. Regarding Γ, 960 

omissions would result in underestimation effects that could be partly balanced by commission 961 

errors, whereas over- and under-segmentation wouldn’t effect this metric. Assuming a 25 % 962 

maximum omission rate (i.e. 25 % increase in Γ), which is reasonable according to PA 963 

performance (Table 2), 5 of the 25 segment- and reach-scale Γ values in the wake interference 964 

regime would switch to the skimming flow regime. However, all baseflow domains would 965 

remain in the wake interference regime and most Γ values would remain below 0.4. For 𝜆∗
௟෡ , 966 

omissions would also generate underestimation effects, while commission and over- and under 967 

segmentation could have opposite effects due to creating more closely abutting LBEs. 968 

Comparative Γ measurements from other mountain rivers are somewhat lacking, but a 969 

few are available in the scientific literature. Resop et al. (2012) mapped 31.8 % areal cover of 970 

boulders (>0.256 mm diameter) within a 2nd order, cobble-boulder forested Appalachian 971 

mountain stream. Boulder (>0.5 m) concentrations reported by Nitsche et al. (2011) for 14 steep 972 

mountainous reaches in the European Alps were between 0 and 40 %. Other reporting posits that 973 

large particles generally occupy 2-50 % of the bed area in coarse-bedded rivers (Wittenberg and 974 

Newson, 2005). Outside natural rivers, the mobile-bed flume experiments of Church et al. (1998) 975 

and Hassan and Church (2000) found reticulate structures of “stone cells” to occupy 10-25 % of 976 

final stable bed configurations. These experiments were conducted both with and with-out 977 

sediment feed under various flow conditions, typically in the range producing partial transport. 978 



  Page 57 of 78 

Eaton et al. (2020) proposed a morphologic stability criteria for laterally confined gravel-bed 979 

streams of immobile grains occupying 20 % of the areal proportion of the bed. Together, these 980 

findings provide some support that macroroughness features in mountain rivers occur within the 981 

wake interference regime. Still, inconsistencies in how LBE/macroroughness features are 982 

classified and quantified, the complexity of processes involved in how LBEs are supplied to and 983 

stored in channels, potential Γ dependencies with other morphometric properties, the need to 984 

potentially account for other sources of roughness (e.g. spill and vegetative roughness), and the 985 

continuously evolving nature of LBE distributions mean more study is needed to understand the 986 

wake interference regime as an attractor state for maximizing resistance toward which natural 987 

channels evolve (Molnar et al., 2010). Further, the idea that LBEs organize to maximize 988 

resistance fundamentally requires both an active supply of LBEs in the landscape, which itself 989 

depends on several factors including but not limited to regional lithology, climate, vegetation, 990 

tectonics, and age of the landscape (Attal, 2017; Neely and Dibase, 2020); and a river style 991 

where roughness is the primary mode of channel adjustment, which is only true for certain river 992 

styles (Brierley and Fryirs, 2005; Fryirs et al., 2016). Notably, both these limiting conditions are 993 

present in the study site. 994 

Previous findings documenting positive relationships between channel slope and Γ are a 995 

good example of the dependency that Γ may have on other morphometric properties described 996 

above (Grant and Swanson, 1995; Nitsche et al., 2012). Recent study on this topic posits a 997 

negative autogenic feedback exists between Γ, channel slope, and hillslope processes such that 998 

following a change in base level, river incision acts to steepen adjacent hillslopes, thereby 999 

increasing LBE delivery to channels (Shobe et al., 2016). The physical protection and resistance 1000 

provided by LBEs mediate further channel incision, ultimately allowing for occurrence of overly 1001 
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steep channel slopes compared to equilibrium profiles expected by landscape evolution modeling 1002 

theory. Like the works cited above, results from this study also found positive relationships 1003 

between reach-averaged slope and Γ (Figure 14). More detailed analysis of the relationship 1004 

between LBEs and morphometric properties, such as slope, is enticing but beyond the scope of 1005 

this effort. 1006 

 1007 

Figure 14. Reach scale large bed element (LBE) concentration (Γ) versus reach averaged slope 1008 
for each discharge-dependent LBE dataset. Discharges in legend are in m3/s. 1009 

5.4. Cross-section resistance maximization 1010 

Unlike previous efforts aggregating Γ at larger spatial scales (Nitsche et al., 2011), this 1011 

study included both Γ and 𝜆∗
௟ഥ  calculations at river cross-sections (10-1 width). This granularity 1012 

highlighted spatial variability of Γ and 𝜆∗
௟ഥ , and associated Morris regimes, in the study site. For 1013 

𝜆∗
௟ഥ , this is also the first time we aware of this type of LBE spacing metric being calculated in a 1014 
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natural setting at any scale. In many mountain rivers the expectation that all cross-sections would 1015 

conform to a single hydrodynamic regime such as the wake interference regime is unrealistic. 1016 

This type of uniform, plane-bed channel morphology contrasts with both the diversity of river 1017 

styles present in mountainous regions as well as the tendency for bedform development (Grant et 1018 

al., 1990; Brierley and Fryirs, 2005). This divergence was exemplified by the oscillatory nature 1019 

of the study site’s Γ and 𝜆∗
௟ഥ  profiles (Figure 10; Figure 11), which includes definitive bedforms 1020 

(Wiener and Pasternack, 2019). Nevertheless, the tendency for oscillations to be centered about 1021 

the wake interference regime supports the notion that portions of the channel must be attracted to 1022 

this state, which is compatible with theory for regular to semi-regular coarse bedforms patterns 1023 

to maximize resistance and promote channel stability (Abrahams et al., 1995; Madej, 2001). In 1024 

this regard there may be interest to use Γ and/or 𝜆∗
௟ഥ  as more basic units of geomorphic analysis in 1025 

addition to or in lieu of more traditional metrics involving channel unit classification (Grant et 1026 

al., 1990; Adams, 2020). 1027 

Discrepancies in cross-sectional Γ and 𝜆∗
௟ഥ  based regime classifications highlighted 1028 

potential uncertainties in thresholds used to classify regimes and potential issues using 𝜆∗
௟ഥ  for 1029 

classifying Morris’s hydrodynamic regimes in natural rivers. While Γ was taken as a more 1030 

reliable metric for the purposes of this study, spacing metrics like 𝜆∗
௟ഥ  and 𝜆∗

௟෡  still have utility in 1031 

describing hydraulic properties in natural channels as they correspond with flow disruption and 1032 

recovery length scales (Bathurst, 1978; Tan and Curran, 2012). Spacing metrics can also be used 1033 

to address open questions of whether clustering mechanisms dominate over dispersive 1034 

mechanisms in the longitudinal spacing of LBEs in mountain rivers (Madej, 2001). Taken 1035 

together, the study’s concentration and spacing metrics form scale-dependent phase-spaces 1036 

providing more complete representations of a river channel’s LBE spatial structure (Figure S15). 1037 
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For instance, if a river has Γ in the wake-interference regime and 𝜆∗
௟ഥ  in the skimming regime, as 1038 

was often the case for baseflow conditions in the study site, this suggests individual LBEs are 1039 

present in closely spaced clusters (i.e., low 𝜆∗
௟ഥ ), but that the clusters are widely spaced (i.e., 1040 

relatively low Γ). Visualizing discharge-dependent metric trajectories on phase-spaces can aid in 1041 

describing how LBE spatial structure and resistance change as different portions of the river 1042 

corridor become inundated. Lastly, it is reasonable to posit that data plotting in discrete regions 1043 

of a Γ-λ phase-space could discriminate different channel morphologies and/or where different 1044 

modes of channel adjustment such as planform, gradient, or bed roughness would likely 1045 

dominate (Eaton and Church, 2009). 1046 

5.5. Resistance maximization as an attractor state 1047 

Results of the study found LBEs in the study segment and several other mountain rivers 1048 

were often present in spatial configurations associated with maximizing flow resistance. 1049 

However, findings do not address the question of how and why channels might adjust toward a 1050 

state of maximum flow resistance. The why of this question remains part of a set of open 1051 

questions on landscape evolution and fluvial morphodynamics that are outside the scope of the 1052 

effort. However, acceptance of the extremal/regime theory hypothesis that channels adjust their 1053 

boundaries to maximize flow resistance provides a limited answer, even if the validity of this 1054 

hypothesis remains open (Eaton and Church, 2009). 1055 

How LBE configurations might evolve to maximize flow resistance can be explored 1056 

through conceptual trajectories of landscape adjustment under the assumption that channels 1057 

adjustment their boundary conditions to increase hydraulic resistance when resistance is low 1058 

relative to hydraulic forces and visa-versa. Firstly, if LBEs are present in configurations above 1059 

those associated with maximum flow resistance high LBE densities covering the channel bed 1060 
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would reduce incision (Sklar and Dietrich, 2004; Shobe et al., 2016). This would be expected to 1061 

reduce hillslope LBE supply through reduced upslope propagation of hillslope steepening and 1062 

increased hillslope stability (Attal et al., 2015; Shobe et al., 2016). During periods of reduced 1063 

supply, other factors such as attrition, weathering, and transport could serve to reduce LBE 1064 

configurations. Where LBE supply remains high, a cyclical feedback of resistance induced 1065 

deposition creating more planar beds and thus more transportable LBEs could develop LBE 1066 

configurations that oscillate between maximize resistance and those exceeding this condition 1067 

(i.e., skimming flow) (Wohl and Merritt, 2008; Eaton et al., 2020). 1068 

Alternately, LBE configurations lower than those that maximize flow resistance can drive 1069 

feedbacks increasing LBE supply, deposition, or other adjustments that increase resistance. For 1070 

instance, with less LBE cover incision processes would increase leading to greater hillslope LBE 1071 

supply (Shobe et al., 2016). Lower resistance also means channels are less stable during floods, 1072 

which can lead to hillslope destabilization that increases LBE supply, and increased LBE 1073 

transport (Wohl and Merritt, 2008; Ferguson et al., 2019; Golly et al., 2019). The latter may be 1074 

counterintuitive, but can promote bedform development through jamming type interactions 1075 

and/or armor development that can then increase resistance through exhumation, increased 1076 

deposition, and/or reduced transport of LBEs supplied by hillslopes (Wohl and Merritt, 2008). 1077 

Though simplified, these feedbacks provide reasonable trajectories of LBE mediated channel 1078 

adjustment toward conditions of maximum resistance while leaving room for more complex 1079 

oscillations and non-equilibrium behavior. 1080 
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6. Conclusions 1081 

In a recent commentary on the importance of larger-than-average particles, Williams et 1082 

al. (2019) stated the need to, “appraise the presence, sources, distribution and role of large grain 1083 

deposits in contemporary riverscapes.” In this study we present and use a semi-automated 1084 

procedure to systematically map LBEs at the segment scale within a mountain river from 3D 1085 

point-cloud data. The suite of performance metrics employed found application of a MCWS 1086 

algorithm to return the best LBE prediction results among tested methods, with performance 1087 

comparable to efforts from the field of forestry for mapping tree-crowns. To allow transferability 1088 

of the procedure, effort was taken to rely on physical or data-driven techniques for parameter 1089 

selection. The study site’s D50 served as a reference scale for mapping algorithm parameters, but 1090 

further application is required to understand the universality or range of appropriate scaling 1091 

factors. Ultimately, given the availability of a 3D point cloud, reasonable LBE mapping was 1092 

proven to be easily implementable across a variety of spatial scales. This could prove valuable 1093 

toward improving sediment transport predictions (Yager et al., 2007) and habitat 1094 

characterizations (Gippel et al., 1996) in mountain rivers where accurate accounting of LBEs is 1095 

critical (Piégay et al., 2020). 1096 

Following mapping, novel exploration of LBE spatial structure was conducted using LBE 1097 

concentrations and streamwise LBE-to-LBE spacing metrics for multiple laterally and/or 1098 

hierarchically nested spatial domains at multiple spatial scales. Greater LBEs concentrations 1099 

along channel margins compared to baseflow and representative bankfull channels provided the 1100 

foundation for an untested conceptualization for spatially averaged resistance to increase, remain 1101 

constant, or only minimally decrease with discharge, which differs from current conventional 1102 

understanding. Segment- and reach-scale LBE configurations supported the hypothesis that 1103 



  Page 63 of 78 

LBEs were often organized to maximize flow resistance on the basis of the hydrodynamic flow 1104 

regimes originally proposed by Morris (1959), however conflicting results, uncertainty in regime 1105 

thresholds and the assumption that the wake interference regime always corresponds to 1106 

maximum resistance, and uncertainty regarding the relative role of fluvial versus other 1107 

geomorphic mechanisms driving LBE organization leave open questions about this extremal 1108 

model of geomorphic adjustment. Analysis of river cross-sections demonstrated the spatial 1109 

variability of LBE configurations, but findings also served to reinforce that the wake interference 1110 

regime may act as an attractor state toward which conditions converge but from which there is 1111 

freedom to deviate in response to dynamic forces shaping the LBE landscape (Phillips, 1999). 1112 

Further study of LBEs in other mountain rivers at multiple spatial scales is required to better 1113 

understand the regularity and mechanisms by which LBEs are structured to maximize resistance 1114 

and variability around the wake interference regime. Nevertheless, the fact that LBEs were often 1115 

configured to maximize resistance as well as documenting differential patterns in the lateral 1116 

spatial structure of LBEs in the river corridor may have practical applications for synthetic river 1117 

design and guiding river management or restoration actions such as designing LBE 1118 

configurations or having reach scale LBE concentrations in the wake interference regime as a 1119 

process-based goal. 1120 
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The organization of this document uses the same outline and headings of the study to 16 

which this supplements. Subject headings followed by the word “none” indicate no supplemental 17 

information is provided for that section.18 
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1. Introduction 19 

Table S1. Summary of LBE influences on river channels and landscapes. 20 

Topic Summary Selected references 
Hydraulics and 
hydrodynamics  

LBEs are a primary source of flow resistance in mountain rivers. Locally, LBEs 
generate complex wake and vortex structures that cause deviations from idealized 
logarithmic vertical velocity profiles. Collectively, LBEs act to influence flow 
patterns and the spatial distribution of hydraulic properties (depth, velocity, bed shear 
stress) that govern other fluvial processes such as sediment transport. 

Morris, 1959; Bathurst, 1978, 1985, 1987; 
Gomez, 1993; Gippel et al., 1996; Baiamonte 
and Ferro, 1997; Ferro, 1999; Byrd et al., 2000; 
Lamarre and Roy, 2005; Canovaro et al., 2007; 
Lacey and Roy, 2008; Pagliara et al., 2008; 
Hardy et al., 2009; Schneider et al., 2015a, 
2015b; Fang et al., 2017; Ferguson et al., 2017; 
Monsalve et al., 2017; Groom and Friedich, 
2019 

Sediment 
transport and 
retention 
dynamics 

LBEs influence localized patterns of erosion and deposition. This in-turn effects the 
granular structure of the bed and the formation, stability, and sedimentological 
characteristics of sediment patches. The presence of LBEs can enhance bed stability 
through interlocking, imbrication, and hiding effects that therein influence the 
entrainment and transport of adjacent grains and patches. By extracting energy from 
the flow in the form of resistance and stabilizing the bed LBEs regulate the storage 
and export of sediments. So called LBE 'sticky spots' can even provide potential for 
long term storage (1000's of years) which contrasts with traditional views of 
mountain rivers as conveyor belts for sediment transport. Collectively, LBE 
interactions aggregate to exert primary control of sediment storage within and fluxes 
of sediment out of mountain rivers systems. 

Billi, 1988; Kirchner et al., 1990; Paola et al., 
1992; Reid and Hassan, 1992; Sear, 1992, 1995, 
1996; Paola and Seal, 1995; Laronne et al., 
2001; Lancaster et al., 2001; Shamloo et al., 
2001; Thompson, 2001, 2008; Faustini and 
Jones, 2003; Yager et al., 2007, 2012; Nitsche et 
al., 2011; Ghilardi et al., 2014; Thompson et al., 
2016; Papanicolaou and Tsakiris, 2017; Sutfin 
and Wohl, 2019 

Channel stability 
and organization 
of fluvial 
landforms 

LBEs comprise a key constituent of coarse-bedforms including stone clusters, 
transverse ribs, stone cells, and alluvial steps. These bedforms all tend to increase 
channel resistance which is hypothesized to directly correlate with conditions of 
maximum bed stability. LBEs specifically promote stability through interlocking and 
imbrication with surrounding substrates. Evidence suggests LBEs in natural rivers 
may organize in order to maximize flow resistance and promote channel stability. 

Nowell and Church, 1979; Brayshaw, 1985; 
Grant et al., 1990; Hassan and Reid, 1990; 
Church et al., 1998; Madej, 2001; Zimmermann 
and Church, 2001; Buffington et al., 2002; 
Church and Zimmermann, 2007  

Landscape 
evolution 

LBEs are a product of landscape evolutions processes but also have direct autogenic 
feedbacks on channel and hillslope evolution due to their ability to mediate fluvial 
incision and shape channel morphology. 

Benda and Dunne, 1997; Sklar and Dietrich, 
2004; Johnson et al., 2009; Turowski et al., 
2007, 2008; Attal et al., 2015; Shobe et al., 
2016; Glade et al., 2019 
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Morphodynamic 
processes 

Through their ability to steer the flow, influence hydraulics and sediment transport 
processes, regulate landscape evolution, and self-organize LBEs have first order 
control on the morphodynamic evolution of rivers channels. 

Wittenberg and Newson, 2005; Piedra et al. 
2012; Tan and Curran, 2012; MacKenzie and 
Eaton, 2017; Williams et al., 2019  

21 
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Table S2. Existing definitions of LBEs. 22 

Reference LBE definition 
Grant et al., 1990 Clasts with diameters on the same order as the depth 

of the bankfull channel; wood not included. 
Grant et al., 1990 Clasts equaling or exceeding the 90th percentile of 

the bed material; wood not included. 
Hassan et al., 2019 Clasts equaling or exceeding the 95th percentile of 

the bed material; wood not included. 
Thompson, 2008; Ferguson et al., 2017 Clasts with b-axis equal to or greater than 0.256 m; 

wood not included. 
Finnegan et al., 2019 Clasts with planform diameter equal to or greater 

than 0.3 m; wood not included. 
Benda, 1990; Nitsche et al., 2011; 
Schneider et al., 2015a 

Clasts with b-axis equal to or greater than 0.5 m; 
wood not included. 

Shobe et al., 2016 Clasts with b-axis equal to or greater than 1 m; wood 
not included. 

Grant and Swanson, 1995 Clasts that protrude from an otherwise relatively 
level surface by at least 1.5 m; wood not included. 

Lisle, 1986; Thompson, 2001 Boulders or protrusions with the longest dimension 
larger than one-third bankfull width; wood included. 

Weichert, 2006; (see also Bathurst, 
1985; Shamloo et al., 2001) 

Review of roughness length scale definitions where 
‘large-scale’ features are generally defined as having 
relative submergencea values < 3; wood not 
included. 

Fang et al., 2017; Monsalve et al., 
2017; Papanicolaou and Tsakiris, 2017 

Relative submergence threshold value of 3.5 used to 
define a ‘low relative submergence regime’ for 
replicating flows around LBE-like objects in flumes; 
wood not included. 

aRelative submergence defined as ratio of flow depth to LBE diameter. 

2. Study river segment 23 

None. 24 
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3. Methods 25 

3.1. Topo-bathymetric mapping 26 

This was the first time a detailed topographic map has been produced of the Yuba River 27 

between New Bullards Bar Dam and Colgate Powerhouse (study site). Position of the aircraft 28 

performing ALS collection was measured twice per second (2 Hz) by an onboard differential 29 

GPS unit, and aircraft attitude was measured 200 times per second (200 Hz) as pitch, roll and 30 

yaw (heading) from an onboard inertial measurement unit (IMU). To allow for post-processing 31 

correction and calibration, aircraft and sensor position and attitude data are indexed by GPS time. 32 

The average overall ground classified density including bathymetric bottom was 3.96 points/m2, 33 

while the bathymetric bottom return density alone was 2.30 points/m2. Average discharge over 34 

this time period was estimated to be 1.19 m3/s at the downstream study site boundary, which is 35 

hereafter referred to as the ‘lidar baseline’ flow condition.  36 

Review of the initial bare-earth and sub-aqueous bathymetry lidar files (ground points) 37 

from Quantum Spatial indicated a significant number of true ground points associated with 38 

boulders, exposed bedrock, and other high variability terrain features had been erroneously 39 

rejected (i.e., Type I errors). Using a publically available ground classification algorithm 40 

(Isenburg, 2016) a procedure was developed to reclassify and reincorporate these Type I errors 41 

back into the ground point dataset (Wiener and Pasternack, 2016). The objective of this process 42 

was balancing proper classification of previous Type I errors without introducing new Type II 43 

errors (e.g. incorrectly classified ground points). Following processing, the revised lidar dataset 44 

was subjected to significant vetting through visualization methods and hand editing to remove 45 
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lingering classification errors. The reclassification procedure increased average point density of 46 

the final ground point dataset from 9.0 to 13.9 pts/m2 (Wiener and Pasternack, 2016). 47 

In addition to (mis)classification issues, NIR and Green lidar have inherent coverage and 48 

water-depth penetration limitations. Despite overall excellent lidar penetration and coverage, the 49 

survey did not yield ground returns for ~ 40,873 m2 of in-water areas representing ~ 22% of the 50 

open water area present at the time of the survey. Supplemental bathymetric observations at three 51 

locations within the study site were made between July 8 and 9, 2015 by kayak using a single-52 

beam echosounder coupled to a real-time kinematic global positioning system (RTK GPS) 53 

covering an area of ~13,530 m2 (~ 33% of area missing data). 54 

Limited access and rugged terrain within the river canyon largely prevented kayak and 55 

foot access to much of the remaining areas lacking bathymetric data. To fill these data gaps an 56 

approach developed by Legleiter et al. (2004) linking known water depths to an image-derived 57 

quantity ‘X’, defined as the natural logarithm of two multi-spectral imagery wavelengths, was 58 

used to predict water depths and derive additional bathymetric data (depth-derived data; Wiener 59 

and Pasternack, 2016). Source imagery for depth-to-X statistical models was obtained from the 60 

National Agricultural Inventory Program (NAIP). The source imagery, dated from 2014, was 61 

close to the date of lidar acquisition, and the 1-m resolution imagery included three spectral 62 

bands; green (460 nm, width 60 nm); red (635 nm, width 50 nm), and blue (560nm, width 63 

50nm). Rasters of lidar intensity returns were used to georeference NAIP imagery with other 64 

topographic/bathymetric data to ensure proper alignment of depth-derived data. 65 

Depth data for training depth-to-X statistical models was derived from water surface 66 

elevations (WSE) obtained during the lidar acquisition and final lidar ground points such that 67 
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depths were approximated as: WSE minus ground surface elevation. Edge effects were 68 

minimized by only selecting points at least 2 meters from the georeferenced imagery’s waters’ 69 

edge. The training dataset consisted of 137,022 estimated depth points. For each depth point, 70 

underlying imagery band wavelength values were sampled and statistical relationships (linear 71 

and/or polynomial regression models) were created relating depth to all possible band ratio 72 

combinations (i.e., X values). Statistical models were evaluated based on goodness of fit criteria 73 

such as R2 values. Models were also tested in a predictive mode against an independent depth 74 

dataset (i.e. the single-beam soundings) using three performance metrics: (i) lowest root mean 75 

square error (RMSE); (ii) linear regression slope between predicted depths and observed 76 

sounding depths closest to unity; and (iii) R2 between predicted depths and observed sounding 77 

depths closest to unity. 78 

The depth-to-X method has typically been applied to lowland, shallow, relatively clear 79 

flowing, gravel-bottom rivers with higher resolution imagery (Legleiter et al., 2004). Locations 80 

within the study site where the method was implemented were characterized by complex and 81 

heterogeneous terrain and substrates, varying water turbidity, and generally high depths. Due to 82 

differences in statistical model performance, the final mapping approach included a suite of 83 

depth-to-X predictive models spatially distributed along the river. Use of one model over another 84 

was based on an analysis of localized fit using the same metrics above (Wiener and Pasternack, 85 

2016). A total of 168,965 depth-derived ground points covering an area of ~ 15,783 m2 were 86 

predicted and included in the final topographic map (~ 39% of area missing data). To fill 87 

remaining locations lacking topographic data all available data sources were used to strategically 88 

place “augmented points”. Ground elevations at these locations were assigned manually based on 89 
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best professional judgement and neighboring points. A total of 2,182 augmented ground points, 90 

many analogous to ‘breaklines’, were manually input and included in the final topographic map. 91 

Merging all data sources resulted in a total of 69,784,144 topographic points. Of these 92 

21,279,867 points at an average spacing of 0.25 m and average density of ~ 16 pts/m2 were 93 

located within the river corridor. 94 

Lidar accuracy was assessed independently based on estimates of absolute accuracy, the 95 

error of the lidar derived ground surface compared to a more accurate survey method. Absolute 96 

accuracy was computed by comparison of the lidar ground surface to 23 ground check points and 97 

24 bathymetric check points from an RTK-GPS survey. The Fundamental Vertical Accuracy 98 

(FVA), a measure of error reported at the 95% confidence level (i.e. 1.96*RMSE), for ground 99 

points and bathymetric points were 0.037 m and 0.117 m, respectively. A full account of the 100 

mapping efforts, accuracy of mapping data, and post-processing of data is detailed in Wiener and 101 

Pasternack (2016). 102 

A WSE point dataset was also provided by Quantum Spatial. Review of the WSE data 103 

indicated the presence of numerous erroneous points. Spuriously high and low water surface 104 

points were manually removed resulting in a final dataset of 147,644 points representing the lidar 105 

baseline flow condition water surface (Wiener and Pasternack, 2016). Triangular irregular 106 

network (TIN) based interpolation methods were used to generate a continuous surface from the 107 

verified WSE points where sufficient data was present. 108 

3.2. Observed LBE dataset 109 

None. 110 
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3.3. LBE mapping 111 

3.3.1 Roughness surface model generation and testing question 1 112 

This section presents additional details on the procedure for mapping LBEs from 3D 113 

topographic point clouds. In the procedure’s first step, the “lasground_new.exe” ground 114 

classification algorithm of Isenburg (2016) was used to create a series of smoothed digital terrain 115 

models (DTMs) needed for creating roughness surface models (RSMs). As discussed in the main 116 

text the algorithm applies an adaptive TIN approach to iteratively classify ground points from an 117 

unclassified point cloud and requires input of a point cloud and six user-defined parameters. The 118 

approach for setting the algorithm’s parameters is described below, focusing on the spike, offset, 119 

down-spike, and step parameters as these were found to disproportionally influence the 120 

algorithm’s performance. 121 

To constrain the range of ground classification algorithm parameter values an initial 122 

‘larger’ parameter space was informed by several physically based metrics. For example, 123 

roughness length scales such as a representative grain size or a minimum LBE height were 124 

considered when setting the range for spike, offset, and down-spike parameter values. These 125 

parameters control if points are classified as ground or removed from the algorithm’s iteratively 126 

generated ground surfaces. Summarily, the specified length scale(s) define thresholds for ground 127 

point classification based on how much points extend below or protrude above an otherwise 128 

smooth but variable bed surface. Previously reported estimates of the study site’s D50 and D16 129 

values (D is particle diameter and the subscript is the percent of particles finer) of 0.128-0.256 m 130 

and 0.032-0.64 m, respectively, and two representative LBE sizes, 0.256 m and 0.5 m, were used 131 
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to define the range of parameters (Table S3). The latter two values correspond to the diameter of 132 

boulders in the Udden-Wentworth scale (Wentworth, 1922) and a common length used to define 133 

LBEs (Table S2), respectively. 134 

The algorithm’s ‘step’ parameter, which controls the size of the search window used to 135 

add points to the ground surface was also informed by physical considerations. Larger window 136 

sizes function to remove increasingly larger terrain features such that cohesive terrain features 137 

bigger than the window-size are often preserved in the final ground classification. However, 138 

larger window sizes can also modify the underlying terrain through non-ground classification, 139 

especially where steep slopes or rapidly undulating terrain features are present (Zhang and 140 

Whitman, 2005). For RSM generation and LBE mapping purposes, where the goal is creating a 141 

smoothed ground surface that retains the dominant topographic features of the original ground 142 

surface, a reasonable recommendation is for window sizes to be larger than the typical planform 143 

diameter of LBEs expected to be present or that are desired to be mapped but smaller than the 144 

expected/desired maximum LBE diameter or scale of dominate terrain features. For this study, 145 

step sizes ranged between 1.5 – 4.6 m (~3-9 DEM raster cell lengths). 146 

Altogether, 14 unique parameter combinations were established and used to generate 147 

smoothed point clouds and associated DTMs (Table S3). The 14 smoothed DTMs were assessed 148 

qualitatively with LAStools 3D visualization software based on two visual criteria: i) removal of 149 

clearly discernable LBEs; and ii) retaining the dominant topographic character of the original 150 

ground surface (i.e., location of slope breaks, small-scale terrain undulations, meso-scale terrain 151 

features). As discussed in the main text, six DTMs were selected to create a series of unique 152 

RSMs and a binary threshold approach was used to map discrete sets of preliminary LBEs from 153 
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each RSM. After assigning a random selection of 70% of the LBEo data to a ‘training’ dataset the 154 

average RSM value of all raster cells located along the exterior boundary of each LBEo polygon 155 

in the training set were calculated for each RSM, independently. The average of these values 156 

served as the vertical threshold for each RSM (Figure S1). While thresholds were unique for 157 

each RSM, they were obtained through a numerically consistent approach to avoid introduction 158 

of bias. 159 

To identify the preferred ground classification algorithm parameter combination and 160 

associated RSM, preliminary LBEs mapped from each smoothed DTM were quantitatively 161 

compared to the remaining 30% of the LBEo data using the study’s four performance metrics. 162 

Prior to conducting this analysis LBEo training and test data subsets were compared for similarity 163 

to provide confidence that training LBE data characteristics did not differ significantly from LBE 164 

test data, and thus not bias the mapping process. Metrics selected for this comparison were LBE 165 

planform area and max RSM raster value (Dc) of each LBE in the respective datasets. 166 

Comparison was performed using Welch’s t-test and the Kolmogorov-Smirnov test. Testing 167 

concluded an inability to reject the null hypotheses that distributions of these metrics had 168 

equivalent means and came from the same family of distribution at the 95% confidence level 169 

(p>>0.05). 170 

Quantitative assessment of predicted LBEs used four performance metrics. Details of 171 

each metric are described in the following paragraphs. 172 

The first metric, Producers accuracy (PA), is the ratio of the number of predicted LBEs 173 

(Np) spatially intersecting observed LBEs (No) to the number of observed LBEs: 174 
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 𝑃𝐴 = 	 !!∩!"
!"

 (Eq. 1) 175 

PA is widely applied across disciplines (Labatut and Cherifi, 2011; Barsi et al., 2018; Shao et al., 176 

2019) and in this context simply measures the hit-rate of predicted LBEs relative to observed 177 

LBEs. Since PA does not penalize for over-mapping the metric is entirely focused on accuracy 178 

without consideration of precision or commission errors. 179 

The next metric, Producers overlap (PO), is the ratio of the area of predicted LBEs (Ap) 180 

spatially overlapping the area of observed LBEs (Ao) to the area of observed LBEs from the set 181 

of observed LBEs that spatially intersect predicted LBEs: 182 

 𝑃𝑂 = 	 #!∩#"
#"∈!"∩!!

 (Eq. 2) 183 

This metric is simply the relative percent of total observed LBE area that is correctly predicted 184 

for the subset of observed LBEs that overlap with a predicted LBE. By constraining the 185 

denominator to only intersecting observed and predicted LBEs this metric focuses on the 186 

accuracy of how well those LBEs were predicted. Albeit similar to other metrics this formulation 187 

is believed to be unique. 188 

Both PA and PO metrics range from 0-1 with higher values indicating better precision 189 

and accuracy, respectively. One caveat is that both metrics benefit from more area being 190 

predicted as LBE and lack a penalty for commission errors. For example a rectangle covering the 191 

entire domain of observed LBEs would result in the max value of unity for both metrics. PO also 192 

does not penalize for omission errors and thus should be used in consideration with other metrics 193 

that do, such as PA. 194 
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Two other metrics, modified Jaccard similarity index (MJI) and missed-to-excess ratio 195 

(MER), penalize commission errors while being less sensitive to omission errors. The Jaccard 196 

similarity index is a common metric for comparing polygons that penalizes both omission and 197 

commission (Labatut and Cherifi, 2011). However, since the full set of observed LBEs was 198 

unknown the metric has been modified and is calculated as the ratio of the area of intersect 199 

between predicted LBEs and observed LBEs to the area of union between predicted LBEs and 200 

observed LBEs from the set of observed LBEs that spatially intersect predicted LBEs and the set 201 

of predicted LBEs that spatially intersect observed LBEs: 202 

 𝑀𝐽𝐼 = 	 #!∩#"
#!∪#"

∈ (𝑁& ∩ 𝑁'	and	𝑁' ∩ 𝑁&)  (Eq. 3) 203 

The metric assumes that excess LBEs predicted in the vicinity of an observed LBE should be 204 

penalized. The MJI metric ranges from 0-1 with a value of unity indicating perfect mapping for 205 

the set of LBEs considered. 206 

Lastly, MER is defined as the ratio of the area of observed LBEs less the area of 207 

intersection between observed and predicted LBEs (e.g., area of missed observed LBE mapping) 208 

to the area of predicted LBEs less the area of intersection between predicted and observed LBEs 209 

(e.g., area of excess predicted LBE mapping): 210 

 𝑀𝐸𝑅 = 	 #"	)	#!∩#"
#!	)	#"∩#!

	 (Eq.	4)	211 

Here it is assumed that a greater extent of predicted LBE mapping should yield a high probability 212 

of overlap with observed LBEs and penalizes the amount of observed LBE area that is missed 213 

scaled by excess predicted LBE mapping. The MER metric ranges from 0 - ∞. Larger MER 214 
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values are presumed better for several reasons. First, it is more ideal for only small areas of 215 

observed LBEs to be missed resulting is less variation in the numerator between predictions. 216 

Second, preliminary analysis suggests excess LBE prediction tends to be much greater than 217 

missed area (denominator >> numerator) across predictions and excess area is more variable 218 

between predictions. Thus higher MER values are associated with less missed mapping per unit 219 

excess mapping and functionally MER values do not exceed unity under the above described 220 

circumstances. Though similar to miss rate we are not aware of other studies using the MER 221 

metric. 222 

Table S3. Parameters and qualitative assessment of 14 smoothed DTMs. Selected DTMs marked 223 
with *. 224 

ID Step 
(m) 

Bulge 
(m) 

Spike 
(m) 

Down 
spike 
(m) 

Offset 
(m) Intensity 

Qualitative finding 
(LBE removal; 

Terrain 
modification)ab 

P-LBE-1* 3.05 0.03 0.15 0.30 0.15 extra Excellent; Moderate 
P-LBE-2 1.52 0.03 0.15 0.30 0.15 extra Moderate; Moderate 
P-LBE-3* 4.57 0.03 0.15 0.30 0.15 extra Excellent; Moderate 
P-LBE-4 3.05 0.03 0.15 0.0 0.15 extra Poor; Moderate 
P-LBE-5 3.05 0.30 0.15 0.30 0.15 extra Moderate; Moderate 
P-LBE-6 3.05 0.03 0.15 0.30 0.15 hyper Moderate; Moderate 
P-LBE-7 3.05 0.03 0.50 0.25 0.50 extra Poor; Excellent 
P-LBE-8 3.05 0.03 0.25 0.25 0.25 extra Poor; Excellent 
P-LBE-9 3.05 0.03 0.13 0.50 0.13 extra Moderate; Moderate 

P-LBE-10* 3.05 0.03 0.13 0.25 0.13 extra Excellent; Moderate 
P-LBE-11* 3.05 0.03 0.03 0.13 0.03 extra Excellent; Moderate 
P-LBE-12* 3.05 0.03 0.06 0.13 0.06 extra Excellent; Moderate 
P-LBE-13* 4.57 0.03 0.06 0.13 0.06 extra Excellent; Poor 
P-LBE-14 4.57 0.03 0.13 0.25 0.13 extra Excellent; Poor 

aLBE removal performance increases from: poor to moderate to excellent. 
bTerrain modification performance increases from: poor to moderate to excellent. 

  225 
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 226 

Figure S1. Conceptual depiction of how vertical threshold were calculated from LBEo training 227 
data. The training data was constant but RSM heights would vary between smoothed DTMs.  228 

3.3.2 LBE extraction and accuracy testing for question 1 229 

Approaches for LBE extraction tested in this study were informed by methods for 230 

mapping tree-crowns from remotely-sensed imagery and/or topographic data. Tree-crown 231 

mapping methods can be broadly classified into those that apply mathematical morphology 232 

(Andersen et al., 2001; Koukoulas and Blackburn, 2005), object-based image analysis (Sullivan 233 

et al., 2009; Jakubowski et al., 2013), edge-detection, local-maxima filtering and detection 234 

(Popescu and Wynne, 2004; Argamosa et al., 2016), clustering (Culvenor, 2002; Morsdorf et al., 235 

2004), valley-following (Leckie et al., 2003), region-growing (Barnes et al., 2017; Dalponte et 236 

al., 2019), watershed segmentation (Chen et al., 2006; Koch et al., 2006; Kwak et al., 2007), and 237 

graph based (Strîmbu and Strîmbu, 2015) approaches. Nearly all approaches use a canopy height 238 

model (CHM) as a starting point. Smoothing CHMs with low-pass mean or Gaussian filters prior 239 

to crown mapping is also typical (Chen et al., 2006; Kwak et al., 2007). Crown mapping 240 
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approaches differ in their computational expense, number of parameters, and public availability. 241 

Given the goal of mapping LBEs at the river segment scale, computational efficiency was a 242 

necessary consideration when testing approaches. Reproducibility using open-source software 243 

was also favored. Details on the five LBE extraction approaches used in this study are provided 244 

in the following paragraphs. 245 

The simplest and most computationally efficient strategies, (i) RSM with vertical 246 

threshold and (ii) Gaussian filtered RSM with vertical threshold, involved applying a vertical 247 

threshold to the RSM or filtered RSM. Areas above the threshold were considered LBE and 248 

those below were masked out as non LBE. This is similar to Otsu’s (1979) binary threshold 249 

approach, the only difference being how thresholds were specified. Conceptually, vertical 250 

thresholds could be data-driven based on LBE training data, optimized through comparison with 251 

LBE testing data using the study’s performance metrics, based on representative length scales, be 252 

statistical (e.g. Otsu, 1979), or set qualitatively. For approach (i) 12 thresholds were tested (Table 253 

S4). Eleven values between 0.1524-0.4572 m set in increments of 0.03048 m were tested as these 254 

covered a wide range of reasonable LBE length scales. The final threshold value of 0.283 m was 255 

derived from averaging the set of averaged RSM values for cells along the boundary of each 256 

observed LBE polygon (Figure S1). 257 

For approach (ii) three parameters were needed: two for the Gaussian filter (standard 258 

deviation of kernel [σ] and window-size) and the vertical threshold. A total of six parameter 259 

combinations were tested using three different sigma values (0.152, 0.305, and 1.524 m), two 260 

different window sizes (3 cells and 5 cells), and vertical thresholds calculated as the average of 261 

all averaged Gaussian filtered RSM values for cells along the boundary of each observed LBE 262 
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polygon (Table S4). When applying a Gaussian filter to CHMs, Dralle and Rudemo (1996) found 263 

tree-crown mapping to be insensitive to the sigma parameter but that window-size did influence 264 

performance due to the effect on the smoothed CHMs. For tree-crown mapping they 265 

recommended window sizes should be less than the crown size of the smallest tree of interest. 266 

Gaussian filtering was done in R code using the ‘spatialEco’ package (Evans, 2019). Raster 267 

masking using the vertical thresholds for approach (i) and (ii) were done with the ArcGIS spatial 268 

analyst extension tool suite and converted to polygons using the raster to polygon tool. 269 

Marker-controlled watershed segmentation (MCWS) approaches: (iii) RSM with MCWS 270 

and constant window-size; (iv) RSM with MCWS and variable window-size; and (v) Gaussian 271 

filtered RSM with MCWS and constant window-size, were slightly more complex and 272 

computationally intensive. All MCWS approaches involved two steps: first, markers or “LBE 273 

tops” were detected from the RSM; and second, markers were used to delineate distinct LBEs 274 

from the RSM. The number of parameters for each approach varied and are listed in Table S4. 275 

Markers were retrieved from the RSM using a variable-window local-maxima filter 276 

algorithm (e.g. Popescu and Wynne, 2004) implemented in R code using the ‘ForestTools’ 277 

package (Plowright and Roussel, 2020). The algorithm requires input of an RSM, a parameter 278 

controlling the minimum RSM value for a pixel to be considered a marker, and a search window 279 

size. The window-size in the algorithm can be set as a constant or vary as a function of RSM 280 

pixel value. Both constant and variable window sizes were tested. Functions to define window-281 

size can be based on observed data and/or assumptions of idealized relationships between feature 282 

height and area (Popescu and Wynne, 2004; Chen et al., 2006). Comparing the relationship 283 

between Dc and planform area for the observed LBE data with several functions for ideal 284 
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spheroid objects found over 98% of LBEs to geometrically reside in-between models for an 285 

oblate (wide) spheroid and a prolate (tall) spheroid, in the domain of spherical objects (section 286 

3.3.2.2). Therefore, a spherical model where window-size was set equal to the pixel RSM value 287 

divided by two was used to define the variable window-size (e.g., window size was set equal to 288 

the planform radius of each potential LBE based on RSM value). In order to control for very 289 

small window sizes that would add to computational time and also be inefficient at mapping 290 

LBEs (Chen et al., 2006), a constraint was placed requiring a minimum window-size. Two 291 

minimum sizes were tested, 3 and 5 m, respectively which equated to windows with radii of ~3 292 

and ~5 raster cells. 293 

In order to constrain the parameter spaces of approaches (iii-v) only data-driven 294 

parameterization methods were used when specifying other input parameters. Values for the 295 

minimum RSM value for a pixel to be considered a marker were based on five calculations from 296 

the observed LBE data using different approximations for the minimum height observed features 297 

protruded above the smoothed DTM raster: 298 

• (1) the median of the set of averaged RSM values for cells within each observed 299 

LBE polygon; 300 

• (2) the average of the set of averaged RSM values for cells within each observed 301 

LBE polygon; 302 

• (3) the average of the set of maximum RSM values for cells within each observed 303 

LBE polygon; 304 

• (4) the median of the set of averaged RSM values for points generated every 0.31 305 

m along a border line located one raster cell inward of each observed LBE 306 

polygon's border; and 307 
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• (5) the average of the set of averaged RSM values for raster cells along each 308 

observed LBE polygon's border. 309 

Following marker identification, LBE polygons were created using a watershed 310 

segmentation function (e.g. Beucher and Meyer, 1993) implemented in R code using the 311 

‘ForestTools’ package (Plowright and Roussel, 2020). The segmentation algorithm requires input 312 

of markers, a RSM raster, and a parameter that controls the minimum RSM value for a pixel to 313 

be included in the segmentation. Values for the minimum RSM parameter were based on six 314 

calculations using the observed LBE data to approximate the minimum value that the edge of 315 

observed features protruded above the smoothed DTM raster: 316 

• (1) the median of the set of median values of RSM values for points generated 317 

every 0.31 m along each observed LBE polygon's border; 318 

• (2) the median of the set of averaged RSM values for points generated every 0.31 319 

m along each observed LBE polygon's border; 320 

• (3) the average of the set of averaged RSM values for points generated every 0.31 321 

m along each observed LBE polygon's border; 322 

• (4) the median of all RSM values for points generated every 0.31 m along each 323 

observed LBE polygon's border; 324 

• (5) the average of the set of minimum RSM values for cells along each observed 325 

LBE polygon's border; and 326 

• (6) the average of the set of minimum RSM values for cells within each observed 327 

LBE polygon. 328 

Ultimately, 10 parameter combinations were tested for approach (iii), two combinations for 329 

approach (iv), and 14 combinations for approach (v) (Table S4).330 
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Table S4. Parameters for 44 predicted LBE datasets. 331 

ID Parameters 
(i) RSM with vertical threshold: One parameter - vertical threshold (m) 
V-1 0.152 
V-2 0.183 
V-3 0.213 
V-4 0.244 
V-5 0.274 
V-6 0.305 
V-7 0.335 
V-8 0.366 
V-9 0.396 
V-10 0.427 
V-11 0.457 
V-12 0.283 
(ii) Gaussian filtered RSM with vertical threshold: Three parameters - vertical threshold (m); σ (m); window size (# of cells) 
GV-1 0.031 0.152 3 
GV-2 0.031 0.305 3 
GV-3 0.031 1.524 3 
GV-4 0.011 0.152 5 
GV-5 0.011 0.305 5 
GV-6 0.011 1.524 5 
(iii) RSM with MCWS algorithm and constant window size: Three parameter - minimum marker height (m); minimum crown height (m); 
window size (m)a 
MCWS-C-1 0.283 (5) 0.033 (5) 3 
MCWS-C-2 0.297 (1) 0.118 (1) 3 
MCWS-C-3 0.297 (1) 0.169 (4) 3 
MCWS-C-4 0.423 (2) 0.07 (6) 3 
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ID Parameters 
MCWS-C-5 0.423 (2) 0.169 (4) 3 
MCWS-C-6 0.423 (2) 0.272 (3) 3 
MCWS-C-7 0.312 (4) 0.192 (2) 3 
MCWS-C-8 0.312 (4) 0.272 (3) 3 
MCWS-C-9 0.283 (5) 0.033 (5) 6 
MCWS-C-10 0.423 (2) 0.07 (6) 6 
(iv) RSM with MCWS algorithm and variable window size: Three parameter - minimum marker height (m); minimum crown height (m); window 
size functiona 
MCWS-V-1 0.312 (4) 0.272 (3) {3 if (RSM/2) <3; else (RSM/2)} 
MCWS-V-2 0.312 (4) 0.272 (3) {5 if (RSM/2) <5; else (RSM/2)} 
(v) Gaussian filtered RSM with MCWS and constant window size: Five parameter - σ (m); window size (# of cells); minimum marker height (m); 
minimum crown height (m); window size (m)a 
GV-MCWS-C-1 0.152 3 0.031 (1) 0.016 (1) 0.914 
GV-MCWS-C-2 0.305 3 0.027 (1) 0.019 (1) 0.914 
GV-MCWS-C-3 0.305 3 0.027 (1) 0.024 (4) 0.914 
GV-MCWS-C-4 0.305 3 0.043 (2) 0.024 (4) 0.914 
GV-MCWS-C-5 0.914 3 0.026 (1) 0.025 (4) 0.914 
GV-MCWS-C-6 0.914 3 0.042 (2) 0.025 (4) 0.914 
GV-MCWS-C-7 1.524 3 0.026 (1) 0.019 (1) 0.914 
GV-MCWS-C-8 0.152 5 0.011 (1) 0.006 (1) 0.914 
GV-MCWS-C-9 0.305 5 0.009 (1) 0.007 (1) 0.914 
GV-MCWS-C-10 0.914 5 0.008 (1) 0.007 (1) 0.914 
GV-MCWS-C-11 0.914 5 0.013 (2) 0.009 (4) 0.914 
GV-MCWS-C-12 0.914 5 0.02 (3) 0.009 (4) 0.914 
GV-MCWS-C-13 1.524 5 0.013 (2) 0.01 (4) 0.914 
GV-MCWS-C-14 1.524 5 0.008 (1) 0.007 (1) 0.914 
aNumber in parenthesis next to minimum marker height and minimum crown height parameters corresponds to calculation method listed on 
pages 19-20 of supplement. 

332 
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3.3.2.1 Filtering 333 

As discussed in the main text, two steps were taken to address uncertainty and filter the 334 

preferred predicted LBE dataset (LBEp). Topographic sources such as imagery-derived 335 

bathymetric estimates and augmented points were considered to have greater uncertainty than 336 

lidar. Therefore, a convex hull was generated surrounding areas where topographic information 337 

was derived from these data. Predicted LBE polygons with >50% of their area overlapping this 338 

area were removed. Remaining portions of LBEp polygons overlapping the area of uncertain 339 

source topography were erased using the convex hull polygon. The resulting set of LBE 340 

polygons is referenced herein as LBEp-1. 341 

A second filtering process was used to remove additional LBEp-1 polygons in areas with 342 

low topographic point densities and low standard deviation in elevations. The belief that these 343 

factors would results in poor LBE predictions was supported by comparing metrics from 344 

polygons in the LBEo dataset that were completely missed in the preferred LBEp dataset versus 345 

those that were at-least partially mapped. To do this, each LBEo polygon was defined as being 346 

matched or missed based on spatial intersection with the preferred LBEp polygons. Lidar point 347 

densities (points/m2) and the mean standard deviation of gridded elevations (𝜎*888) were calculated 348 

for each LBEo where local standard deviation (σz) was calculated individually for each raster cell 349 

using the bare-earth point cloud. Point densities and 𝜎*888 for LBEo polygons matched by the 350 

predicted LBEs were generally greater than those for missed LBEo polygons. Further, 351 

comparison of point density and 𝜎*888 from matched and missed LBEo polygons using Welch’s t-352 

test and the Kolmogorov-Smirnov test concluded that the null hypotheses that distributions had 353 
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equivalent means and came from the same family of distribution could both be rejected above 354 

the 95% confidence level (p<<0.05). Thresholds for point density and 𝜎*888 to filter the LBEp-1 data 355 

were generated by maximizing the difference in relative frequency within the first break of 356 

histograms of missed and matched LBEo polygons by iteratively adjusting histogram break 357 

values with the two constraints that matched and missed histograms had the same break values, 358 

and that frequencies of the first three breaks had a monotonic trend. The break values 359 

maximizing the difference in point density and 𝜎*888 were 2.9 points/m2 and 0.03 m, respectively. 360 

These values were used to filter the LBEp-1 data by removing polygons with either point densities 361 

or 𝜎*888 values below the respective thresholds. 362 

3.3.2.2 Geometry 363 

Geometric analysis included comparing the Dc-to-LBE planform area relationship for 364 

each LBE in the final LBE dataset to that of several idealized spheroidal geometries (Figure S2). 365 

For example, the top (planform) area of perfect sphere is 𝜋0.5𝐷+,. Relations for oblate and 366 

prolate spheroids are shown in Figure S2. 367 
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 368 

Figure S2. (a) LBE planform area versus LBE height (Dc) overlain with relations for several 369 
idealized spheroidal geometries and (b) visual examples of idealized spheroids. 370 

3.4. Two-dimensional hydrodynamic modeling 371 

For this study, the 2D model known as Sedimentation and River Hydraulics—Two-372 

Dimensional model (SRH-2D) v. 2.2 was used to predict hydrodynamics. The Surface-water 373 

Modeling System (SMS) v. 11.2 graphical user interface (Aquaveo, Inc.) was used for pre- and 374 

post-processing model inputs, parameters, and outputs. SRH-2D v. 2.2 solves the 2D dynamic 375 

wave equations (i.e. the depth-averaged St. Venant equations) (Lai, 2008). The model uses a 376 

finite volume numerical scheme that can handle subcritical and supercritical flow. The model 377 

also incorporates seamless wetting-drying algorithms that results in fewer tuning parameters 378 

needed to generate solutions. Model outputs include WSE (m), water depth (h) (m), depth-379 

averaged velocity components (longitudinal, U, and lateral, V) (m/s), depth-averaged water 380 

speed (𝑈) (m/s), Froude number, and shear stress (τ) (N/m2). SRH-2D was developed by the U.S. 381 

Bureau of Reclamation and is freely available to the public. For more information, see 382 
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https://www.usbr.gov/tsc/techreferences/computer%20software/models/srh2d/index.html. Model 383 

development followed the Pasternack (2011) textbook. 384 

The model’s finite-volume numerical solver requires input of a computational mesh. 385 

Three computational meshes with ~ 1 m internodal spacing were made to cover the extent of 386 

inundation associated with flows spanning two orders of magnitude (e.g. approximately 1.2–387 

343.6 m3/s) (Figure S3). SMS software was used to build the final suite of meshes based on the 388 

approach described by Pasternack (2011). 389 

The two primary model parameters in SRH-2D include bed roughness as approximated 390 

using variable Manning's n and isotropic kinematic eddy viscosity (E). For model development, 391 

unresolved roughness (e.g. not represented in the bare-earth topography) was initially estimated 392 

using a constant Manning's coefficient (n) of 0.1 (Pasternack and Senter, 2011). After simulating 393 

the lidar baseline flow condition for the whole river, predicted WSEs were compared to the 394 

147,644 collocated WSE measurements from the lidar data. Initial WSE assessment showed the 395 

model systematically over-predicted water depth. As a result, additional simulations were 396 

conducted with constant roughness coefficients values of 0.07, 0.08, and 0.09, respectively. 397 

Computational time limited the assignment and calibration of spatially based roughness values 398 

for this study. Testing found a uniform value of 0.09 worked best as this value minimized mean 399 

square error between measured and predicted WSE values, and observed and predicted velocity 400 

magnitudes. This calibrated value, which is physically realistic for the setting (Yochum et al., 401 

2014), was used in all subsequent flow simulations. Sensitivity to large (> 0.01) variations in n 402 

values have been observed in 2D models and it is important to address this level of uncertainty 403 

(Pasternack, 2011). Sensitivity analysis testing the model’s response to such incremental 404 
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variations in n values found differences in predicted depths and velocities to be relatively 405 

minimal (section 3.4.2). 406 

The bed roughness parameter in a 2D model can vary spatially to account for variable 407 

bed sediment facies and several methods exist to estimate roughness (Pasternack, 2011). 408 

However, use of a constant roughness value is common in 2D modeling and has been shown to 409 

both perform well (MacWilliams et al., 2006; L’Hommedieu et al., 2020; Reid et al., 2020; 410 

Pasternack and Senter, 2011) and produce results similar to models with spatially varied 411 

roughness (Lisle et al., 2000). Further, 2D model hydraulic predictions are equally if not more 412 

sensitive to topographic inaccuracies than to typical model calibration parameters such as 413 

roughness (Pasternack et al., 2006; Pasternack, 2011; McKean et al., 2014). Available methods 414 

to estimate spatially varying roughness are generally qualitative (Yochum et al., 2014), empirical 415 

(Lisle et al., 2000; Cienciala and Hassan, 2013), or based on iterative numerical simulation 416 

(Pasternack, 2011). In addition to varying spatially, roughness may change with discharge. 417 

Numerical analysis, flume experiments, and observations in natural rivers suggest that roughness 418 

values decrease rapidly with increasing discharge, especially at flows exceeding a channel’s 419 

banks, prior to stabilizing (Richardson and Carling, 2006; Yang et al., 2007; Ferguson et al., 420 

2017). Contrary to these findings, several 2D modeling studies in gravel-bed rivers have found 421 

that roughness does not decrease with increasing stage (Brown and Pasternack, 2008; Pasternack, 422 

2008; Sawyer et al., 2010; Strom et al., 2017). In these studies, contact with new types of 423 

roughness elements such as boulder clusters, bedrock outcrops, vegetation, and valley width 424 

variations maintain high roughness values as discharge increases. Ferguson et al. (2017) also 425 

found resistance to increase at high discharges due to macro-roughness elements of rock walls in 426 
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a bedrock confined river. It is also possible that selective transport and continued armoring of the 427 

bed during increasing discharge could result in near constant bed roughness over a wide range of 428 

discharges (Gomez, 1993). Abu-Aly et al. (2014) in applying a methodology to account for 429 

spatially distributed effects of riparian vegetation found overall roughness to increase with 430 

increasing discharge for a 28.3-km segment of a meandering gravel-bed river. Much like the 431 

rivers in these studies the study site was characterized by multiple scales of landform 432 

heterogeneity whereby increasing stage continuously encountered new forms of resistance, 433 

supporting that a decrease in roughness with increasing discharge was unwarranted. Undeniably, 434 

if the model roughness parameter had been allowed to vary spatially, the submergence of macro-435 

roughness features in the low-flow channel with increasing stage would likely have been 436 

associated with a localized decrease in roughness. However, for the reasons previously described 437 

roughness was held spatially constant. 438 

SRH-2D requires the user to select a turbulence closure scheme and the input of an eddy 439 

viscosity coefficient. These inputs are used in calculating the turbulent eddy viscosity term in the 440 

turbulent stress forces portion of the equation of motion and influence the degree of turbulent 441 

mixing incorporated into the solution process (Lai, 2008). 2D models are particularly sensitive to 442 

the eddy viscosity parameterization used to cope with turbulence (Nelson et al., 2016). In the 443 

model used in this study, eddy viscosity (E) was a variable in the system of model equations, 444 

computed using the following standard equations developed from many studies of turbulence in 445 

rivers: 446 

 𝐸 = 𝑒∗ℎ ∙ 𝑢∗ (Eq. 5) 447 

 𝑢∗ = 𝑈B𝐶. (Eq. 6) 448 
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 𝐶. = gE /#

0$/&
F (Eq. 7) 449 

where e* is the non-dimensional eddy viscosity coefficient, u* is shear velocity, 𝑈 is depth-450 

averaged water velocity at a point, Cd is a drag coefficient, and g is the gravitational acceleration 451 

constant. Equation 5 is a parabolic turbulent eddy model (Zero-Equation) common in hydraulic 452 

applications and has been shown to perform well within a variety of riverine settings compared 453 

to observed conditions and other turbulence models (Lai, 2008; Nelson et al., 2016). These 454 

equations allow E to vary throughout the model domain, yielding more accurate transverse 455 

velocity gradients. However, a comparison of 2D and 3D models for a shallow gravel-bed river 456 

demonstrated that, even with spatial variation in E, rapid lateral variations in velocity are not 457 

simulated to the degree that occur in natural channels, presenting a fundamental limitation of 2D 458 

models like SRH-2D (MacWilliams et al., 2006). 459 

The eddy viscosity coefficient term is channel-geometry-dependent, typically varying 460 

between 0.3 and 1.0 in larger rivers. Two-dimensional modeling of carefully controlled shallow 461 

flumes found that an eddy viscosity coefficient value of 0.075-0.1 is better in shallow 462 

gravel/cobble settings (Pasternack and MacVicar, 2013). Subsequent application of a value of 463 

0.1 in the Yuba River did well at capturing the relative size, shape, and flow direction of eddies, 464 

with this lower value also helping to decrease over-prediction of low velocities (Pasternack and 465 

Senter, 2011; Brown and Pasternack, 2012). An eddy viscosity coefficient of 0.1 was used for all 466 

simulations in this study. 467 

To run the 2D model, boundary conditions must be input at all inflow and outflow 468 

locations. For inflow locations, discharge must be specified across the face of all upstream 469 
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boundaries as well as any additional tributary inflow junctions. A corresponding water surface 470 

elevation (WSE) must also be defined at the downstream boundary. The study site had two 471 

primary upstream inflow boundaries; flows originating from NBB dam into Reach 1 and inflow 472 

from the Middle Yuba; and one downstream boundary (Figure S3). Several highly ephemeral 473 

tributaries also drain into the study site contributing appreciable flow during climate driven high 474 

flow events. In this study, model simulations were grouped into two classes based on input 475 

conditions, the methods used to specify model inputs, and reason for conducting the simulation. 476 

Specifically, these are (1) calibration and validation flows, and (2) geomorphic synthetic flows. 477 

These simulation classes are described next. 478 

The first class, calibration and validation flow simulations, involved attempting to 479 

replicate hydraulic and hydrologic conditions in the study site associated with specific periods of 480 

data collection. These simulations were used to calibrate model parameters and assess 481 

performance of the calibrated model. For these simulations, boundary conditions were assigned 482 

to match gauged and/or estimated flow conditions during the associated period of data collection. 483 

Discharges at the upstream input boundary were based on USGS gaging station 11413517 or 484 

data provided by Yuba Water Agency (YWA). Discharges at the Middle Yuba River were based 485 

on USGS gaging stations 11408880 and 11409400 or data provided by YWA as well as 486 

estimated accretionary flow. WSEs at the downstream boundary were estimated from a site 487 

specific rating-curve or from field measured conditions using RTK-GPS. 488 

The second class of simulation, geomorphic synthetic flow simulations, involved 489 

modeling a range of hypothetical flow conditions of relevance to understanding the hydraulic 490 

mechanisms governing the channel’s LBE patterns. Using the calibrated model parameters, a 491 
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series of four discharges were simulated spanning a range of hydrologic conditions. The four 492 

selected discharges represent flows of potential geomorphic importance and are all referenced to 493 

the bankfull discharge (10.73 m3/s) for non-dimensional scaling considerations. The geomorphic 494 

synthetic flows simulated include a representative baseflow condition of 0.14x bankfull flow, 495 

bankfull flow, and two multiples (7.7x and 32x) of the estimated bankfull flow. The 32x bankfull 496 

flow simulation corresponded to the peak value for which boundary conditions were available 497 

(i.e., availability of downstream stage measurement). The four selected discharges have 498 

estimated yearly recurrence intervals of 1.00, 1.06, 1.59, and 3.46, respectively. 499 

Ultimately, simulated flows included two calibration and validation flow simulations and 500 

four geomorphic synthetic flow simulations. The complete array of all specific discharge inputs 501 

and downstream WSE values for every 2D model simulation are given in Table S5. Model input 502 

locations including tributary locations are depicted in Figure S3. For all simulations, SRH-2D 503 

outputs raw hydraulic variable values computed at computational mesh nodes. For each model 504 

simulation, a number of steps were taken to process data for later analyses with certain 505 

calculations made using the raw (nodal) results and others using post-processed results (e.g. 506 

rasterized data). ArcGIS software (ESRI, Redlands, CA) was used to process and analyze 2D 507 

model outputs. Initially, wetted area polygons were created for each flow simulation using 508 

interpolated depths greater than zero as the minimum threshold (Pasternack, 2011). These wetted 509 

area polygons were then used as the interpolation boundaries for each respective flow simulation 510 

in the creation of hydraulic variable rasters. All rasters were derived from TIN-based surface 511 

models re-sampled to 0.46 m resolution grids to provide an equal-area basis for analysis. 512 
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 513 

Figure S3. Extent of 2D model low-flow and high-flow computational meshes and location of 514 
inflow/outflow boundaries.  515 
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Table S5. 2D Model input and parameter values 516 

Total 
discharge 

(m3/s) 

Reach 1 
input 
(m3/s) 

Middle 
Yuba input 

(m3/s) 

Number of 
tributary 
inputs 

(-) 

Total 
tributary 
inputs 
(m3/s) 

Downstream 
WSEa 
(m) 

Calibration and validation simulations 
1.19 0.16 1.02 1 0.01 169.60 
3.51 n/ab n/ab 1 0.19 169.61 

Geomorphic synthetic flow simulation 
1.54 1.40 0.14 0 0 169.51 
10.73 10.59 0.14 0 0 169.91 
82.12 81.98 0.14 0 0 170.94 
343.60 343.45 0.14 0 0 172.06 

a Elevations referenced to North American Vertical Datum of 1988 
b Simulation of lower 4.2 km of study site. Only required input of total discharge 
and tributary input. 

3.4.1 2D model assessment 517 

Two-dimensional hydrodynamic models have inherent strengths and weaknesses, thus 518 

there is need to assess a model’s representation of reality and understand and accept uncertainty 519 

in the results. SRH-2D is a proven tool capable of simulating hydraulic conditions in natural 520 

rivers (Lai, 2008; Pasternack and Senter, 2011; Brown and Pasternack, 2014). However, there is 521 

still a risk of poor model performance. The scope of model assessment is outlined below. Table 522 

S6 provides a summary of model assessment testing. 523 

A suite of tests typical of those carried out in the peer-reviewed journal literature for the 524 

assessment of 2D models were performed to characterize model performance and uncertainty 525 

(Pasternack, 2011). Tests included mass conservation checks, lidar baseline WSE assessment, 526 

and fixed-point depth and velocity assessment (Table S6). For the lidar baseline WSE and fixed-527 
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point depth and velocity assessment some tests were done using raw (i.e., signed) or absolute 528 

(i.e., unsigned) deviations between observed and predicted values, and some on the signed or 529 

unsigned percent errors. WSE was analyzed in terms of deviations, not percent error (Brown and 530 

Pasternack, 2012). In contrast, percent error of depth and velocity are meaningful because 531 

deviations may be a substantial fraction of the observed values. Often percent error for low 532 

values of depth or velocity are not evaluated due to low values having inflated numerical errors. 533 

Regression and correlation analyses as well as the standard error of the regression slope (SES) 534 

and standard error of the regression intercept (SEI) between predicted vs. observed values were 535 

computed to add further statistical rigor. Descriptive statistics of model deviations and percent 536 

errors and the results of the regression analysis were all used to evaluate model performance. In 537 

addition to these metrics commonly used by the 2D hydrodynamic modeling community, three 538 

metrics: Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and the root mean square error-539 

observations standard deviation ratio (RSR), commonly used in the hydrological modeling 540 

community to assess performance of discharge prediction (Moriasi et al., 2007) were also 541 

computed.  542 
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Table S6. Summary of 2D model assessment testing 543 

Total 
discharge 

(m3/s) 

Mass 
conservation WSE 

Fixed-point 
velocity 

magnitude 

Fixed-point 
depth 

Manning's 
n 

sensitivity 
Calibration and validation simulations 

1.19 X X   X 
3.51 X  X X X 

Geomorphic synthetic flow simulation 
1.54 X    X 
10.73 X    X 
82.12 X    X 
343.60 X        

Mass conservation 544 

The first key model performance criteria, mass conservation, was evaluated by 545 

computing the percent difference between specified inflow and model-predicted outflow. 546 

Computationally, mass conservation losses increase in the downstream direction as error 547 

accumulates, therefore good mass conservation should show little difference in discharge at the 548 

downstream model boundary from the total input discharge. Mass conservation error in a 2D 549 

model can be anywhere in the 0.01–2% range (Pasternack, 2011) with errors greater than ~ 2-3% 550 

a potential sign of poor model performance (Pasternack and Senter, 2011). This range is typically 551 

smaller than uncertainty associated with stream gauges and other discharge measurement 552 

methods such as flumes and weirs or stream stage-gauge relations that may be off by upwards of 553 

~ 5-10% of actual values. Mass conservation losses at the downstream model boundary were all 554 

less than 1%, well within what is considered acceptable (Table S7). 555 



  Page 36 of 84 

 

Table S7. 2D model mass conservation performance summary 556 

Total discharge 
(m3/s) 

Total outflow 
(m3/s) 

Percent error  
(%) 

Calibration and validation simulations 
1.19 1.18 -0.60 
3.51 3.50 -0.17 

Geomorphic synthetic flow simulation 
1.54 1.54 -0.41 
10.73 10.67 -0.60 
82.12 82.11 -0.01 
343.60 342.69 -0.27 

WSE evaluation 557 

The next key test was ability of the 2D model lidar baseline simulation to match lidar-558 

measured WSEs as this is a proxy for matching wetted area. Even though lidar-measured WSE 559 

values were used to calibrate Manning's n for this simulation, the final deviations between 560 

observed and predicted values were non-zero. Thus, deviations between observed and final 561 

calibrated WSE predictions were used to characterize uncertainty in water depth after calibration. 562 

Longitudinal profiles of observed and predicted WSEs were used to evaluate the spatial 563 

distribution of error in WSE deviations. Profiles were generated by discretizing points along the 564 

lidar baseline thalweg at 0.91 m intervals. At each point, model predicted WSE and observed 565 

WSE were interpolated. The distribution of signed deviations between these values should be 566 

centered about zero as this demonstrates no bias in model predictions. 567 

There are no formal standards for evaluating WSE deviations to indicate when a model is 568 

invalid, but the greater the deviation from zero the more unreliable the model. Topographic error 569 

is a dominant factor explaining 2D model depth prediction errors that warrants consideration in 570 
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model evaluation. It is presumptuous to expect model prediction to be more accurate than 571 

topographic deviations, as such, best practices suggest that depth or WSE deviations should not 572 

exceed uncertainty in the topographic data (Pasternack, 2011; Pasternack and Senter, 2011; 573 

Brown and Pasternack, 2012). The FVA for ground points and bathymetric lidar points in this 574 

study were 0.037 m and 0.117 m, respectively (section 3.1), but high topographic variability is 575 

likely to yield larger uncertainties. Generally, WSE deviations falling within the range of 576 

bathymetric lidar uncertainty were considered suitable for this study. The performance standards 577 

reported by Moriasi et al. (2007) for the additional discharge prediction metrics are NSE > 0.5, 578 

PBIAS within 25%, and RSR < 0.7, however the exact interpretation of these thresholds in this 579 

study remains unclear due to limited use of these metrics in 2D model assessment. 580 

Comparison of lidar based WSEs to 2D model predictions consisted of 147,644 paired 581 

data points distributed throughout the 13.2 km study domain, a considerably larger sample size 582 

than studies relying solely on field measured WSEs. All deviation statistics were calculated as 583 

observed (lidar measured) minus predicted (2D model), meaning that positive deviations 584 

represent model WSE and depth under-prediction and negative deviations model WSE and depth 585 

over-prediction. Mean signed WSE deviation error (ME) was -0.077 m and mean absolute error 586 

(MAE) was 0.162 m. Water surface deviations displayed a near equal balance of over-versus 587 

under-predictions with a slight tendency toward 2D model over-prediction, as reflected by the 588 

negative ME value (Figure S4a). A majority (53%) of the raw WSE point deviations had less 589 

absolute error than the 0.117 m FVA of the bathymetric lidar and 81.6% of the data within 0.25 590 

m, which is close to two times the FVA of the bathymetric lidar (Table S8). Additional metrics 591 
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from the regression and correlation assessment analysis as well as NSE, PBIAS, and RSR were 592 

all within the standards of satisfactory model performance (Table S9). 593 

Locations with the largest WSE over-prediction were dispersed throughout the model 594 

domain, but were often clustered upstream of hydraulic controls, specifically in areas of 595 

relatively deep water immediately upstream of narrow channel constrictions. Comparison of the 596 

complete topographic surface with 2D model computational mesh surfaces revealed a smoothing 597 

effect present at many of these constrictions due to the resampling procedure used to create the 598 

up-scaled mesh surfaces. This smoothing resulted in reduced channel conveyance and artificially 599 

high bed elevations that, when modeled created a backwater effect over-elevating upstream 600 

conditions. These simulated backwater conditions help explain the WSE over-prediction in these 601 

settings. A qualitative review of the spatial distribution of WSE deviations also revealed that 602 

areas of large over-prediction (e.g. model predicted depths were too high) tended to be in 603 

locations with low WSE point densities, thus questioning the accuracy of the observed values 604 

and making quantitative review of these large errors more difficult. 605 

Review of WSE deviations identified at least 15 locations displaying the physical 606 

conditions described above. These locations included 7,743 points with WSE over-prediction 607 

deviations greater than 0.1 m and represent ~ 5% of the total WSE comparison dataset. Removal 608 

of these points from the WSE assessment dataset (‘selected WSE dataset’) and re-assessment of 609 

WSE deviations improved model predicted WSE descriptive statistics. The ME and MAE for the 610 

selected WSE dataset were -0.042 m and 0.132 m, respectively. Similar improvements were 611 

observed in the percentage of data meeting several deviation thresholds (Table S8) and other 612 

performance metrics (Table S9). 613 
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WSE deviations varied longitudinally, illustrating the spatially varying nature of water 614 

surface errors (Figure S5). Black points in Figure S5 represent locations of poor model 615 

prediction described above. These points coincide with nearly all regions of large model over-616 

prediction and it is likely other areas of over-prediction have similar unidentified topographic 617 

controls. Visually, locations of both over- and under- prediction appear to be located in distinct 618 

spatially cohesive patches. This grouping of errors as well as the lack of systematic error in WSE 619 

deviations may in-part reflect the decision to use a constant roughness coefficient value rather 620 

than spatially varied roughness. 621 

 622 

Figure S4. Histograms of 2D model WSE deviations for the (a) entire WSE dataset and (b) 623 
selected WSE dataset.  624 
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Table S8. Non-exceedance probabilities of WSE deviations meeting different thresholds of 625 
performance for entire WSE dataset and selected WSE dataset. 626 

All WSE dataset   Selected WSE dataset 

Absolute WSE 
deviation 

(m) 

Non-
exceedance 
probability  

(%) 

 
Absolute WSE 

deviation 
(m) 

Non-
exceedance 
probability  

(%) 
0.025 13.8  0.025 14.5 
0.05 26.6  0.05 28.1 
0.1 47.6  0.1 50.2 

0.117a 52.7  0.117a 55.6 
0.155b 61.7  0.155b 65.1 
0.25 81.6  0.25 86.0 
0.5 95.3   0.5 99.0 

aLidar bathymetric FVA 
bCombined bathymetric and terrestrial lidar FVA 

Table S9. Regression and hydrologic metrics for entire WSE dataset and selected WSE dataset 627 
assessment. 628 

Test Statistic All WSE dataset 
Selected WSE 

dataset 
n 147644 139901 

Regression Slope 1.00 1.00 
Regression 
Intercept 0.06 -0.03 

R2 1.00 1.00 
SES 9.9E-06 7.4E-06 
SEI 0.00 0.00 

ME (m) -0.08 -0.04 
MAE (m) 0.16 0.13 

PBIAS 0 0 
RSR 3.8E-03 2.8E-03 
NSE 1.00 1.00 

  629 
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 630 

Figure S5. Longitudinal profile of deviation between observed and predicted WSE. Positive 631 
deviation corresponds to model under-prediction and negative deviation to model over-632 
prediction. Black dots are areas of poor performance potentially due to topographic uncertainty. 633 
Horizontal dashed lines are bathymetric lidar FVA (± 0.117m). 634 

Fixed-point Depth and Velocity 635 

The next test was assessment of the model for fixed-point depth and velocity 636 

performance. This test is less relevant toward the study purpose of accurately mapping wetted 637 

areas for the simulated discharges, but nonetheless provides a relevant check of model 638 

performance. Depth and velocity data were collected on April 8, 2016 at 61 independent 639 

locations in the downstream portion of the study site in a location with complex, shallow 640 

hydraulics. The discharge corresponding to the period of measurement was estimated as 3.51 641 

m3/s, herein referred to as the ‘velocity assessment’ discharge simulation. The data collection 642 

strategy used focused on sampling the range of velocities present in the river at this discharge 643 

opposed to more traditional cross-section based sampling strategies. This design allows 644 

quantitative testing of a model’s ability to predict over a range of velocities (Pasternack and 645 
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Senter, 2011). Measurements were made with no a priori knowledge of the spatial pattern of 646 

velocity and prior to model simulation to ensure no sampling bias. Velocity measurements were 647 

made in wadable areas using a SonTek FlowTracker Handheld Acoustic Doppler Velocimeter 648 

(ADV) mounted to a depth setting wading rod. Depth measurement errors were ±1 cm. Velocity 649 

measurement error reported by the manufacturer is ±1% of measured velocity + 0.25 cm/s. 650 

Depth-averaged velocities were estimated by sampling velocity at 10 Hz averaged over 20 s at 651 

0.6·depth from the water surface (Pasternack, 2011). The position of each measurement were 652 

simultaneously surveyed using RTK-GPS. 653 

Correlation and regression analyses between predicted vs. observed depth and velocity 654 

values yielded several variables for evaluation. The coefficient of determination (R2) metric 655 

describes variance about the best fit slope, an indicator of model precision. R2 values of ~ 0.6 for 656 

water speed are common for 2D models with values in the ~ 0.7-0.85 range considered very 657 

good (Brown and Pasternack, 2012). R2 values for depth are typically higher (~ 0.7-0.8) than 658 

those for velocity (~0.5-0.8) and values in these ranges are recommended as a minimum standard 659 

for model performance (Pasternack, 2011). The accuracy of model predictions is better described 660 

by the slope term in the regression equation than R2 values. A value of unity represents no bias in 661 

the model predictions. The y-intercept of the regression equation also indicates potential model 662 

bias. Over prediction of low velocities and under prediction of high velocities have been reported 663 

in previous 2D modeling studies (Brown and Pasternack, 2012). Based on recommendations by 664 

Pasternack (2011) standards for demonstrating model suitability using comparison of predicted 665 

vs observed velocity data are a slope term >0.8 and a y-intercept <10% of the maximum 666 

observed velocity. 667 
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Model accuracy was also evaluated from statistical analysis of unsigned depth and 668 

velocity percent error. Mean and/or median velocity errors >50% suggest poor model 669 

performance whereas mean and median error values of ~ 10-15% for depth and ~ 15-30% for 670 

velocity are considered reasonable (Pasternack, 2011). Percent error for low values often exceed 671 

200% due to the strong influence of even small deviations. To address this issue separate 672 

velocity tests for low and high values may be performed with a threshold value between 0.3 m/s 673 

to 0.9 m/s used to differentiate velocities (Pasternack, 2011; Brown and Pasternack, 2012; Strom 674 

et al., 2016). Depth measurement with a depth setting wading rod as well as RTK-GPS 675 

topographic data have much greater point accuracy and probability of being measured directly 676 

from the river bed than lidar point data collection. Comparison of lidar derived vs. field observed 677 

elevations at the fixed-point depth observation sites were reviewed to address systematic 678 

differences that might influence depth measurement uncertainty. 679 

Comparison of model predicted hydraulics (depth and depth-averaged velocity) with field 680 

measured estimates showed predicted values closely approximated observed conditions (Table 681 

S10). Coefficient of determination (R2) values between predicted and observed hydraulics were 682 

0.80 for depth and 0.84 for velocity (p<0.001 for both tests). Linear regression between predicted 683 

and observed values yielded regression slopes of 0.87 for both depth and velocity (p<0.001 for 684 

both tests) and y-intercepts of 0.04 (p<0.001) and 0.03 (p=0.28), respectively (Figure S6 and 685 

Figure S7). These y-intercept values scale to 2.9% and 2.4% of the maximum observed depth 686 

and depth-averaged velocity, consistent with acceptable performance standards. 687 

Regression slopes and intercepts all indicate slight bias toward the model over-predicting 688 

depths and velocities. This precludes errors being associated with the selected roughness 689 
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coefficient, as adjusting this value to improve prediction of one metric would have been at the 690 

detriment of the other. Residuals between predicted and observed velocity suggest over-691 

prediction was somewhat more prevalent in slow flowing than faster areas (i.e., 63% of points 692 

with velocities less than 0.3 m/s were over-predicted versus only 45% of points with velocities 693 

greater than 0.3 m/s), a common occurrence in 2D model performance. Velocity residuals had 694 

slight heteroscedasticity further suggesting error dependence on the magnitude of velocity, 695 

whereas depth residuals were relatively trendless (Figure S7). 696 

Descriptive statistics comparing observed and predicted values corroborated the findings 697 

described above including the tendency to over-predict slow velocities and slightly under-predict 698 

fast velocities. The mean percent error (MPE) of all velocity observations regardless of 699 

magnitude was -25% (median percent error of -5%), with the negative sign connoting model 700 

over-prediction. Velocity points were stratified into bins above and below 0.3 m/s. Low velocity 701 

points had a MPE of -48% (median percent error of -17%) and high velocity points a MPE of -702 

1% (median percent error of 4%). Mean absolute percent velocity error (MAPE) for velocities 703 

below 0.3 m/s, velocities above 0.3 m/s, and all data were 64%, 20% and 43%, respectively. 704 

Median absolute percent error for these same subsets of data were 30%, 19% and 24%, 705 

respectively. With the exception of observations in the low velocity bin (i.e., fixed-point 706 

velocities < 0.3 m/s) nearly all metrics were within the 20–30% benchmark for this study. In 707 

addition to descriptive statistics comparing observed and predicted hydraulics and metrics from 708 

the regression and correlation analysis NSE, PBIAS, and RSR values were also all within the 709 

standards of satisfactory model performance (Table S10). 710 



  Page 45 of 84 

 

Table S10. Regression and hydrologic metrics for fixed-point depth and velocity assessment. 711 

Test Statistic Fixed-point depth Fixed-point velocity 
n 60 61 

Regression Slope 0.87 0.87 
Regression 
Intercept 0.04 0.03 

R2 0.80 0.84 
SES 0.06 0.05 
SEI 0.05 0.02 

MPE (%) -6.0 -25.4 
MAPE (%) 9.0 43.1 

PBIAS 8.8 6.1 
RSR 0.54 0.43 
NSE 0.70 0.82 

 712 

 713 
Figure S6. (a) Scatter plot of observed versus 2D model predicted depth with 1:1 line (dark 714 
black line), line of best fit (gray dashed line) as well as equation of best fit line and coefficient of 715 
determination and (b) deviations between observed and predicted depth versus observed depth. 716 
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 717 
Figure S7. (a) Scatter plot of observed versus 2D model predicted velocity with 1:1 line (dark 718 
black line), line of best fit (gray dashed line) as well as equation of best fit line and coefficient of 719 
determination and (b) deviations between observed and predicted depth versus observed depth. 720 

3.4.2 2D model roughness sensitivity 721 

The scale of model sensitivity to large (> 0.01) variations in n values was tested through 722 

studying changes of model predicted depths and velocities. Lidar baseline flow simulation results 723 

were compared using variable roughness coefficient values of 0.07, 0.08, 0.09, and 0.10, 724 

respectively. For each pair of simulations (e.g. a simulation with n=0.07 was compared to 725 

simulations with n=0.08, n=0.09, and n=0.10), differences in predicted depths at all nodes that 726 

were wet in both simulations were computed. The same was done for velocity. Average 727 

deviations for both variables were computed for each simulation pairing and trends were 728 

assessed. This analysis was repeated for the velocity assessment discharge simulation and a more 729 

limited analysis comparing n values of 0.09 and 0.10 was performed for a wider range of 730 

discharges (those listed in Table S6 and 2.68, 32.20, and 160.98 m3/s). 731 
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Average sensitivity of predicted depth and velocity at the lidar baseline discharge to the 732 

range of tested roughness values were well described by a linear model fit using least squares (R2 733 

values of 1.0 and 0.98, respectively, p<0.10). Similar linear scaling was also observed for the 734 

velocity assessment discharge simulation of 3.51 m3/s (R2 values of 1.0 and 0.98 for depth and 735 

velocity sensitivity, respectively, p<0.10). While these results are based on a small number of 736 

samples (six data points), the findings encourage the assumption that average model sensitivity 737 

to changes in Manning’s n scaled linearly regardless of discharge (i.e., there was a constant 738 

magnitude change in average predicted depth and velocity per 0.01 unit change in Manning’s n 739 

for each discharge). Average sensitivity of model predicted depths and velocities to increase in 740 

Manning’s n of 0.01 (e.g. average change in hydraulics going from 0.08 to 0.09 or 0.09 to 0.1) 741 

for the range of simulated discharges are depicted in Figure S8. Sensitivities are generally small 742 

and represent only a small portion of average hydraulic conditions. For example, although model 743 

sensitivity is greater at higher discharges, average depth and velocity conditions also increase 744 

with discharge and the ratio of sensitivity to predicted depths and velocities was between 2-3% 745 

of average conditions for all discharges. In essence it would take large changes in roughness 746 

values to markedly change bulk predicted hydraulics, though large local affects are certainly 747 

possible that were not captured by this limited analysis. 748 
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 749 

Figure S8. Semi-log plot of 2D Model average (a) depth and (b) velocity sensitivity to an 750 
increase in Manning’s n of 0.01 over various simulated discharges. 751 

3.5. LBE spatial analysis 752 

The heterogeneous and hierarchical nature of the study site, like essentially all rivers, 753 

required implementation of a disaggregation and aggregation procedure (Alber and Piegay, 754 

2011) to allow longitudinal analysis of river characteristics at appropriate scales. Spatial 755 

disaggregation and aggregation was accomplished using a box counting procedure described by 756 

Wyrick and Pasternack (2012). Simplistically, the procedure involves generating points 757 

longitudinally along a river centerline, creating station-lines perpendicular to these points, and 758 

buffering the station lines into individual polygons that are then clipped to the wetted area or 759 

other boundary of interest. 760 

The disaggregation and aggregation process is sensitive to the location and tortuosity of 761 

the alignment used to generate the longitudinal series of points. An overly tortuous path results in 762 

highly overlapping sections and polygons that also miss covering portions of the wetted area, 763 
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while an overly simple alignment such as using a valley centerline for interpretation of all flows 764 

may result in clipped polygons that are not perpendicular to the main direction of flow, 765 

particularly at lower flows. To address this issue two longitudinal alignments were generated 766 

based on the centerlines of the bankfull (10.73 m3/s) and max flood flow (343.6 m3/s) 767 

simulations. Centerlines were delineated using the Polygon Centerline ToolTM 768 

(https://www.beachbumgis.com/). The bankfull alignment was used to generate cross-sectional 769 

polygons for all simulated flows below bankfull (10.7 m3/s) and the max flood flow alignment 770 

was used for all remaining flows. Prior to applying the box counting procedure the bankfull and 771 

flood flow centerlines were simplified using the ArcGIS simplify line (point remove algorithm 772 

with 4.6 m offset) and smooth line (Bezier interpolation) tools. Points were spaced along the 773 

revised alignments every 3 m, yielding a series of 3-m cross-sectional polygons distributed down 774 

the river for each simulated discharge. Notably there was some overlap or underlap of rectangles 775 

at locations of high channel curvature. These areas were determined to balance out and no 776 

manual adjustment of the polygons occurred. 777 

As discussed in the main text, a path-based approach was developed for the LBE-to-LBE 778 

spacing analysis to estimate longitudinal distances (𝜆1) between each LBE and downstream 779 

LBEs. In the first step, the unique centerline for each simulated wetted area was repeatedly offset 780 

by 1.5 m on each side until the entire wetted area of each discharge was covered with paths (e.g. 781 

a new offset would be completely outside the wetted area), thus creating a set of longitudinal 782 

paths parallel to the bulk flow direction for each flow simulation. Paths were clipped to each 783 

wetted area and vertices were added along paths to densify vertex spacing to a maximum of 0.25 784 

m. Each vertex was assigned its projected coordinates (x,y) and a binary code if it fell within a 785 



  Page 50 of 84 

 

LBE (1) or not (0). Distances along paths between each upstream LBE and all downstream LBEs 786 

where a contiguous path was present were computed. If no downstream LBE was encountered 787 

the calculation was left blank for that LBE. Other factors considered in the calculations included 788 

that an LBE could be downstream of itself and that multiple paths and associated spacing values 789 

could exist from an upstream LBE to one or more downstream LBEs. These were considered to 790 

accurately reflect field conditions and not conflict with the goals of the analysis. Zero spacing 791 

values were not supported by the calculation. Instead, abutting LBEs were assigned the distance 792 

between sequential vertices resulting in a maximum error equal to the maximum spacing interval 793 

(0.25 m). The maximum error in 𝜆1 values for non-abutting LBEs was twice the maximum vertex 794 

spacing (0.5 m). Both these errors were unlikely worst-case scenarios given vertex densities were 795 

often less than the maximum spacing. Very long spacings were also rare given that most paths 796 

either encountered an LBE or terminated at a channel margin. 797 

4. Results 798 

4.1. Question 1 results (LBE mapping) 799 

As stated in the main text, qualitative assessment of the 14 smoothed ground surfaces 800 

determined certain parameter sets performed better than others. Generally, larger step sizes (~3 801 

and 4.5 m), smaller spike and offset values (0.128 m [D50] and 0.064 m [D16] verses 0.5 m), and 802 

intermediate down-spike values (0.128 m, 0.256 m, and 0.15 m) in the ground classification 803 

algorithm were best at filtering-out LBEs while maintaining character of the overall terrain 804 

(Table S3). 805 
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Results of the quantitative assessment of preliminary LBEs mapped from the best six 806 

smoothed surfaces are depicted in Table S11. Based on the global performance metric, P-LBE-807 

10 was found to perform best, making the associated RSM the study’s preferred RSM. 808 

Performance metrics of all 44 LBEp datasets from the five LBE extraction approaches are 809 

presented in Table S12. 810 

Table S11. Performance metrics of predicted LBEs for six selected parameter combinations. 811 
Maximum values for each metric highlighted in light-gray and bolded and minimum values are 812 
italicized. Preferred dataset in red font. 813 

ID 
Minimum vertical 

threshold (m) PA PO MJI MER Normalized mean 
P-LBE-1 0.23 0.794 0.680 0.212 0.017 0.500 
P-LBE-3 0.28 0.822 0.690 0.161 0.011 0.349 
P-LBE-10 0.28 0.836 0.696 0.183 0.014 0.552 
P-LBE-11 0.41 0.864 0.737 0.107 0.009 0.500 
P-LBE-12 0.32 0.833 0.707 0.153 0.010 0.401 
P-LBE-13 0.32 0.830 0.706 0.149 0.010 0.372 

  814 
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Table S12. Performance metrics of all 44 predicted LBE datasets. Maximum values for each 815 
metric for each approach are highlighted in light-gray and bolded while minimum values are 816 
italicized. Global maximum values for each metric are highlighted in dark-gray, bolded and 817 
underlined while global minimums are italicized and underlined. Preferred dataset in red font. 818 

ID PA PO MJI MER Normalized mean 
(i) RSM with vertical threshold 

V-1 0.894 0.774 0.269 0.030 0.445 
V-2 0.876 0.759 0.284 0.034 0.451 
V-3 0.856 0.747 0.311 0.038 0.474 
V-4 0.839 0.735 0.339 0.043 0.500 
V-5 0.822 0.722 0.347 0.048 0.505 
V-6 0.802 0.709 0.352 0.054 0.505 
V-7 0.785 0.696 0.358 0.059 0.509 
V-8 0.755 0.687 0.361 0.065 0.509 
V-9 0.732 0.675 0.365 0.072 0.513 
V-10 0.703 0.665 0.369 0.079 0.516 
V-11 0.669 0.659 0.371 0.086 0.521 
V-12 0.816 0.718 0.351 0.050 0.507 

(ii) Gaussian filtered RSM with vertical threshold 
GV-1 0.760 0.705 0.333 0.054 0.458 
GV-2 0.642 0.762 0.298 0.051 0.409 
GV-3 0.611 0.779 0.246 0.051 0.352 
GV-4 0.757 0.706 0.332 0.054 0.457 
GV-5 0.600 0.789 0.309 0.049 0.423 
GV-6 0.514 0.842 0.315 0.045 0.426 

(iii) RSM with MCWS algorithm and constant window size 
MCWS-C-1 0.901 0.837 0.422 0.018 0.647 
MCWS-C-2 0.760 0.789 0.445 0.046 0.645 
MCWS-C-3 0.828 0.763 0.453 0.050 0.676 
MCWS-C-4 0.825 0.827 0.432 0.025 0.630 
MCWS-C-5 0.772 0.774 0.455 0.061 0.700 
MCWS-C-6 0.742 0.727 0.469 0.087 0.740 
MCWS-C-7 0.819 0.752 0.456 0.063 0.708 
MCWS-C-8 0.798 0.715 0.464 0.083 0.738 
MCWS-C-9 0.879 0.838 0.374 0.019 0.586 
MCWS-C-10 0.809 0.828 0.392 0.025 0.581 

(iv) RSM with MCWS algorithm and variable window size 
MCWS-V-1 0.760 0.715 0.460 0.083 0.714 
MCWS-V-2 0.756 0.720 0.450 0.086 0.718 
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ID PA PO MJI MER Normalized mean 
(v) Gaussian filtered RSM with MCWS and constant window size 

GV-MCWS-C-1 0.886 0.854 0.402 0.017 0.629 
GV-MCWS-C-2 0.847 0.858 0.384 0.019 0.600 
GV-MCWS-C-3 0.712 0.810 0.436 0.057 0.674 
GV-MCWS-C-4 0.608 0.838 0.440 0.063 0.673 
GV-MCWS-C-5 0.691 0.815 0.431 0.058 0.665 
GV-MCWS-C-6 0.593 0.842 0.433 0.063 0.663 
GV-MCWS-C-7 0.840 0.859 0.379 0.019 0.594 
GV-MCWS-C-8 0.893 0.863 0.393 0.015 0.627 
GV-MCWS-C-9 0.829 0.870 0.358 0.018 0.570 
GV-MCWS-C-10 0.657 0.894 0.361 0.035 0.572 
GV-MCWS-C-11 0.501 0.870 0.399 0.065 0.614 
GV-MCWS-C-12 0.416 0.887 0.393 0.075 0.617 
GV-MCWS-C-13 0.479 0.860 0.403 0.074 0.627 
GV-MCWS-C-14 0.780 0.874 0.339 0.020 0.535 

  819 
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4.2. LBE concentrations 820 

 821 

Figure S9. Difference in wetted area Γ between discharges versus inundation corridor Γ. Data 822 
are colored by reach. Lines with arrows between points indicate direction of increasing 823 
discharges from data points associated with 10.73 to 82.12 to 343.6 m3/s. Some arrows have 824 
been offset for visual purposes.  825 
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4.3. LBE spacings 826 

As stated in the main text, distributions of discharge-dependent streamwise spacing 827 

metrics were positively skewed and indicated a strong tendency for closely spaced LBEs. 828 

Histograms of 𝜆1, 𝜆∗1 , and 𝜆∗1H  distributions are depicted in Figure S10.  829 
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 830 

Figure S10. Histograms of streamwise spacing metrics (a-d) 𝝀𝒍, (e-h) 𝝀∗𝒍 , and (i-l) 𝝀∗𝒍J for 831 
discharge-dependent LBEs. For visual purposes X-axis values have been truncated to a 832 
maximum value of 40 despite higher values occurring. 833 

4.4. Question 2 results (maximum resistance) 834 

None. 835 
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4.5. Comparing hydrodynamic regimes from concentration and spacing metrics 836 

As stated in the main text, comparison of cross-sections classified into Morris’s (1959) 837 

hydrodynamic regimes using 𝜆∗1K  and Γ found only 44% sections were classified the same by each 838 

method. Table S13 depicts a complete confusion matrix of how cross-sections were classified 839 

according to each metric for each discharge-dependent LBE dataset. 840 

Visualizing distributions of cross-sectional LBE counts found data were more distinct 841 

between hydrodynamic regimes classified by Γ compared to regimes classified by 𝜆∗1K , the former 842 

showing clear stepwise increases in the number of LBEs per cross-section when going from 843 

isolated flow to wake interference to skimming flow, whereas the latter had more uniform counts 844 

across regimes (Figure S11). Similar, albeit more muted patterns, were observed comparing 845 

distributions of cross-sectional median LBE areas (Figure S12). 846 

Comparing LBE count and median LBE area distributions of similarly classified cross-847 

sections with those having the three most common classification discrepancies (i.e., Γ-based 848 

wake interference sections classified as isolated roughness and skimming flow regimes 849 

according to 𝜆∗1K , and Γ-based skimming flow sections classified as wake interference according 850 

to 𝜆∗1K ), several patterns emerged. Firstly, LBE counts of sections classified as wake interference 851 

by Γ but as isolated roughness or skimming flow by 𝜆∗1K 	were lower than for similarly classified 852 

sections (i.e. both in wake interference regime) (Figure S13). Median LBE areas were also lower 853 

for 𝜆∗1K -based isolated roughness sections and higher for 𝜆∗1K -based skimming flow sections 854 

compared to similarly classified sections (Figure S14). This result is what would be expected, but 855 

together with LBE count data suggests 𝜆∗1K -based isolated roughness classification discrepancies 856 
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might have been driven by lower numbers of smaller LBEs with longer downstream spacings 857 

compared to similarly classified sections, and that 𝜆∗1K -based skimming flow classification 858 

discrepancies might have been driven by lower numbers of larger LBEs with shorter downstream 859 

spacings. 860 

Comparing Γ-based skimming flow sections classified as wake interference by 𝜆∗1K  found 861 

LBE counts to be higher and LBE medians areas to be lower than sections classified the same by 862 

both metrics (i.e. both in skimming flow regime) (Figure S13 and Figure S14). This suggests 863 

larger numbers of smaller LBEs were present in dissimilar sections relative to similar sections, 864 

which does not point to clear reasons for the discrepancies. Notably these sections had higher 865 

LBE counts and median areas than sections classified in the wake regime by both metrics, which 866 

supports the Γ-based skimming flow classification and again suggests there may be uncertainty 867 

with the 𝜆∗1K  metric. 868 

Table S13. Confusion matrix of the number of cross-sections classified into each of Morris’s 869 
(1959) hydrodynamic regimes using 𝝀∗𝒍888 (columns) and Γ (rows) values for each discharge-870 
dependent LBE dataset. Numbers along diagonals were classified the same by both metrics. 871 
Abbreviations are such that: IF – isolated roughness; WI – wake interference; and SF – 872 
skimming flow. 873 

(a) 1.54 m3/s  𝜆∗""    (b) 10.79 m3/s  𝜆∗""  
IF WI SF   IF WI SF 

Γ 
IF 509 165 182   

Γ 
IF 397 134 129 

WI 780 743 619   WI 796 806 569 
SF 203 381 654   SF 197 512 696 

                      
(c) 82.12 m3/s 𝜆∗""     (d) 343.6 m3/s 𝜆∗""   

IF WI SF   IF WI SF 

Γ IF 279 83 48   Γ IF 179 53 28 
WI 891 875 468   WI 944 896 341 



  Page 59 of 84 

 

SF 216 661 668   SF 250 790 708 

 874 

 875 

Figure S11. Violin plots of LBE count distributions for cross-sections classified into each of the 876 
three hydrodynamic regimes using Γ and 𝝀∗𝒍888 values for each discharge-dependent LBE dataset.  877 
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 878 

Figure S12. Violin plots of median LBE area distributions for cross-sections classified into each 879 
of the three hydrodynamic regimes using Γ and 𝝀∗𝒍888 values for each discharge-dependent LBE 880 
dataset.  881 
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 882 

Figure S13. Violin plots of cross-sectional LBE count distributions for each discharge-883 
dependent LBE dataset stratified by how sections were classified into hydrodynamic regimes by 884 
both Γ and 𝝀∗𝒍888 values. X-axis values are unique codes for all possible regime classification 885 
combinations. The first number corresponds to the Γ-based regime classification and the second 886 
number to the 𝝀∗𝒍888-based regime classification. Values are coded as follows: 1 – isolated 887 
roughness; 2 – wake interference; and 3 – skimming flow.  888 
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 889 

Figure S14. Violin plots of cross sectional LBE median area distributions for each discharge-890 
dependent LBE dataset stratified by how sections were classified into hydrodynamic regimes by 891 
both Γ and 𝝀∗𝒍888 values. X-axis values are unique codes for all possible regime classification 892 
combinations. The first number corresponds to the Γ-based regime classification and the second 893 
number to the 𝝀∗𝒍888-based regime classification. Values are coded as follows: 1 – isolated 894 
roughness; 2 – wake interference; and 3 – skimming flow. 895 

4.6. Question 3 results (LBE lateral structure) 896 

None. 897 

5. Discussion 898 

5.1. Mapping LBEs in a mountain river 899 

None. 900 
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5.2. LBE lateral spatial structure and resistance 901 

None. 902 

5.3. Segment and reach resistance maximization 903 

None. 904 

5.4. Cross-section resistance maximization 905 

  906 
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 907 

Figure S15. (a) 3D phase-space showing reach-scale Γ (x-axis) and percentage of 𝜆∗1H  values 908 
classified as WI (y-axis) and IF (z-axis). Vertical gray planes are Γ thresholds for Morris’s 909 
hydrodynamic regimes. Regime thresholds for spacing were not able to be shown on this phase-910 
phase, but can be inferred from the two spacing dimensions. (b) 2D phase-space showing cross-911 
section scale Γ and 𝜆∗1K  values for 20 randomly selected cross-sections. Vertical and horizontal 912 
bold dark lines are thresholds for Morris’s hydrodynamic regimes. Abbreviations are such that: R 913 
– Reach; IF – isolated roughness; WI – wake interference; and SF – skimming flow. 914 

5.5. Resistance maximization as an attractor state 915 

None. 916 

6. Conclusions 917 

None. 918 
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