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The Role of the Ventromedial Prefrontal Cortex and Context in
Regulating Fear Learning and Extinction

Sarah T. Gonzalez and Michael S. Fanselow
University of California, Los Angeles

An organism’s ability to learn about and respond to stimuli in its environment is crucial
for survival, which can involve learning simple associations such as learning what
stimuli predict danger. However, individuals must also be able to use contextual
information to adapt to changing environmental demands. While the circuitry that
supports fear conditioning has been extensively studied, the circuitry that allows
individuals to regulate fear under different circumstance is less well understood. A view
of ventromedial prefrontal cortex (vmPFC) function has emerged wherein the prelimbic
region of the vmPFC supports fear expression, while the infralimbic region supports
fear inhibition. However, despite a rich literature exploring the role of these regions in
appetitive learning and memory suggesting a more nuanced function, there has been
little integration of this literature with studies of the vmPFC in fear learning. In this
review, we argue that the function of the vmPFC in fear learning is not restricted to fear
inhibition versus expression per se. Instead, the vmPFC uses contextual information to
guide behavior, particularly in situations of ambiguity or conflict.

Keywords: fear conditioning, learning, memory, prefrontal cortex

An organism’s ability to appropriately learn
about and respond to stimuli in its environment
is crucial for survival. This can involve learning
simple associations such as learning what stim-
uli predict danger. However, more sophisticated
processes such as the ability to adapt behavior
to changing environmental demands are equally
important. The prefrontal cortex (PFC) is
known to support a number of executive func-

tions that enable such flexible processes (Kesner
& Churchwell, 2011; all abbreviations listed in
Table 1). The PFC can be divided into a number
of regions, each serving distinct roles. The ven-
tromedial region of the rodent PFC (vmPFC),
consisting of the prelimbic (PL) and infralimbic
(IL) cortices, is known to play an important role
in decision-making, attention, and behavioral
flexibility (Clark, Cools, & Robbins, 2004; De-
latour & Gisquet-Verrier, 2000).

Over the past several decades, the vmPFC
has also emerged as playing a key role in the
regulation of fear learning and memory. Fear
learning is often studied in the laboratory using
Pavlovian fear conditioning. In this procedure,
an initially neutral conditional stimulus (CS),
such as a tone or context, is paired with an
aversive unconditional stimulus (US), such as
mild footshock. Following development of this
association, the subject will show a conditional
fear response (CR) when presented with the CS.

Considerable attention has also been devoted
to understanding the mechanisms of fear inhi-
bition. This is typically studied through a pro-
cedure known as fear extinction, where follow-
ing conditioning the CS is repeatedly presented
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on its own until it no longer elicits a conditional
fear response. Importantly, fear extinction is not
believed to involve the erasure of the original
CS–US association, as would be predicted by
classical models of associative learning (Re-
scorla & Wagner, 1972). Instead, extinction in-
volves the development of a competing, inhib-
itory CS–no-US association that competes with
the original learning (Bouton, 2002). Contex-
tual cues act to select which of these associa-
tions are retrieved. This renders extinction
highly context dependent such that the extin-
guished fear response can return following a
change in context, a phenomenon known as
renewal (Bouton & Bolles, 1979; Bouton &
King, 1983). Fear can also return following the
passage of time, a phenomenon known as spon-
taneous recovery that is often interpreted as the
passage of time itself producing a change in
context (Bouton, 2002).

While the circuitry underlying fear acquisi-
tion is well understood, the mechanisms of fear
extinction are less well understood. Work from
Quirk and colleagues has led to the develop-
ment of a model where the PL and IL play
opposing roles in the realm of fear learning: The
PL is purported to be necessary for the expres-
sion of fear learning, while the IL is thought to
be necessary for extinction learning (Sierra-
Mercado, Padilla-Coreano, & Quirk, 2011).

Despite a rich literature exploring the role of
the vmPFC in appetitive learning and memory,
in which cues and responses are associated with
rewards such as food or drug, there has been
little integration of this literature with studies of
the vmPFC in fear learning. In this review, we
will offer a reconceptualization of the role of the
vmPFC in fear learning in the context of the
vmPFC’s broader role in executive functioning,
synthesizing findings from both the appetitive
and fear learning domains. We argue that the
function of the vmPFC in fear learning is not
restricted to fear inhibition versus expression.
Instead, a more parsimonious view is that the
vmPFC uses contextual information to guide
behavior in situations of ambiguity. This review
will focus on findings from the rodent literature,
although this work does have important impli-
cations for human conditions including anxiety
disorders and drug addiction. As a comprehen-
sive review of all literature pertaining to vmPFC
function is beyond the scope of this article, we
will discuss work from both appetitive and fear-
learning domains that has the strongest impli-
cations for the role of vmPFC function with
respect to fear learning and extinction.

The vmPFC in the Regulation of Fear

The basic circuit underlying Pavlovian fear
conditioning is well understood (Fendt & Fan-
selow, 1999). During fear conditioning, sensory
information about the CS and US from the
sensory cortex and thalamus converge on neu-
rons within the basolateral amygdala (BLA),
which is divided into the lateral and basal nuclei
(see Figure 1). Following conditioning, presen-
tations of the CS allow the BLA to drive a fear
response via its projections to the central
amygdala (CeA), which in turn project to tar-
gets in the brainstem, midbrain, and hypothala-
mus that produce specific fear responses, such
as freezing. Located in between the BLA and
CeA are clusters of GABAergic neurons known
as the intercalated cells (ITCs). The ITCs re-
ceive excitatory inputs from the BLA and send
inhibitory projections to the CeA, making them
an attractive candidate for playing a role in fear
inhibition (Likhtik, Popa, Apergis-Schoute, Fi-
dacaro, & Paré, 2008; Paré & Smith, 1993).

Simple forms of Pavlovian fear conditioning,
such as when a tone perfectly predicts a shock,
can be learned by the thalamo-amygdala sub-

Table 1
Abbreviations and Full Names

Abbreviation Full name

PFC Prefrontal cortex
vmPFC Ventromedial prefrontal cortex
PL Prelimbic cortex
IL Infralimbic cortex
BLA Basolateral amygdala
LA Lateral nucleus of basolateral amygdala
BA Basal nuclues of basolateral amygdala
CeA Central amygdala
ITCs Intercalated cells
DH Dorsal hippocampus
VH Ventral hippocampus
catFISH Cellular compartment analysis of

temporal activity using fluorescence
in situ hybridization

CS Conditional stimulus
US Unconditional stimulus
CR Conditional response
ITI Inter-trial interval
PTSD Post-traumatic stress disorder
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cortical network without requiring prefrontal
input (Romanski & LeDoux, 1992). However,
as learning becomes more complex, additional
brain structures such the prefrontal cortex and
hippocampus are recruited to modulate the sub-
cortical circuits that support simple fear condi-
tioning (Kim, Rison, & Fanselow, 1993; Mor-
gan, Romanski, & LeDoux, 1993). Fear
extinction is one of the clearest examples of this
phenomenon, in which a stimulus that had been
reinforced is now presented without reinforce-
ment and subjects must rely on contextual cues
to resolve the now-ambiguous meaning of stim-
uli (Bouton, 2002).

The vmPFC is well situated to regulate fear
learning and memory, as both the PL and IL
receive extensive projections from the hip-
pocampus and BLA (Cenquizca & Swanson,
2007; Hoover & Vertes, 2007; Jay & Witter,
1991) and send projections back to the BLA
(Hurley, Herbert, Moga, & Saper, 1991; Sesack,
Deutch, Roth, & Bunney, 1989; Vertes, 2004).
While the vmPFC has few direct projections to
the ITCs, the vmPFC is able to indirectly reg-
ulate the activity of the ITCs via the BLA (Pi-
nard, Mascagni, & McDonald, 2012; Strobel,
Marek, Gooch, Sullivan, & Sah, 2015). The PL
and IL also have reciprocal connections, with
PL–IL projections being more prominent while
IL–PL projections are relatively sparse (Marek,
Xu, Sullivan, & Sah, 2018). Over the past sev-
eral decades, a model of vmPFC function in fear
learning and extinction has emerged wherein
the IL is necessary for fear extinction, while the
PL enables fear expression (Sierra-Mercado et
al., 2011). Each of these ideas will be discussed
in greater detail below.

The Role of the IL in Fear Extinction

One of the first studies to suggest a role for
the IL in fear inhibition was from Morgan et al.
(1993), which indicated that vmPFC lesions im-
paired fear extinction. An extensive series of
studies from Quirk and colleagues indicated
that the extinction impairments observed were
likely due to disruption of the IL specifically, as
pretraining vmPFC lesions that included both
PL and IL impaired retrieval of an extinguished
fear response, while IL-sparing vmPFC lesions
did not produce this effect (Quirk, Russo, Bar-
ron, & Lebron, 2000). This paved the way for
further dissection of a fear extinction circuit,
focusing on the IL as the hub for fear inhibition
(Milad & Quirk, 2012).

Initial findings that pretraining IL lesions im-
paired extinction memory retrieval and that IL
activity increased at the start of subsequent extinc-
tion sessions suggested that the IL may be critical
for the storage or retrieval of extinction (Milad &
Quirk, 2002; Quirk et al., 2000). Importantly, the
IL was not viewed as necessary for fear suppres-
sion per se, as IL lesions did not impact within-
session extinction (Quirk et al., 2000). However,
later studies utilizing more temporally and spa-
tially precise techniques suggested that the role of
the IL in fear extinction may be more nuanced.
While both optogenetic and pharmacological in-
activation of IL during or immediately after train-
ing impaired subsequent recall of extinction mem-
ory and IL activation during training enhanced
extinction recall, optogenetic IL inactivation at
test did not impair retrieval (Bukalo et al., 2015;
Do-Monte, Manzano-Nieves, Quiñones-Laracu-
ente, Ramos-Medina, & Quirk, 2015). These find-

Figure 1. Fear learning circuitry. Diagram showing connectivity between the basolateral
amygdala (BLA), hippocampus, and ventromedial prefrontal cortex (vmPFC). LA � lateral
nucleus of BLA; BA � basal nucleus of BLA; ITCs � intercalated cells; CeA � central
amygdala. See the online article for the color version of this figure.

3VENTROMEDIAL PREFRONTAL CORTEX IN FEAR LEARNING

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.



ings, combined with evidence that BLA-ITC pro-
jections are strengthened by extinction training
and that this strengthening is blocked by IL inac-
tivation (Bloodgood, Sugam, Holmes, & Kash,
2018), led to the current model of extinction in
which the IL mediates the strength of BLA-ITC
projections but is not required for the storage or
retrieval of extinction memory (Do-Monte et al.,
2015).

The Role of the Prelimbic Cortex in Fear
Expression

Reports that PL inactivation reduced fear
during both training and test (Corcoran &
Quirk, 2007), combined with evidence of cor-
relations between PL activity and fear (Burgos-
Robles, Vidal-Gonzalez, & Quirk, 2009), have
led to the proposal that PL activity is necessary
for fear expression. This is somewhat surprising
given that numerous studies demonstrated that
vmPFC lesions did not impair acquisition or
expression of Pavlovian fear conditioning to a
discrete tone or context CS (Lebrón, Milad, &
Quirk, 2004; Morgan et al., 1993; Zelikowsky
et al., 2013). However, it is possible that such
pretraining lesions could allow for the develop-
ment of compensatory mechanisms (Fanselow,
2010).

While both of these views of vmPFC func-
tion have considerable support, there has been
relatively little integration of these models with
the established role of the vmPFC in context-
sensitive forms of learning and memory (Kesner
& Churchwell, 2011; Kesner, Hunt, Williams,
& Long, 1996; Ragozzino, Adams, & Kesner,
1998). We will now reevaluate findings regard-
ing the role of the vmPFC in fear learning and
extinction in the broader context of contextual
control of behavior in situations of uncertainty.
Rather than promoting fear suppression versus
inhibition per se, we argue that the vmPFC is
recruited to navigate situations of conflict and
uncertainty, including but not limited to fear
extinction.

The vmPFC and Contextual Control of
Fear Extinction

The vmPFC is well-situated to receive and
use contextual information to navigate compet-
ing CS–US and CS–no-US associations during

fear extinction as it receives input from the
hippocampus and BLA and projects backs to the
BLA (Cenquizca & Swanson, 2007; Hoover &
Vertes, 2007; Hurley et al., 1991; Jay & Witter,
1991; Sesack et al., 1989; Vertes, 2004). This
suggests that during the formation and retrieval
of the extinction memory, information about the
context and emotional valence of stimuli is
passed to the vmPFC, which in turn uses this
information to modulate BLA activity. Appro-
priate responding following extinction therefore
requires coordinated activity of the vmPFC,
hippocampus, and BLA (Bloodgood et al.,
2018; Knapska et al., 2012; Orsini, Kim, Knap-
ska, & Maren, 2011).

The vmPFC appears to be important for the
context-appropriate retrieval of fear extinction
memory. Presentations of the extinguished CS
are associated with increased activation of IL
neurons when presented in the extinction con-
text, and increased activity in the PL when
presented outside the extinction context (Knap-
ska & Maren, 2009; Orsini et al., 2011). Inter-
estingly, Orsini, et al. (2011) found a selective
increase in the activity of BLA-projecting PL
neurons during renewal compared to extinction
retrieval but no differences in overall PL neuron
activity, suggesting that the PL projections to
other targets may have concurrently been me-
diating behaviors in addition to fear renewal.
Optogenetic and pharmacological IL inactiva-
tion has been shown to impair the retrieval of
extinction memory when the extinguished CS
was presented in the extinction context (Kim,
Cho, Augustine, & Han, 2016; Marek, Jin, et
al., 2018). Conversely, our laboratory has dem-
onstrated that IL lesions increase fear renewal
when the extinguished CS is presented outside
of the extinction context, while PL lesions at-
tenuated fear renewal (Zelikowsky et al., 2013).

Given the established role of the hippocam-
pus in contextual learning and memory (Fan-
selow, 2000; Holland & Bouton, 1999; Kim &
Fanselow, 1992), it is not surprising that hip-
pocampal function is necessary for the contex-
tually appropriate retrieval of extinction mem-
ory. Presentations of an extinguished CS have
been shown to increase activity in the both
dorsal hippocampus (DH) and the ventral hip-
pocampus (VH) when presented in either the
extinction or renewal context (Knapska &
Maren, 2009). Pretraining and posttraining DH
lesions, as well as pharmacological DH inacti-
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vation, have been shown to impair the context
specificity of fear extinction by reducing re-
newal (Corcoran & Maren, 2001; Ji & Maren,
2005). The encoding of extinction memory also
appears to depend on hippocampal function, as
inactivation of DH and VH during extinction
training has been shown to impair the retrieval
of extinction memory (Corcoran, Desmond,
Frey, & Maren, 2005; Sierra-Mercado et al.,
2011).

The contextually appropriate retrieval of ex-
tinction memory further relies on interactions
among the hippocampus, vmPFC, and BLA.
Projections from the VH to the BLA and
vmPFC are necessary for fear renewal (Knapska
et al., 2012; Orsini et al., 2011). A recent study
demonstrated a particular role for VH projec-
tions targeting inhibitory interneurons in the
vmPFC in regulating fear renewal, as chemoge-
netic activation of VH projections targeting in-
hibitory interneurons in the IL impaired extinc-
tion recall, while inhibition of these projections
reduced fear renewal (Marek, Jin et al., 2018).
Plasticity within the BLA is also necessary for
fear extinction, and following extinction some
individual BLA neurons show increased re-
sponses to the CS after fear conditioning, while
others show increased responses to CS presen-
tation in the extinction context after extinction
training (Falls, Miserendino, & Davis, 1992;
Herry et al., 2008; Hobin, Goosens, & Maren,
2003).

As discussed previously, the current model of
an extinction circuit posits that the IL supports
the development of BLA–ITC connections dur-
ing extinction training but is not involved in the
subsequent retrieval of extinction memory (Do-
Monte et al., 2015). This appears to be at odds
with evidence that an important function of the
vmPFC is the context-appropriate retrieval of
extinction memory (Kim et al., 2016; Marek,
Jin, et al., 2018). One potential explanation is a
difference in testing procedures. Marek, Jin, et
al. (2018) found that IL inactivation did not
impact freezing during the first few trials testing
extinction memory retrieval, which appeared to
be due to elevated freezing in the control sub-
jects. This suggested that spontaneous recovery
during early test trials could potentially mask
the effects of IL manipulations during short test
sessions as were used by Do-Monte et al. (Do-
Monte et al., 2015; Marek, Jin, et al., 2018).

Another potential explanation is that context
specificity of extinction can be affected by dif-
ferences in training procedures, such as where
fear conditioning versus extinction training
takes place. In many of the studies conducted by
Quirk and colleagues, extinction training and
testing typically occur within the same context
(Corcoran & Quirk, 2007; Sierra-Mercado, Cor-
coran, Lebrón-Milad, & Quirk, 2006; Sierra-
Mercado et al., 2011). In contrast, H. S. Kim et
al. (2016) and Marek et al. (2018) performed
fear conditioning in one context (e.g., Context
A) and extinction training in a different context
(e.g., Context B). When fear conditioning and
extinction occur in different contexts, the re-
newal of fear when the extinguished CS is pre-
sented in the original training context (known as
ABA renewal) or in a novel context (known as
ABC renewal) is generally quite robust (Bou-
ton, Todd, Vurbic, & Winterbauer, 2011;
Thomas, Larsen, & Ayres, 2003). However, re-
newal has been shown to be less robust when
training and extinction occur in the same con-
text, a procedure known as AAB renewal (Na-
kajima, Tanaka, Urushihara, & Imada, 2000;
Thomas et al., 2003).

This suggests that conducting fear condition-
ing and extinction within the same context may
reduce the context specificity of extinction and
promote use of different strategies for determin-
ing the now-ambiguous meaning of the CS. For
example, it has been suggested that extinction
training in original conditioning context may
cause the CS to lose some of its excitatory
associative value, in addition to promoting the
development of a context-specific CS–no-US
association (Thomas et al., 2003). It is therefore
plausible that the necessity of IL in the retrieval
of extinction memory is influenced by contex-
tual dependence of that memory. In support of
this, IL inactivation has been shown to impair
retrieval of context extinction memory (Laurent
& Westbrook, 2009). Interestingly, IL lesions
did not impair performance on a feature-
negative discrimination procedure, in which a
discrete stimulus (as opposed to a context) sig-
naled the nonreinforcement of a tone stimulus
(Meyer & Bucci, 2014).

In summary, the vmPFC appears to work in
concert with the BLA and hippocampus to
guide the context-appropriate expression of
fear. While current models of vmPFC function
posit that the IL is necessary for the acquisition,
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but not expression, of fear extinction (Do-
Monte et al., 2015), other findings suggest that
the IL is indeed necessary for the retrieval of
extinction memory (Kim et al., 2016; Marek,
Jin, et al., 2018). This discrepancy could poten-
tially be explained by differences in training or
testing procedures.

The vmPFC and Extinction of Reward-
Seeking Behavior

The vmPFC is also implicated in the extinc-
tion of reward-seeking behavior. This topic is
often explored using self-administration proce-
dures in which subjects are first trained to make
an operant response such as a lever press to
receive a drug reward, followed by extinction
sessions where the response is no longer rein-
forced (Millan, Marchant, & McNally, 2011).
At test, an extinguished response can return
following presentation of the drug (reinstate-
ment), presentation of a cue associated with the
drug (cue-induced reinstatement) or change in
context (context-induced reinstatement; Crom-
bag, Grimm, & Shaham, 2002; de Wit & Stew-
art, 1983; Millan et al., 2011). As in fear ex-
tinction, pharmacological and optogenetic
inhibition of IL activity immediately following
extinction training impaired extinction of a le-
ver-press response that had previously been re-
warded with cocaine (Gutman et al., 2017;
LaLumiere, Niehoff, & Kalivas, 2010). IL ac-
tivity is also necessary for the retrieval of ex-
tinction memory, as pharmacological inhibition
of IL caused a return of an extinguished lever-
press response while pharmacological and che-
mogenetic IL activation prevented cue-induced
reinstatement (Augur, Wyckoff, Aston-Jones,
Kalivas, & Peters, 2016; Peters, LaLumiere, &
Kalivas, 2008).

Context-induced reinstatement has many
similarities with fear renewal, and similarly de-
pends on coordinated activity of the vmPFC and
hippocampus. Context-induced reinstatement is
associated with increased activity of PL neu-
rons, while PL inactivation attenuates this rein-
statement (Palombo et al., 2017; Trask, Ship-
man, Green, & Bouton, 2017; Willcocks &
McNally, 2013). This effect appears to depend
on hippocampal activity, as pharmacological in-
hibition of the ventral hippocampus and chemo-
genetic inhibition of VH–IL projections reduce
context-induced reinstatement of cocaine and

heroin seeking (Bossert & Stern, 2014; Lasse-
ter, Xie, Ramirez, & Fuchs, 2010; Wang et al.,
2018).

A number of findings suggest that the IL also
modulates the retrieval of extinction memory
for appetitive Pavlovian conditioning, in which
a CS is associated with a food-reward US. IL
lesions have been shown to increase spontane-
ous recovery and renewal of the extinguished
CS without impacting within-session extinction
or savings between extinction sessions (Rhodes
& Killcross, 2004). Conversely, optogenetic IL
stimulation following extinction training has
been shown to reduce renewal and spontaneous
recovery (Villaruel et al., 2018).

The vmPFC and Contextual Control of
Behavior Beyond Extinction

While much of the work studying context
control of fear learning has employed fear ex-
tinction, several studies from our laboratory uti-
lizing other procedures suggest a more general
role of the vmPFC in context-sensitive learning
memory systems, rather than fear expression
and inhibition specifically. A previous report
from our laboratory demonstrated that IL le-
sions impaired the ability of animals to discrim-
inate between a context in which a tone had
been paired with a shock, and a novel context
(Zelikowsky et al., 2013). This effect was not
driven by just increased fear to the novel con-
text, as would be expected if the only role of the
IL was to inhibit fear, but rather by intermediate
levels of fear to both contexts. In contrast, PL
lesions had no impact on either fear to the
trained context or generalization to a novel con-
text. A more recent study found that IL lesions
impaired the ability of stress to enhance fear to
a context paired with an aversive acoustic startle
stimulus, while leaving stress-enhanced fear to
a tone CS intact (Pennington, Anderson, & Fan-
selow, 2017). In addition, while context fear
conditioning is typically dependent on the dor-
sal hippocampus, the vmPFC can compensate
for pretraining hippocampal damage (Ze-
likowsky et al., 2013). This ability does not
depend on either the PL or IL specifically, but
instead requires communication between the
two regions as disconnection of PL and IL pre-
vents compensation.

In addition, a study from our laboratory uti-
lized cellular compartment analysis of temporal
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activity using fluorescence in situ hybridization
(catFISH) to label neurons within the BLA,
dorsal hippocampus and vmPFC during both
context fear conditioning and during test of
memory recall in subjects that did or did not
form a context-fear association (Zelikowsky,
Hersman, Chawla, Barnes, & Fanselow, 2014).
BLA neurons only showed activation at both
time points in the animals that formed a fear
memory, while both groups showed similar re-
activation of hippocampal neurons, indicating
that these regions encoded emotional and spa-
tial properties of the context, respectively. The
pattern of reactivation in PL suggested that this
region may integrate both spatial and emotional
information, as a substantial number of PL neu-
rons were reactivated in both groups although
more were reactivated in the animals that
formed a fear memory.

While the role of the vmPFC in regulating
both fear and drug-seeking behavior is typically
interpreted as serving a “stop-go” function, a
number of studies in the appetitive domain uti-
lizing a variety of tasks suggest that the PL and
IL mediate contextually appropriate behavior
beyond this simple dichotomy. A recent study
recorded PL and IL neurons during the perfor-
mance and extinction of a discriminative stim-
ulus-driven sucrose-seeking task (Moorman &
Aston-Jones, 2015). In this task, one auditory
stimulus indicated that a lever press would be
reinforced, while a second stimulus indicated
that a lever press would not be reinforced.
While a “stop-go” view of vmPFC function
would predict PL activity to be elevated during
drug seeking and IL activity to be elevated
during suppression of drug seeking, this is not
what was observed. Instead, both PL and IL
neurons both tended to be active when the cor-
rect response was made, that is, firing when a
lever response was made during reinforced tri-
als and when the response was withheld during
nonreinforced trials. Furthermore, during ex-
tinction both PL and IL neurons switched to
signal the withholding of a response during
previously reinforced trials. These results sug-
gest that the vmPFC plays a role in signaling the
reinforcement contingencies currently in effect,
enabling the appropriate execution or inhibition
of behavior under changing circumstances.

Another task that has proven powerful for
investigating the role of the vmPFC in the con-
textual control of behavior is the biconditional

discrimination task developed by Killcross and
colleagues (Haddon & Killcross, 2006; Mar-
quis, Killcross, & Haddon, 2007). In this task,
rats were presented with a pair of visual stimuli
(e.g., V1 and V2) in one context and a pair of
auditory stimuli (e.g., A1 and A2) in the second
context. Presentations of A1 and V1 indicated
that pressing one of the two available levers
would result in food reward, while A2 and V2
indicated that pressing the other lever would
result in food reward. As a result, neither re-
sponse was consistently reinforced or not rein-
forced, and subjects had to use these stimuli to
determine which response would be reinforced.
During the critical test, audiovisual compounds
were presented in each context that signaled
reinforcement either of the same lever press
(e.g., A1V1) or of different lever presses (e.g.,
A1V2). These incongruent trial types required
the animals to use contextual cues to determine
which type of stimulus (visual or auditory) to
attend to.

vmPFC lesions did not impair acquisition of
the individual discriminations within each con-
text, indicating that subjects were able to use
noncontextual stimuli to navigate between con-
flicting responses (Haddon & Killcross, 2006).
However, performance was impaired during in-
congruent trials, indicating that animals were
not able to appropriately use contextual cues to
guide which stimuli to attend to. This ability
was shown to be dependent specifically on the
PL, as PL inactivation reproduced this effect
while IL inactivation did not (Marquis et al.,
2007). Similar finding have been shown in fear
conditioning preparations, in which PL inacti-
vation impaired the ability of subjects to use
contextual cues to determine which of two au-
ditory stimuli signaled footshock (Sharpe &
Killcross, 2015b), while PL lesions impaired
the ability of mice to use contextual cues to
determine whether a single auditory stimulus
signaled footshock or not (E. J. Kim, Kim, Kim,
& Choi, 2013).

In summary, a number of findings suggest
that vmPFC has a more sophisticated role than
simply allowing the expression or inhibition of
behavior. Work from our laboratory suggests
that vmPFC manipulations may affect several
aspects of contextual processing (Pennington et
al., 2017; Zelikowsky et al., 2013, 2014). The
vmPFC further appears to regulate the use of
contextual information to guide reward-seeking
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behavior (Haddon & Killcross, 2006; Marquis
et al., 2007; Moorman & Aston-Jones, 2015).

Opposing Roles of PL and IL in
Controlling Context Specificity of Behavior

At first glance, the results of extinction stud-
ies versus biconditional discrimination studies
seem at odds: Why do lesions of IL but not PL
impair retrieval of extinction, while lesions of
PL but not IL impair performance on a different
task in which context is explicitly used to de-
termine which set of associations to attend to?

An intriguing explanation has been offered
by Killcross and colleagues, who have sug-
gested that the PL and IL play opposing roles
not in expression versus inhibition, but in reg-
ulating the context specificity of behavior. Spe-
cifically, they suggested that the PL enables the
direction of attention toward relevant stimuli,
facilitating the use of contextual cues to guide
behavior, while the IL supports the ability of
certain behaviors to persevere across multiple
contexts (Haddon & Killcross, 2007; Marquis et
al., 2007; Rhodes & Killcross, 2004; Roughley
& Killcross, 2019). Within this view, IL lesions
serve to enhance the context specificity of ex-
tinction. This would result in a reduced ability
of the test context to retrieve the extinction
memory, producing the observed increases in
spontaneous recovery and renewal, without af-
fecting rates of within-session extinction. In
contrast, because accurate performance on the
biconditional discrimination task depends on
the context specificity of behavior, PL lesions
would be expected to produce the observed
impairments.

In support of this view, IL lesions have been
reported to enhance performance on tasks re-
quiring use of spatial cues. Ashwell and Ito
(2014) demonstrated that neither PL nor IL le-
sions impacted the ability of rats to associate
visual stimuli presented in the arms of a radial
arm maze with a food reward. However, differ-
ences emerged when subjects were required to
use spatial cues to determine which stimulus
presentations would be reinforced. IL-lesioned
animals showed enhanced performance com-
pared to PL-lesioned animals both during initial
discrimination training and during reversal
training when the locations of reward stimulus
locations were reversed. Interestingly, the latter
was driven by reduced responding to the non-

reinforced stimulus. This decrease in preserva-
tive behaviors following IL lesions was inter-
preted as evidence that IL lesions caused
behavior to become more sensitive to changing
environmental contingencies (Ashwell & Ito,
2014).

However, just as we argue that a dichoto-
mous view of the vmPFC as solely promoting
fear expression versus inhibition is overly sim-
plistic, its role may also be more nuanced than
solely promoting context specificity versus gen-
erality of behavior. Recently, Riaz et al. (2019)
demonstrated that both PL- and IL-lesioned rats
showed impaired ability to use contextual cues
to determine which of two auditory stimuli
would be reinforced. In both groups, this ap-
peared to be due to both decreased responding
to the reinforced stimulus and increased re-
sponding to the nonreinforced stimulus (Riaz et
al., 2019). While this goes against an account of
IL lesions promoting context specificity of be-
havior, it nevertheless suggests that both re-
gions are involved in using environmental cues
to navigate situations of ambiguity or conflict.

Methodological Considerations That May
Impact vmPFC Recruitment

An attentional account of vmPFC function
posits that a critical role of the PL is to guide
attention toward relevant stimuli, facilitating the
use of such information to guide behavior (Flo-
resco, Block, & Tse, 2008; Sharpe & Killcross,
2014). It has therefore been suggested that PL
lesions may not impact fear expression per se,
but rather impair the ability of animals to attend
to aspects of the environment that are predictive
of danger (Sharpe & Killcross, 2015b). The role
of the PL in attending to predictive stimuli and
ignoring irrelevant stimuli could depend on the
degree of competition between the cues present
during learning. In a Pavlovian fear-condition-
ing situation in which a tone CS is paired with
a shock US, both the tone and the context will
compete to be associated with the shock (An-
agnostaras, Gale, & Fanselow, 2001). Compe-
tition between cues and context is affected by a
variety of experimental parameters. For exam-
ple, competition between cues and context can
be reduced by relatively long intertrial intervals
(ITIs) or preexposure to the conditioning con-
text, and enhanced by relatively short intertrial
intervals or preexposure to the CS. Sharpe and
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Killcross (2015a) demonstrated that the effects
of PL lesions depended on the degree of com-
petition between discrete cues and context, as
PL lesions reduced fear to a discrete CS when
parameters favored competition between the CS
and context (short ITIs and no pre-exposure to
context). However, PL lesions had no effect
when training parameters favored learning
about the CS and not the context (long ITIs and
context preexposure).

The possibility that the PL becomes particu-
larly important when attending to multiple stim-
uli suggests that vmPFC recruitment during fear
conditioning may be influenced by specific
training procedures that employ high levels of
competition between the CS and context or re-
quire subjects to navigate between competing
responses. In several studies demonstrating the
necessity of the PL for fear expression, subjects
received nonreinforced CS presentations imme-
diately prior to CS–US pairings (Burgos-Robles
et al., 2009; Sierra-Mercado et al., 2006, 2011).
While such procedures may be necessary for
identification of CS-sensitive cells in in vivo
electrophysiological recording experiments,
they can also produce a phenomenon known as
latent inhibition in which nonreinforced CS pre-
sentations impair subsequent acquisition of
CS–US presentations (Lubow, Schnur, &
Rifkin, 1976). Similar to extinction, during CS
pre-exposure subjects appear to learn a context-
dependent, CS–no-US association (Bouton,
1993; Westbrook, Jones, Bailey, & Harris,
2000). Additionally, latent inhibition decreases
the salience of, or attention devoted to, the CS,
necessitating greater vmPFC participation
(McLaren & Mackintosh, 2000). Indeed, one
theory of latent inhibition posits that con-
text–CS associations acquired during pre-
exposure result in priming CS representations
later in training and testing and this priming
reduces the surprise and salience of a CS when
it is presented in the preexposure context (Vo-
gel, Ponce, & Wagner, 2019).

A second procedure that could introduce ad-
ditional conflict is the use of conditioned sup-
pression as a measure of fear, in which subjects
can freely bar-press for food during testing and
reductions in pressing during CS presentations
are taken as an index of fear (Kamin, Brimer, &
Black, 1963). While such a measure has a long
history of use, it does introduce additional con-
flict in that subjects must navigate between

competing reward-seeking and defensive be-
haviors. A number of studies demonstrating the
necessity of the PL in fear expression employ
such procedures, which are further complicated
by bar-press training and fear conditioning fre-
quently occurring within the same context (Cor-
coran & Quirk, 2007; Sierra-Mercado et al.,
2006, 2011). Such considerations imply that
while the PL may play a role in fear expression,
the extent of PL involvement may be contingent
on task demands.

Implications for Understanding Human
Fear and Anxiety

Understanding the mechanisms through
which behavior is guided by changing environ-
mental contingencies has a powerful impact for
understanding a number of human conditions.
Posttraumatic stress disorder (PTSD) is charac-
terized by a dysregulation of fear responses,
including exaggerated response to mild stres-
sors that are reminiscent of the original trauma
and impaired fear extinction (Bremner, Krystal,
Southwick, & Charney, 1995; Dykman, Acker-
man, & Newton, 1997; Jovanovic, Kazama,
Bachevalier, & Davis, 2012). When treating
drug addiction, a major challenge is the relapse
to drug use after periods of abstinence following
exposure to environmental stimuli associated
with drug use (Hunt, Barnett, & Branch, 1971).
Accordingly, prefrontal cortex dysfunction is
increasingly being looked at as a marker of
susceptibility to PTSD and drug addiction
(Goldstein & Volkow, 2011; Koenigs & Graf-
man, 2009). While reduced PFC activity is typ-
ically associated with worse outcomes (Koenigs
& Grafman, 2009; Milad et al., 2005), the mul-
tifaceted role of the PFC in regulating behaviors
such as fear learning indicates that its role in
these conditions is equally complex.

Conclusion

In contrast to the view that the PL and IL play
opposing roles in the expression versus inhibi-
tion of fear, we argue that the roles of the
vmPFC in fear acquisition and extinction are
much more complex. Research from the appet-
itive domain suggests that the vmPFC plays a
critical role in using contextual information to
guide behavior, particularly in situations of am-
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biguity or conflict. Such findings have impor-
tant implications for understanding the role of
the vmPFC in the realm of fear learning. Mov-
ing forward, it will be valuable to further delin-
eate the precise contributions of the vmPFC to
different aspects of fear learning and memory.
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