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Abstract

Further Development of the Tail-Equivalent Linearization Method for Nonlinear Stochastic
Dynamics

by

Marco Broccardo

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

and the Designated Emphasis in

Computational Science and Engineering

University of California, Berkeley

Professor Armen Der Kiureghian, Chair

This dissertation provides the foundation for an in-depth understanding and significant de-
velopment of the tail-equivalent linearization method (TELM) to solve different classes of
nonlinear random vibration problems. The TELM is a linearization method that uses the
first-order reliability method (FORM) to define a tail-equivalent linear system (TELS) and
to estimate the tail of the response distribution for nonlinear systems under stochastic in-
puts. The method was originally developed in the time domain for inelastic systems. It was
later extended in the frequency domain for a specific class of nonlinear excitations, while the
frequency domain version for inelastic systems is covered in the present work.

This dissertation mathematically formalizes and extends TELM analysis with different
types of discretization of the input process. A general formulation for discrete representation
of a Gaussian band-limited, white-noise process is introduced, which employs the sum of
deterministic and orthogonal basis functions weighted by random coefficients. The selection
of the basis functions completely defines the two types of discretizations used in the earlier
works. Specifically, a train of equally spaced time delta-Dirac functions leads to the current
time-domain discretization, while harmonic functions with equally spaced frequencies lead to
the current frequency-domain discretization. We show that other types of orthogonal basis
functions can be used with advantage to represent a Gaussian band-limited white noise and
in particular we employ sinc basis functions, which are at the base of the Whittaker-Shannon
interpolation formula. We demonstrate that this representation is suitable for reducing the
total number of random variables that are necessary to describe the process, since it decouples
the computational-time discretization from the band-limit of the process.

Next, the dissertation tackles the problem of a nonlinear system subjected to multi-
component excitations by defining an augmented standard normal space composed of all the
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random variables that define the multiple components of the excitation. The tail-equivalent
linearization and definition of the TELS is taken in this new space. Once the augmented
TELS is defined, response statistics of interest are determined by linear random vibration
analysis by superposition of responses due to each component of the excitation. The method
is numerically examined for an asymmetric structure with varying eccentricity and subjected
to two statistically independent components of excitation.

Several practical problems require analysis for non-stationary excitations. For this im-
portant class of problems the original TELM requires linearization for a series of points in
time to study the evolution of response statistics. This procedure turns out to be com-
putationally onerous. As an approximate alternative, we propose the evolutionary TELM,
ETELM. In particular, we adopt the concepts of the evolutionary process theory, to de-
fine an evolutionary TELS, ETELS. The ETELS approximately estimates the continuous
time evolution of the design point by only one TELM analysis. This is the essence of its
efficiency compared to the standard TELM analysis. Among response statistics of interest,
the first-passage probability represents the most important one for this class of problems.
This statistic is efficiently computed by using the Au-Beck important sampling algorithm,
which requires knowledge of the evolving design points, in conjunction with the ETELS.
The method is successfully tested for five types of excitation: (I) uniformly modulated white
noise, (II) uniformly modulated broad-band excitation, (III) uniformly modulated narrow-
band excitation, (IV) time- and frequency-modulated broad-band excitation, and (V) time-
and frequency-modulated narrow-band excitation.
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Chapter 1

Introduction

Safety analysis of structures subjected to stochastic excitations, such as earthquake, wind or
wave loading, is a primary goal of structural engineering. In the last few decades, consider-
able amount of progress has been made in developing mathematical models and computa-
tional methods that are able to predict the response of deterministic complex and nonlinear
structures under deterministic excitations. In the real world, however, uncertainties in the
geometry, material and excitations of structures are present, and they play a key role in
determining the accuracy in predicting responses of interest. While in engineering practices
that involve control, manufacturing and industrial production uncertainties can be controlled
and reduced to a sufficient degree, in most civil facilities this is generally not possible. There-
fore, prediction of the structural response under uncertain conditions, either in the structural
characteristics or in the input excitations, is a more realistic approach for the civil engineer-
ing field. There is, therefore, a need to improve the design flow and to adopt a probabilistic
approach that includes the definition of the so-called probabilistic structural analysis (PSA),
which defines modes of structural failure and determines their likelihoods.

In recent years, the Pacific Earthquake Engineering Research Center (PEER) has invested
a major effort in establishing and adopting the PSA as a vital element of structural analysis
and design. The outcome of these efforts is the so called Performance Based Earthquake
Engineering (PBEE) . The PBEE is divided into four major tasks: hazard analysis, structural
analysis, damage analysis, and decision making. Figure 1.1 shows a flow chart of the PBEE.
The first three tasks serve the purpose to create a probabilistic framework as a foundation
for risk-based decision making. One approach to solve this part of PBEE is presented
in this dissertation. The goal is to obtain the probability distribution of the response of
interest. These include the first-passage probability for a selected response, or the conditional
probability with respect to a given measure of intensity of the excitation, commonly known
as fragility curve.

An important aspect of evaluating the failure probability and fragility curves is to cor-
rectly estimate the tail of the distributions, since that is where failure events for highly
reliable systems are located. Moreover, failure events inevitably involve nonlinear response.
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Therefore, there are two overriding elements in the PSA for PBEE:

- Accurate modeling of the nonlinear response of structures.

- Accurate estimation of the tail distribution of the nonlinear response.

The failure probability of large linear and nonlinear structures is usually evaluated by meth-
ods of structural reliability for static and pseudo-dynamic loads [30], and by linear and
nonlinear random vibration analysis for dynamic problems with stochastic inputs [68, 77,
78]. Our work falls in the second category and is driven by the aforementioned two overriding
elements.

Current methods available for nonlinear random vibration analysis can be divided into
three classifications:

- Classical methods: Perturbation methods, Fokker-Plank equation, stochastic averaging,
moment closure, etc.

- Simulation methods: Monte Carlo Simulation (MCS), Importance Sampling (IS), Markov
Chain Monte Carlo (MCMC), Latin Hypercube Sampling (LHS), Orthogonal plane
sampling, etc.

- Linearization methods: Classical Equivalent Linearization Method (ELM), Tail-Equivalent
Linearization Method (TELM).

The classical methods are important and elegant approaches, but are limited to special-
ized systems or excitations. The broad family of simulation methods has no theoretical limits;

Figure 1.1: Flow chart of PBEE
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however, some of these methods are computationally inefficient for high reliability problems
(such as most civil structures). The final class of methods offers an efficient and fairly ac-
curate estimation of the response distribution for many structural problems. However, the
standard ELM, which is a parametric method, is designed to accurately estimate the first-
and the second-moments of the response distribution. Since the method is not meant for
estimating the tail of the distribution, it is not accurate for computing the probability of
failure for highly reliable systems. The TELM is a recent linearization method based on the
first-order reliability method (FORM) developed by Fujimura and Der Kiureghian [37, 38,
55]. It aims at providing a good estimation of the tail probability of the nonlinear response
for this class of problems. Taking the pioneering work of Fujimura and Der Kiureghian as a
starting point, this dissertation aims at formalizing and generalizing the TELM as a robust
mathematical approach to estimate the tail probability of the response of general nonlinear
systems subjected to stochastic excitations.

1.1 Nonlinear random vibration in the scientific
literature

Classical methods

Among the classical methods, perturbation methods are probably the first ones to be used
in nonlinear random vibration. First introduced in this field by Crandall [27], these are
fairly general methods to solve deterministic and/or stochastic nonlinear mechanics prob-
lems. Perturbation methods are based on power series expansion of the solution, where only
“significant” terms are retained. The differential equations are formulated for each term of
the expansion. The procedure is rather straightforward. However, due to the nature of the
formulation, the expansion terms rapidly increase in complexity when high-order terms are
considered. In addition, these methods are usually limited to lightly nonlinear systems. A
comprehensive overview of the topic can be found in [76].

The Fokker-Planck equation was derived in the context of statistical mechanics [12, 13];
it is a partial differential equation that describes the evolution in time of the probability
density function of a non-stationary process. Several texts on stochastic processes describe
solutions of the FP equations; noteworthy are [39, 66, 68, 78, 87, 101]. The solution of this
equation provides the exact probabilistic structure of the response at all times. However,
solutions for nonlinear problems are scarce and typically are limited to situations where the
response process is Markovian. Moreover, the required computational effort rapidly increases
with the number of degrees of freedom of the structure.

Moment of closure is an approximate method for estimating the statistical moments
of a stochastic process [25, 26, 49, 52, 61, 64]. The method is based on the derivation of
the equations for statistical moment of the response from the FP equation. In general,
the statistical moments are governed by an infinite number of coupled equations; a closure
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technique is used to obtain an approximate solution in terms of a finite set of moments. The
accuracy of the solution depends on the order of closure. However, this comes at a price
because the method turns out to be impractical for high orders, which are needed for highly
nonlinear systems.

The stochastic averaging method was first introduced by Stratonovich in solving nonlin-
ear oscillations of electrical systems under noisy excitations, while a robust mathematical
foundation has been established in [54, 79, 80]. In the field of stochastic dynamics most of
the works on this topic has been done by Roberts, Spanos and Zhu [89, 113, 114]. Essentially,
the method approximates the response vector with a diffusive Markov vector with the prob-
ability density function governed by the FP equation. The method is designed to calculate
the coefficient function in the FP equation by eliminating the effect of periodic terms by
stochastic averaging. The method is applicable to a wide variety of single degree of free-
dom systems, but it finds its limitation when applied to multi-degree-of-freedom (MDOF)
systems.

Simulations methods

Due to its simplicity, Monte Carlo Simulations is the most frequently applied method to solve
random vibration problems [96, 98]. There are no theoretical limitations owing to the nature
of the approach; however, for the crude version of MCS, there are computational limitations
when the tail of the response distribution is of interest. For highly reliable systems, where
the interest is in the far tail of the distribution, many alternative simulation methods have
been developed in the recent years. The two principal categories are the IS and MCMC
methods.

The importance sampling is a rather straightforward method. The inefficiency of the
crude MCS for low probability events lies in the fact that only few samples fall in the
failure domain. To avoid this problem, an importance sampling distribution is used in order
to generate more samples in the failure domain, making the method more efficient [11,
31, 33, 48, 71, 72, 73, 83]. However, particular care must be taken in using this method
in high dimensions [5, 53, 59, 58, 59, 93], such as in conjunction with discretized stochastic
processes. For Gaussian processes in high dimensional spaces, a suitable importance sampling
distribution is formulated by Au and Beck [4]. This method is adapted in this dissertation to
estimate the first-passage probability of the equivalent linear system obtained by the TELM.

The Markov Chain Monte Carlo methods are a collection of schemes for sampling from
complex probability densities by constructing a Markov chain that has the desired distri-
bution in its equilibrium state [43, 107]. There are different algorithms in this class. The
most widely used ones, which can be considered as the parents of all other schemes, are the
Metropolis-Hasting algorithm [74, 75] and the Gibbs sampling algorithm [42]. Initially devel-
oped outside the field of statistics, these methods greatly impacted statistical analysis in the
early 90’s [41], especially in Bayesian computational statistics. In particular, the Metropolis-
Hasting algorithm was developed in physics in an attempt to calculate complex integrals as
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the expected value of random variables by sampling from their distributions. Gibbs sampling
found its roots in image processing. Good references for MCMC methods [90, 102]. MCMC
methods are suitable for high-dimensional problems and can be efficiently used to sample
in rare failure domains. For this class of problems, the subset simulation method proposed
by Au and Beck [3, 6, 7] represents one the most popular simulation method to solve high
reliability problems under stochastic excitations.

Linearization methods

The equivalent linearization method is the most popular method used in nonlinear stochastic
dynamics. Its popularity is based on its simplicity and its wide range of applicability. In
particular, its complexity does not increase for MDOF systems and thus it is suitable for
civil structures. The general idea behind the method is to replace the nonlinear system
by a parameterized equivalent linear system. The method possibly finds its roots in the
deterministic linearization method introduced in mechanics by Krylov and Bogolubov [63].
The most appealing feature of every linearization method is that, once the linear system
is obtained, all the linear theory can be effortlessly applied. In the original versions of
the ELM [2, 8, 23, 50, 51, 60, 88, 108], the linear system is identified by minimizing the
mean-square error of the response of interest between the linear and the nonlinear systems,
thereby determining the linear system parameters. An alternative version, based on energy
minimization, is given in [32]. In recent years, the method has been used in conjunction with
the Karhune-Loeve expansion to solve nonlinear stochastic dynamic problems for significantly
large finite element models [81, 91]. Usually, the response is assumed to be Gaussian and,
due to the nature of the minimization, the method provides a rather good estimate of the
variance of the nonlinear response. The major drawback of the ELM is its lack of accuracy
in estimating the tail of the distribution, particularly when the system experiences strongly
nonlinear behavior. The major reason underlying this problem is the Gaussian assumption
adopted by the method. While this assumption is doing a fair job in estimating the variance,
it completely loses its validity for tail probabilities. To overcome this issue, Casciati et
al. [22] introduced an alternative linearization based on the mean level-crossing rate. The
linear system is identified by equating the mean level-crossing rates of the equivalent linear
system and the nonlinear system. While this approach can be accurate in estimating the tail
distribution, it becomes significantly complex for MDOF systems and for certain nonlinear
systems. This is due to the fact that the approach requires knowledge of the joint probability
distribution of the response and its derivative, which in most nonlinear systems is difficult
to obtain.

The tail-equivalent linearization method is a recent method that aims at providing an
adequate estimation of the tail distribution of the response of a nonlinear system under
stochastic input. The method was introduced by Fujimura and Der Kiureghian [37, 38, 55].
The work found its genesis in the earlier works of Li and Der Kiureghian [65], Franchin [36]
and Koo et al. in applying the FORM to solve nonlinear random vibration problems. The
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solution by this time-invariant structural reliability method requires discretization of the
input in terms of a finite set of random variables, and the definition of the failure event as a
limit-state function. The limit-state function is defined by the difference between the critical
response threshold level and the nonlinear system response, which is an implicit function of
the random variables defining the discretized input excitation. Negative values of the limit-
state function identify the failure domain and zero values define the frontier of the failure
domain, the limit-state surface. The limit-state surface is generally nonlinear for nonlinear
systems; the tail probability is then obtained by FORM approximation. In this method, the
limit state-surface is approximated by an hyperplane tangent to the point belonging to the
limit-state surface and having the highest probability density value. This point, known as
the “design point” in structural reliability theory, contains important physical information
regarding the behavior of the nonlinear system. Departing from these early works, Fujimura
and Der Kiureghian developed the TELM and formalized the concept of the tail-equivalent
linear System (TELS). Briefly stated, the TELS is defined by the hyperplane introduced by
the linearization at the design point and is identified numerically in terms of its Impulse-
Response Function (IRF) or Frequency-Response Function (FRF). The main objective of
the method is to estimate the statistics of responses of interest for highly reliable nonlinear
structural system in the context of PBEE. The original method was developed in the time
domain for inelastic systems and, in 2008, was extended in frequency domain by Garrè and
Der Kiureghian in the context of marine structures for a nonlinear type of loading [40].
Chapter 2 of this work is dedicated to a review of the method both in the original time
domain and in the frequency domain; for the latter approach, a generalization for inelastic
system is presented.

1.2 Objective

The goal of this dissertation is to extend the original work of Fujimura and Der Kiureghian
to solve different problems, such as nonlinear systems subjected multi-component excita-
tions and non-stationary excitations. The second major objective is to provide a deeper
mathematical foundation that leads to an improvement in the efficiency of the method. The
latter goal is achieved by using a general representation of a Gaussian process as a weighted
random sum of basis functions. The basis functions are time dependent, and the coefficients
are Gaussian random variables. The split between the time-dependence carried by the ba-
sis function and the randomness carried by the coefficient of the series is a requirement in
order to apply time-invariant reliability methods. It turns out that the choice of the basis
functions determines the nature of the discretization. In particular, if the time-domain basis
function are chosen to be equally spaced delta-Dirac functions, the obtained discretization
is in the time domain. If harmonic functions, i.e. sine and cosine, are chosen as the basis
functions, the discretization is in the frequency domain. In this dissertation, we show that
other basis functions can be used to represent Gaussian inputs and, notably, we explore the
convenience of using the sinc functions. It is found that the discretization is especially useful
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in solving nonlinear softening systems, since it provides a remarkable reduction in the num-
ber of random variables needed to represent the input excitation. The analysis also indicates
that the efficiency of TELM depends on the total number of random variables used, and,
consequently, the use of sinc basis functions becomes highly effective for softening systems.

After introducing the general representation of the Gaussian stochastic input, we analyze
the case of a nonlinear system under multi-component stochastic excitations. It turns out
that the extension of TELM can be achieved quite straightforwardly by introducing an
augmented standard normal space and by solving the TELM analysis in this new space.

We finally tackle the challenging task of solving the nonlinear system under non-stationary
excitation. We make use of concepts from evolutionary theory proposed by Priestley [82] to
introduce an evolutionary tail-equivalent System (ETELM). Once the ETELM is identified,
we use the Au-Beck importance sampling method [4] to estimate the first-passage probability
of the nonlinear system under non-stationary input. The method proves to be fairly accurate
and its power lies in its computational efficiency. This last application is best applicable in
the context of PBEE.

1.3 Organization of the dissertation

The goal of this work is to provide the foundation for an in-depth understanding and further
development of the tail-linearization method to solve nonlinear random vibration problems.
A modern and deep understanding of the subject requires some advanced mathematical for-
mality, as presented in Chapters 3 and Chapter 4. This is not done to make the underlying
concepts more difficult to understand or more esoteric, but because once the basic mathe-
matical formality is absorbed, the understanding of the subject becomes deeper and more
concise and neat. For those who love mathematics and want much more than that presented
here, we give references and hope to share their passion to further improve and develop this
subject. Keeping in mind that this work lies on a bridge between the two communities of
engineers and mathematicians, we start our journey with a review of the basics of TELM
analysis, then go into more mathematical treatments in the following chapter, which serves
as a basis in defining the general representation of Gaussian processes. We finally dedicate
the last two chapters to the extension of TELM to multi-component analysis and to non-
stationary excitations, respectively. Specifically, after this introductory chapter, the contents
of the dissertation are as follows:

Chapter 2 reviews the current state-of-the-art of TELM analysis. The first section de-
scribes the original work of K. Fujimura and A. Der Kiureghian in the time domain [37, 38],
while the second section describes the extension of TELM in the frequency domain by L.
Garrè and A. Der Kiureghian [40]. The last section compares results obtained by the two
methods for an example hysteretic oscillator.

Chapter 3 introduces the concept of a band-limited function, which is the building block
for defining stationary band-limited stochastic processes. We explore how we can repre-
sent a band-limited function as a weighted series of orthogonal basis functions through the
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Whittaker-Shannon interpolation formula [70]. We assume that the reader is not familiar
with these concepts so all necessary proofs are presented.

Chapter 4 considers a band-limited function as a realization of an underling stochastic
process; we explore the benefit of TELM analysis with such a representation. Issues such
as approximation errors and convergence are explored in detail. Part of this work has been
published in [17].

Chapter 5 extends the TELM analysis for multi-component excitations. The solution is
obtained by introducing an augmented standard normal space. The method is illustrated
by investigating the response of an inelastic eccentric structure subjected to bi-directional
seismic input. Part of this work has been published in [18].

Chapter 6 is dedicated to non-stationary stochastic processes, in particular to the broad
family of modulated stochastic processes. We introduce concepts such as temporal and spec-
tral non-stationarity, modulating function and evolutionary power spectral density. We then
introduce the concept of the ETELS and apply the Au-Beck algorithm to approximately
solve the first-passage probability of the response of the nonlinear system. Example applica-
tions showing the evolutionary behavior of a nonlinear system demonstrate the methodology.
Part of this work has been published in [19].

Chapter 7 provides a summary of the dissertation and the major findings of the study.
It also discusses the limitations and drawbacks of TELM, of which the user must be aware
of when applying this linearization method.
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Chapter 2

The state of art of TELM

2.1 Introduction: TELM at a glance

This chapter reviews and revisits the current state-of-the-art of the tail-equivalent lineariza-
tion method, TELM. TELM is a new linearization method for nonlinear stochastic dynamic
analysis introduced by Fujimura and Der Kiureghian [37, 38, 55]. It makes use of the time-
invariant first-order reliability method (FORM) to accurately estimate the tail of the distri-
bution of the response of a nonlinear system that is subjected to a stochastic input.

Briefly stated, in TELM the input process is discretized and represented by a set of
standard normal random variables. Each response threshold defines a limit state surface in
the space of these variables with the “design point” being the point on the surface that is
nearest to the origin. Linearization of the limit-state surface at this point uniquely and non-
parametrically defines a linear system, denoted as the tail-equivalent linear system, TELS.
The tail probability of the response of the TELS for the specified threshold is equal to the
first-order approximation of the tail probability of the nonlinear system response for the
same threshold.

Once the TELS is defined for a specific response threshold of the nonlinear system, meth-
ods of linear random vibration analysis are used to compute various response statistics of
interest, such as the mean crossing rate and the tail probabilities of local and extreme peaks.
The method has been developed for application in both time, [37, 38, 55], and frequency
domains, [40], and it has been applied for inelastic structures as well as structures experi-
encing geometric nonlinearities. The first section in this chapter reviews the time-domain
formulation, the second section reviews the frequency-domain formulation, and the third
section shows a numerical example, where results from the two formulations are compared
with each other and with results obtained from Monte Carlo Simulation (MCS) analysis.



CHAPTER 2. THE STATE OF ART OF TELM 10

2.2 TELM in the time domain

Discrete representation of the stochastic excitation

The stochastic excitation in TELM analysis is represented by a linear combination of basis
functions, s(t), with standard normal independent random coefficients, u:

F (t) = s(t)u, (2.1)
where
s(t) = [s1(t), . . . , sN(t)], (2.2)
and
u = [u1, . . . , uN ]ᵀ. (2.3)

The vector s(t) is deterministic and depends on the covariance structure of the excitation
process. Time-domain TELM uses a filtered white-noise representation of the input excita-
tion [29]. Following this formulation, the excitation is defined as

F (t) = [η(t) ∗W (t)]U(t) =

∫ t

0

η(t− τ)W (t)dτ , (2.4)

where ∗ denotes convolution, U(t) is the unit step function, W (t) is a white-noise process
and η(t) is the impulse-response function, IRF, of a stable linear filter. Implementation of
(2.4) in TELM requires discretization of the time axis. For a selected time step ∆t and
initial time t0 = 0, we approximate the white noise W (t) with the rectangular wave process

Ŵ (t) =
1

∆t

∫ tn

tn−1

W (τ)dτ, tn−1 < t ≤ tn n ∈ [1, . . . , N ]. (2.5)

This define a square-wave process, where the wave amplitudes ŵn = Ŵ (t), tn−1 < t ≤
tn, n ∈ [1, . . . , N ], are statistically independent normal random variables with zero means
and variance dictated by the band limit ω̄ = π/∆t [rad/s] of the discretized process, i.e.
σ2 = 2πS0/∆t, where S0 denotes the spectral density of the white noise. In the original
formulation of TELM [37, 38], the discretization time step is dictated by the integration step
of the numerical scheme adopted to solve the differential equation governing the nonlinear
system response. When dealing with highly nonlinear problems, the integration time step
must be taken sufficiently small to guarantee convergence. It follows that in the original
TELM we do not have control over the band limit of the process, which is controlled by the
integration step required by the numerical solver scheme.

Defining the standard normal random variables un = ŵn/σ, (2.5) can be written in the
form

Ŵ (t) = s(t)u (2.6)
sn(t) = σ, tn−1 < t < tn

= 0 otherwise. (2.7)
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The discrete version of (2.4), F̂ (t), is obtained by replacing W (t) with Ŵ (t)

F̂ (t) = [η(t) ∗ Ŵ (t)]U(t) = s(t)u (2.8)

sn(t) = σ

∫ tn

tn−1

η(t− τ)dτ tn−1 < t ≤ tn, n ∈ [1, . . . , N ] (2.9)

= 0 t ≤ tn−1.

The above formulation represents a Gaussian process with zero mean and variance function
σ2(t) = |s(t)|2. This discrete representation of a Gaussian process is not the only one avail-
able in literature, but it is the one that is employed in TELM because it has the advantage
of splitting the time dependence of the process, carried by the set of basis functions s(t),
and the randomness of process carried by the set of random variables u. In Chapters 3 and
4, we formalize and extend this representation with the aim of making it more efficient for
TELM analysis.

Definition of TELS and application of TELM

The governing equation of a stable system subject to stochastic input can be written as

L[X(t)] = F (t), (2.10)

where L[·] is a differential operator. If the system is linear, the response can be obtained by
convolving its IRF, h(t), with the input excitation:

X(t) = [h(t) ∗ F (t)]U(t). (2.11)

If the input is discretized according to (2.8) we can write:

X(t) = [h(t) ∗ F̂ (t)]U(t), (2.12)

=
N∑
n=1

∫ t

0

h(t− τ)sn(τ)dτun = a(t)u, (2.13)

with

an(t) =

∫ t

0

h(t− τ)sn(τ)dτ. (2.14)

If the system is nonlinear, a numerical solution can be used to compute the response X(t).
Thus, given the representation of the input excitation in (2.1), the response X(t) is either
an implicit or an explicit function of the standard normal variables u, i.e., X(t) = X(t,u).

Given a response threshold of interest x, at a specific time tx = tN , the tail probability is
defined as Pr[x ≤ X(tx,u)]. Reliability theory is used to compute this probability by defining
a limit-state surface g(x, tx,u)=x − X(tx,u) and rewriting the probability statement as
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Pr[x ≤ X(tx,u)]=Pr[g(x, tx,u) ≤ 0]. In particular, TELM employs the first-order reliability
method, FORM, in which a first-order approximation of the probability is computed by
defining, in the standard normal space, the so-called design point u∗, which belongs to the
limit state surface g(x, tx,u) = 0 and has minimum distance from the origin. This distance
is known as the reliability index. The significance of this point is described in [57]. If the
system is linear, the limit state surface is an hyperplane with gradient a(t) and the design
point and the reliability index are given in closed form as

u∗(x, tx) =
x

||a(tx)||
a(tx)

ᵀ

||a(tx)||
, (2.15)

β(x, tx) =
x

||a(tx)||
. (2.16)

Moreover the gradient a(tx) can be written explicitly in terms of the given design point [38],

a(tx) =
x

||u∗(x, tx)||
u∗(x, tx)

ᵀ

||u∗(x, tx)||
. (2.17)

In this case, the tail probability has the simple solution

Pr[g(x, tx,u) < 0] = Φ[−β(x, tx)], (2.18)

where Φ[·] is the standard normal cumulative probability function.

In the more general nonlinear case, first the design point u∗ is computed by solving the
constrained optimization problem

u∗ = argmin{||u|| |g(x, tx,u) = 0}. (2.19)

Then, the nonlinear limit-state function is expanded in Taylor series at the design point:

g(x, tx,u) = x− [X(tx,u
∗) +∇uX(tx,u

∗) · (u− u∗) + h.o.t.], (2.20)
= −∇uX(tx,u

∗) · (u− u∗) + h.o.t. (2.21)

The first-order approximation of P [g(x, tx,u) < 0] is obtained by keeping the linear terms
in (2.21) resulting in

P [g(x, tx,u) ≤ 0] ' Φ[−β(x, tx)], (2.22)

where the reliability index of the linearized system is given by

β(x, tx) = ||u∗(x, tx)|| = α(x, tx)u
∗(x, tx), (2.23)

with α being the negative normalized gradient vector of the limit-state function

α(x, tx) = − ∇ug(x, tX ,u
∗)

||∇ug(x, tX ,u∗)||
=
∇uX(tX ,u

∗)

||∇uX(tX ,u∗)||
, (2.24)
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which is identical to the normalized gradient vector of the nonlinear response. This cor-
responds to approximating the limit-state surface by its tangent hyperplane at the design
point. This hyperplane, which is described by β(x, tx) − α(x, tx)u = 0 or equivalently
x −∇uX(tX ,u

∗)u = 0, defines a linear system, which has the same tail probability as the
first-order approximation of the tail probability of the nonlinear system.

At this point we have all the elements to give a formal definition of the TELS.

Definition 1. Given the response of a nonlinear system, X(t), under the stochastic input
excitation, F (t), and given a threshold x and a fixed time point tx the TELS is the linear
system that has the same tail probability as the first-order approximation of the tail probability
of the nonlinear system.

Figure 2.1 illustrates the geometric concept underlying the definition of the TELS.
The above definition is general, but in this context we have to specify that it is restricted

for inputs represented by (2.1) and thus the TELS is defined in the standard normal space.
Therefore, the FORM approximation of the tail probability of the non-linear system response
coincides with the tail probability of the response of the TELS.

For a given pair of input and output processes, a linear system is characterized by its
IRF. In TELM analysis this linear system is nonparametric. A nonparametric model is the
opposite of what one might suppose from its name: not a model without parameters, but a
model that cannot be parameterized by a finite dimensional parameter space. Videlicet, we
may consider a nonparametric model as one having an infinite number of parameters [92].
Given the discrete excitation F̂ (t) and the gradient vector a(tx), the design point u∗(x, tn)
uniquely defines the IRF independently of the scaling of the excitation. This statement is

u*

Limit-state surface

e1

e2

TELS

Figure 2.1: TELS of the non linear response for a given threshold x and point in time tx
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verified by considering the discrete version of the basic convolution formula (2.14):

M∑
m=1

h(tx − tm)sn(tm)∆t = an(tx), n ∈ [1, . . . , N ], (2.25)

which in matrix form can be written as

Sh = a, (2.26)

with

S = ∆t

 s1(t1) . . . s1(tM )
... sn(tm)

...
0 . . . sN (tM )

 , h =

 h(tM − t1)
...

h(tM − tM )

 , a =

 a1(tN )
...

aN (tN )

 , (2.27)

with tM ≡ tx andM ≡ N . The IRF is determined in a discrete form by solving for h in (2.25). The
matrix S in general is triangular because of the form of (2.9), and in the special case of a white-
noise excitation it is diagonal. In this version of TELM, the resolution of the IRF is determined by
the time interval ∆t used in the discretization of the input excitation and numerical integration of
the response. Once the IRF is determined, the frequency-response function, FRF, of the TELS is
computed as the discrete Fourier transform of the IRF.

2.3 TELM in frequency domain

Discrete representation of the stochastic excitation

An alternative to the above formulation is to perform the discretization in the frequency domain.
This formulation is particularly useful when the input and output processes are both stationary.
Following the original work of Rice [86] and later extensions by Shinozuka [95], [97] and Deodatis
[97], the basis functions s(t) in (2.1) are selected as the sine and cosine functions. The representation
is the canonical Fourier series with random coefficients. For a selected frequency discretization step
∆ω, and given [ω1, ..., ωK ] with ωk = ωk−1 + ∆ω, k ∈ [1, . . . ,K], (2.8) is written as:

F̂ (t) =
K∑
k=1

σk[uk sin(ωkt) + uK+k cos(ωkt)] = s(t)u, (2.28)

s(t) = [s1(t), ..., s2K(t)], (2.29)
u(t) = [u1, ..., u2K ]ᵀ, (2.30)
sk(t) = σk sin(ωkt), k ∈ [1 . . .K], (2.31)
sk(t) = σk cos(ωkt), k ∈ [K + 1 . . . 2K]. (2.32)

The discretization is located in the frequency domain because the spectrum of the Fourier series is
a weighted train of equally spaced pulses along the frequency axis. We must select the frequency
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sampling rate ∆ω and the band limit K∆ω. However, one has to be careful about the periodicity
arising by the use of the Fourier series. In this case the period of the process is given by T =
2π/∆ω. This period should be shorter than the duration of the excitation that is considered in the
TELM analysis. The above discretization was first employed in TELM analysis by [40] for a marine
application involving nonlinear loading and elastic material. In this study we use this formulation
while considering inelasticity in the material behavior.

Determination of the TELS

The governing equation of a stable linear system in frequency domain can be written as

F{L[X(t)]}(ω) = F{F (t)}(ω) (2.33)
L [X̄(ω)] = F̄ (ω), (2.34)

where X̄(ω) and F̄ (ω) are the Fourier transforms of the response and the input excitation respec-
tively. The steady-state response is obtained as:

X̄(ω) = F{[h(t)F (t)]}(ω) (2.35)
= H(ω)F̄ (ω), (2.36)

where H(ω) = F{h(t)}(ω) is the FRF of the system. Given the stochastic representation in (2.28),
using (2.36), the steady-state response of the linear system is obtained in the time domain as

X(t,u) = F−1{X̄(ω)}(t) (2.37)

=
K∑
k=0

σk|H(ωk)|[uk sin(ωkt− ϕk) + uK+k cos(ωkt− ϕk)] (2.38)

= a(t)u, (2.39)

where a(t) for a specific time tx is written as

a(tx) = [a1(tx), ..., aK(tx); aK+1(tx), ..., a2K(tx)], (2.40)
ak(tx) = |H(ωk)| sin(ωktx − ϕk), k ∈ [1 . . .K], (2.41)
aK(tx) = |H(ωk)| cos(ωktx − ϕk), k ∈ [K + 1 . . . 2K], (2.42)

in which |H(ωk)| and ϕk respectively represent the modulus and the phase of the FRF of the linear
system. [40] have shown that the following relationships between the elements of the gradient vector
a(tx) and the FRF hold:

|H(ωk)| =

√
a2
k + a2

K+k

σk
, k ∈ [1, . . . ,K], (2.43)

ϕk = ωktx − tan−1

[
ak

aK+k

]
, k ∈ [1, . . . ,K]. (2.44)
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Given a general nonlinear system and a stationary stochastic input described by (2.28), the design
point u∗ for threshold x at time tx is first determined and the gradient vector of the tangent plane,
a(tx), is computed from (2.17). The latter in conjunction with (2.43) and (2.44) uniquely defines
the FRF of the TELS. Once the FRF is determined, methods of linear random vibration are used to
compute the statistics of interest for the nonlinear response for the specified threshold x. In analogy
with the time-domain formulation where the FRF of the system is determined as the DFT of the
IRF, in the frequency-domain formulation the IRF is determined as the inverse DFT of the FRF.

In the next section we explore a numerical example where both formulations are used and their
results compared.

2.4 Numerical example

In this section the properties of TELM are numerically investigated by considering a single-degree-
of-freedom (SDOF) oscillator with inelastic material behavior. The problem is solved both in
frequency and time domains. We use a symmetric Bouc-Wen material model [8, 14, 109] to describe
the force-displacement relationship. Other inelastic material models can be used in the formulation.
However, there is a fundamental condition for application of TELM: the limit-state function and,
therefore, the response of the system must be differentiable with respect to the random variables
u at the design point. This guarantees that the limit-state surface has a tangent hyperplane at
the design point. It has been proven in [47] that, for an inelastic material, a necessary condition
for the differentiability of the response is a smooth transition between material states except for
elastic unloading. This condition is satisfied for the Bouc-Wen material model, but in other cases
the material model may have to be modified to have smooth transitions.

The equation of an inelastic SDOF oscillator can be written as

mẌ(t) + cẊ(t) + Pinn[X(t), Ẋ(t)] = F (t) or −mÜg(t), (2.45)

where Pinn[·] is the restoring force and the second option on the right-hand side applies when the
excitation is specified in terms of base acceleration Üg(t). In the particular case of the hysteretic
Bouc-Wen model, (2.45) is written as (see [109])

mẌ(t) + cẊ(t) + k[αX(t) + (1− α)Z(t)] = F (t) or −mÜg(t), (2.46)

where α is a nonlinearity parameter with α = 1 denoting a linear system, and Z(t) follows the
hystereris law

Ż(t) = −γ|Ẋ(t)||Z(T )|n̂−1Z(t)− η|Z(t)|n̂Ẋ(t) +AẊ(t), (2.47)

in which γ, η, A and n̂ are model parameters. The first and computationally most expensive
operation in TELM is numerical solution of the design point u∗ according to (2.19). Different
algorithms are available in the literature and a general review can be found in [67]. Here, we employ
the improved HLRF (iHLRF) algorithm, which is a gradient-based method proposed in [112]. The
cost of the algorithm is related to the computation of the gradient of the nonlinear limit-state
function g(tx, x,u) with respect to u, which in the present case is tantamount to computing the
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gradient of the nonlinear system response. It follows that the cost of this computation is directly
related to the size of vector u or, equivalently, the number of random variables used to describe the
input excitation.

For a given threshold x and specified time tx, the design point is the point with highest probabil-
ity density among all realizations giving rise to the event {x < X(t,u)}. Thus, f∗(t) = s(t)u∗ (or in
this example üg = s(t)u∗) is the most likely realization among all realizations of the excitation pro-
cess that lead to that event. Likewise, the response of the nonlinear system (2.45), x∗(t) = X(t,u∗),
under the excitation f∗(t), is the response with the highest likelihood among all possible responses
leading to the event of interest. We can consequently give two formal definitions:

Definition 2. Given a threshold x and a fixed point in time tx, the design-point excitation,
f∗(t), is the realization with the highest likelihood among all realizations of the excitation process
that give rise to the event {x < X(tx,u)}.

Definition 3. Given a threshold x and a fixed point in time tx, the design-point response, x∗(t),
is the realization of the response with the highest likelihood that leads to the event {x < X(tx,u)}.

Figure 2.2 shows the design-point excitation and the design-point response for the system de-
scribed by (2.46)-(2.47) and the properties listed in Table 2.1. The excitation is white-noise base
acceleration with spectral density amplitude S = 1[m2/s3]. The threshold x = 3σ̄ and time tx = 15[s]
are considered, where σ̄2 = πS0m

2/(ck) is the root-mean-square of the linear (α = 1) system. The
hysteretic relationship between the internal force P ∗inn and response x∗(t) at the design points is
shown in Figure 2.3. The analysis is carried out using both the time- (TD) and frequency-domain
(FD) formulations and the results indicate close agreement of the two. The time/frequency in-
crements used are ∆t = 0.01[s] and ∆ω/2π = 0.05[Hz], respectively, and the number of random
variables used to describe the input excitation are N = 1500 and K = 400, respectively. The
frequency-domain formulation is a lot more efficient since it uses far fewer random variables. Of
course this is achieved by using a much smaller cut-off frequency at 10[Hz], versus the cut-off fre-
quency of 50[Hz] in the time-domain approach. The latter is dictated by the small time increment
that is necessary for the numerical integration scheme used for computing the nonlinear response.

The core of TELM is in the definition of the TELS, which is completely characterized by its
IRF or FRF. The two functions are Fourier transform pairs. In the time-domain approach, the IRF
is directly determined by solving the linear system (2.25) and the FRF is computed as the DFT or
FFT of the IRF. In the frequency-domain approach, the FRF is determined by solving (2.43) and
(2.44) and the IRF is determined as the inverse DFT or the inverse FFT of the FRF. Figure 2.4
shows the IRFs and FRFs computed from time- and frequency-domain approaches for the considered
threshold x and time tx.

The TELS strongly depends on the considered threshold x of the nonlinear response. For each
threshold different IRF and FRF are obtained. Figure2.5 shows the IRFs and FRFs obtained for
three distinct response thresholds for the example system. It is of interest to examine the behavior
of the FRFs as the threshold increases. As expected, the frequency content of the TELS response is
migrating from the natural frequency of the system for low-amplitude vibrations to a range of lower
frequencies due to the softening of the system; however, there is always a local maximum at the
original natural period. The dependence of the TELS on the threshold of interest is a cornerstone of
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TELM analysis. It is through this dependence that TELM is able to account for the non-Gaussian
distribution of the nonlinear system response.

Figure 2.2: a) Design point excitation, b) Design point response for x = 3σ̄ and tx = 15[s]

Once the TELS is determined in terms of its IRF or FRF for a specified threshold, methods of
linear random vibration theory can be used to compute various statistical quantities of interest for
the nonlinear response. Below we describe four such quantities.

CDF and PDF of the point-in-time response distribution

The CDF is readily available from FORM analysis at each threshold of interest. With β(x, tx) as
the reliability index at threshold x and time tx, the first-order approximation of the CDF is given
by

FX(tx)(x, tx) ' 1− Φ[−β(x, tx)]. (2.48)

Table 2.1: Structural and Excitation Properties

Bouc-Wen α m[kg] c
[kNs

m

]
k[kN] γ

[
1

mn̂

]
η
[

1
mn̂

]
n̂ A

0.1 3.00E5 1.00E2 2.10E4 1/2σ̄n̂ 1/2σ̄n̂ 3 1

Excitation S0[m
2

s3 ] tx[s] ∆t[s] ∆ω
2π

[Hz] ω̄
2π
[Hz] N,K

time domain 1 15 0.01 50 1500

frequency domain 1 15 0.05 10 400
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Figure 2.3: Hysteresis loop for design point excitation-response pair

Figure 2.4: a) IRF, b) FRF for x = 3σ̄ and tx = 15[s]

The PDF is derived by differentiation of (2.48)

fX(tx)(x, tx) = φ[−β(x, tx)]
∂β(x, tx)

∂x
= φ[−β(x, tx)]

1

||a(tx)||
, (2.49)

which leads to

fX(tx)(x, tx) ' 1

||a(tx)||
φ[−β(x, tx)] =

β(x, tx)

x
φ[−β(x, tx)]. (2.50)
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Figure 2.5: IRFs, FRFs of the TELS for 3 different thresholds: x = 0.5σ̄, x = 1.5σ̄, x = 5σ̄

where φ[·] denotes the standard normal PDF. Figure 2.6 shows the reliability index as a function
of the normalized threshold, x/σ̄, for the example system. The dashed line is for the linear (α = 1)
case, which has unitary slope because the threshold is normalized. Once the PDF is determined
for all the thresholds, the moments of the distribution can be computed by numerical integration.
Figure 2.7 comperes the TELM results with a crude MCS with different sample sizes ranging from
1,000 up to 1,000,000 simulations. The I-bars indicate one standard deviation bounds. The figure
clearly indicates the non-Gaussian nature of the distribution of the nonlinear response.
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Figure 2.6: Sequence of Reliability index

Figure 2.7: a) Complemetary CDF and b) PDF of the response

Mean up-crossing rate

Let ν+(x, tx) denote the mean rate of up-crossing the threshold x at a time tx. There are differ-
ent approaches available for computing ν+(x, tx). In this dissertation, we use the linear random
vibration theory applied to the TELS. In the present case since tx is sufficiently large so that the
response of the system has reached stationary state, we use the well-known formula for a stationary
Gaussian process derived by Rice [86],

ν+(x) =
1

2π

√
λ2(x)

λ0(x)
exp

(
−1

2

x2

λ0(x)

)
, (2.51)
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where λm is the m-th spectral moment defined by

λm(x) = 2

∫ ∞
0

ωm|H(ω, x)|2SFF (ω)dω. (2.52)

Remark: The reader may be confused from the fact that the formula used is for a Gaussian pro-
cess, while we know that the nonlinear response is not Gaussian. However, one should note that
the non-Gaussianity is with respect of the threshold x. For a given threshold, once linearization is
applied and the TELS is determined, the input-output relation is linear. The reader should also
note that the spectral moments are functions of the threshold x. This is due to the non-Gaussian
nature of the response process.

Figure 2.8 shows ν+(x) computed with TELM analysis in the frequency domain compared with
the results of a crude MCS analysis.

Figure 2.8: Mean up-crossing rate of the nonlinear response.

First-passage probability

In this section the analysis of the first-passage probability, i.e., the probability distribution of
the maximum response over an interval of time is presented. Specifically, we are interested in
the complementary CDF of the maximum absolute response over a defined interval (0, T ], i.e.
P [x < max0<t≤T |X(t)|]. Again, we make use of existing formulas for stationary Gaussian pro-
cesses. According to the approximate solution proposed by Vanmarcke [105],

P

[
x ≤ max

0<t≤T
|X(t)|

]
' 1−

[
1− exp

(
− x2

2λ0(x)

)]
exp[−η(x)T ], (2.53)
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where η(x) is defined by:

η(x) = ν+(x)

1− x

λ0(x)
exp

−
√

2π

(
1− λ2

1(x)

λ2(x)λ0(x)

)1.2


[
1− exp

(
− x2

2λ0(x)

)] . (2.54)

Figure 2.9 shows the first-passage probability computed with TELM analysis in the frequency
domain using Vanmarcke’s formula in comparison with results obtained by crude MCS analysis.

Figure 2.9: First passage probability of the nonlinear response for a time interval of 10[s] .

Fragility curve analysis

Given a failure threshold, the fragility curve is the conditional probability of failure plotted as a
function of a given measure of the intensity of the excitation. The fragility curve plays an important
role in performance-based earthquake engineering, where methods based on the so-called incremental
dynamic analysis [104] have been developed to compute it through repeated time-history dynamic
analysis using scaled ground motions. It turns out that TELM is particularly convenient for fragility
analysis when the ground motion is specified as a stochastic process.

A remarkable result in TELM is that the TELS is independent of any scaling of the excitation.
That is, given a scaled excitation cF (t), the IRF and FRF of the TELS for a specific threshold x
are independent of the scale factor c.

The proof is as follows: Let cF (t) = F̃ (t) = cs(t)ũ = s(t)c with c = cũ, where ũ is the set
of standard normal random variables of the scaled excitation and c is a vector of normal random
variables of zero mean and standard deviation c. The design point for this problem, denoted ũ∗,
is the solution to (2.19) with u replaced by ũ and the limit-state function replaced by g(x, tx, c).



CHAPTER 2. THE STATE OF ART OF TELM 24

Multiplying the two sides of that equation by c, we obtain

c∗ = argmin{||c|| |g(x, tx, c) = 0}, (2.55)

This equation is identical in form to the equation for the unscaled problem; only the u has been
replaced by c. It follows that c∗ = u∗ and thus

c∗ = u∗ = cũ∗ ⇒ ũ∗ = u∗/c. (2.56)

Remark The probability space of c is of course different from the standard normal space; however,
an isotropic scaling does not affect the axial symmetry of the Gaussian space. Indeed, the problem
is still a norm minimization. Once established that the norm is the minimization criterion, the
problem is completely deterministic and equivalent to (2.19).

The design point excitation is then written

f̃∗(t) = cs(t)ũ∗ = s(t)u∗ = f∗(t) (2.57)

and

f̃∗(t) = f∗(t)⇒ x̃∗(t) = x∗(t). (2.58)

Thus for any scale factor c, the design-point excitation and the design-point response are unique
for a given threshold x and point in time tx. Because for a linear system the IRF or the FRF
are completely characterized by the input-output pair, (2.58) implies that h(t) = h̃(t) and H(ω) =
H̃(ω).

For a given threshold of interest, we define LTELS[·] and hTELS(t) respectively as the linear
operator and the IRF of the TELS. We can than write

LTELS[X(t)] = cF (t) (2.59)
X(t) = c[hTELS(t) ∗ s(t)ũ]U(t). (2.60)

Remark The invariance of the design-point excitation and response relative to the scaling factor
does not mean that the response is invariant to the scaling factor, as is clearly evident in (2.60).

Given (2.56), the first-order approximation of the CDF of the nonlinear response with respect
to a scaled excitation is simply given by Φ[β(x, tx)/c], where β(x, tx) denotes the reliability index
for the unscaled problem. Thus, no extra computations are required for the scaled excitations. This
is in contrast to the incremental dynamic analysis method [104], where repeated nonlinear dynamic
analysis must be performed for each scaled time history. Figure 2.10 shows the complementary
CDF of the response of the example system for a specified threshold as a function of the scale of the
white-noise excitation. Only the frequency-domain results are compared with the results of a crude
MCS analysis, since we have already established that the time- and frequency-domain analyses pro-
duce virtually identical results. The result in Figure 2.10 can be considered as the fragility curve for
the selected threshold for the point-in-time failure event. The fragility curve due to the failure event
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during an interval of time is computed by selecting the TELS corresponding to a specific threshold
x and modifying (2.53)-(2.54) as

P

[
x ≤ max

0<t≤T
|X(t)|

∣∣∣C = c

]
' 1−

[
1− exp

(
− x2

c2λ0(x)

)]
exp[−η(x, c)T ], (2.61)

η(x, c) = ν+(x)

1− x

cλ0(x)
exp

−
√

2π

(
1− λ2

1(x)

λ2(x)λ0(x)

)1.2


[
1− exp

(
− x2

c2λ0(x)

)] . (2.62)

Figure 2.11 shows the tail probability of the hysteretic oscillator maximum response at threshold
3σ̄ and a time interval of 10[s].

Figure 2.10: Tail Probability of the nonlinear response at threshold x = 3σ̄ and scaled white-noise
input

2.5 Conclusion

This chapter reviews the main aspects of the tail-equivalent linearization. The method is designed
for Gaussian excitations and it employs two type of discretizations, one in the time domain and one
in the frequency domain. The linearization is based on classical FORM analysis and, in particular,
the equivalent linear system, named TELS, is defined by matching its design point with the one
of the nonlinear system. Consequently the tail probability of the TELS coincides with first-order
approximation of the tail probability of the nonlinear system. We have seen that the TELS has a
nonparametric form and is strongly influenced by the response threshold of interest. As a conse-
quence of these properties, TELM predicts the non-Gaussian distribution of the nonlinear response.
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Figure 2.11: Tail Probability of the maximum response at threshold x = 3σ̄ and scaled white-noise
input

Another cornerstone of TELM analysis is its independence from the TELS to a scaling of the exci-
tation, a characteristic that is particular appealing for incremental dynamic analysis. In the next
chapter we explore the evolution of TELM for different types of input dicretizations.
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Chapter 3

Sampling and Interpolation

3.1 Introduction: Sampling and Interpolation at a
glance

This chapter first introduces the concept of sampling from a continuous function; this boils down
to recording sample values of the original signal at selected discrete points. Next, we turn to the
interpolation operation, which amounts to reconstructing the original function from its sampled
values. Different interpolation schemes can be found in the literature. In this chapter, we focus
on the well-known sinc interpolation formula, which is also known as the Whittaker-Shannon in-
terpolation formula [44, 94, 110]. This is a remarkable rule, since it allows us to fully reconstruct
a continuous-time, band-limited signal from a set of equally spaced samples. Here by following
[16], we provide a modern description of the original problem, so that readers unfamiliar with the
topic can have a gentle introduction. For this purpose, we recall some definitions and proofs from
the theory of signal processing. These will be useful for the next chapter, where we will introduce
discrete representation of band-limited stochastic processes.

3.2 The Shah Distribution

In electrical engineering literature a train of equally spaced pulses is known as the “Shah distribu-
tion”.1 The Shah distribution is defined as

Xa ,
∞∑

n=−∞
δ(t− na); a ∈ R+. (3.1)

where δ(·) denotes the Dirac delta function. The distribution function is widely used in signal
processing due to its three fundamental properties: the sampling property, the periodizing property,
and the Fourier Transform property. Here, we will make use of the original definition to describe

1 This name was first introduced by Bracewell [15]in order to underline the similarity between the shape
of the cyrillic letter X (Sha) and the graphic representation of a train of pulses.
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four Shah distributions: two in the time domain and two in the frequency domain. These four
distributions are not independent; in fact, they are Fourier transform pairs.

Sampling Shah distribution in the time domain

The sampling Shah distribution in the time domain is defined as

X∆t =
∞∑

n=−∞
δ(t− n∆t), (3.2)

where ∆t is the sampling rate. The choice of ∆t is only related to the bandwidth of the signal and
it can be selected differently from the time step of the structural dynamic analysis. This concept is
elaborated upon later in this chapter

Periodizing Shah distribution in the time domain

The periodizing Shah distribution in the time domain is defined as

XT =
∞∑

n=−∞
δ(t− nT ), (3.3)

where T is the period. The choice of T is related to the total duration of the signal and should be
selected with care to avoid aliasing. This is elaborated upon later in the chapter.

Sampling Shah distribution in the frequency domain

The sampling Shah distribution in the frequency domain is defined as:

X∆ω = ∆ω
∞∑

k=−∞
δ (ω − k∆ω) , (3.4)

where ∆ω is the sampling rate. The reader should note that the sampling rate also appears as a
scaling factor of the entire summation. At the end of this section, we will see that this is a direct
consequence of the Fourier transform propriety of the Dirac delta distribution.

Periodizing Shah distribution in the frequency domain

The periodizing Shah distribution in the frequency domain is defined as

XΩ = Ω

∞∑
k=−∞

δ (ω − kΩ) , (3.5)

where Ω is related to the bandwidth of the signal, which should be selected with care to avoid
spectrum aliasing.
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Sampling property

Given a function f in time domain, we can sample the function at equally spaced intervals by
multiplying the function f with the Shah distribution X∆t

f∆t(t) = fX∆t =

∞∑
n=−∞

f(n∆t)δ(t− n∆t), (3.6)

where the last equality is based on the sampling property of the delta Dirac distribution.
Given a spectrum F in the frequency domain, we can sample the spectrum at equally spaced

intervals by multiplying it with the Shah distribution X∆ω

F∆ω(ω) = FX∆ω = ∆ω

∞∑
k=−∞

F (k∆ω) δ (ω − k∆ω) . (3.7)

When sampling in time domain, we introduce a band-limited spectrum because we do not capture
the fluctuations between two consecutive sampling points. Given a sampling rate ∆t, the band limit
is Ω̄/2 = π/∆t; consequently, if we have a signal band-limited to Ω, ∆t should be selected satisfying
the condition ∆t ≤ π/Ω so that Ω̄ ≥ Ω. This condition is the well-known Nyquist rate.

Example Given a 25[Hz] band-limited signal we must select the sampling rate ∆t ≤ 1

50
[s].

If, instead, we choose a spectral sampling method, we express the original function in terms of
a Fourier Series. However, we should be aware of the fact that when we use the Fourier series, we
periodize the original function f by a period T . In terms of the sampling rate ∆ω, the period is
T = 2π/∆ω. Thus, given a function f defined in the interval [0, T ], we must select ∆ω ≤ 2π/T .
Note that while the time is a continuous function defined on the interval [0, T ], the spectrum is a
discrete and unbounded function.

Example Given a function f defined on the time interval [0,30][s], the correct sampling rate is

∆ω ≤ 2π

30
[rad].

Periodizing property

A non-periodic function f in the time domain can be periodized by convolving it with the Shah
distribution in the time domain, i.e.,

fT (t) = f ∗XT =

∞∑
n=−∞

f(t− nT ), (3.8)

where the last equality is based on the shifting property of the Dirac delta distribution. In (3.8),
T is the periodization period. However, the period should be carefully selected. Suppose we have
a signal over an interval [0, T̄ ] with T̄ ∈ R+. If we want to periodize the signal over R without
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altering the original shape over the interval [0, T̄ ], we must select T ≥ T̄ . Inappropriate selection of
the period leads to aliasing of the signal in time domain.

Alternatively, a spectrum F in the frequency domain can be periodized (without scaling) by
convolving it with a scaled Shah distribution in the frequency domain, i.e.,

FΩ(ω) = F ∗ 1

Ω
XΩ =

∞∑
k=−∞

F (ω − kΩ) , (3.9)

where Ω is the periodization frequency. However, as in the time domain case, Ω should be taken
with caution. Suppose we have a band-limited signal over an interval [0, Ω̄] with Ω̄ ∈ R+. If we
wish to periodize the modulus of the spectrum without altering the original shape over the interval
[0, Ω̄], we must select Ω ≥ Ω̄. Often, inappropriate selection of Ω leads to spectrum aliasing.

Fourier transform

Until now we have used two versions of the Shah distribution: the time domain version and the
frequency domain version. But what is the link between the two? In this subsection we will prove
that the two definitions are Fourier transform pairs. We start by taking the Fourier transform of
XT :

F [XT ](ω) =
∞∑

k=−∞
F [δ(t− kT )](ω) =

∞∑
k=−∞

e−iωkT . (3.10)

This is an infinite series of harmonic functions with constant coefficients equal to 1. On the other
hand, XT is a periodic function of period T . Hence, it can be expressed in terms of Fourier series
as

XT =
∞∑

k=−∞
cke

ik 2π
T
t, (3.11)

where the Fourier coefficients ck can be determined over any interval T . In particular,

ck =
1

T

∫ T/2

−T/2
XT e

−ik 2π
T
tdt (3.12)

=
1

T

∫ T/2

−T/2
δ(t)e−ik

2π
T
tdt (3.13)

=
1

T

〈
δ(t), eik

2π
T
t
〉

(3.14)

=
1

T
e−ik

2π
T

0 (3.15)

=
1

T
, (3.16)
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which leads to

XT =
1

T

∞∑
k=−∞

eik
2π
T
t. (3.17)

Now, we take the Fourier transform of (3.17)

F [XT ](ω) =
1

T

∞∑
k=−∞

F [eik
2π
T
t](ω), (3.18)

and by using the symmetry property of the Fourier Transform F [F (−t)] = 2πf(ω) and the Dirac
distribution Fourier pairs F [δ(t− a)](ω) = e−iωa, we can write

F [XT ](ω) =
1

T

∞∑
k=−∞

F [e−ik
2π
T

(−t)](ω) (3.19)

=
1

T

∞∑
k=−∞

F [e−ia(−t)](ω) (3.20)

=
2π

T

∞∑
k=−∞

δ (ω − a) (3.21)

=
2π

T

∞∑
k=−∞

δ

(
ω − k2π

T

)
. (3.22)

This leads to the definition of the Shah distribution (X∆ω) in the frequency domain

X2π/T =
2π

T

∞∑
−∞

δ

(
ω − k2π

T

)
, (3.23)

X∆ω , ∆ω
∞∑
−∞

δ (ω − k∆ω) , (3.24)

with ∆ω = 2π/T .
We can see that the a periodic function of period T corresponds to a discrete spectrum. If we

replace T with ∆t, we obtain:

X2π/∆t =
2π

∆t

∞∑
−∞

δ

(
ω − k 2π

∆t

)
, (3.25)

XΩ , Ω

∞∑
−∞

δ (ω − kΩ) , (3.26)

with Ω = 2π/∆t.
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3.3 Interpolation Problem

The interpolation problem arises from the desire to reconstruct the exact original time-continuous,
band-limited signal from a set of equally spaced values. A function f is band-limited if its Fourier
transform F = 0 for |ω| ≥ Ω̄, where Ω̄ is the bandwidth. The claim is that if a function f is band-
limited, the interpolation problem can be solved exactly. In other words, we provide a formula of
f continuous on the variable t in terms of the sample values f(nT ). Before doing that, we need to
review what the sinc function and its Fourier transform are.

The original sinc function is defined as

sinc(t) =
sin(πt)

πt
. (3.27)

In this dissertation we use a scaled version of the sic function defined as

sinc∆t(t) =

sin

(
πt

∆t

)
(
πt

∆t

) . (3.28)

It is easy to prove that the Fourier transform of (3.28) is

F [sinc∆t(t)](ω) = ∆tΠπ/∆t, (3.29)

where Ππ/∆t is the rectangular function defined as Ππ/∆t = 1 for |ω‖ < π/∆t, and Ππ/∆t = 0
otherwise. Now we have all the elements to prove the previous statement.

For a given function f in time domain, band-limited at Ω̄, we select the sampling rate as
∆t = π/Ω̄ and we use XΩ to periodize the corresponding spectrum, F , as

Fp =
1

Ω
XΩ ∗ F =

∆t

2π
(XΩ ∗ F ), (3.30)

with Ω = 2Ω̄ = 2π/∆t. Recall from the definition in (3.9) that the latter periodization does not
scale the original spectrum. As suggested in [16], we can regain the original spectrum by multiplying
the periodic spectrum with a rectangular low-pass filter

F =
∆t

2π
ΠΩ/2(XΩ ∗ F ). (3.31)
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Finally, we apply the inverse Fourier transform to get back the original time-domain function

f =
1

2π
F−1

[
∆tΠΩ/2(XΩ ∗ F )

]
(t)

=
1

2π
F−1[(∆tΠΩ/2)](t) ∗F−1[(XΩ ∗ F )](t)

= F−1[∆tΠΩ/2](t) ∗ 2π

2π
F−1[F ](t)F−1[XΩ](t)

= sinc∆t (t) ∗
∞∑

n=−∞
f(n∆t)δ(t− n∆t)

=
∞∑

n=−∞
f(n∆t)sinc∆t (t) ∗ δ(t− n∆t)

=
∞∑

n=−∞
f(n∆t)sinc∆t(t− n∆t). (3.32)

We rewrite the final result in order to highlight its importance:

f =

∞∑
n=−∞

f(n∆t)sinc∆t(t− n∆t). (3.33)

In the signal processing field (3.33) is known as “Whittaker-Shannon interpolation formula” or
“Whittaker-Shannon interpolation formula.” It is a remarkable formula, because for a band-limited
process it yields back the exact original function from its samples. Moreover, we will see in the next
section that the sinc∆t functions can be interpreted as orthogonal bases for the original function f .
Without much elaboration here, (3.33) (like the Fourier series) can be viewed as an infinite series,
where the samples are the coefficients of the series and the sinc∆t functions are the orthogonal bases.

3.4 Functional spaces interpretation

We can review the problem described above also in the context of functional spaces. It is as-
sumed that the reader is familiar with the concepts of vector space in RN , Euclidean norm, and
orthogonality. A good reference for these topics is [62].

If the dimensionality of the vector space RN is pushed to infinity, each vector can be thought
of as an infinite number of components and, in the limit, as a function. We equip this new space
with a norm which defines the length of our function. Because the dimensionality is not finite, we
restrict the function to finite norm. The notion of inner product and orthogonality can be extended
to this space by considering the usual limit of the Riemann sum pushed to an integral. With this in
mind, the inner product of two vectors is viewed as the integration of the product of two functions
with finite norm. The concept of orthogonality is thus easily extendable. Two functions are said to
be orthogonal if their inner product is zero. The concept of inner product is more profound as it
has to obey certain rules, which are discussed in details in [62]. A vector space equipped with an
inner product is said to be an inner product space. Functions (f1, f2...fm...) are said to be linearly
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independent if
∑∞

m=1 amfm = 0 is true only if am = 0 for all m. The span of a set of functions is the
subspace consisting of all linear combinations of the functions in the set. A subset of a functional
space is called a basis when the functions in the subset are linearly independent and their span
covers the entire space. A set of orthonormal functions is a set of functions which are orthogonal
with unitary norm.

A complete inner product space is called a Hilbert space. The concept of completeness is rather
detailed (it needs the concept of Cauchy sequences [62]), but here it is sufficient to say that the
examples considered below can be cast in the Hilbert space framework. An example of a Hilbert
space is the space of square-integrable functions over the interval [−π, π], for which the set of sines
and cosines are a complete set of basis and the Fourier series expansion is the synthesis formula.

It should be intuitive that any valid set of basis functions can be used to describe a particular
class of functions. Thus, in general, we can write

f(t) =

∞∑
m=−∞

amψm(t) (3.34)

=
∞∑

m=−∞
〈ψm(t), f〉ψm(t). (3.35)

In the next subsection we prove that the sinc interpolation formula can be viewed as a particular
case of (3.34), where ψm(t) are selected to be the sinc functions.

Before moving to the next section, it is worth briefly describing why the expansion (3.34) and
its functional space interpretation are so suitable to describe a general function. For example, in a
practical application, the expansion (3.34) has to be truncated and the question that we may want
to ask is: what is the error in doing that? A vector in a finite space or a function in the Hilbert space
can be completely described if all the coordinates of the expansion (3.34) are provided. In practice,
we truncate the infinite series up to a “sufficiently” large M . If we consider only a finite number of
basis functions, we constrain our work into a subspace V, which is the span of the finite set of these
basis functions. The approximate realization is the orthogonal projection of the real realization into
this subspace. This has an important consequence for it guarantees the best approximation of the
real realization for the given basis. In other words, it consists of the least-square approximation
of our original function for a given subspace. Moreover, as we will see in the next chapter, if we
randomize the coefficients of the series, we obtain a random process in which the “randomness” is
distinguished from its time or space dependence.

The sinc basis functions

In this subsection we show that sinc functions are a suitable orthogonal set of functions to describe
band-limited signals. First, we check the orthogonality condition, and then we derive the coefficients
am of expansion (3.34).
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Orthogonality

To address this task we make use of the Parseval identity
〈
fH, g

〉
=

1

2π

〈
FH, G

〉
(where the super-

script ·H denotes the Hermitian conjugate) and the Fourier transform of the sinc function (3.29).
Given two distinct sinc functions from expansion (3.34) we can write:

〈sinc∆t(t− n∆t), sinc∆t(t−m∆t)〉 = 〈sinc∆t(t) ∗ δ(t− n∆t), sinc∆t(t) ∗ δ(t−m∆t)〉

=
1

2π

〈
∆tΠπ/∆t(ω)einω,∆tΠπ/∆t(ω)e−imω

〉
=

1

2π

〈
∆t2Ππ/∆t(ω), ei(n−m)∆tω

〉
=

∆t

2π

〈
∆tΠπ/∆t(ω), ei(n−m)∆tω

〉
= ∆tsinc∆t[(n−m)∆t]

= ∆tsinc(n−m) = ∆tδ[n−m]. (3.36)

Indeed, the sinc functions are orthogonal but not orthonormal. We can easily make them orthonor-
mal by scaling with 1/

√
∆t. Thus, we define the orthonormal basis

ψm(t) =
1√
∆t

sinc(t−∆tm). (3.37)

The coefficients of the series

In this subsection we compute the coefficients of the orthonormal series expansion, that is,

am = 〈ψm(t), f〉, (3.38)

where ψm(t) is the scaled sinc function (3.37). Again, we make use of the Parseval identity and the
Fourier transform of the sinc function:

am =
1

2π

〈√
∆tΠπ/∆te

−iωm∆t, F
〉

=

√
∆t

2π

〈
eiωm∆t, F

〉
=
√

∆tf(m∆t), (3.39)

where the second equality is justified by the fact that F is band-limited to Ω̄, so that the rectangular
function is not altering the spectrum. The last equality is a direct application of the definition
of inverse Fourier transform. It is clear now that the scaled sinc functions are a suitable set of
orthonormal basis functions.
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3.5 Conclusion

This chapter serves as a foundation for the following Chapter 4. In particular, we have introduced
the definition of the Shah distribution in time and frequency domains and its two fundamental
properties, i.e., the sampling property and the periodizing property. Moreover, we have seen that
Shah in the time domain is Fourier pair with the Shah in the frequency domain. We use these
properties to review, in a modern perspective, the classical sinc interpolation formula, which is
also known as the Whittaker-Shannon interpolation formula [44, 94, 110]. We finally studied the
properties of this remarkable formula, which will be of fundamental importance in the next chapter,
when we will deal with the general representation of a stochastic process based on white noise.
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Chapter 4

Band-limited stochastic processes

4.1 Introduction: Band-limited stochastic processes at a
glance

In the previous chapter we introduced the sinc interpolation formula to represent band-limited
functions. We saw that this is a remarkable formula because the original continuous signal can
be reconstructed from a suitable set of sample values. Roughly speaking, the set of samples is a
“sufficient statistic” for the function f . In this chapter, we consider each individual band-limited
function, f , as a realization of an underlying stochastic process. Starting from the general rep-
resentation (3.34), we transform each coefficient am into a random variable. In particular, if we
choose Gaussian random variables, the linear combination (3.34) leads to a Gaussian process. This
representation is suitable for TELM analysis because it allows distinguishing the “randomness” of
the process from its time evolution. Moreover, if we choose ψm(t) as sine and cosine functions, we
recover the classical random Fourier series proposed by Shinozuka [95, 97] Shinozuka and Deodatis
and used in the frequency domain version of the TELM by Garrè and Der Kiureghian [40].

As mentioned above, in this chapter we select ψm(t) to be the sinc functions. The resulting
stochastic process is band-limited, but the advantage in this case is given by the full control of the
band limit, which is uncoupled from the time integration step required by the numerical analysis.
We finally apply this expansion to TELM analysis and examine the computational efficiency gained
from that formulation.

Part of the material covered in this chapter has been published in [17].

4.2 General representation of stochastic processes

In the previous chapter, we described discrete representation of deterministic functions, but we are
mainly interested in stochastic processes. It is convenient to approach the description of general
stochastic processes using the general representation of deterministic functions. As we have already
seen in (3.34), a general function can be represented as a linear combination of an infinite set of
basis functions. We have already seen two example of this representation:
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I The Fourier series expansion for periodic functions:

f =
∞∑

k=−∞
cke

ik 2π
T
t, (4.1)

m = k

am = ck

ψm(t) = eik
2π
T
t.

II The Whittaker-Shannon expansion for band-limited functions:

f =

∞∑
n=−∞

f(n∆t)sinc∆t(t− n∆t), (4.2)

m = n

am = f(n∆t)

ψm(t) = sinc∆t(t− n∆t).

One way to obtain a stochastic process from these representations is to consider these single functions
as particular realizations of a sample space. In this approach, we decide to treat the coefficients
of the series as random variables. This, of course, is not the only available choice. We adopt this
representation because we aim to decouple the “randomness” of the process from its time evolution,
as required in TELM analysis. Indeed, a stochastic process can be represented as:

F (t) =
∞∑

m=−∞
Amψm(t), (4.3)

where the deterministic coefficient am is replaced by the random variable coefficient Am.

Example We construct a “Gaussian-noise” version of (4.3) as:

F (t) =
∞∑

m=−∞
Amψm(t), (4.4)

Am ∼ am +N(0, σ), (4.5)

µF (t) = E[F (t)] =
∞∑

m=−∞
E[Am]ψm(t) =

∞∑
m=−∞

amψm(t), (4.6)

σ2
F (t)(t) = Var[F (t)] =

∞∑
m=−∞

Var[Am]ψ2
m(t) = σ2

∞∑
m=−∞

ψ2
m(t), (4.7)
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with An and Am being statistically independent for m 6= n.
Example A zero mean band-limited Gaussian noise can be represented as:

W (t) = σ
∞∑

m=−∞
ujψm(t), (4.8)

uj ∼ φ(u), (4.9)
µW (t) = 0, (4.10)

σ2
W (t) = σ2

∞∑
m=−∞

ψ2
m(t). (4.11)

where φ(·) = N(0, 1) is the standard normal distribution.
In this study we use the zero-mean, band-limited Gaussian white noise as a building block

for modeling stochastic processes. The rest of this chapter is focused on the simulation of the
band-limited white-noise process and the implementation of the sinc expansion in TELM analysis.

4.3 Vectorial Representation of stochastic processes

As we have mentioned in the previous chapter, we cannot use infinite series in practice. When
we introduce truncation, we can represent our approximate functions in a compact vectorial form.
We restrict this section to zero-mean Gaussian processes, even though the same definitions can be
extended to non-Gaussian processes. It is easy to see that the expansion (4.3) can be rewritten in
the same format as used in Chapter 2, i.e.,

F (t) = s(t)u, (4.12)
s(t) = [s1(t), . . . , sN (t)] = σ[ψ1(t), . . . , ψN (t)], (4.13)
u = [u1, . . . , uN ]ᵀ, (4.14)

with ui a set of statistically independent standard normal random variables and si(t) a set of deter-
ministic basis functions. It is appealing to examine this representation not only from the point of
view of a functional space but also from the perspective of the time-invariant reliability formulation.
We do this in the following section.

The Standard normal space

In reliability analysis, the above representation is viewed in the standard normal space, which is a
RN space spanned by a set of orthonormal vectors e1, e2...eN . In this space, u is a vector described
by its coordinates [u1, . . . , uN ], each ui ∼ φ(u), such that

u = u1e1 + u2e2 + ...uNeN . (4.15)
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A given vector ū in this space spans a line passing through the origin (which is a subspace of RN )

U = {αū|α ∈ R}. (4.16)

Furthermore, for a fixed point in time t, the vector s(t) can be written as

s(t) = s1(t)e1 + s2(t)e2 + ...sN (t)eN . (4.17)

As the time parameter t evolves, s(t) describes a parametric curve in space, which is a subset
(though not generally a subspace) of RN . We can write this set as:

S = {s(t)|t ∈ R+}. (4.18)

Thus, we can view the particular realization f = s(t)ū as the orthogonal projection of the subset S
onto the subspace U. Each vector u of this space is equipped with a probability density defined by
the standard multi-normal probability density function

φ(u) = N(0, I(N)). (4.19)

where I(N) is the N -dimension identity matrix. The following properties hold:

σ2
F (t) = Var[s(t) · u] = ||s(t)||2, (4.20)

KFF (t, t′) = E[(s(t) · u)(s(t′) · u)] = s(t) · s(t′), (4.21)

ρFF (t, t′) =
KFF (t, t′)

σF (t)σF (t′)
=

s(t)

||s(t)||
· s(t

′)

||s(t′)||
. (4.22)

Thus, the Euclidian norm of each vector in S is the variance of the process at a particular time.
The auto-covariance (or auto-correlation) is the inner product of two elements of S defined by two
distinct instants in time. The cosine of the angle between two elements of S is the correlation
coefficient. The geometry of the set S underlies further interesting properties. For example, it is
easy to show that a weakly Gaussian stationary process is in general described by segment of an
hyper-sphere with radius equal to the standard deviation of the process. Readers interested in
further geometric interpretations of random processes and random vibrations from the perspective
of reliability analysis should consult [29].

4.4 Band-limit white noise by Whittaker-Shannon
expansion

We saw in the preceding chapter that any band-limited function can be represented by theWhittaker-
Shannon interpolation formula. Moreover, we proved that sinc functions are a valid set of orthogonal
basis functions. In this section, we first examine if the sinc functions are a valid set of basis functions
to represent the autocorrelation function of a stochastic process and, in particular, the autocorre-
lation function of a band-limited white noise. Next, we examine the convergence properties of the
sinc expansion series. The first authors to explore the use of the Whittaker-Shannon interpolation
formula to simulate Gaussian stationary processes are Grigoriu and Balopoulou [45].
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The autocorrelation of the process

In this subsection we verify that the sinc expansion provides a valid autocorrelation function for a
band-limited [−ω̄, ω̄], zero mean, white-noise process. For such stationary process, we have a closed
form solution for the autocorrelation function that is well-known to be again the sinc function:

R(τ) = sinc∆t(τ), (4.23)

with ∆t = π/ω̄. Given (4.8), we can write:

W (t) =
∞∑

n=−∞
unsinc∆t(t− n∆t). (4.24)

The autocorrelation (or autocovariance) function can be written as:

K(t, t̄) = E[W (t)W (t̄)] (4.25)

=

∞∑
m=−∞

∞∑
n=−∞

E[umun]sinc∆t(t̄−m∆t)sinc∆t(t− n∆t) (4.26)

=
∞∑

n=−∞
E[u2

n]sinc∆t(t̄− n∆t)sinc∆t(t− n∆t) (4.27)

=
∞∑

n=−∞
sinc∆t(t̄− n∆t)sinc∆t(t− n∆t). (4.28)

The question now is: Does the series (4.28) converge to the correct autocorrelation function in
(1.23)? The answer is yes, and it requires a small trick to show it. Let us represent the function
sinc∆t(t− t̄), for a fixed t̄, through the sinc expansion, i.e.

sinc∆t(t− t̄) =

∞∑
n=−∞

ansinc∆t(t− n∆t) (4.29)

=
∞∑

n=−∞
sinc∆t(n∆t− t̄)sinc∆t(t− n∆t) (4.30)

=
∞∑

n=−∞
sinc∆t(t̄− n∆t)sinc∆t(t− n∆t), (4.31)

where in the transition from (4.29) to (4.30) we have made use of the interpolation theorem for
band-limited functions described in (3.33), and the transition from (4.30) to (4.31) is achieved by
the symmetry of the sinc function. This result is identical to 4.28. Thus, for the autocorrelation
function we can write:

K(t, t̄) = sinc∆t(t− t̄)
= sinc∆t(τ)

= R(τ). (4.32)
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and the power spectral density (PSD):

S(ω) = F [sinc∆t(τ)], (ω) (4.33)
= (2π∆t)Ππ/∆t. (4.34)

The area of the PSD integrates to one, which is the initially assumed variance.

The convergence of the process

We have seen in the previous section that the autocorrelation function of the band-limited white-
noise process represented by (4.24) is the sinc function. As a consequence any band-limited stochas-
tic process with the same or compatible bandwidth derived by filtering the previous band-limited
white noise has an autocorrelation function that is correctly represented by the interpolation for-
mula. By using this observation, we show-mean square convergence of a band-limited stochastic
process (on the interval [−ω̄, ω̄]) represented by the interpolation formula and here denoted by F̂ (t),
to the original band-limited stochastic process, denoted by F (t). We start by writing F̂ (t) as

F̂ (t) =
∞∑

n=−∞
F (n∆t)sinc∆t(t− n∆t). (4.35)

This implies RF̂ (τ) = RF (τ), as previously demonstrated. Then we say that F̂ converges in the
mean-square sense if

E
[
(F (t)− F̂ (t))2

]
= 0. (4.36)

By writing F ≡ F (t) and F̂ ≡ F̂ (t) for convenience, we expand (4.36) as

E
[
(F − F̂ )2

]
= E

[
F 2
]

+ E
[
F̂ 2
]
− 2E

[
FF̂
]

(4.37)

= E
[
F 2
]

+

∞∑
m=−∞

∞∑
n=−∞

E[F (n∆t)F (m∆t)]sinc∆t(t− n∆t)sinc∆t(t−m∆t)

−2
∞∑

n=−∞
E[FF (n∆t)]sinc∆t(t− n∆t), (4.38)

= E
[
F 2
]

+

∞∑
m=−∞

∞∑
n=−∞

RF ((n−m)∆t) sinc∆t(t− n∆t)sinc∆t(t−m∆t)

−2

∞∑
n=−∞

RF (t− n∆t)sinc∆t(t− n∆t). (4.39)
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The last term of (4.39) can be rewritten by considering the sinc expansion of the function RF (t− t̄),

RF (t− t̄) =

∞∑
n=−∞

RF (n∆t− t̄)sinc∆t(t− n∆t). (4.40)

By the symmetry property of the autocorrelation function

RF (t− t̄) =

∞∑
n=−∞

RF (t̄− n∆t)sinc∆t(t− n∆t), (4.41)

and by imposing t = t̄

RF (0) = E[F 2] =

∞∑
n=−∞

RF (t− n∆t)sinc∆t(t− n∆t), (4.42)

which is identical to the last term in (4.39). The second term of the expansion (4.39) can be
simplified by introducing the index l = n−m as

∞∑
l=−∞

RF (l∆t)
∞∑

n=−∞
sinc∆t(t− (n− l)∆t)sinc∆t(t− n∆t). (4.43)

Now we consider the sinc expansion of the sinc function

sinc∆t (t− t̄) =
∞∑

n=−∞
sinc∆t (n∆t− t̄) sinc∆t(t− n∆t). (4.44)

letting t̄ = t+ l∆t and using the symmetry property of the sinc function, we obtain the equivalence

sinc∆t (t− t̄) = sinc∆t(l∆t), (4.45)
= δ[l], (4.46)

=
∞∑

n=−∞
sinc∆t(t− (n− l)∆t)sinc∆t(t− n∆t), (4.47)

where δ[l] = 1 for l = 0 and δ[l] = 0 otherwise. We finally write (4.43) as

∞∑
l=−∞

RF (l∆t) δ[l] = RF (0) = E[F 2]. (4.48)

We conclude the proof by combining the different terms composing (4.39) as

E
[
(F − F̂ )2

]
= E[F 2] + E[F 2]− 2E[F 2] = 0. (4.49)
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By introducing the truncation N on the infinity sum, we can write

F̂N =
N∑

n=−N
F (n∆t)sinc∆t(t− n∆t), (4.50)

and

lim
N→∞

E
[
(F̂N − F )2

]
→ 0. (4.51)

4.5 TELM analysis

The application in TELM analysis of the Whittaker-Shannon expansion is straightforward. The
theory described in Chapter 2 is still valid because the input is defined with (4.12), (4.13) and
(4.14). However, the choice of two time steps is a fundamental advantage in the new formulation.
Let ∆ts denote the sampling rate for the sinc expansion formula (4.8). This time step is only related
to the band limit of the input process. Provided ∆ts satisfies the condition ∆ts ≤ π/Ω̄, where Ω̄ is
the desired bandwidth, (4.8) gives a time-continuous representation of the process. We can select
a different discretization time step, ∆ta, for numerical analysis. ∆ta should be sufficiently small
to assure convergence in the nonlinear response analysis. In this formulation, the time step of the
numerical analysis is completely decoupled from the band-limit of the input process.

Example We explore the difference in the total number of random variables between the exist-
ing representation method as described in Chapter 2 and the sinc expansion for simulation of a
band-limited white-noise process defined on the time span [0,30][s]. Assume that the “physical"
band-limit of interest is [0,10][Hz], i.e., frequencies above 10[Hz] are not significant for the response
of the particular structure under consideration.

If we use the time-discretization method of the original TELM (2.9), the number of random
variables is defined by the integration time step required in the numerical analysis. Recall that the
minimization problem in (2.19) for finding the design point requires computation of the nonlinear
response and its gradient by numerical analysis. A typical integration step is ∆ta = 0.01[s]. This
leads to a band-limit of 50[Hz] and the total number of random variables is 30/0.01 = 3000.
Obviously, a large number of the random variables are used to represent frequencies in the range of
[10-50][Hz], which are not physically significant for the structural response.

Let us reverse the problem: because our interest is up to 10[Hz], we define ∆ts = 0.05[s].
We then have 30/0.05 = 600 random variables. At this point we can use (4.8) to reconstruct a
continuous time approximation of the band-limited white noise. Sampling at a rate ∆ta = 0.01[s],
we get back a suitable representation of the signal for the numerical analysis. Using this approach,
the total number of random variable has been reduced by a factor 5.

Because the efficiency of TELM is related to the minimization problem (2.19), which depends on
the the total number of random variables, the sinc expansion can represent an interesting alternative
for using the “right” amount of random variables for a defined physical problem. The advantage com-
pared to the frequency-domain version is that the spectrum is continuous, not discrete; furthermore,
we do not have the problem of periodicity of the process.
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The last issue to cover before providing a numerical example of TELM analysis is the compu-
tation of the IRF of the TELS in the sinc representation. In the original time-domain formulation,
this IRF is computed by solving the linear system (2.25), the solution of which requires inversion
of the matrix S in (2.27). The matrix is N × N because the number of random variables is the
same as the number of time steps in the numerical integration. On the other hand, when the sinc
expansion formulation is used, we have to solve the system of equations

M∑
m=1

h(tx − tm)sn(tm)∆t = an(tx), (4.52)

which in matrix form is rewritten here for convenience

Sh = a(tx), (4.53)

with

S = ∆t

 s1(t1) . . . s1(tM )
... sn(tm)

...
0 . . . sN (tM )

h =

 h(tM − t1)
...

h(tM − tM )

a(tx) =

 an(tM )
...

aN (tM )

 , (4.54)

where M is the number of time steps in the numerical analysis, which is usually much greater than
N , the number of random variables used in the sinc expansion formulation. Moreover, we have
tM ≡ tx. As can be seen, the system of equations (4.53) is rectangular in form. The solution can be
found as the min-norm solution of the system. However, there is an alternative and more elegant
way to proceed. Consider the IRF as a band limited function that can be expressed in terms of
the sinc expansion. Then, it is sufficient to compute the samples of the IRF and to reconstruct
the continuous function by the sinc expansion. In other words, we enforce M ′ ≡ N , where M ′ is
the minimum sufficient number of time points to describe the IRF with the sinc expansion. This
leads to a system of N equations with N unknowns, which is solved by inversion as before. Note,
however, that the size of this system is much smaller than in the original formulation. Once the N
samples of the IRF are computed, the IRF is completely determined by the sinc expansion i.e.

h(t) '
N∑
n=0

h(n∆t)sinc∆t(t− n∆t). (4.55)

Numerical example

In this example, we analyze the computational efficiency gained by implementation of the sinc
expansion. We analyze the SDOF Bouc-Wen hysteretic model [8, 14, 109] under white noise exci-
tation modeled with the sinc expansion. The equations governing the dynamical system are (2.45),
(2.46), and (2.47) and the structural properties are listed in Table 4.1. The time point is selected
as tx = 10[s], and the limit state function is defined by the threshold x = 3σ0. Table 4.2 shows
the results of TELM analysis for several selected band-limited white noise inputs. In all cases
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∆ta = 0.01 is used for numerical integration of the nonlinear response, while ∆ts is different for
each analysis. Figure 4.1 shows the design point excitation and response and the IRF and FRF of
the TELS for the two extreme cases in Table 4.2. Examining the FRF in Figure 4.2, we clearly see
that frequencies above 2.5-4[Hz] are not playing a fundamental role; indeed, we can select a ∆ts
according to this band-limit and use the “right” number of random variables. It is clear from the
last two columns of Table 4.2, which list the reliability index and the CPU time, that this approach
can lead to significant savings in computational time at practically no loss in accuracy.

However, this expansion should be used with caution. The analyst should have a “feel” for the
physics underlying the problem. In the present example, we know that the system is softening
when experiencing plasticity, so that the frequency content is migrating towards a lower values.
Moreover, we know that in the linear elastic case the natural frequency is 1[Hz] and that the FRF
has a decaying tail with a power of four. Based on this we can determine a “suitable” band-limit.

On the other hand, for stiffening systems, such as a Duffing oscillator [10], the frequency content
in the response migrates towards higher values. In such cases, apriori selection of an upper bound
frequency can be tricky. Therefore, for such systems, the upper band limit should be selected with
extra caution.

4.6 Conclusion

In this chapter we investigate an alternative and broader method to represent stochastic processes
in discrete form and its application on TELM analysis. We start from the concept of Hilbert space
to represent general signals in series expansion of basis functions. From this representation we
generate a stochastic process by randomizing the coefficients of the expansion. In particular we
study the simulation of band-limited white noise, which is widely used in practice. If the random
variables are selected to be Gaussian the process is Gaussian. At the current state we are using sinc
functions as a set of orthonormal basis but in general any valid set of basis can be used to decompose
signals and in general to describe stochastic processes. The author aims to investigate Lagrange
polynomials expansion and more generally the use of wavelets based on the proposed decomposition.
Finally we extend TELM analysis to the sinc representation. Compared to the original time-domain
formulation, the advantage of TELM analysis with the proposed formulation lies in the complete
separation and control of the band-limit of the process from the time integration step used in
analysis. For problems in which the high frequency content is not important, the number of random
variables used to describe the process can be significantly reduced. The advantage compared to
the frequency-domain formulation is that there are no issues with periodicity and the spectrum is
continuous. Furthermore, the formulation is simpler since it does not require splitting the basis
functions into sine and cosine terms. The drawback of the sinc expansion is that the function does
not die off, even for times distant from tn, and this reduces its efficiency. This is the reason why the
author is considering a low-order Lagrange polynomial expansion to further improve the efficiency.
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Table 4.1: Structural and Excitation Properties

Bouc-Wen α m[kg] c
[Ns

m

]
k[N] γ

[
1

mn̂

]
η
[

1
mn̂

]
n̂ A

0.1 1.00E3 6.28E2 3.95E4 1/2σ̄n̂ 1/2σ̄n̂ 1 1

Excitation S0[m
2

s3 ] tx[s] ∆t[s] ω̄
2π
[Hz] N

1 10 var 10 var

Table 4.2: Efficiency of the TELM based on sinc basis functions

Sampling
rate[s]

Band
limit[Hz]

N.Random
Variables

Reliability in-
dex

Computational
time[s]

0.01 50.0 1000 3.122 836
0.02 25.0 500 3.135 322
0.05 10.0 200 3.122 292
0.10 5.0 100 3.122 113
0.20 2.5 50 3.133 51

Figure 4.1: a) Design point excitation, b) Design point response for x = 3σ0
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Figure 4.2: IRF and FRF of the nonlinear system for x = 3σ0
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Chapter 5

Multi-component TELM analysis

5.1 Introduction multi-component TELM at a glance

This chapter extends the TELM to the case of a nonlinear mechanical system subjected to mul-
tiple stochastic excitations. Following the original formulation, Chapter 2, the method employs a
discrete representation of the stochastic inputs and the first-order reliability method, FORM. Each
component of the Gaussian excitation is expressed as a linear function of standard normal random
variables. For a specified response threshold of the nonlinear system, the TELS, is defined in an aug-
mented standard normal space by matching the augmented design point of the equivalent linear and
nonlinear responses. This leads to the identification of the TELS in terms of a frequency-response
function or, equivalently, an impulse-response function for the response of interest with respect to
each component of the input excitation. The method is demonstrated through its application to an
asymmetric one-story building with hysteretic behavior. The degree of asymmetry is controlled by
the eccentricity of the center of stiffness with respect to the center of mass. The relation between the
probability of failure and the degree of asymmetry is studied in detail. The statistics of the response
for stationary excitation obtained by TELM are in close agreement with Monte Carlo simulation
results.

Part of the material covered in this chapter has been published in [18].

5.2 Stochastic representation of input excitations

As shown in Chapter 2, a fundamental requirement in TELM is discrete representation of the
stochastic excitation in terms of a finite set of standard normal random variables u = [u1, . . . , uN ]ᵀ

and a set of basis functions s(t) = [s1(t), . . . , sN (t)]. In the case of multiple components of zero-mean
Gaussian excitation, assuming statistical independence between the components, each component
is modeled as in (2.1) and collected in a vector form

F̂ (t) =

 F̂1(t)
...

F̂J(t)

 =

 s1(t)u1
...

sJ(t)uJ

 . (5.1)
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where J denotes the number of components and sj and uj respectively denote the vectors of basis
functions and standard normal random variables for the jth component of the excitation. In the
following, we present the time- and frequency-domain discretization methods for multi-component
excitations.

Time-domain discretization

Following the formulation described in Chapter 2, we define the jth component of the zero-mean
Gaussian excitation as

Fj(t) = [ηj(t) ∗Wj(t)]U(t) =

∫ t

0
ηj(t− τ |θj)Wj(τ)dτ, (5.2)

where Wj(t) is a white-noise process and ηj(t|θj) is a parametric impulse-response function of a
stable linear filter with θj as its parameters. Note that Fj(t) asymptotically approaches a stationary
process with increasing time. As we have seen in Chapter 2, TELM implementation of (5.2) requires
discretization along the time axis. For a set of equally spaced time points tn = n∆t, n ∈ [0, . . . , N ],
with time step ∆t and initial time t0 = 0, we approximate Wj(t) with the rectangular wave process
introduced in (2.5), i.e.

Ŵj(t) =
1

∆t

∫ tn

tn−1

Wj(τ)dτ, tn−1 < t ≤ tn, n ∈ [1, . . . , N ]. (5.3)

This process is band-limited at frequency Ω = π/∆t [rad/s] and, for a given white-noise spectral
density Sj , has variance σ2

j = 2πSj/∆t. Defining the standard normal random variables uj,n =

Ŵj(tn)/σj , (5.3) can be written in the form

Ŵj(t) = σj(t)uj , (5.4)
σ(t) = [σj,1(t), . . . , σj,N (t)], (5.5)

σj,n(t) = σj , tn−1 < t < tn (5.6)
= 0 otherwise,

uj = [uj,1, . . . , uj,N ]. (5.7)

The discrete version of (5.2), F̂j , is obtained by replacing Wj(t) with Ŵj(t), i.e.,

F̂j(t) = [ηj(t) ∗ Ŵj(t)]U(t) = sj(t)uj , (5.8)

sj,n(t) = σj

∫ tn

tn−1

ηj(t− τ |θj)dτ, tn−1 < t ≤ tN , n ∈ [1, . . . , N ], (5.9)

= 0 t ≤ tn−1.

In the time-domain formulation, the total number of random variables for the J excitation com-
ponent is NJ . Thus, we introduce an augmented standard normal space of dimension NJ . The
statistical independence condition between the J different components implies that there are J
orthogonal subspaces in the new augmented space.
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Discretization by use of sinc functions

Following the method described in Chapter 4, we can use sinc functions to describe a band-limited
white noise in the discretized form

Ŵj(t) = σj

N∑
n=1

uj,nsinc∆t(t− n∆t). (5.10)

Using this in (5.8), we obtain

sj,n(t) = σj

∫ t

0
ηj(t− τ |θj)sinc∆t(τ − n∆t)dτ. (5.11)

Recall that this formulation has the advantage of decoupling the time step ∆t used in discretizing
the white noise process from the time step needed for numerical integration of the response.

Frequency-domain discretization

As we have seen in Chapter 2, an alternative representation in the frequency domain is obtained
by selecting the basis functions to be the sine and the cosine functions. For a selected frequency
discretization k∆ω, k ∈ [1, . . . ,K] with ∆ω = Ω/K, the discretized excitation is written as

F̂j(t) =

K∑
k=0

σj,k[uj,k sin(ωkt) + uj,K+k cos(ωkt)] = sj(t)uj , (5.12)

sj(t) = [sj,1(t), . . . , sj,K(t), sj,K+1(t), . . . , sj,2K(t)], (5.13)
sj,k(t) = σj,k sin(ωkt), (5.14)

sj,K+k(t) = σj,k cos(ωkt), (5.15)

σj,k =
√

2Sj(ωk|θj)∆ω, (5.16)

uj = [uj,1, . . . , uj,K , uj,K+1, . . . , uj,2K ], (5.17)

in which Sj(ω|θj) is a parametric PSD and θj is a set of shape parameters. As described in Chapter
2, the frequency-domain discretization leads to a periodic process having the period T = 2π/∆ω.

5.3 Multi-component TELM analysis
In this section we extend the single-component, time- and frequency-domain TELM to the case of a
nonlinear structure subjected to multi-component excitations. We assume the excitation processes
are zero-mean, statistically independent and Gaussian so that they can be discretized in the manner
described in Section 5.2. In the two subsections we describe identification of the tail-equivalent linear
system (TELS) for time- and frequency-domain analyses. This is done by identifying the IRS (for
time-domain analysis) and the FRF (for frequency-domain analysis) for the response quantity of
interest with respect to each input excitation component for a given threshold x and time point tx.
Once the TELS is identified, methods of linear random vibration analysis are used to compute the
response statistics of interest.
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Multi-component time-domain TELM

Let X(t,u) denote a generic response quantity of interest and g(u, x, tx) = x−X(tx,u) denote the
associated limit-state function for a selected threshold x and time point tx ≡ tN . For a linear system,
let hj(t) denote the IRF of the response quantity with respect to the jth excitation component. Using
superposition over the input components in the time domain, the response of interest is given by

X(t,u) =
J∑
j=1

[hj(t) ∗ Fj(t)]U(t). (5.18)

Using the discretization (5.8)-(5.9),

X(t,u) =
J∑
j=1

N∑
n=1

∫ t

0
hj(t− τ)sj,n(τ)dτuj,n = a(t)u, (5.19)

where

a(t) = [a1,1(t), . . . , a1,N , . . . , aJ,1(t) . . . , aJ,N ], (5.20)

aj,n =

∫ t

0
hj(t− τ)sj,n(τ)dτ, (5.21)

u = [u1,1, . . . , u1,N , . . . , uJ,1, . . . , uJ,N ]ᵀ, (5.22)

or in compact form

a(t) = [a1(t), . . . ,aJ(t)], (5.23)
aj(t) = [aj,1(t), . . . , aj,N (t)], (5.24)
u = [uᵀ

1, . . . ,u
ᵀ
J ]ᵀ. (5.25)

where uj is the same as in (5.7).
If the system is linear, the limit-state surface g(u, x, tx) = x−X(tx,u) = x−a(tx)u = 0 is still a

hyperplane but in a new augmented standard normal space of dimension NJ . Given the augmented
gradient vector in (5.20) and the augmented design point and the corresponding reliability index
are given in closed form as in (2.15)-(2.16).

In the nonlinear case, given x and tx, the design point u∗ is obtained as the solution to the new
augmented constrained optimization problem (2.19) with u ∈ RJN . Given the augmented design
point u∗, the augmented a(tx) is computed from (2.17) in the standard normal space of dimension
NJ . This completely defines the TELS for the nonlinear case in the new augmented space. The
IRF with respect to the jth input component is computed by solving the set of equations

M∑
m=1

hj(tx − tm)sj,n(tm)∆t = aj,n(tx), n ∈ [1, . . . , N ], m ∈ [1, . . . ,M ], (5.26)
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where M denotes the number of integration time steps and tM ≡ tx. Here, M ≡ N since the time
steps for the numerical integration and for the discretization of the input process are one and the
same. The above set of equations can be written in a matrix form as in (4.53)

Sjhj = aᵀj (tM ), (5.27)

with

Sj = ∆t

 sj,1(t1) . . . sj,1(tM )
...

. . .
...

0 . . . sj,N (tM )

 , (5.28)

h =

 hj(tM − t1)
...

hj(tM − tM )

 , aj(tM ) =

 aj,n(tM )
...

aj,N (tM )

 . (5.29)

However in different type of discretizations, based on different basis functions such as the sinc
functions, the time resolutionM can be selected independently from the number of random variables
N . In particular for each j, the system of equations (5.28) is rectangular in form. As we stated
in section (4.5), the solution of each j system can be found as the min-norm solution, or better by
considering the j IRF as a band limited function that can be expressed in terms of sinc expansion.
Then, it is sufficient to compute the samples of the j IRF and to reconstruct the continuous function
by the sinc expansion. In other words, we enforce M ′ ≡ N , where M ′ is the minimum sufficient
number of time points to describe the IRF with the sinc expansion. This leads to a system of N
equations with N unknowns, which is solved by inversion as before. The size of this new j systems
is much smaller than in the original formulation. Once the N samples of the j IRF are computed,
the IRF is completely determined by the sinc expansion i.e.

hj(t) '
N∑
n=0

hj(n∆t)sinc∆t(t− n∆t). (5.30)

Multi-component frequency-domain TELM

In the frequency domain, the Fourier transform of the steady-state response of a linear system is is
given by the superposition rule

X̄(ω) =

J∑
j=1

Hj(ω)F̄j(ω), (5.31)

whereHj(ω) denotes the FRF relative to the jth excitation component. Given the frequency-domain
discretization of the input described in (5.12), the steady-state response of the linear system is given
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by

X(t,u) =

J∑
j=1

K∑
k=1

σj,k|Hj(ωk)|[uj,k sin(ωkt− ϕj,k) + uj,K+k cos(ωkt− ϕj,k)] (5.32)

= a(t)u, (5.33)

where

a(t) = [a1,1(t), . . . , a1,2K(t), . . . , aJ,1(t), . . . , aJ,2K(t)], (5.34)
aj,k(t) = σj,k|Hj(ωk)| sin(ωkt− ϕj,k), (5.35)

aj,K+k(t) = σj,k|Hj(ωk)| cos(ωkt− ϕj,k), (5.36)
u = [u1,1, . . . , u1,2K , . . . , uJ,1, . . . , uJ,2K ]ᵀ, (5.37)

or written in a more compact form

a(t) = [a1(t), . . . ,aJ(t)], (5.38)
aj(t) = [aj,1(t), . . . , aj,2K ], (5.39)
u = [uᵀ

1, . . . ,u
ᵀ
J ]ᵀ, (5.40)

in which ϕj,k = tan−1 [Im(Hj(ωk))/Re(Hj(ωk))] is the phase angle of the FRF and uj is as in (5.17).
In the nonlinear case, the augmented u∗ is obtained by solving the optimization problem in the
augmented space of dimension 2KJ . This gives the augmented gradient vector a(tx) according to
(2.17). The modulus and phase angle of the FRF with respect to the jth input component are then
computed as

|Hj(ωk)| =

√
aj,k(tx)2 + aj,K+k(tx)2

σj,k
, (5.41)

ϕj,k = ωktx − tan−1

[
aj,k

aj,K+k

]
k ∈ [1, . . . ,K], and ϕj,k ∈ [−π, π]. (5.42)

5.4 Direct differentiation method in multi-component
TELM analysis

In our implementation of TELM analysis, the solution of the optimization problem (2.19), either in
its original or augmented version, is obtained by using a gradient-based constrained optimization
algorithm, such as the improved HLRF algorithm by Zhang and Der Kiureghian [112]. The compu-
tational cost of this solution method is related to the number of gradient computations. In Chapter
2 we have mentioned that an efficient scheme to compute the gradient is the direct differentia-
tion method (DDM) proposed by by Zhang and Der Kiureghian [111]. In this section we formulate
the DDM in the context of multi-component analysis. We discuss the use of this formulation in
conjunction with the time-, and frequency-domain TELM, and sinc interpolation functions.
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In finite-element formulation of the stochastic dynamic problem, a selected response quantity
of interest, X(t,u), is generally obtained as a function of the global response vector U(t) and,
when the response is path-dependent, of its time derivative U̇(t). Here, U(t) denotes the vector of
displacements at the global degrees of freedom of the structure. Thus, we can write

X(t,u) = Q(U(t), U̇(t)). (5.43)

The quantities U(t) and U̇(t) are of course implicit functions of u, but for simplicity of the notation
we have not indicated this. Taking derivative with respect to a generic parameter h, we have

∂X(t,u)

∂h
=
∂Q(·)
∂U(t)

∂U(t)

∂h
+
∂Q(·)
∂U̇(t)

∂U̇(t)

∂h
+
∂Q(·)
∂h

∣∣∣
(U(t),U̇(t)fixed

. (5.44)

Given Q(·), ∂U(t)/∂h and ∂U̇(t)/∂h need to be computed by sensitivity analysis [46, 47]. The
algorithm for finding the design point requires computation of the gradient of the response of interest
with respect to the vector of random variables defining the reliability problem. In the present case,
the random variables are the standard normal variables u used in defining the input excitation(s)
in a discrete form. Let ∇uX(t,u) denote the gradient vector; ∂X(t,u)/∂h is an element of this
vector, where h ≡ uj,n for the discretization in the time domain and sinc interpolation formula.
In the frequency-domain formulation since the index k belongs to the set [1 . . .K] while the total
number of random variables for each j is 2K, we need to introduce a dummy index to write the
complete gradient. Defining this dummy index as κ ∈ [1 . . . 2K], we can define h ≡ uj,κ. Although,
more generally, h in DDM can be any material or load parameter, in the present application it only
represents load parameters.

Following [46], consider the general equation of motion of a multi-degree-of-freedom (MDOF)
nonlinear system defined by

MÜ(t) +CU̇(t) +R(U(t), U̇(t)) = PF (t), (5.45)

where M is the mass matrix, C is the damping matrix, R(·) the restoring force vector, and P is
the load-distribution matrix. Taking derivative of this equation with respect to h, we have

M
∂Ü(t)

∂h
+C

∂U̇(t)

∂h
+
∂R(U(t), U̇(t))

∂h
= P

∂F (t)

∂h
. (5.46)

Introducing the vector U(t) = ∂U(t)/∂h, we have

MÜ(t) +CU̇(t) +
∂R(U(t), U̇(t))

∂h
= P

∂F (t)

∂h
. (5.47)

Two terms must be evaluated in (5.47): the sensitivity of the restoring force term
∂R(U(t), U̇(t))/∂h, and the sensitivity of the input term ∂F (t)/∂h. We start with the latter one
which depends from the selected discretization scheme.
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Sensitivity of the input term

In this subsection we examine the load sensitivity ∂F (t)/∂h, which depends on the discretization
scheme used. In a time-domain discretization scheme with h = uj,n, n ∈ [1, . . . , N ], j ∈ [1, . . . , J ],
we can write

∂F̂ (t)

∂uj,n
=

[
∂F̂1(t)

∂uj,n
, . . . ,

∂F̂J(t)

∂uj,n

]ᵀ
=

[
∂s1(t)u1

∂uj,n
, . . . ,

∂sJ(t)uJ
∂uj,n

]ᵀ
(5.48)

= [0, . . . , 0, sj,n(t), 0, . . . 0]ᵀ , (5.49)

where sj,n(t) has the form in (5.9) for the original time-domain formulation or (5.11) for the for-
mulation in terms of sinc functions. In the former case, sj,n(t) = 0 for t < tn. This means that
(5.48), (5.49) at time t depends only on the past history of loading and not on the future loading.
This is not the case when we use the sinc basis functions or as we will see in the frequency domain.
Equation (5.49) can be written in compact notation by introducing the vector S(t) as

Sj,n(t) , [0 . . . sj,n . . . 0]ᵀ , (5.50)

which is a vector of dimension J×1 collecting all zeros with the exception of the single base function
sj,n located at position j. We adopt the symbol S to underline the fact that the sensitivity of the
load parameter is essentially a base function of a particular discretization scheme.

In the frequency-domain formulation with h = uj,κ the gradient of the load vector is given by

∂F̂ (t)

∂uj,κ
=

[
∂F̂1(t)

∂uj,κ
. . .

∂F̂J(t)

∂uj,κ

]ᵀ
=

[
∂s1(t)u1

∂uj,κ
. . .

∂sJ(t)uJ
∂uj,κ

]ᵀ
(5.51)

= [0 . . . sj,κ(t) . . . 0]ᵀ (5.52)
= [0 . . . σj,k sin(ωkt) . . . 0]ᵀ for κ ∈ [1, . . . ,K] (5.53)
= [0 . . . σj,k cos(ωkt) . . . 0]ᵀ for κ ∈ [K + 1, . . . , 2K]. (5.54)

As we have done in the time-domain context we define the vector S(t) as

Sj,κ(t) , [0 . . . σj,k sin(ωkt) . . . 0]ᵀ for κ ∈ [1, . . . ,K]

[0 . . . σj,k cos(ωkt) . . . 0]ᵀ for κ ∈ [K + 1, . . . , 2K]. (5.55)

In this case the sensitivity is computed as response to an harmonic load with frequency ωk. Hereafter,
for simplicity of notation we drop the subscripts of on Sj,n(t) and Sj,κ(t).

Sensitivity of the restoring force term

In this section we examine the sensitivity of the restoring force vector, ∂R(U(t), U̇(t))/∂h, which is
independent from the discretization employed. Before employing the derivative over the parameter
h, it is crucial to discretize the variable t. In fact, the space of the continuous solutionU(t) is different
from the space of the discrete solution U(tm). Introducing the “computational” discretization tm
with m ∈ [1, . . . ,M ] and ∆tM = T/M ,1 we define: Um+1 = U(tm+1), Um+1 = U(tm+1), and

1The time discretization is the same used to solve (5.45)
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Sm+1 = S(tm+1) and write the (5.47) as

MÜm+1 +CU̇m+1 +
∂R(Um+1, U̇m+1)

∂h
= PSm+1, (5.56)

where

∂R(Um+1, U̇m+1)

∂h
=

∂R(Um+1, U̇m+1)

∂Um+1
Um+1 + (5.57)

∂R(Um+1, U̇m+1)

∂U̇m+1

U̇m+1 + (5.58)

∂R(Um+1, U̇m+1)

∂h

∣∣∣
Um+1,U̇m+1

. (5.59)

The differential term in (5.57) is defined as the consistent tangent stiffness matrix Km+1 [100], and
analogously the differential term in (5.58) is defined as the consistent tangent damping matrix due
to material viscosity Cvisc

m+1, i.e.

Km+1 =
∂R(Um+1, U̇m+1)

∂Um+1
, (5.60)

Cvisc
m+1 =

∂R(Um+1, U̇m+1)

∂U̇m+1

. (5.61)

For an exhaustive discussion on the nature ofKm+1 andCvisc
m+1, the reader should consult a standard

nonlinear finite element text, such as [9, 115]. Here we limit our discussion by noticing that Km+1

is in its general form and indeed it is composed by a geometrical term and a material term, i.e.
Km+1 = KG

m+1 + Kmat
m+1, where KG

m+1 is the geometrical stiffness and Kmat
m+1 is the material

stiffness. Moreover, in this dissertation we do not consider material viscosity, hence consequently
(5.61) is neglected.

For problems involving inelasticity at the material level, computation of (5.59) is particularly
subtle; thus, we will devote special attention to it later. For now, we define the vector Rm+1 as

Rm+1 , −∂R(Um+1, U̇m+1)

∂h

∣∣∣
Um+1,U̇m+1

, (5.62)

so that we can write (5.56) as

MÜm+1 +CU̇m+1 +Km+1Um+1 = PSm+1 + Rm+1. (5.63)

Two observations must be made. First, the inverse of the consistent tangent is already available at
each discrete point m from the solution of the discretize version of the general equation of motion
(5.45). Second, (5.63) is a linear equation. The linearity of (5.63) is a cornerstone of the DDM
scheme and the essence of its efficiency. The reader, however, should recognize that in TELM
analysis we need to solve NJM or 2KJM of these linear systems.

It is time now to come back to the definition of Rm+1. Problems involving inelasticity in the
material model depend upon the previous loading history, consequently special considerations need
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to be made for this term. An inelastic material model is defined by a set of constitutive history
variables, which are time dependent and denoted with the vector θmat(t) 2. In problems with
inelasticity at the material level, (5.62) is not only a function of θmat(t) but also of the sensitivity
of θmat(t), [111] i.e.

Rm+1 = f

. . . , ∂θmatm+1

∂h

∣∣∣ Um+1

U̇m+1

,
∂θmatm

∂h

 . (5.64)

As we can see from (5.64), Rm+1 is computed with the assumption of fixed current displacement
and velocity. No assumptions however are made for previous time steps; to underline this difference
the term ∂θmatm /∂h is written explicitly with no “fixed” assumptions. Consequently we cannot store
directly the variable ∂θmatm+1/∂h

∣∣∣ Um+1

U̇m+1
otherwise in the next time step (5.64) will be computed

incorrectly. To address this problem, the sensitivity analysis must be split in two phases:

Phase 1 The derivatives of the material parameters, ∂θmatm+1/∂h
∣∣∣ Um+1

U̇m+1
, are computed with

assumption of fixed displacements and velocities; then (5.64) is assembled and then the sen-
sitivities variables Um+1(t) and U̇m+1(t) are computed by solving (5.63).

Phase 2 Once the the sensitivities variables Um+1(t) and U̇m+1(t) are available, the deriva-
tives of the material parameters, ∂θmatm+1/∂h, are computed with no assumption of fixed dis-
placements or velocities. This is used in the next step for computing R.

A concrete example involving sensitivity of a Bouc-Wen model is described in [46]. The computation
of (5.64) depends on the material model adopted. However, this selection must be made under the
condition of differentiability of the limit state surface g(u, x, tx). This translates into selecting
material models that have smooth behavior in the loading path. For a comprehensive discussion in
this topic and for a list of “smoothed” material models the reader should consult [46, 47].

DDM Summary

In this subsection we provide a step by step procedure to compute the gradient of the response in
TELM analysis.

Computation of the gradient of the selected response by DDM

1. Select initial conditions U in, U̇ in, Ü in and θmatin and a time discretization tm with m ∈
[1, . . . ,M ] and ∆tM = T/M .

2For readers familiar with problems involving inelasticity at the material level, these material history
variables are for example the internal hardening, and the back stress in the classical J2 plasticity mode [99].
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2. Solve

MÜm+1 +CU̇m+1 +R(Um+1, U̇m+1|θmatm+1) = PFm+1. (5.65)

To solve (5.65) classical time-stepping schemes such as the well-known Newmark and
Wilson scheme can be used.

• M ≡ N in the classical time domain analysis.

• M 6≡ N if basis function such as the sinc are adopted. Usually M > N to guarantee
convergence in solving (5.65).

• M is selected to guarantee convergence of (5.65), in frequency domain analysis.

3. For a given time step m + 1, Um+1, U̇m+1, Üm+1, K−1
m+1 and θmatm+1 are available from

the solution of (5.65) and Um, U̇m, Üm, θmatm and ∂θmatm /∂h from the previous time step
m. Call DDM scheme.

a) Select the random variable uj,n or uj,κ for n ∈ [1, . . . , N ] and κ ∈ [1, . . . , 2K].

b) Assemble Sm+1 according to (5.50) or (5.55).

c) Compute the sensitivity of the restoring force term:

a) Phase 1
- Compute the derivatives of the material parameters according to the selected
material model

∂θmatm+1

∂h

∣∣∣ Um+1

U̇m+1

.

- Assemble Rm+1 according to the selected material model.
- Solve (5.63) with the same scheme used to solve (5.65).

a) Phase 2
- Given Üm+1, U̇m+1 and Um+1 from phase 1, compute

∂θmatm+1

∂h
,

and store it for the next time step iteration.

d) Repeat steps 3.1-3.3 until n = N or κ = 2K and j = J .

4. Repeat points 2-3 until m+ 1 = M and ∇uX(tM ,u) is available.
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5.5 Random vibration analysis

A we have seen in Chapter 2, once the TELS is obtained for a given combination of threshold x
and time tx the statistics of the nonlinear responses for the specified threshold are obtained by
linear random vibration analysis. By repeated TELM analysis, a sequence of design points for an
ordered set of thresholds x1 < . . . < xp is obtained and from this sequence it is possible to directly
compute the first-order approximation of the point in time CDF by use of the (2.48) and the first
order approximation of the PDF by use of the (2.50). In fact in the multi-component case, (2.48)
and (2.50) are still valid by considering the augmented u∗ and a(tx).

Moreover, the IRFs and/or FRFs of each TELS can be used for time- or frequency-domain
analysis to compute other statistics of interest, such as the mean up-crossing rate and the first-
passage probability. For stationary excitations, a convenient approach is to compute these statistics
in the frequency-domain, either by directly employing the frequency-domain discretization and
identifying the FRFs, or by discrete Fourier transformations of the IRFs computed by the time
domain approach. For each threshold of interest, the qth spectral moment of the response is obtained
as a combination of the single FRFs, i.e.

λq(x) = 2

∫ ∞
0

ωq

 J∑
j=1

|Hj(ω, x)|2Sj(ω|θj)

 dω, (5.66)

which using the discrete frequency can be written as

λq(x) = 2∆ω
K∑
k=1

J∑
j=1

ωqk|Hj(ωk, x)|2Sj(ωk|θj), (5.67)

where Sj(ω|θj) is the PSD of the jth excitation component. Once the spectral moments are known
for each threshold of interest, classical solutions can be used. For example, for the mean rate of
up-crossing of the response of interest, we can use (2.51) and for the CDF of the maximum of the
absolute response over an interval [0, t̄] we can make use of (2.53)-(2.54). In this dissertation we
limit our analysis to the solution of these statistics by the frequency-domain approach and classical
random vibration results. Solutions obtained using structural reliability methods can be found in
[37, 38].

5.6 Multi-component TELM analysis, summary

A step-by-step summary to implement the multi-component TELM analysis for a general system is
as follow:

1. Select one of the “stochastic” discretization by using one of the (5.8), (5.11) or (5.12). For
stationary excitations, the focus of this chapter, one only need to select the appropriate
filter for each excitation by choosing ηj(t|θj) or Sj(ωk|θj).
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2. Select the response of interest X(tx,u) and the point in time tx. For time-domain analysis
tx should be chosen sufficiently large to guarantee the stationarity of the response. This
selection depends on the type of structure, load, damping, and material behavior. Define
the limit state function(s) by defining the threshold(s) of interest i.e. g(u, x, tx) = x −
X(tx,u).

3. Find the design point u∗ for the nonlinear system. This requires repeated solutions of the
nonlinear response and its gradient for values of u selected according to an optimization
algorithm, such as the improved HLRF. The gradient computation is carried out by using
the DDM scheme. Partition u∗ to obtain the design point u∗j for the jth component.
Each j partition represents the design point for the jth input component.

4. Define the TELS by computing the augmented a(tx). In the time domain, the IRF for the
jth input component is computed by solving (5.27) for each j. In the frequency domain,
the FRF associated with the jth input component is computed by solving (5.41)-(5.42).

5. Determine the statistic of the response. Compute the spectral moments of the response
of interest by (5.67) and apply the classical solution of linear random vibration (2.51)-
(2.53)-(2.54) for each TELS defined by the threshold of interest. A sequence of thresholds
determines the statistical distribution of interest.

5.7 Numerical example

An asymmetric three-degree-of-freedom, one one-story, one-bay frame structure system with non-
degrading hysteretic structural members is considered. The lateral force-resisting system consists
of two shear walls in the x direction positioned symmetrically and one shear wall in the y direction
with eccentricity e relative to the center of mass, see Figure 5.1. The in-plane inelastic behavior of
each frames shear wall is described through a non-degrading Bouc-Wen model [8, 14, 109], which is
governed by the following set of local differential equations:

k[αv(t) + (1− α)z(t)] = q(t), (5.68)

ż(t) = −γ|v̇(t)||z(t)|n̂−1z(t)− η|z(t)|n̂v̇(t) +Av̇(t), (5.69)

in which v(t) denotes the deformation (drift) of the shear wall, q(t) denotes the applied shear force,
z(t) is the hysteretic response, and parameter α controls the degree of nonlinearity of the model (see
5.69). For the model parameters k, α, γ, η, n̂ and A, the values listed in Table 5.1 are employed.
The assumed values for the mass m, damping c, and dimensions terms a, b and e are also listed in
Table 5.1. Figure 5.2 shows the hysteretic behavior of the frames for the assumed parameter values.
Frames are assumed to have negligible out-of-plane stiffness. For the linear case (i.e., for α = 1),
the natural frequencies of the structure and the mode shapes are depicted in Figure 5.1.



CHAPTER 5. MULTI-COMPONENT TELM ANALYSIS 62

The excitation is a bi-directional base motion, i.e. J = 2, described by F1 = Ügx and F2 =
Ügy, where Ügx, Ügy are statistically independent components of ground acceleration processes in
directions x and y, respectively. Two cases of stationary Gaussian excitations are considered: bi-
component band-limited white noise having spectral densities S1 = S2 = S, and a bi-component
filtered white noise process. The selected filter for the latter is the canonical Kanai-Tajimi PSD
with a central frequency of ωg = 3[Hz] and bandwidth ζg = 0.6 in each direction. In principle
the independence condition between the components is not restrictive because for bi-directional
input we can always apply a rotational transformation for which the two principal components are
uncorrelated. In the Gaussian framework uncorrelation implies statistical independence. However,
while we can always make the two components uncorrelated at the same time, we may not be able to
make them uncorrelated at different times. In fact there are applications for which the independence
assumption can be restrictive. One example in earthquake engineering is the response of a multiply-
supported structure to partially coherent support motions. Other examples include wave or wind
loading at different locations of a large structure. For this reason further development is needed to
extend TELM to these classes of problems.

The load distribution matrix is given by P = −Mι, where the influence matrix, ι, represents
the displacements of the mass resulting from static application of unit ground displacements along
each degree of freedom (translations in x and y direction and rotation around the center of mass)
[24]. Figure 5.3 shows the PSDs for the two cases of excitation and Table 5.1 summarizes the scale
parameters, the discretization rules used, and the selected time point tx at which reliability analysis
is performed.

We select as response quantity of interest the horizontal displacement of shear wall 1, i.e.,
X(t) = v1(t), and the time tx = 12[s]. We have verified that the duration [0, 12][s] is sufficient to
achieve near stationarity condition of the response. Small deformations is assumed so that (5.43) is
a linear relationship. Specifically,

v(t) = AfU(t), (5.70)

where Af is the kinematic (compatibility) matrix relating the element deformation with the dis-
placements at the free degrees of freedom of the structure [34]. Finally, the limit-state function is
defined by selecting the threshold(s) x, i.e. g(x, tx,u) = x − v1(tx,u). We consider failure events
occurring during a period T of stationary response, representing the strong-motion phase of the
earthquake ground motion. This condition is usually met in far field ground motions. We employ
both time- and frequency-domain discretizations for the case of white-noise excitation and only
frequency-domain discretization for the case of filtered white-noise excitation. Once the design
point is obtained, the TELS is identified in the manner described in the step 4 of the summary
procedure described in section 5.6.

It is of interest to examine the so-called design-point excitation and design-point response, which
respectively represent realizations of the excitation and response with the highest probability density
for a specific response threshold x and time tx. For x = 0.12[m], which corresponds to a 3% drift,
and tx = 12[s], fig(5.4) shows the design-point excitation for the bi-directional white-noise input
and fig(5.5) shows the same for the bi-directional Kanai-Tajimi colored noise . For the frequency-
domain discretization approach, the design point is not only the point with the highest probability
density function to achieve the response threshold, but it also represents the vector collecting the
coefficients of the Fourier series representing the excitation. Thus, the constrained minimization
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problem describes the physical task of finding the orbit of the input with the minimum energy so
that the mechanical system is guided into the frontier of the failure domain. TELM analysis gives
the opportunity to study the orbit of the excitation and the response under this condition. These
orbits are paramount in elastic systems and with this approach we can study their shape for an
inelastic structure to gain insight into its behavior. For example, it is of interest to observe that
in the case of the white-noise excitation, which contains no predominant frequency, both input
components achieve zero acceleration at time tx, which suggest that the “exact” amount of energy
is injected into the system to achieve the target failure event. In the case of color noise, this is not
longer valid because the phase between input and response depend from the relationship between
the “natural frequencies” and the input predominant frequency. The reader should note that the
use of “natural frequencies” is not very appropriate (from here the justification of “·”) since we are
dealing with nonlinear problems, however the definition of TELS allows to use the vocabulary of
linear systems. We have seen in Chapter 2, and we will see soon the same for multi-component
TELM, that even for highly softening nonlinear problems, the system tends to preserve “memory”
of the natural frequencies.

The design-point response and the orbit of the global response to the design-point excitation is
shown in Figure 5.6 for the case of the white-noise input and in Figure 5.7 for the case of the Kanai-
Tajimi colored noise. In the white-noise case, the response achieves the prescribed threshold with
a zero slope (bottom curve in Figure 5.6). This suggests the velocity response is zero at this time,
which also implies zero kinetic energy. In the colored noise case, this is no longer valid due to the
presence of memory in the input process. The system achieves the prescribed response threshold with
a non-zero velocity and non-zero kinetic energy. The relationship between predominant frequency of
the input and natural frequency, determine the difference in phase between input and response. For
example if the input frequency is significantly lower than the predominant frequency of the system
the input and and the output are “close” in phase. This because the system is “slowly” loaded and
the response is almost static. An alternative explanation is given by the fact that the white noise
has no memory. Hence, the random variable value at tx is independent of past and future values.
Since it has no effect on the response at the same time, the most likely value of the random pulse
there is zero. The Kanai-Tajimi model has memory. Thus, the pulse at tx is correlated with the
earlier and later pulses. As a result, the most likely value of the pulse at tx for achieving the target
response at tx is not zero, as it also depends on the previous pulses.

For a particular discretization scheme, one can directly compute the IRFs and/or the FRFs of the
TELS. For example, in the time-domain discretization, the IRFs are given by (5.27) and the FRFs
can be computed by discrete Fourier transform. Likewise, in the frequency-domain discretization,
FRFs are given by (5.41), (5.42) and the corresponding IRFs can be computed by discrete inverse
Fourier transform. Three values of the threshold, x = 0.01[m], x = 0.06[m] and x = 0.12[m], are
selected to examine the variation of the TELS with increasing level of inelasticity. Note that the
lower threshold x = 0.01[m] corresponds essentially to the linear case. Figure 5.8 shows the IRFs,
Figure 5.9 shows the moduli and phase angles of the FRFs, and Figure 5.10 shows the real and
imaginary parts of the FRFs, all for the case of bi-component white-noise input. The FRFs are
obtained by use of the frequency-domain discretization and the IRFs by discrete Fourier transform.
Almost identical IRFs were obtained directly by time-domain discretization and are not displayed in
Figure (5.8) to avoid making the graph too busy. Figure 5.11, 5.12 and 5.13 show the corresponding
graphs for the case of the bi-component Kanai-Tajimi excitation. Several observations in these
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figures are noteworthy. First note that the IRFs for higher threshold decay much faster than those for
the lower threshold. Obviously this is due to the effect of hysteresis damping. As already observed
in Chapter 2, as the system softens with increasing inelasticity to achieve a higher deformation
threshold, the lower-frequency part of the FRF moduli become more pronounced. However, the
peaks at the natural frequencies of the linear system are “imprinted” in the memory of the system,
even at high thresholds. Also interesting is the contribution of the input component in the direction
orthogonal to the response (noted as Component II in Figures 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13).
Of course this contribution is due to the coupling effect introduced by the eccentricity of the system.
Note, however, that the effect of nonlinearity with increasing threshold is less pronounced in these
IRSs and FRFs.

Once the TELS is obtained for a given combination of threshold x and time tx, the statistics of
the nonlinear response are obtained by linear random vibration analysis by following step 5 of the
summary in section (5.6). By repeated TELM analysis, a sequence of design points for an ordered
set of thresholds x1 < x2 < . . . < xp is obtained, and from this sequence it is possible to directly
compute the first-order approximation of the point-in-time distribution of the stationary response
by using (2.50). Figures 5.14 and 5.15 show the reliability index and the complementary CDF of the
response of interest as a function of the threshold for the white-noise and Kana-Tajimi bi-component
inputs, respectively. The figure compares TELM results with the results of a crude Monte Carlo
simulation (shown as one-standard deviation error bars) with a sample size of 100, 000. Also shown
with dashed lines are the results of the linear (α = 1) system. In the case of the white-noise
excitation, the results obtained by time-domain and frequency-domain discretizations are nearly
coincident and are shown here as a unique line under the label “TELM.” We should note that
thresholds higher then x = 0.12[m] have more an academic meaning rather then practical, however,
they gives an interesting insight of the tail behavior of a highly nonlinear system. It is interesting
observe that for this particular system the tail-probability distribution is not too different from that
of the elastic system, although the physical behavior is entirely different. However, the distribution
of the nonlinear system is clearly non-Gaussian, as the plot of the reliability index versus threshold
deviates from a straight line. Finally, the FRFs of each TELS are used for frequency-domain random
vibration analysis to compute the mean up-crossing rate and first-passage probability. Figures 5.16
and 5.17 respectively show the mean up-crossing rate and the complementary CDF of the maximum
absolute response of the system over a duration T = 12[s] of stationary response to the bi-component
white-noise and Kanai-Tajimi inputs. It interesting to observe that the system is less reliable for the
Kanai-Tajimi excitation. This is because this colored noise excitation has higher spectral density
values for lower values of frequencies and, thus, more energy is driven into the softening system,
leading to a lower values of reliability index and higher probabilities of failure.

We have seen in Chapter 2 that an important property of TELS is its invariance relative to
scaling of the excitation. Thus, the statistics of the response for any scaled version of the excitation
is obtained by scaling down the reliability index by the same scale factor, i.e., the reliability index
of the response to input cF (t) is simply β/c. This type of analysis is central to obtaining fragility
curves in the context of the so-called “incremental dynamic analysis” [104]. Figures 5.18 and 5.19
show the tail probability of the maximum absolute response above threshold x = 0.12[m] for the
scaled versions of the bi-components white-noise and Kanai-Tajimi excitations, respectively. The
abscissa in these figures show the mean peak acceleration for each component of the input. Both
excitation components are scaled by the same factor and the results are obtained using the single
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design point computed for the original excitation case, which is marked in each figure.
It is of interest to investigate the behavior of the system with varying eccentricity. In all the

above analysis, the eccentricity was assumed to be 9% of the lateral dimension of the system. Now,
we conduct a parametric study for the fixed threshold x = 0.12[m] by varying the eccentricity from
0% up to 30%. Figure 5.20 shows the sequence of reliability index and the probability of failure
as function of the relative eccentricity. The graph suggest a “penalty” factor in terms of structural
safety that the designer is paying in selecting an eccentric system, or vice-versa it suggest the
maximum eccentricity that the structure can be design, for a target reliability index or probability
of failure.

5.8 Conclusion

The extension of the tail-equivalent linearization method for multiple stochastic excitations is de-
veloped. Following Chapter 2, the method is based on a discrete representation of each excitation
component in terms of standard normal random variables. In the time domain discretization and
sinc interpolation, the multi-component excitation and response belong to an augmented standard
normal space of dimension NJ while in the frequency domain the dimension is 2KJ . In these
augmented spaces the equivalent linear system is defined by matching its design point with that of
the nonlinear system for a specific threshold. For each TELS, the IRF or FRF for each component
is determined. Once the IRFs or the FRFs are determined, linear random vibration analysis is
employed to determine the statistics of interest.

The multi-component TELM analysis is a straightforward extension of the original TELM for-
mulation, which offers a series of advantages to the simulation and ELM methods. First, TELM is
able to capture the non-Gaussian distribution of the nonlinear response. Second, TELM is not a
parametric method and does not require the selection of a linear model or a set of model parameters
as in ELM. The advantage over the classical simulation methods lies in its efficiency. In fact TELM
is able to accurately predict small tail probability values which are infeasible with classical simula-
tion methods. The efficiency of TELM lies in efficient computation of the gradient in the improved
HLRF algorithm. The number of random variables employed thus is crucial. Both versions, the
time-domain and the frequency-domain, give similar and accurate results, even though, the two
discretizations have different frequency contents. In particular, for time step ∆t = 0.01[s], the
time domain discretization has a cut off frequency of 50[Hz], while the frequency-domain has a cut
off frequency of 15[Hz]. The almost identical results suggests that the influence of high-frequency
content of the excitation is negligible in softening systems.

The drawbacks of multi-component TELM analysis are the same as those for the single com-
ponent TELM analysis. In particular, TELM requires considerably more analysis than ELM if
one is interested only in the first and second moments. For second-moment analysis, ELM is the
appropriate method while TELM is effective for accurate estimation of tail probabilities. Moreover
because TELM is based on FORM, there is no measure of the error due to the approximation and
thus the accuracy of TELM cannot be estimated in advance. The numerical investigation shows the
importance of considering both excitation components in computing the statistics of the response
for coupled systems.
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Figure 5.1: Structural archetype

Table 5.1: Structural and Excitation Properties

Structural Proper-
ties

a[m] b[m] e[m] ρ
[ kg
m2

]
6.0 10.0 0.9 500

Bouc-Wen Proper-
ties

α c
[kNs

m

]
k[kN] γ

[
1

mn̄

]
η
[

1
mn̄

]
n̂ A uy

Frame 1 and 2 0.1 8.05E1 1.50E4 1/2un̂y 1/2un̂y 5 1 0.04

Frame 3 0.1 1.61E2 3.00E4 1/2un̂y 1/2un̂y 5 1 0.04

Excitation Proper-
ties

S1 S2 tx ∆t ∆ω
2π

ω̄
2π

N,K

[m2

s3 ] [m2

s3 ] [s] [s] [Hz] [Hz]

time-domain 0.25 0.25 12 0.02 50 2x600

frequency-domain 0.25 0.25 12 0.1 10 4x200
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Figure 5.2: Hysteretic behavior of the frames

Figure 5.3: Power spectral densities: a) band-limit white noise, b) Kanai-Tajimi
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Figure 5.4: Design-point input, white noise input

Figure 5.5: Design-point input, Kanai-Tajimi inputs
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Figure 5.6: Global response to white noise design-point input and design-point response
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Figure 5.7: Global response to Kanai Tajimi design-point input and design-point response

Figure 5.8: Impulse-response functions, white noise inputs
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Figure 5.9: Frequency-response functions modulus and phase, white noise inputs
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Figure 5.10: Frequency-response functions real and imaginary part, white noise inputs

Figure 5.11: Impulse-response functions, Kanai-Tajimi inputs
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Figure 5.12: Frequency-response functions modulus and phase, Kanai-Tajimi inputs
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Figure 5.13: Frequency-response functions, real and imaginary part, Kanai-Tajimi inputs

Figure 5.14: Reliability index and point in time probability, white noise inputs



CHAPTER 5. MULTI-COMPONENT TELM ANALYSIS 75

Figure 5.15: Reliability index and point in time probability, Kanai-Tajimi inputs

Figure 5.16: Mean up-crossing and Probability of maximum response, white noise inputs
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Figure 5.17: Mean up-crossing and probability of maximum response, Kanai-Tajimi inputs

Figure 5.18: Tail-fragility curve of maximum response, white noise inputs
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Figure 5.19: Tail-fragility curve of maximum response, Kanai-Tajimi inputs

Figure 5.20: a) Reliability index b) Probability of failure for different eccentricities
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Chapter 6

Non-stationary TELM analysis

6.1 Introduction non-stationary TELM at a glance

This chapter tackles the class of non-stationary problems. We have seen in the previous Chapters
2 and 5 that, for stationary problems, the TELS is time-independent and only one linear system
needs to be defined to study the statistics of the response. However, for a transient input, the
TELS also depends on the selected point in time. Thus, equivalent linear systems at multiple time
points for one threshold must be defined to study the statistics of the non-stationary response. The
definition of the TELS for a specified threshold and point in time requires knowledge of the design
point, which in turn requires solution of a constrained nonlinear optimization problem. For non-
stationary problems, the required multiple solutions can become computationally costly or even
infeasible. Among the broad class of non-stationary processes, this chapter focuses on processes
described by Priestley’s evolutionary power spectral density (EPSD) [82], which is frequently used
in engineering to model non-stationary excitation processes. The chapter introduces the definition of
the evolutionary tail-equivalent linear system (ETELS) as an approximate alternative to conducting
a series of point-in-time TELSs. Only one solution of the optimization problem is required to define
the ETELS. An example is used to demonstrate the accuracy and effectiveness of the proposed
method. Among the statistics of the non-stationary response, the first-passage probability is of
particular interest. No closed form solution exists for this problem; often simulation methods are
used to find an approximate solution. Au and Beck [4] proposed an efficient importance sampling
method, which requires knowledge of the design points at a series of points in time. Given the
ETELS, approximate design points of the non-stationary response are derived as a function of
time and used in conjunction with the Au-Beck algorithm to obtain approximate solution of the
first-passage probability for the non-stationary response.
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6.2 Evolutionary TELM

Input representation

Evolutionary processes representing the non-stationary input and output are the focus of this work.
It is convenient, in this case, to use the spectral representation of the input (2.28), rewritten here
for convenience:

F̂ (t) =
K∑
k=1

σk[uk sin(ωkt) + uK+k cos(ωkt)]. (6.1)

According to Priestley [82], the EPSD, SFE(ω, t) is defined as

SFE(ω, t) = |A(ω, t)|2S0, (6.2)

where A(ω, t) is a modulating function in both time and frequency and S0 is the intensity of an
underlying white-noise process. A subclass of the evolutionary processes is the uniformly modulated
process. For this class, the modulating function can be written as the product of two separate
functions as

A(ω, t) = Φ(ω)q(t), (6.3)

where Φ(ω) defines the frequency-modulation function and q(t) the time-modulation function. This
formulation is equivalent to defining the non-stationary process as the product of a stationary process
with PSD SF (ω) = Φ2(ω)S0 and the time-modulation function q(t). The shape of the frequency
content of this process remains invariant in time hence the name “uniformly” modulated process.
For evolutionary processes, the representation in (6.1) is still valid; it only needs a small adjustment

σk(t) =
√

2SFE(ωk, t)∆ω, (6.4)

= |A(ωk, t)|
√

2S0∆ω (6.5)
= |A(ωk, t)|σ0 (6.6)

where σ0 =
√

2S0∆ω. Hence (6.1) can be rewritten as

F̂E(t) = σ0

K∑
k=1

|A(ωk, t)|[uk sin(ωkt) + uK+k cos(ωkt)], (6.7)

= s(t)u, (6.8)

where

s(t) = [s1(t), . . . , sK(t), sK+k(t), . . . , s2K(t)], (6.9)
sk(t) = σ0|A(ωk, t)| sin(ωkt), (6.10)

sK+k(t) = σ0|A(ωk, t)| cos(ωkt), (6.11)
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and u defined as (2.30). In the in the case of uniformly modulated process we can write for
convenience (6.6) as

σk(t) =
√

2SFE(ωk, t)∆ω (6.12)

= q(t)
√

2Φ2(ωk)S0∆ω (6.13)
= q(t)

√
2SF (ωk)∆ω (6.14)

= q(t)σk, (6.15)

and (6.16) as

F̂ (t) =
K∑
k=1

q(t)σk[uk sin(ωkt) + uK+k cos(ωkt)] (6.16)

= s(t)u, (6.17)

where

sk(t) = q(t)σk sin(ωkt), (6.18)
sK+k(t) = q(t)σk cos(ωkt). (6.19)

Evolutionary frequency-response function

Given the spectral representation of the input in (6.2), the EPSD of the response of a linear system
is given by:

SXE(ω, t) = |M(ω, t)|2S0, (6.20)

where M(ω, t) is the evolutionary frequency-response function (EFRF) of the linear system defined
as

M(ω, t) =

∫ t

0
A(ω, t− τ)h(τ)e(−iωτ)dτ. (6.21)

One important difference to observe between the FRF and the EFRF is that the second one is not
only a characteristic of the system but also of the input excitation. The response of a linear system
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to an evolutionary excitation can be obtained as:

X(t) = F̂ (t) ∗ h(t)U(t), (6.22)
= F−1[F̄(ω)](t) ∗ h(t)]U(t) (6.23)
= F−1[A(ω, t)W̄(ω)](t) ∗ h(t)U(t) (6.24)

=

∫ t

0

(∫ ∞
−∞

A(ω, t)W̄(ω)eiωτdω

)
h(t− τ)dτ (6.25)

=

∫ t

0

(∫ ∞
−∞

A(ω, t)W̄(ω)eiωτdω

)
h(t− τ)eiωte−iωtdτ (6.26)

=

∫ ∞
−∞

W̄(ω)

(∫ t

0
A(ω, t)h(t− τ)e−iω(t−τ)dτ

)
eiωtdω (6.27)

=

∫ ∞
−∞

W̄(ω)

(∫ t

0
A(ω, t− τ)h(τ)e−iωτdτ

)
eiωtdω (6.28)

=

∫ ∞
−∞

W̄(ω)M(ω, t)eiωtdω (6.29)

= F−1[M(ω, t)W̄(ω)](t), (6.30)

which implies X̄(ω, t) = M(ω, t)W̄(ω). The (6.30) can be written explicitly as

X(t) =
K∑
k=1

σ0|M(ωk, t)|[uk sin(ωkt− ϑk(t)) + uK+k cos(ωkt− ϑk(t))] (6.31)

= a(t)u, (6.32)

with

a(t) = [a1(t), . . . , aK(t), aK+k(t), . . . , a2K(t)], (6.33)
ak(t) = σ0|M(ωk, t)| sin(ωkt− ϑk(t)), (6.34)

aK+k(t) = σ0|M(ωk, t)| cos(ωkt− ϑk(t)), (6.35)

where ϑk(t) = tan−1[Im(M(ωk, t))/Re(M(ωk, t))] is the phase and |M(ωk, t)| the modulus of the
EFRF. Analogously to the original frequency domain TELM we can write

|M(ωk, t)| =

√
ak(t)2 + aK+k(t)2

σ0
, (6.36)

ϑk(t) = ωkt− tan−1

[
aj,k(t)

aj,K+k(t)

]
k ∈ [1, . . . ,K], and ϑj,k ∈ [−π, π]. (6.37)
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In the case of the uniformly modulating function we can slightly modify the previous derivation
as

X(t) =

∫ ∞
−∞

W̄(ω)Φ(ω)

(∫ t

0
q(t− τ)h(τ)e−iωτdτ

)
eiωtdω (6.38)

=

∫ ∞
−∞

W̄(ω)Φ(ω)M(ω, t)eiωtdω (6.39)

=

∫ ∞
−∞

F̄ (ω)M(ω, t)eiωtdω (6.40)

= F−1[M(ω, t)F̄ (ω)](t), (6.41)

where we have defined

M(ω, t) =

∫ t

0
q(t− τ)h(τ)e(−iωτ)dτ, (6.42)

for the uniformly modulated process (6.3). The (6.41) implies X̄(ω, t) = M(ω, t)F̄ (ω), and it can
be written explicitly as

X(t) =
K∑
k=1

σk|M(ωk, t)|[uk sin(ωkt− ϑk(t)) + uK+k cos(ωkt− ϑk(t))] (6.43)

= a(t)u, (6.44)

with

ak(t) = σk|M(ωk, t)| sin(ωkt− ϑk(t)), (6.45)
aK+k(t) = σk|M(ωk, t)| cos(ωkt− ϑk(t)), (6.46)

and

|M(ωk, t)| =

√
ak(t)2 + aK+k(t)2

σk
, (6.47)

ϑk(t) = ωkt− tan−1

[
aj,k(t)

aj,K+k(t)

]
k ∈ [1, . . . ,K], and ϑj,k ∈ [−π, π]. (6.48)

Indeed, given a linear system, the EFRF can be re-constructed in two ways: directly using (6.36),
(6.37) (in the general case) or (6.47), (6.48) (in the case of uniformly modulated process), or deriving
the IRF and applying (6.21) or (6.42). In the following, we use the second approach.

When the system is nonlinear, linearization of the limit-state surface at each instant of time is
required to fully study the statistics of the non-stationary response. This requires repeated solutions
of the design point and the determination of a series of FRFs according to (2.43) and (2.44). The
computational cost can be prohibitive. As an alternative, we propose the use of the evolutionary
tail-equivalent linear system (ETELS), as described below.
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The evolutionary tail-equivalent linear system

In the previous section we showed that the EFRF for linear systems can be directly determined
by TELM analysis. In this section we introduce approximate methods to analyze the temporal
evolutionary problem in the case of nonlinear systems. We start first by analyzing the case for which
the modulating function is of the type in (6.3). Given a general nonlinear system and a stochastic
input described by (6.3), we first solve the problem for response to the underlying stationary colored
noise, SF (ω), by the standard TELM procedure. In this case it is convenient to compute the IRF of
the TELS by inverse Fourier transform of the FRF obtained from a frequency-domain discretization.
The ETELS is then defined through its EFRF which, using (6.42), is given by

M(ω, t) =

∫ t

0
q(t− τ)hTELS(τ)e(−iωτ)dτ. (6.49)

in which hTELS(t) denotes the IRF of the TELS for the underlying stationary colored noise ex-
citation. This approximation includes the influence of the frequency content of the excitation on
the response of the nonlinear system. It is indeed a suitable approximation for both broad- and
narrow-band excitations. The approximation works well as long as the modulating function q(t) is
slowly varying.

Given a general nonlinear system and a stochastic input described by (6.2), we first solve the
problem for response to white noise by the standard TELM procedure. The IRF of the TELS is
computed either directly, if a time-domain discretization is employed, or by inverse Fourier transform
of the FRF, if a frequency-domain discretization is used. The ETELS is then defined through its
EFRF, which, using (6.21), is obtained as

M(ω, t) =

∫ t

0
A(ω, t− τ)hTELS(τ)e(−iωτ)dτ, (6.50)

in which hTELS(t) denotes the IRF of the TELS for response to the to white-noise excitation. In
this case the approximation can be crude and it may work only for broad-band excitation with
slowly varying frequency content. The discrete versions of equations (6.49) and (6.50) are

M(ω, tm) =
m∑
l=1

q(tm − tl)h TELS(tl)e
(−iωtl)∆t, m ∈ [1 . . .M ], (6.51)

M(ω, tm) =

m∑
l=1

A(ω, tm − tl)h TELS(tl)e
(−iωtl)∆t, m ∈ [1 . . .M ]. (6.52)

Once the EFRF is available, linear random vibration analysis is employed.
The proposed method is clearly an approximation, since it decouples the transient nature of

the input excitation represented by the modulating functions q(t) or A(ω, t) from the frequency
characteristics of the equivalent linear system lumped in hTELS(t). This implies superposition and
we know that for nonlinear systems this is not valid. The purpose of this chapter is to demonstrate
that the series of TELSs can be approximated by a time-variant linear system, for which the concept
of superposition holds.
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Time variant design point

Once the ETELS is computed according to (6.51) or (6.52), all the needed information to compute
design points and reliability indices as functions of time are available. For a selected time tm, we
compute the gradient of the ETELS, aETELS(tm), by using (6.34)-(6.35) or (6.45)-(6.46). This is
then used in (2.15) to compute the design point u∗ETELS(tm) and in (2.16) to compute the corre-
sponding reliability index βTELS(tm). Since these expressions are easy to compute, the complete set
of uETELS(tm) and βETELS(tm) for m ∈ [1 . . .M ] are readily available for the computational cost
of only one TELM analysis. This is the major advantage of ETELM analysis: its computational
efficiency compared to repeated TELM analyses for a series of points in time. Moreover, knowing
the design points at all times completely defines the probabilistic structure of the Gaussian response
of the equivalent linear system for the selected threshold, including the autocorrelation structure.

One important difference between TELM and ETELM is that, while the former is a completely
non-parametric method, the form of the input process parameterizes ETELM. More specifically,
the ETELS is split in two parts: a parametric part defined by the EPSD and a nonparametric part
defined by the TELS. The combination of the two is given by superposition via (6.51) or (6.52).

Once the design points are given at discrete points in time, we can apply linear random vibration
analysis to the series of TELSs for each instant of time. The most important response statistic of
interest in transient problems is the first-passage probability, for which an exact analytical solution
does not exist even for the linear systems. An efficient importance sampling method has been
proposed by Au and Beck [4] to solve this problem for linear systems. The algorithm requires
knowledge of the design points as a function of time. This formulation is indeed appealing for the
present study, since the required information is readily available.

Summary of the ETELM analysis

The following steps summarize the key points of the ETELM;

1. Select the desired threshold and formulate the limit-state function.

2. Perform TELM analysis for the colored or white-noise excitation according to the type of
the modulating function, (6.2) or (6.3), and the nature of the excitation.

3. Determine the EFRF by solving (6.51) or (6.52).

4. Determine the gradient vector function aTELS(tm) form ∈ [1 . . .M ] by use of (6.34)-(6.35)
or (6.45)-(6.46).

5. Given u∗(tm) and β(tm) apply the Au-Beck algorithm to obtain the first-passage proba-
bility, as described in the following section.
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6.3 The Au-Beck algorithm in the ETELM context

An analytical solution to solve the first-passage probability does not exist even in the linear cases.
Different authors, departing from the earlier works of Rice [86] have proposed approximate analytical
solutions based on out-crossing theory. In this dissertation, so far we have used the approach
proposed by Vanmarcke [106] for stationary processes. A classical alternative to analytical solutions
is given by simulation methods. For highly reliable structures the classical Monte Carlo simulation
method becomes infeasible. For this reason, Au and Beck [4] proposed an importance sampling
method that is suitable for this class of problems, even for small probabilities. The algorithm is
designed for linear dynamical systems subjected to stationary or non-stationary Gaussian colored
noise excitations. This section reviews and adapts this algorithm for TELM analysis of nonlinear
system response under non-stationary excitations.

The first-passage failure event of interest, denoted with F , can be written in a discrete form as

F =

M⋃
m=1

{|X(tm)| > x} =

M⋃
m=1

Fm, (6.53)

where Fm is the point-in-time failure event defined as

Fm = {|X(tm)| > x} = {u : |a(tm)u| > x}. (6.54)

Since the problem is perfectly symmetric and the up-crossing, F+
m = {X(tm) > x}, and down-

crossing, F−m = {X(tm) < x}, events are mutually exclusive, we can write

P (Fm) = P (F+
m) + P (F−m) = 2P (F+

m). (6.55)

We have seen that the point-in-time probability of failure for a linear system is given by

P (F+
m) = Φ[−||u∗(tm)||] = Φ[−β(tm)]. (6.56)

In the case of a nonlinear system, (6.56) is the probability of failure of the TELS defined at the
specific point in time tm and it represents the first-order approximation of the tail probability of
the nonlinear system. The reader should be aware that both u∗(x, tm) and β(x, tm) depend on the
threshold x. However, in this chapter we consider this dependence implicit and, for the sake of
simplicity of the notation, do not explicitly show the dependence on x.

The conditional PDF of a random vector u given that it belongs to a point-in-time failure region
Fm is given by

f(u|Fm) =
φ(u)ΠFm(u)

P (Fm)
=
φ(u)ΠFm(u)

2Φ[−β(tm)]
, (6.57)

where φ(·) is the standard multi-normal PDF and ΠFk(·) is the indicator function such that
ΠFm(u) = 1 if u ∈ Fm and ΠFm(u) = 0 otherwise. The importance sampling density (ISD)
proposed by Au and Beck is a weighted sum of the point-in-time conditional PDFs, i.e.,

f(u) =

M∑
m=1

πmf(u|Fm) =

M∑
m=1

πm
φ(u)ΠFm(u)

P (Fm)
, (6.58)
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where

M∑
m=1

πm = 1 and πm ≥ 0. (6.59)

The weights πm reflect the relative importances of the point-in-time failure events to the final
probability of failure, and they are simply chosen as

πk =
P (Fm)∑M
m=1 P (Fm)

=
P (Fm)

P̃ (F )
, (6.60)

where

P̃ (F ) =

M∑
m=1

P (Fm) = 2

M∑
m=1

Φ[−β(tm)] (6.61)

is an upper bound of the true probability of failure P (F ). Introducing the definition (6.60), the ISD
(6.58) is rewritten as

f(u) =
φ(u)

P̃ (F )

M∑
m=1

ΠFm(u). (6.62)

Using (6.62), the first-passage probability is calculated as

P (F ) =

∫
ΠF (u)φ(u)

f(u)
f(u)du = E

[
ΠF (u)φ(u)

f(u)

]
. (6.63)

Substituting (6.62) we obtain

P (F ) = P̃ (F )× E

[
ΠF (u)∑M

m=1 ΠFm(u)

]
= P̃ (F )× E

[
1∑M

m=1 ΠFm(u)

]
. (6.64)

Thus, P (F ) is estimated as:

P (F ) ≈ P̂ (F ) =
1

N̄
P̃ (F )×

N̄∑
n̄=1

r(un̄), (6.65)

where

r(un̄) =
1∑M

m=1 ΠFm(un̄)
, (6.66)

and N̄ is the number of sample points. The coefficient of variation, c.o.v., of the estimator P̂ (F ) is
defined as

δ =

√
Var[r(un̄)]

N̄

1

P (F )
, (6.67)
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and can be estimated as

δ ≈ δ̂ =

√
V̂ar[r(un̄)]

N̄

1

P̂ (F )
, (6.68)

where V̂ar[·] is the sample variance. In (6.64) and (6.66), ΠF (u) = 1 since the samples un̄, drawn
from the ISD (6.62), are guaranteed to belong to the failure domain. In the context of ETELM, these
samples lie on the failure domain induced by the TELS, which is the first-order approximation of the
nonlinear system, but they may or may not belong to the true failure domain. Thus the ETELM-
Au-Beck algorithm uses an approximation of the true failure frontier and its accuracy depends on
the degree of nonlinearity of the system.

The following procedure is suggested to sample from (6.62). Considering that the failure bound-
ary ∂F+ of a linear system or of the TELS is an hyperplane, the conditional vector u+(tm) dis-
tributed accordingly to (2.15) can be written as a sum of a parallel and perpendicular component
to the design point, i.e.,

u+(tm) = αe∗(tm) + u⊥(tm), (6.69)

where u⊥(tm) is the perpendicular component,

e∗(tm) = u∗(tm)/β(tm), (6.70)

and α is a standard normal random variable conditioned on α > β(tm), i.e.,

f(α) = φ(α)U(α− β(tm))/Φ[−β(tm)], (6.71)

where U(·) is the unit step function. It is easy to see that the the vector u⊥(tm) can be written as

u⊥(tm) = u− 〈u, e∗(tm)〉 e∗(tm), (6.72)

and by using this expression (6.69) can be rewritten as

u+(tm) = u+ (α− 〈u, e∗(tm)〉)e∗(tm); (6.73)

by the same procedure we can sample u−(tm) as

u−(tm) = −u− (α− 〈u, e∗(tm)〉)e∗(tm). (6.74)

ETELM/Au-Beck algorithm, summary

The following steps summarize the key points of the Au-Beck algorithm applied to ETELM analysis.
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1. Perform ETELM analysis according to summary (6.2). The gradient vectors a(tm), the
design points u(tm) and the reliability indexes β(tm) of the ETELS are available after
the analysis.

2. Compute the point in time probability by (6.55) and (6.56), the upper bound P̃ (F )
according to (6.61), and the weights πm according to (6.60).

3. Sample N̄ i.i.d. un̄ generated from the ISD (6.62). To simulate samples from (6.62):

a) Draw an index m from the set [1 . . .M ] with probabilities πm.

b) Simulate u as a standard normal vector with independent components.

c) Simulate α from (6.71) by drawing a uniform random variable, U1, on [0, 1] and
computing:

α = Φ−1[U1 + (1− U1)Φ[β(tm)]]. (6.75)

d) Simulate un̄ drawing a uniform random variable, U2, on [0, 1] and computing:

un̄ =

{
u+ (α− 〈u, e∗(tm)〉)e∗(tm) for U2 ≤ 0.5

−u− (α− 〈u, e∗(tm)〉)e∗(tm) otherwise
(6.76)

where is e∗(tm) is defined according to (6.70).

4. Estimate P (F ) by computing P̂ (F ) according to (6.65), and the c.o.v. of the estimator
by (6.68).

6.4 Example I, separable modulating function

As a first example, we consider a single-degree-of-freedom (SDOF) oscillator described by the non-
degrading hysteretic Bouc-Wen material model [8, 14, 109]. The responses of the oscillator to three
input excitations are considered: a time-modulated white-noise excitation (Excitation I), a time-
modulated broad band excitation (Excitation II), and a time-modulated narrow band excitation
(Excitation III). The following subsections describe the input excitations, the physical model, the
results of ETELM analyses, and finally the first-passage probability computed by ETELM-Au-Beck
algorithm.
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The input excitation

Three different excitations are used to investigate the accuracy of the ETELM analysis. For all
three excitations the time-modulating function is defined as

q(t) =

√√√√1 + sin
[
π
(
t
tx
− 1

2

)]
2

. (6.77)

This function has only one parameter, the peak time tx, at which the function has value 1. In
this way we can directly control the variance of the process at the peak of the time-modulating
function. Figure 6.1 shows the modulating function (6.77) while Figure 6.2 shows the EPSD of the
time-modulated white noise.

The frequency-modulating function is selected as the square root of the Kanai-Tajimi PSD,
which is widely used in earthquake engineering and here rewritten for convenience as

Φ(ω)2 =
ω4
f + 4ζ2

fω
2
fω

2

(ω2
f − ω2)2 + 4ζ2

fω
2
fω

2
, (6.78)

where ωf and ζf are parameters, the first controlling the central frequency and the second controlling
the bandwidth of the process. The full modulating function is obtained by (6.3). Two sets of
parameter values for the above model are selected to study the effect of the frequency content on
ETELM analysis. The first set describes a broad-band process, the second set describes a relatively
narrow-band process. Figures 6.3 and 6.4 respectively show the EPSDs for the time-modulated
broad- band and narrow-band excitations. The three excitations are tuned so that they have the
same value of the EPSD at the natural frequency of the oscillator for small-amplitude vibrations,
ω0, at time tx, i.e. SIFE(ωo, tx) = SIIFE(ωo, tx) = SIIIFE(ωo, tx). This allows a better understanding of
the effect of the frequency content on the ETELM analysis. The processes, naturally, have different
variances. Table 6.1 summarizes the input parameters.

The physical model

The considered hysteretic oscillator is defined by the differential equation:

mẌ + cẊ + k[αX(t) + (1− α)Z(t)] = −mÜG(t), (6.79)

Table 6.1: Excitation Properties

input S0[m
2

s3 ] SFE(ω0) tx[s] ωf [Hz] ζf σFE(tx)[g]

I 1.00 1.00 10.00 0.457

II 0.733 1.00 10.00 1.00 0.8 0.217

III 0.141 1.00 10.00 1.00 0.2 0.113
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where the stochastic base input ÜG(t) has the EPSD defined in the previous subsection. The mass,
m, and stiffness, k, are selected to produce ω0/2π = 1[Hz] as the natural frequency of the linear
(α = 1) oscillator and the damping, c, is set to match a viscous damping ratio of 5%. The term α
controls the degree of hysteresis and Z(t) follows the Bouc-Wen hysteresis law, here rewritten for
convenience

Ż(t) = −γ|Ẋ(t)||Z(t)|(n−1)Z(t)− η|Z(t)|nẊ(t) +AẊ(t). (6.80)

The parameters γ and η are given in terms of the mean-square response of the linear oscillator
(α = 1) under white-noise excitation, σ̄2 = πS0m

2/(ck). All system parameters are given in Table
6.2. The parameters are calibrated to have a softening system.

The ETELM analysis

As in the original TELM analysis, ETELM requires the definition of a threshold x. Here, we select
x = 3σ0, which is proven to be in the inelastic branch of the system. Figure 6.5 shows the hysteresis
loop for the broad-and narrow-band excitation.

To test the ETELM, we compare the continuous trace of the reliability index βETELS(t) obtained
by the proposed method with reliability indices βTELS(ti) computed at four instants of time with
the original TELM analysis. Moreover, following the same logic, we compare the EFRF of the
ETELS obtained by the proposed approximate method with the FRFs of TELSs obtained from the
original TELM at selected points in time. Table 6.3 shows the values obtained by the two analyses.
The results are satisfactory since βETELS(ti) closely agree with βTELS(ti) at all selected time points.
Moreover, the approximation is performing better around the peak of the excitation, which is the
most important part of the analysis. Figures 6.6, 6.7 and 6.8 show the functions βETELS(t) versus
the four βTELS(ti) values for the white-noise, wide- and narrow-band excitations, respectively. The
advantage of ETELM is clear from these figures, since only one optimization problem needs to be
solved to obtain a precise estimation of the complete time trajectory of β(t).

Figures 6.9, 6.10 and 6.11 compare the EFRFs obtained with the proposed method with the
FRFs of four TELSs obtained with the original TELM at the selected time points for the white-
noise, broad- and narrow-band excitations, respectively. It can be seen that the EFRFs for the
three different excitations at the four selected times are similar in shape, although different in
intensity. ETELM implicitly uses this fact by convolving the shape of the IRF of the TELS with

Table 6.2: System Properties

System T0[s] ζ[%] σ̄

1.00 5 πS0m2

ck

Bouc Wen α γ η n A

0.1 1/(2σ̄) 1/(2σ̄) 3 1
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the modulating function. Comparing the EFRFs with the FRFs obtained by TELM analysis at the
selected points, we find that the approximation is precise at the peak of the excitation, while it
degrades (but remains acceptable) for times distant from the peak. The reader may also note that
the reliability of the oscillator for the first two excitations is similar, while the input excitations have
different variances. This is a consequence of the frequency contents of the EFRFs, which mainly
involve low frequencies due to the softening of the system. High frequencies do not play a major role
in this problem and that is the reason why a lower energy input such as excitation II, leads to similar
reliability indices and similar EFRFs. This corroborates the idea of white-noise approximation for
broad band processes. For excitation III, the reliability of the oscillator is significantly higher since
most of energy is concentrated in the central frequency, which leads (due to the nature of the used
normalization) to a significantly lower value of the variance of the excitation and significantly lower
values of spectral components in the low frequency range. The shape of the EFRF for narrow-band
process, Figure 6.11, shows that the white-noise approximation is inapplicable since ETELS strongly
depends from the frequency content of the excitation. Finally the ETELM-Au-Beck algorithm is
applied to the three systems for a duration of 15[s]. Table 6.4 reports the results compared to
results obtained from a crude MCS analysis. Figures 6.12, 6.13 and 6.14 report the convergence
to the target probability of failure as a function of the number of sample size. The discrepancy
between MCS and ETELM-Au-Beck algorithm is due to the approximation involved in using the
union of ETELSs as surrogate of the failure domain. We note that ETELM produces results that
have order-of-magnitude accuracy, with somewhat better results for the white-noise and broad-band
excitations. This level of accuracy is sufficient in many engineering applications.

Table 6.3: ETELM output

Input β(4) β(6) β(8)

ETELS TELS ETELS TELS ETELS TELS

I 6.030 6.095 4.149 4.160 3.410 3.411

II 6.227 6.278 4.290 4.302 3.530 3.534

III 9.215 9.175 6.355 6.360 5.251 5.250

Input β(10) β(12)

ETELS TELS ETELS TELS

I 3.154 3.154 3.225 3.218

II 3.269 3.269 3.346 3.351

III 4.880 4.880 5.015 5.016
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6.5 Example II, non-separable modulating function

In this second example, we report an excitation of the type (6.2) which is used in [20, 28, 84, 85] to
simulate earthquake ground motions. We analyze two excitations: a fully non-stationary broad-band
excitation and a fully non-stationary narrow-band excitation. Both are completely non-stationary
models since the frequency modulating filter has time varying parameters. In particular, the EPSD
of these models is written as

A(ω, t) = Φ(ω|θ(t))q(t), (6.81)

where Φ(ω|θ(t)) is a frequency modulated filter with time varying parameters, e.g.,

Φ(ω|θ(t))2 =
ωf (t)4 + 4ζf (t)2ωf (t)2ω2

(ωf (t)2 − ω2)2 + 4ζf (t)2ωf (t)2ω2
, (6.82)

where θ(t) = [ωf (t), ζf (t)] is a set of time varying parameters. Following the work of [84, 85], these
parameters are chosen as

ωf (t) = ωmid + ω′(t− tmid), (6.83)

where ωmid is the filter frequency at time tmid and ω′ is the rate of change of the filter frequency.
We select tmid = tmax, where tmax is the time at which the time-modulating function q(t) takes its
maximum. The bandwidth parameter is chosen as a constant

ζf (t) = ζ̄. (6.84)

Table 6.5 reports values of the parameters for the two excitations. For the fully non-stationary
broad-band excitation, the white-noise approximation is applied, as illustrated in Section 6.2. For
the fully non-stationary narrow-band process, since the previous approximation is inaccurate, we
apply the following procedure: We compute the IRF of the TELS at the time of the peak of the
modulating function q(t), i.e., at tmax; then, using this IRF in (6.51), we compute the EFRF.
In this linearization, the frequency content of the ETELS is time invariant and is fixed by the
linearization at the peak of the excitation. It follows that the method can be applied only to
an excitation process that has a “slowly varying” frequency content. Figures 6.15 and 6.16 show

Table 6.4: Estimates of first-passage probability by ETELM and MCS

Input x P̂ (F ) PMC(F ) δ̂ [%] δMC [%] N̄ N̄MC

I 3σ0 2.459E-03 2.250E-03 4.32 6.66 500 105

II 3σ0 1.685E-03 2.010E-03 4.12 7.04 500 105

III 3σ0 1.776E-05 2.300E-05 3.98 20.85 500 106
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the trajectory of the design point excitations for the fully non-stationary broad- and narrow-band
excitations, respectively. As can be observed, both provide a fairly good level of “engineering”
approximation, although for the fully non-stationary narrow-band excitation the proposed ETELM
tends to overestimate the probability of failure. Figures 6.19 and 6.20 compare the EFRFs obtained
with the proposed method with the FRFs of four TELSs obtained with the original TELM at the
selected time points for the fully non-stationary broad- and narrow-band excitations, respectively.
The comparison shows that the EFRFs at the selected times closely approximate the corresponding
FRFs. Finally the ETELM-Au-Beck algorithm is applied to the two systems for a duration of 15[s].
Table 6.7 reports the results compared to results obtained from a crude MCS analysis. Figures 6.21
and 6.22 report the convergence to the target probability of failure as a function of the number
of sample size. As we have seen before, ETELM produces results that have order-of-magnitude
accuracy, which is sufficient in many engineering applications.

Table 6.5: Excitation Properties fully non-stationary excitation

Input S0(tx)[m
2

s3 ] SFE(ω0, tx) tx[s] ωmid[Hz] ω′[Hzs ] ζ̄ σFE(tx)[g]

IV0.733 1.00 10.00 1.00 -0.06 0.8 0.217

V 0.590 1.00 10.00 1.00 -0.06 0.2 0.113

Table 6.6: ETELM output fully non-stationary excitation

Input β(4) β(6) β(8)

ETELS TELS ETELS TELS ETELS TELS

IV 6.183 6.273 4.249 4.278 3.499 3.513

V 10.192 10.902 6.900 7.146 5.507 5.584

Input β(10) β(12)

ETELS TELS ETELS TELS

IV 3.256 3.256 3.387 3.367

V 4.945 4.945 5.061 4.969
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6.6 Conclusion

This chapter investigates an alternative method for studying nonlinear random vibration for non-
stationary excitations and highly reliable systems. The input excitation is described as an evolution-
ary process according to Priestley’s definition [82]. The approach used is in the family of linearization
methods and since small values of probability are of interest TELM is used as a framework. An
evolutionary TELM, named ETELM, is proposed to efficiently solve this class of problems. The
key aspect of ETELM versus the normal TELM analysis is that only one optimization problem is
solved, significantly reducing the computational cost. The method has been tested for five types of
excitations: a time modulated band-limited white noise, two Kanai-Tajimi EPSDs representing a
broad-band and a narrow-band process and two Kanai-Tajimi EPSDs with time varying parameters
representing fully non-stationary broad-band and narrow-band excitation. The results are encour-
aging and they show that ETELM analysis can be employed instead of a series of TELMs without
losing a significant degree of accuracy. In general, ETELM shares the shortcomings of the original
TELM. In particular, because ETELM is based on FORM, there is no measure of the error due to
the first-order approximation and thus the accuracy cannot be estimated in advance.

Table 6.7: Estimates of first-passage probability by ETELM and MCS fully non-stationary exci-
tation

Input x P̂ (F ) PMC(F ) δ̂ [%] δMC [%] N̄ N̄MC

IV 3σ0 1.599E-03 1.980E-03 4.01 7.10 500 105

V 3σ0 2.779E-05 1.600E-05 3.81 25.00 500 105

Figure 6.1: Time modulating function q(t)
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Figure 6.2: EPSD of modulated white noise excitation (excitation I)

Figure 6.3: EPSD modulated broad-band excitation (excitation II)
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Figure 6.4: EPSD modulated narrow-band excitation (excitation III)

Figure 6.5: Hysteresis loop, for modulated broad-a) and narrow-b) band excitation
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Figure 6.6: Reliability index for response to modulated white-noise (excitation I)

Figure 6.7: Reliability index for response to modulated broad-band excitation (excitation II)
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Figure 6.8: Reliability index for response to modulated narrow-band excitation (excitation III)

Figure 6.9: EFRF for response to modulated white-noise (excitation I), the grey line corresponds
to the linear case
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Figure 6.10: EFRF modulated broad-band excitation (excitation II), the grey line correspond to
the linear case

Figure 6.11: EFRF modulated narrow-band excitation (excitation II), the grey line correspond to
the linear case
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Figure 6.12: Convergence of P̂ (F ) for the case with modulated white-noise excitation (excitation
I)

Figure 6.13: Convergence of P̂ (F ) for the case with modulated broad-band excitation (excitation
II)
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Figure 6.14: Convergence of P̂ (F ) for the case with modulated narrow-band excitation (excitation
III)
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Figure 6.15: EPSD fully non stationary broad-band excitation (excitation IV)

Figure 6.16: EPSD fully non stationary narrow-band excitation (excitation V)
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Figure 6.17: Reliability index for response to fully non-stationary broad-band excitation (excita-
tion IV)

Figure 6.18: Reliability index for response to fully non-stationary narrow-band excitation (exci-
tation V)
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Figure 6.19: EFRF fully non-stationary broad-band excitation (excitation IV), the grey line
correspond to the linear case

Figure 6.20: EFRF fully non-stationary narrow-band excitation (excitation V), the grey line
correspond to the linear case
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Figure 6.21: Convergence of P̂ (F ) for the case with fully non-stationary broad-band excitation
(excitation IV)

Figure 6.22: Convergence of P̂ (F ) for the case with fully non-stationary narrow-band excitation
(excitation V)
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Chapter 7

Conclusion

7.1 Introduction

In this last chapter, we conclude our journey by reviewing the contribution of this research to
TELM and by consequently summarizing the past and current state-of-the-art of the method. We
then dedicate a section on discussing the shortcomings of the first-order reliability method, FORM
and thus indirectly of TELM in high dimensional spaces. The chapter ends with a description of
recommended future studies.

7.2 State of art of TELM

This dissertation finds its roots in the previous works of Fujimura and Der Kiureghian [37, 38, 55]
and Garrè and Der Kiureghian [40], which is summarized in the following subsection.

TELM: Previous research

The TELM is a novel linearization method that uses FORM to accurately estimate the tail of the
response distribution for nonlinear systems under stochastic inputs. The following points summarize
important characteristics of the method:

- The tail-equivalent linear system, TELS, is introduced and numerically identified in terms of
its IRF and/or FRF for a specific response threshold. A one-to-one relationship exists between
the design point of the tail distribution and the IRF/FRF of a linear system. In particular,
the coordinates of the design point are sufficient to determine the IRF/FRF. In the nonlinear
case, this one-to-one relationship completely characterizes the TELS when linearization is
employed at the design point of the nonlinear system. Remarkably, TELS is a nonparametric
linear system in the sense that no parameterized model needs to be defined. Even the order
of the system need not be determined.



CHAPTER 7. CONCLUSION 107

- The TELS is independent of a scaling of the excitation since the direction of the design point
or the shape of the limit-state surface is invariant of this scaling. This characteristic is central
in obtaining fragility curves and, hence, particularly useful in the context of PBEE.

- For broad-band excitations, the TELS is mildly dependent on the frequency content of the
excitation. Hence, a white-noise approximation can be used to determine the IRF/FRF. For
narrow-band excitations, this is no longer valid and the IRF/FRF must be determined for
the specific input power spectral density.

- The TELS is strongly dependent on the response threshold that defines the limit-state func-
tion. Through this dependence, TELM is able to capture the non-Gaussian tail of the response
distribution. By selecting a series of thresholds, one obtains a series of different TELSs. Statis-
tics of the response of interest are obtained by applying linear stochastic dynamic theory to
each of the identified TELSs.

Contribution of this dissertation to TELM and the current state of
the method

After the introductory Chapter 2, where the frequency-domain application of TELM, originally
proposed by Garrè and Der Kiureghian [40], has been extended to an inelastic system, the first part
of this dissertation formalizes and extends TELM analysis with different types of discretization of
the input process. Specifically, a general formulation for discrete representation of a Gaussian band-
limited, white-noise process is introduced, which employs the sum of deterministic and orthogonal
basis functions weighted by random coefficients. Representation of the band-limited white noise
is essential in TELM since it serves as a building block for describing general stationary and non-
stationary processes in frequency and time domains. It was shown that the selection of the basis
functions completely defines the two types of discretizations used in the earlier works. In particular,
a train of equally spaced time delta-Dirac functions leads to the current time-domain discretization,
while harmonic functions, i.e., sine and cosine, with equally spaced frequencies lead to the current
frequency-domain discretization. However, other types of orthogonal basis functions can be used
with advantage to represent a Gaussian band-limited white noise. In this dissertation, we used
sinc basis functions, which are at the base of the well-known sinc interpolation formula. More
specifically, the sinc interpolation formula is used to generate band-limited Gaussian white noise
by randomizing the coefficients of the series. It turns out that this representation is suitable for
reducing the total number of random variables that are necessary to describe the process, since
it decouples the computational-time discretization from the band-limit of the process. Through a
numerical example, we showed that use of the sinc basis functions leads to significant computational
savings in TELM. At the current stage, only sinc functions have been explored. Further research
may consider other basis functions.

Next, we focused on the problem of a nonlinear system subjected to multi-component excitations.
In its original version, TELM was developed for a single component of excitation. However, several
practical problems require analysis for simultaneous excitations. A good example is a 3-dimensional
structure subjected to earthquake ground motions. In this work, we tackled this class of problems
by defining an augmented standard normal space composed of all the random variables that define
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the multiple components of the excitation. We defined the limit-state function in this space and
determined the augmented design point. The linearization then takes place at the augmented
design point, which is determined by applying the iHLRF algorithm [112]. Special attention must
be paid to the computation of the augmented gradient when using this algorithm. The TELS is
identified in terms of the coordinates of the augmented design point, this leading to numerical
determination of the IRF/FRF of the response quantity of interest, at the specified threshold, with
each input component. Notably, the partition of the design point, induced by the components,
is used to identify each particular IRF or FRF. Once the TELS is defined, response statistics of
interest are determined by linear random vibration analysis by superposition of responses due to
each component of excitation. The method is numerically examined for an asymmetric structure
subjected to two statistically independent components of excitation. The example reported uses
stationary excitations, but the non-stationary case can be studied with the method proposed in the
last part of the dissertation.

In Chapter 6, we introduced a novel method to study the stochastic response of a nonlinear
system under non-stationary excitation. For non-stationary excitations, the original TELM requires
computation of TELSs for a series of points in time to study the evolution of response statistics.
This procedure turns out to be computationally burdensome. As an approximate alternative, we
proposed the evolutionary TELM, ETELM. Since TELM analysis requires the representation of
the input as a filtered Gaussian white noise process, the evolutionary process theory introduced
by Priestley [82] is of specific interest. In particular, we extended the concept of evolutionary
FRF, EFRF, to TELM analysis. We started by showing that, for a linear system, TELM correctly
represents the EFRF. Then, we use Priestley’s theory to define an evolutionary TELS, ETELS, for a
nonlinear system. This is done by first numerically determining the IRF, and then determining the
EFRF as its incomplete Fourier transformation “weighted” by the modulating function. Different
methods were proposed for obtaining the IRF, depending on the nature of the excitation. If the input
excitation is uniformly modulated, the IRF is obtained by applying the classical TELM analysis
to the underlying stationary process, and then the EFRF is obtained as discussed above. On the
other hand, if the filter has a time varying frequency content, linearization is applied at the time
of the peak variance of the excitation, and the EFRF is again obtained by the incomplete Fourier
transform.

The ETELS accurately estimates the continuous time evolution of the design point by only one
TELM analysis. This is the essence of its efficiency compared to the standard TELM analysis.
The method has been investigated for five type of excitations: (I) uniformly modulated white
noise, (II) uniformly modulated broad-band excitation, (III) uniformly modulated narrow-band
excitation, (IV) fully non-stationary broad-band excitation, and (V) fully non-stationary narrow-
band excitation. Once the ETELS is defined, linear random vibration is used to compute the design
point as a function of time.

In reliability analysis of a structure subjected to a transient stochastic excitation, the most
important statistic of interest is the first-passage probability, i.e., the probability that the response
will exceed a specified threshold during the course of the excitation. An exact solution of this
problem does not exist even for linear systems and, hence, approximate methods are used. In this
dissertation, Chapter 2 and Chapter 5 have used the approximate formula proposed by Vanmarcke
[105], which is not applicable to non-stationary excitations. For the last part of this dissertation, we
make use of a simulation method in conjunction with ETELM to solve the first-passage probability.
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An importance sampling method originally proposed by Au and Beck [4] for linear systems has
been employed for this purpose. The algorithm principally requires knowledge of the evolution
of the design point in time, which is readily given by ETELM analysis. The application to a
nonlinear system, with the five proposed excitations, shows that the Au-Beck algorithm, together
with ETELS, provides a good estimation of the first passage probability. Moreover, the methodology
has been shown to be highly efficient in comparison to the original TELM analysis for non-stationary
problems.

7.3 Limitations and shortcomings of TELM

The classical drawbacks of FORM also apply to TELM [37, 38]. In particular, there is no measure of
the error due to the linearization approximation, which means that the accuracy of TELM cannot
be estimated in advance. Moreover, TELM requires far more analysis than ELM, if one is interested
only in the first and second moments of the nonlinear response. Thus, for second-moment analysis,
ELM is the appropriate method, while TELM is the appropriate method to use for estimation of
tail probabilities.

In the past few years, several authors [53, 93, 103] have raised concerns on use of FORM in
high dimensional spaces, which also indirectly applies to TELM. In essence, the issue is related
to the significance of the design point in high dimensional spaces. The design point represents
the point in the standard normal space with the highest probability density in the failure domain.
While in small dimensions this point and its neighborhood represent also the region with the highest
contribution to the failure probability, in high dimensional spaces this is no longer the case. This
problem is known as “the curse of dimensionality” and it is due to the geometrical properties of
high-dimensional Gaussian spaces . This is elaborated on in the next subsection.

Some properties of standard normal space in high dimensions

It is well known that the square of the Euclidean norm of a vector u = [u1, . . . , uN ] in an N -
dimensional standard normal space has the chi-square distribution with N degree of freedom, i.e.,

‖u‖2 ∼ χ2
N . (7.1)

When N tends to infinity (or for engineering purpose when N is sufficiently large), the distribution
of the norm of ‖u‖, which has a χ distribution, can be approximated with a normal distribution of
mean

√
N and variance equal to 1/2 [21, 35], i.e.,

‖u‖ ∼ χN ≈ N

(√
N,

1

2

)
, for N →∞. (7.2)

Figure 7.1 shows the evolution of χN distribution as N increases. This implies that most of the
probability mass in the N -dimensional standard normal space belongs to an hyper-ring centered at
distance

√
N from the origin. We name the neighborhood of this ring as the important hyper-ring.

In particular, we can define the important hyper ring by specifying its inner and outer radiuses by
√
N − ū ≤ ‖u‖ ≤

√
N + ū, (7.3)
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where ū is a scalar that determines the quantity of probability included in the ring. As an example,
consider the problem introduced in Chapter 4, where the input excitation of the original TELM is
defined using 1000 random variables. This leads to a standard normal space of dimension N = 1000.
If we want to include, for example, 1−10−6 probability content in the important hyper-ring, we need
to select ū = 3.46. In that case, virtually all the probability is inside the region 28.2e ≤ u ≤ 34.8e,
where e is the unit normal along u. In our example, we saw that the design point was β = 3.1, while
the important hyper-ring is centered on an hyper-sphere of radius ‖u‖ = 31.6. This means that,
even though the design point has highest probability density in the failure domain, its neighborhood
is insignificant since the bulk of the probability mass is located at the important hyper-ring, which
is at distance of ‖u‖ = 31.6 from the origin. This realization has led to criticism of using the
design point as a statistical linearization point for high dimensional reliability problems. While the
significance of the design point can be questioned in statistical terms, the point still preserves all
the physical properties described in this dissertation. In particular, it remains as the realization
point with the highest probability density function.

It is clear that in high dimensions, most of the failure probability is located in the intersection
domain of the important hyper-ring and the failure domain, which depends on the shape of the
limit-state surface. Of course the accuracy of FORM depends on the shape of limit-state surface,
which inherently depends on the physics of the problem. In particular, the error in TELM in high
dimensions is given by the volume of the segment of the important hyper-ring that is between the
limit-state surface and the hyperplane at the design point that defines the TELS. Here, we denote
this segment of the hyper-ring as the “volume error”. Figure 7.2 shows schematically the concept of
“volume error”.

FORM accuracy vs shape of the limit state surface

While for a linear case the limit-state surface is a hyperplane and the design point preserves its
significance, the nature of the nonlinear system strongly influences the shape of the limit-state
surface. In particular, it has been shown [53, 56] that for stiffening systems the limit-state surface

Figure 7.1: χ convergence for N →∞
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becomes very irregular, often with safe and unsafe patches, and FORM cannot be applied. This is
due to the fact that the high-frequency content in the response process becomes progressively more
important as we advance to the nonlinear range.

On the other hand, we have seen that softening systems involve progressively lower frequency
content, which leads to smooth limit state functions with saddle-shape limit-state surfaces. For this
type of systems, which are most common in civil structures, FORM has been found to be fairly
accurate [56]. Figure 7.3 illustrates limit-state surfaces for a linear, a stiffening and a softening
system.

To understand the reason why TELM performs well for softening systems, we examine the
geometry of the limit-state surface. Since the problem is defined in a high-dimensional space, we
can only plot the shape of the limit-state surface in selected planes [53]. In particular, let us define the
plane Π(e∗, e) as the subspace induced by the design point direction e∗ and a selected perpendicular
direction e. In the case of softening systems, our experience shows that the limit-state surface always
has a saddle shape, regardless of how we select the second direction (see Figure 7.4-c). For this
type of limit-state surface, the TELM works properly since the volume error on the two sides of the
surface is compensated. Figure 7.4-c illustrates this concept. For plots for different types of physical
systems, the reader should consult [53, 56]. Our interpretation of this behavior is suggested by the
physical nature of softening systems, where the contribution of high frequencies is negligible, since
the important frequency content is on the low frequency range. A problem arises with negligible
high frequency content in that the net “volume error” is approximately invariant to high frequencies.
Since it is possible to increase the high frequency content by increasing the number of random
variables, and consequently shifting away from the origin the important hyper-ring, the only way to
keep the net volume error constant is to have a saddle-shape limit-state surface. As we have seen
in Chapter 4, when we discretize a white noise on the time interval [0, t̄], the number of random
variables controls the bandwidth of the input. We have seen that by decreasing this number, and
hence by reducing the bandwidth, the design point and the approximation of the failure probability

u*

Volume error

Volume error

e1

e2

Important hyper-ring

Correct estimation

TELS

Figure 7.2: Volume error concept
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do not change. These results are confirmed by MCS. This means that, physically, high-frequency
components do not contribute to the failure of the system. A useful reliability interpretation then
emerges, which argues that the error of the linearization is independent of the increasing number of
random variables. This is because the underestimating and overestimating errors are compensating
each other, and also because the limit-state surface is flat with respect to random variables that
define high-frequency components in the excitation. It also follows that TELM must be used with
caution for problems that are not physically based, or for problems where this physical interpretation
cannot be applied. Because of the importance of the “volume error” in high dimensions, limit-state
surfaces that are concave or convex (see Figure 7.4 a and b) may lead to a strong lack of accuracy of
FORM [93]. Nevertheless, the direction of the design point in high dimensional spaces still preserves
a high significance since it indicates the direction of the failure domain.

An ongoing work attempts at introducing a new concept of linearization based on a secant plane,
which can be applied to more general limit-state surfaces. A recent works by Alibrandi et al. [1,
69] applies a correction to the original FORM, also employing a secant plane.

In conclusion, TELM is an efficient method that accurately estimates the tail distribution of
responses of nonlinear systems, in particular for softening systems. In these cases, TELM is far
more accurate than ELM in estimating the tail of the response distribution [37, 38], since it can
capture the non-Gaussian nature of the distribution. It is also computationally more efficient than
ELM when fragility curves are of interest, and it is generally much more efficient than the classical
MCS method. However, TELM must be used with caution and with good understanding of the
physical behavior of the system. In particular, further research needs to be conducted in studying
the general reliability problem when system uncertainties are also included in the analysis as random
variables. The influence of these random variables on the shape of the limit-state surface, and thus
on the accuracy of TELM needs further investigation.

e*

e

e*

e

e*

e

u* u* u*

Important hyper-ring

TELS TELS
TELS

a) Linear system b) Stiffening  system c) Softening  system

Figure 7.3: Limit state functions for different physical systems. a) FORM correct solution, b)
FORM not applicable, c) FORM accurate solution
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7.4 Further studies

Although TELM is approaching maturity, some open issues remain unsolved and require further
analysis and development:

- For discrete representation of the input process(es), forms of basis functions other than sinc
functions can be explored. Particularly appealing are Lagrange polynomials and spline ba-
sis functions. More generally, it is worth exploring the possibility of using wavelet theory,
especially for non-stationary excitations. The path is drawn by the first part of this work.
Starting from basic wavelet expansions, it is eventually possible to build a band-limit white
noise by randomizing the coefficient of the series. From there, the theory of TELM can be
applied as was done in Chapter 4.

- TELM has been successfully extended for analysis of nonlinear response to multiple compo-
nents of statistically independent Gaussian excitations. The issue of correlated excitations
remains open. In general, the independence assumption between different components of
ground motion at a given site is not restrictive because uncorrelated principal components
can be determined by a rotational transformation. But there are many applications that this
assumption can be restrictive. One example in earthquake engineering is the response of a
multiply-supported structure to partially coherent support motions. Other examples include
wave or wind loading at different locations of a large structure. Additional development is
needed to extend TELM to these classes of problems.

- The non-stationary case has been solved with good accuracy and computational efficiency;
however, the problem of degrading systems still remains open. Responses of degrading systems
are inherently non-stationary, even when the input excitation is stationary. Whether TELM
or ETELM are applicable to these systems is not clear at the present time.

e*

e

e*

e

e*

e

u* u* u*

b) Concave limit state surface c) Saddle limit state surface

overestimation

overestimation

underestimation overestimation

b) Convex limit state surface

underestimation underestimation

Figure 7.4: Limit state functions shapes a) FORM overestimates the response, b) FORM under-
estimates the response, c) FORM, the overestimation and underestimation error compensate
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- This study considered the application of TELM to deterministic systems subjected to stochas-
tic excitations. Earlier works by Koo et al. [57] investigated an application of FORM including
system uncertainties and stochastic inputs. The coordinates of the design point obtained in
the extended FORM, in theory, completely define the TELS. Statistics obtained with this
TELS include also the effect of system uncertainties. Nevertheless, further investigation is
necessary to understand the effect of these uncertainties on the shape of the limit-state surface.
As we have seen in the preceding section, the shape of the limit-state surface can strongly
influence the accuracy of FORM and thus of TELM analysis.

- The TELS is invariant of the scale of the excitation, and this property is used to efficiently
derive fragility curves, as demonstrated in Chapter 2 and Chapter 5. However, further research
is needed to establish to determine the ranges of validity of this approximation. In fact,
our experience shows that for particular combinations of input intensities and parameters of
the nonlinear model, this approximation may not provide sufficient accuracy. An ongoing
investigation is attempting to shed further light on this problem.

- There is need for further investigation to address problems related to the FORM and TELM
approximations in high dimensions, as described in the preceding section. In particular, an
approximation that takes advantage of the knowledge of the important hyper-ring should be
sought. Further effort along this line is currently underway.
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