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cell type deconvolution methods for plasma 
cell-free DNA
Tongyue Sun1†, Jinqi Yuan1†, Yacheng Zhu1, Jingqi Li1, Shen Yang1, Junpeng Zhou1, Xinzhou Ge2, Susu Qu3, 
Wei Li4*, Jingyi Jessica Li5,6,7,8,9* and Yumei Li1* 

Abstract 

Background: Plasma cell-free DNA (cfDNA) is derived from cellular death in vari-
ous tissues. Investigating the tissue origin of cfDNA through cell type deconvolution, 
we can detect changes in tissue homeostasis that occur during disease progression 
or in response to treatment. Consequently, cfDNA has emerged as a valuable nonin-
vasive biomarker for disease detection and treatment monitoring. Although there are 
many methylation-based methods for cfDNA cell type deconvolution, a comprehen-
sive and systematic evaluation of these methods has yet to be conducted.

Results: In this study, we benchmark five methods: MethAtlas, cfNOMe toolkit, CelFiE, 
CelFEER, and UXM. Utilizing deep whole-genome bisulfite sequencing data from 35 
human cell types, we generate in silico cfDNA samples with ground truth cell type pro-
portions to assess the deconvolution performance of the five methods under multiple 
scenarios. Our findings indicate that multiple factors, including reference marker selec-
tion, sequencing depth, and reference atlas completeness, jointly influence the decon-
volution performance. Notably, an incomplete reference with missing markers or cell 
types leads to suboptimal results. We observe performance differences among meth-
ods under varying conditions, underscoring the importance of tailoring cfDNA decon-
volution analyses. To increase the clinical relevance of our findings, we further evaluate 
each method’s performance in potential clinical applications using real-world datasets.

Conclusions: Based on the benchmark results, we propose general guidelines 
to choose the suitable methods based on sequencing depth of the cfDNA data 
and completeness of the reference atlas to maximize the performance of methylation-
based cfDNA cell type deconvolution.
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Background
Plasma cell-free DNA (cfDNA) predominantly consists of double-stranded DNA frag-
ments released by dying cells from various tissues [1–3]. In healthy individuals, plasma 
cfDNA is primarily derived from apoptosis of normal hematopoietic cells, with mini-
mal contributions from other cell types [4–6]. However, the progression and treatment 
of numerous diseases, including cancers [7–9], can impact the cell-type-derived cfDNA 
proportions. Consequently, an abnormal proportion distribution can indicate altered 
tissue homeostasis resulted from disease progression or treatment. As a result, cfDNA 
has emerged as a valuable noninvasive biomarker for disease detection and treatment 
monitoring [10–12]. Elucidating the cell-type-derived cfDNA proportions in patients 
will contribute to the discovery of noninvasive biomarkers and enhance our understand-
ing of disease development. Cell type deconvolution is the analysis that estimates the 
proportions of cell types presenting in cfDNA.

While each cell possesses nearly identical DNA sequence, DNA methylation signa-
tures exhibit cell type specificity, providing a means to trace back to the cell type origin 
of cfDNA [6, 13, 14]. The most prevalent form of DNA methylation is 5-methylcytosine 
(5mC), which predominantly occurs at CpG sites in humans [15–17]. Due to its high 
base resolution, whole-genome bisulfite sequencing (WGBS) has become the standard 
method for capturing genome-wide DNA methylation profiles. Several studies have 
introduced methylation-based deconvolution methods to estimate the proportions of 
cell types in cfDNA [5, 6, 18–20]. MethAtlas [5] utilizes methylation ratio of a CpG site 
as the methylation metric for deconvolution, initially developed for array methylomes 
but adapted for methylation sequencing data analysis [21–23]. It models the plasma 
cfDNA methylation ratio profile as a linear combination of the methylation ratio profiles 
of cell types in a reference atlas. Subsequently, the relative contribution of each cell type 
to cfDNA is determined using the non-negative least squares (NNLS) linear regression. 
cfNOMe toolkit [19] follows a similar approach to MethAtlas but utilizes linear least 
squares linear regression to estimate each cell type’s relative contribution. CelFiE [18] 
utilizes the number of methylated and all reads at CpG sites as input for deconvolution. 
Then, it uses an expectation–maximization (EM) algorithm to estimate the parameters 
of a Bayesian mixture model including the cell type proportions. The method CelFiE is 
notably for being able to estimate the contributions from multiple unknown cell types 
not available in the reference atlas. CelFEER [20], a method adapted from CelFiE, uses 
essentially the same model as CelFiE but with read averages (the ratio of methylated CpG 
sites to the total number of CpG sites on a read) as input. UXM [6] is a fragment-level 
deconvolution method using the percentage of unmethylated fragments in a genomic 
region as the methylation metric. Unmethylated fragments are defined as fragments in 
which no more than 25% of CpGs as methylated. Then, NNLS is applied to infer the rela-
tive contribution of each cell type to cfDNA.

Nevertheless, a comprehensive assessment of the performance of these methods has 
not yet been conducted. Although a preprint manuscript assessed the performance of 
two reference-based deconvolution methods, MethAtlas and cfDNAme, it utilized arti-
ficial DNA mixtures consisting of only two cell types [23], and its method coverage was 
incomplete: methods, such as CelFiE and CelFEER et al., were not included in the assess-
ment, and cfDNAme method was not a standalone program for cfDNA deconvolution 
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[24]. Furthermore, it focused on optimizing the number of reference markers and 
sequencing depths for deconvolution. Additionally, each method necessitates specific 
preprocessing procedures and relies on distinct reference methylation atlases. The 
potential impact of these procedures on deconvolution results remains unknown. To 
bridge this knowledge gap, we conducted a thorough comparison and evaluation of 
the above five peer-reviewed methylation-based cfDNA cell type deconvolution meth-
ods with publicly available and executable standalone programs, namely MethAtlas, 
cfNOMe (referred to as an abbreviation for cfNOMe toolkit in this study), CelFiE, Cel-
FEER, and UXM (Fig. 1 and Additional file 1: Table S1). Our evaluation includes their 
performance in terms of reference marker selection and deconvolution accuracy under 
various scenarios, utilizing in silico mixtures of cell types’ WGBS data with ground 
truth cell type proportions. To enhance the relevance of our findings for clinical applica-
tions, we also included two real-world datasets from diseased patients [25, 26], provid-
ing direct evidence of the methods’ effectiveness in actual clinical settings. Based on the 
evaluation results, we summarize the strengths and weaknesses of the five methods, pro-
viding general guidelines for users to choose the suitable method based on the sequenc-
ing depth of their cfDNA data and the completeness of the reference atlas.

Results
Benchmark study design

Our benchmark study utilized a recently published DNA methylation atlas of normal 
human cell types generated by deep WGBS [6]. As shown in Fig. 1, from this atlas, we 
selected 35 cell types, totaling 182 samples, each with at least two biological replicates. 
To ensure independent reference and testing datasets, we randomly divided all sam-
ples into two halves: one for generating the reference methylation atlas and the other 
for creating in silico cfDNA samples. The reference methylation atlas was generated fol-
lowing the procedures specified by each deconvolution method. To assess the impact 
of cell type proportion distribution, we created three in silico cfDNA datasets (n = 100 
in silico cfDNA samples in each dataset) using the WGBS data of 35 cell types: (1) a 
uniform distribution dataset, where the cell type proportions of each sample were first 

Fig. 1 Schematic overview of the benchmark study design. In this benchmark study, WGBS data from 182 
samples representing 35 cell types is initially randomly divided into two halves. One half is designated for 
the creation of the reference methylation atlas, while the other is utilized for generating in silico cfDNA 
samples. Ground truth cell type proportions are then generated using either a uniform distribution, Dirichlet 
distribution, or a constrained random distribution with blood cells as the primary cell types. Subsequently, 
the deconvolution performance is rigorously assessed under various influencing factors, including reference 
marker selection, sequencing depth, and reference completeness. Five evaluation metrics, root-mean-square 
error (RMSE), Pearson’s correlation coefficient, Spearman’s rank correlation, Lin’s concordance correlation 
coefficient (CCC), and Jensen–Shannon divergence (JSD), are employed to scrutinize the accuracy of 
predicted proportions ( Pp ) against ground truth proportions ( Pg ). Additionally, two real-world datasets 
including cfDNA samples from both patients and controls were included to evaluate performance on real 
clinical applications. Reference methylation atlas generated from all the 182 samples were used for the 
deconvolution of real-world datasets. Two metrics were applied to evaluate the deconvolution performance 
in these datasets: (1) the statistical difference in the cfDNA fraction of affected tissues between diseased and 
healthy individuals and (2) the ROC-AUC of machine learning models for disease detection based on the 
estimated fractions of all cell types

(See figure on next page.)
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independently sampled from the Uniform(0,1) distribution and then normalized to sum 
up to 1 (Additional file 1: Table S2 and the “Methods” section). This resulted in homoge-
neous proportion distributions allowing us to conduct unbiased performance compari-
sons among cell types. (2) A constrained random distribution dataset, where all samples 

Fig. 1 (See legend on previous page.)
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had blood cells as the major cell types to mimic the cfDNA in blood samples of healthy 
individuals (Additional file 1: Table S3). For each sample in this dataset, the cell type pro-
portions were generated in the following steps (the “Methods” section): (1) in addition to 
five immune cell types, we randomly selected another 1–10 cell types as the contributing 
cell types; (2) we generated the cell type proportions by independently sampling floating 
numbers  from a random distribution and then normalized the proportions to sum up 
to 1; (3) we randomly assigned the five largest proportion values to the five immune cell 
types and the remaining proportion values to the other cell types. (3) A Dirichlet distri-
bution dataset, where the cell type proportions of each sample were independently sam-
pled from the Dirichlet distribution to provide moderately diverse mixtures with varying 
contributions from different cell types (Additional file 1: Table S4 and Additional file 2: 
Fig. S1). With the cell type proportions determined for each sample in the three datasets, 
we generated the in silico samples by sampling sequencing fragments from each cell type 
based on the proportion. We used the cell type proportions in these in silico cfDNA 
samples as the ground truths for method evaluation.

We assessed the performance of the deconvolution methods using five metrics that 
compare each method’s predicted cell type proportions with ground truth proportions 
used to generate the in silico cfDNA samples: (1) root-mean-square error (RMSE), 
which captures the absolute error between true and predicted values; (2) Pearson’s cor-
relation coefficient, which assesses overall agreement, with high sensitivity to the magni-
tude of variation; (3) Spearman’s rank correlation, a metric less sensitive to outliers and 
better suited for capturing rank-based relationships; (4) Lin’s concordance correlation 
coefficient (CCC), which balances both precision and accuracy in quantifying agreement 
between estimated and actual values; and (5) Jensen–Shannon divergence (JSD), which 
measures the similarity between predicted and actual cell type fraction distributions, 
making it especially useful for datasets with widely varying cell type proportions. These 
metrics were compiled into a composite measure, the normalized performance score, 
which integrates the min–max normalized values of all five metrics (the “Methods” sec-
tion). For researchers interested in the individual metrics, we provide detailed results 
in the supplementary data. Additionally, we comprehensively evaluated the influence 
of multiple factors on the deconvolution result, including reference marker selection, 
sequencing depth, and reference atlas completeness (Fig. 1).

Furthermore, to evaluate performance on real clinical applications, we introduced two 
real-world datasets including cfDNA samples from both patients and controls. Given the 
absence of ground truth for these real-world datasets, we leveraged established knowl-
edge from the literature to evaluate the performance of various methods (Fig. 1). One 
metric we used is the statistical difference in the cfDNA fraction derived from affected 
tissues between diseased and healthy individuals. Another metric is the area under the 
receiver operating characteristic curve (ROC-AUC), which evaluates the accuracy of 
disease detection based on the estimated fractions of all cell types from each deconvolu-
tion method.

Evaluation of deconvolution accuracy and computing resource requirements

To begin with, we assessed the overall performance of each deconvolution method using 
their default settings. For the uniform distribution and Dirichlet distribution datasets, 
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CelFEER outperformed others, achieving exceptionally low median RMSE values of 
0.0099 and 0.014 respectively, with UXM as the next best performer (Fig. 2A and Addi-
tional file 2: Fig. S2). Notably, CelFEER demonstrated lower standard deviations across 
the 100 cfDNA samples, indicating its superior stability compared to other methods 
(Additional file 1: Table S5). For the constrained random distribution dataset, UXM led 
in performance, outperforming the other four methods, with CelFEER and CelFiE fol-
lowing (Fig.  2A and Additional file  2: Fig. S2). Nevertheless, MethAtlas and cfNOMe 
consistently ranked lowest for at least one of the three datasets. These findings under-
score the influence of cfDNA sample composition on deconvolution performance.

Given that sequencing depth significantly impact the analysis cost, we next investi-
gated this by varying the sequencing depth of the samples being analyzed. We gener-
ated additional in silico cfDNA datasets with sample sequencing depths of 1, 5, 10, and 
15, alongside our existing datasets of 22 (the lowest sequencing depth among data used 
to generate the in silico samples). Results indicated diminished performance across all 
methods for low-depth samples (Fig. 2B). Notably, cfNOMe struggled at a sequencing 
depth of 1, showing the poorest performance across all datasets. While other methods 
performed relatively better than cfNOMe at this depth, they still exhibited marked per-
formance declines (Additional file 2: Fig. S3). These findings underscore the challenges 
all methods face in low-depth scenarios, particularly for samples with sequencing depths 
below 5 (Fig. 2B and Additional file 2: Fig. S3).

Turning to computing resource requirements, UXM and MethAtlas significantly out-
paced the other three methods in terms of running time for analyzing a set of 100 cfDNA 
samples (Fig. 2C). Unsurprisingly, MethAtlas, with the most straightforward optimiza-
tion problem, was the fastest, completing the analysis of 100 samples in under 30 s. Con-
versely, cfNOMe was the slowest, requiring an average of 1.4 min to analyze one sample. 
In terms of memory usage, MethAtlas had the highest memory requirements, followed 
by cfNOMe (Fig. 2D). CelFiE, on the other hand, exhibited minimal memory usage as 
low as 585 MB, making it suitable for execution on a personal computer (Fig. 2D).

Evaluation of reference marker selection across methods

Selecting reference markers for each cell type plays a pivotal role in shaping the final 
deconvolution results [27]. While all methods successfully identified markers specific to 
each cell type (Additional file 2: Fig. S4), substantial differences were observed among 
the selected markers by different methods (Fig. 3A). This discrepancy indicates that each 
method may capture distinct cell-type-specific methylation features.

To evaluate the quality of reference markers selected by each method, we first com-
pared the marker specificity (measured by both absolute and statistical differences) 
across methods (the “Methods” section). Results showed that robust marker selection 
(e.g., CelFEER and UXM), those with high specificity, directly contributes to more 
accurate cell type deconvolution (Fig. 3B, C). Additionally, we hypothesized that ideal 
reference markers should align with the reported cell-type-specific CpGs. To test this, 
we assessed reference marker selection results by comparing them with the cell-type-
specific methylation marks in the MethyMark database [28]. MethyMark integrated 
50 methylomes across 42 human tissues/cell types, 15 of which were also included 
in the reference methylation atlas of our study (Additional file 1: Table S6). For each 
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of the 15 overlapping cell types, we examined the concurrence between reference 
markers identified by each deconvolution method and cell-type-specific markers in 
MethyMark. Notably, UXM identified a higher proportion of reference markers that 
corresponded to cell-type-specific markers in MethyMark (Additional file  2: Fig. 

Fig. 2 Deconvolution results under the default setting of evaluated methods. A Boxplots showing 
normalized performance score of deconvolution results from various methods in the uniform distribution 
(upper), constrained random distribution (middle), and Dirichlet distribution (lower) datasets. B Boxplots 
showing normalized performance score of deconvolution results from various methods for samples 
in different sequencing depth in the uniform distribution (upper), constrained random distribution 
(middle), and Dirichlet distribution (lower) datasets. P-values were determined using Wilcoxon rank-sum 
test. ***P < 0.001. C Running time for each deconvolution method. D Memory requirements for each 
deconvolution method
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Fig. 3 Evaluation of reference marker selection in each deconvolution method. A Upset plots illustrate the 
intersections of selected markers from various methods. cfNOMe used the same set of reference markers 
as MethAtlas. B Markers’ specificity measured by absolute methylation level difference between the target 
cell type and all the others. Data are represented as mean ± standard deviations (SD). C Markers’ specificity 
measured by statistical difference between the target cell type and all the others. Statistical difference was 
calculated as -log10(P-value) using Student t-test. Data are represented as mean ± SD. D The variability of the 
selected markers across healthy individuals was measured by interquartile range (IQR). IQR data were sourced 
from the ImmuMethy database, focusing on four immune cell types. E The variability of the selected markers 
across diverse healthy states was measured by IQR. Data for IQR were calculated based on data extracted 
from the ImmuMethy database. F Normalized performance score across 25 combinations of marker selection 
and cell type proportion estimation modules. The median normalized performance score, calculated from 
100 in silico cfDNA samples, was represented by color and labeled accordingly. Rows represent cell type 
proportion estimation methods, and columns represent marker selection methods. P-values between 
different methods in B–E were determined using Wilcoxon rank-sum test. **P < 0.01, ***P < 0.001
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S5A), suggesting its potential preference for capturing cell type specificity in methyla-
tion levels.

Moreover, an optimal reference methylation atlas should include markers that remain 
stable across individuals and diverse conditions. Consequently, we assessed reference 
marker selection results by examining marker variability based on data in ImmuMethy 
[29], which collected DNA methylation data for immune cells in different conditions. 
Variability was quantitatively measured using the interquartile range (IQR) and stand-
ard deviations (SD). Among the four immune cell types (B cell, granulocyte, monocyte, 
and T cell) included in the reference methylation atlas of our study and also collected 
in ImmuMethy with more than three conditions, CelFEER exhibited overall lower vari-
ability across individuals in each condition, as evidenced by both IQR and SD metrics 
(Fig.  3D and Additional file  2: Figs. S5-S9). CelFEER also demonstrated overall lower 
variability across different conditions (Fig.  3E and Additional file  2: Fig. S5C). These 
lower variabilities may contribute, at least in part, to CelFEER’s superior performance 
in both uniform distribution and Dirichlet distribution datasets. However, UXM, which 
efficiently captured a significant proportion of cell-type-specific markers in MethyMark 
(Additional file 2: Fig. S5A) and demonstrated relatively superior deconvolution perfor-
mance (Fig. 2A), displayed the greatest variability across diverse conditions (Fig. 3D, E). 
In conclusion, while the variability of the reference methylation markers could influence 
the performance of deconvolution methods, it is not the sole determining factor.

Since all evaluated methods can be viewed as consisting of two modules—a marker 
selection module and a cell type proportion estimation module, we conducted a detailed 
analysis to assess the relative importance of each. For this, we fed the markers selected 
by each of the five methods into the cell type proportion estimation modules of all meth-
ods, resulting in 25 unique combinations (the “Methods” section). Interestingly, markers 
selected by CelFEER maintained relatively high performance even when cell type pro-
portion estimation was performed by other methods, such as CelFiE, MethAtlas, and 
cfNOMe (Fig. 3F and Additional file 2: Fig. S10). An expectation was UXM, which per-
formed best when its own selected markers were used for cell type proportion estimation 
(Fig. 3F and Additional file 2: Fig. S10), highlighting the importance of the compatibil-
ity between these two components for optimal performance with UXM. These results 
revealed the critical role of marker selection module: markers selected by CelFEER were 
able to compensate the lower performance of CelFiE, MethAtlas, and cfNOMe.

Impact of sequencing depth of reference data on deconvolution results

The sequencing depth filter threshold utilized during the identification of reference 
methylation markers can significantly affect the quality and total number of the final 
selected markers. Therefore, we sought to assess whether varying sequencing depth fil-
ter thresholds impacted deconvolution performance. Starting from the default sequenc-
ing depth filter threshold (15X) for most deconvolution methods, we explored different 
thresholds up to 300X. Subsequently, we ran the deconvolution methods under each 
sequencing depth threshold, using all the three datasets. Notably, UXM showed stable 
performance as the filter became more stringent, likely due to the fixed low number 
of selected markers (Fig.  4). Conversely, for the other methods, the number of mark-
ers dropped sharply when the sequencing depth thresholds exceeded 100, resulting in 
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significantly worse performance (Fig. 4). Moreover, the dramatic reduction in the feature 
selection search space resulted in only a small fraction—or none—of the original mark-
ers (at a sequencing depth threshold of 15) being retained, causing a notable decline in 
marker specificity (Additional file 2: Fig. S11). These results highlighted the critical role 
that both the quality and quantity of selected markers play in determining the accuracy 
of cell type proportion estimation.

Additionally, we assessed the impact of sequencing depth in the raw reference data 
used to generate the reference atlas on marker selection quality and, consequently, 
on deconvolution performance. We downsampled the reference data to average CpG 
site coverages of 85, 71, 57, 43, 28, 14, and 3, corresponding to 5/6, 2/3, 1/2, 1/3, 1/6, 
and 1/30 of the original coverage, respectively. Consistently, deconvolution perfor-
mance declined sharply when reference data coverage was as low as 3 (Fig. 5A–C and 
Additional file  2: Fig. S12). Most methods (e.g., CelFEER, cfNOMe, MethAtlas, and 

Fig. 4 Impact of sequencing depth filter on deconvolution results. A–C Normalized performance score 
of deconvolution results from various methods across different sequencing depth thresholds for marker 
selection in the uniform distribution (A), constrained random distribution (B), and Dirichlet distribution (C) 
datasets. The line plot depicts the number of markers selected. MethAtlas, CfNOMe, and CelFiE were unable 
to find reference markers when the sequencing depth threshold was set to 300. P-values were determined 
using Wilcoxon rank-sum test. NS, P ≥ 0.5, *P < 0.05, **P < 0.01, ***P < 0.001
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UXM) showed improved deconvolution performance with increased coverage. How-
ever, CelFiE achieved its best performance at a reference data coverage of 14. These 
differing impacts were related to variations in marker specificity (Fig. 5D).

Impact of reference atlas completeness

Ideally, a comprehensive reference atlas should encompass all informative methyla-
tion markers and include as many cell types as possible. In practical terms, how-
ever, the presence of missing reference markers or cell types is inevitable due to the 
constraints imposed by the availability of high-coverage sequencing data. Thus, we 
conducted an assessment to determine whether the completeness of the reference 
methylation atlas impacted deconvolution results.

Firstly, we ran the five deconvolution methods using reference atlases with varying 
proportions of markers (10%, 20%, 30%, 40%, and 50%) removed from the full atlas. 
This approach simulated scenarios where input information for deconvolution meth-
ods might be incomplete. Under all three datasets, UXM exhibited dramatic worsen 
performance with increasing proportions of missing markers, while CelFEER and 
CelFiE displayed moderate decreasing performance (Fig. 6A and Additional file 2: Fig. 

Fig. 5 Impact of sequencing depth in the raw reference data. A–C Normalized performance score of 
deconvolution results from various methods across different sequencing depth in raw reference data used 
to generate the reference atlas for the uniform distribution (A), constrained random distribution (B), and 
Dirichlet distribution (C) datasets. D Line and scatter plot showing the markers’ specificity measured by 
absolute methylation level difference between the target cell type and all the others. Data are represented as 
mean ± Standard Deviations (SD). P-values were determined using Wilcoxon rank-sum test. ***P < 0.001
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Fig. 6 Impact of reference marker completeness on deconvolution results. A Boxplots showing the 
normalized performance score from various deconvolution methods for the uniform distribution (left), 
constrained random distribution (middle), and Dirichlet distribution (right) datasets. Different proportions 
of markers are intentionally omitted in the reference. B–E Line and scatter plots showing the relationship 
between the impact of missing markers (orange) and the number (B), specificity (C, D), and non-redundancy 
(E) of markers (blue). Specificity was measured by absolute methylation level difference and -log10(P-value) 
from a Student t-test comparing the target cell type to all others. Non-redundancy was assessed as the 
proportion of paired markers with a Pearson correlation coefficient below 0.2. The impact of missing markers 
was quantified as the slope of normalized performance score over marker missing proportions using linear 
regression. Data are represented as mean ± SD with the Pearson correlation coefficient between the means 
of the two lines shown at the top left. F Boxplots showing the normalized performance score from various 
deconvolution methods with no, one, or two cell types intentionally missing in the reference. P-values were 
determined using Wilcoxon rank-sum test. NS, P ≥ 0.5, *P < 0.05, ***P < 0.001
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S13). In contrast, MethAtlas and cfNOMe showed consistent performance under dif-
ferent proportions of missing markers.

To further investigate what factors are associated with the impact of missing mark-
ers, we assessed three factors: the number of markers, marker specificity, and marker 
non-redundancy. We did observe a relationship between the number of markers and 
the impact of missing markers (Fig. 6B). When fewer markers are used (e.g., in UXM), 
missing markers tend to have a more significant effect on deconvolution performance, 
as each marker contributes more to the overall signal (Fig. 6B). An additional analy-
sis, which evaluated how varying the number of selected markers (25 per cell type 
as recommended in the original paper, as well as 50, 100, 200, and 300) impacts the 
performance of UXM, displayed a clear relationship between the number of selected 
markers and the impact of missing markers (Additional file 2: Fig. S14). On the other 
hand, with a larger number of markers (e.g., cfNOMe and MethAtlas), the impact 
of individual missing markers is diluted (Fig.  6B). These results demonstrate that 
method with smaller marker set, while potentially more efficient, may come at the 
cost of robustness to missing data. Moreover, both specificity and non-redundancy 
of markers could indicate the impact of missing markers (Fig.  6C–E). UXM, which 
selected highly specific and non-redundant markers, is more sensitive to missing 
markers, as these markers are likely critical to distinguishing cell types. In contrast, 
tools like cfNOMe, MethAtlas, and CelFiE, which use a more redundant marker set, 
are relatively more robust to missing markers, though this could come at the cost of 
reduced specificity.

Subsequently, we examined the impact of missing cell types by removing one or 
two cell types from the reference atlas while keeping the in silico cfDNA samples 
unchanged. Among the five methods, only CelFiE and CelFEER can estimate the 
proportions of unknown cell types not available in the reference atlas. However, Cel-
FEER showed reduced performance when one cell type was missing and even worse 
when two cell types were missing in the uniform distribution and Dirichlet distri-
bution datasets, while showed similar or slightly better performance in constrained 
random distribution dataset (Fig.  6F). CelFiE only maintained the performance in 
uniform distribution and Dirichlet distribution datasets, while achieving significantly 
decreased performance in constrained random distribution dataset. Conversely, the 
performance of MethAtlas and cfNOMe, although worse, remained relatively stable 
(Fig.  6F). For the constrained random distribution dataset, we noted that when the 
missing cell types included blood cells, which are the major cell types, the perfor-
mance became worse (Additional file  2: Fig. S15). To evaluate the impact of miss-
ing major cell types in the reference atlas, we subsequently removed each of the five 
blood cell types or one blood cell type coupled with another randomly selected cell 
type for the constrained random distribution dataset. All methods, except CelFEER, 
exhibited decreased performances compared to the results when there were no miss-
ing cell types (Additional file 2: Fig. S15). CelFEER showed comparable performance 
in scenarios where one cell type was missing, potentially benefiting from its ability to 
estimate unknown cell type proportions. In conclusion, the completeness of the refer-
ence atlas could impact deconvolution results to varying degrees for different meth-
ods and different proportions of the missing cell types.
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Evaluation of deconvolution results on real‑world clinical settings

Considering all previous analyses were based on in silico datasets, they may not fully 
reflect the complexities present in real-world cfDNA samples. Diseases such as can-
cers can influence cell death in affected tissues and cell types [1]. Deconvoluting the 
cell type composition in cfDNA from these patients can reveal altered homeostasis 
in affected cell types [5, 30, 31]. Additionally, changes in cell type fractions may serve 
as indicators for disease detection [32]. To build on this knowledge and strengthen 
the validity of our findings, we expanded our assessment by incorporating two real-
world datasets: (1) a hepatocellular carcinoma (HCC) dataset [25], comprising WGBS 
data of cfDNA samples from 24 HCC patients and 32 controls, and (2) a multi-cancer 
dataset, featuring cfMethyl-Seq (a revised reduced representative bisulfite sequencing 
technology) data of cfDNA samples from 225 cancer patients across five cancer types 
and 193 controls [26].

Fig. 7 The deconvolution results of cfDNA from the diseased patients and healthy individuals. A The 
liver-derived cfDNA fractions from liver cancer patients (WGBS) and healthy individuals. B The liver-derived 
cfDNA fractions from liver cancer patients (cfMethyl-Seq) and healthy individuals. C The colon-derived cfDNA 
fractions from colon cancer patients and healthy individuals. D The receiver operating characteristic (ROC) 
curves showing disease detection performance using the estimated fractions of all cell types. P-values were 
determined using a one-sided Wilcoxon rank-sum test. The area under ROC curve (AUC) was labeled for each 
deconvolution method
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We then applied all evaluated methods to assess whether tissue fractions in cfDNA 
could indicate disease presence. Across all methods in most datasets, we observed 
a significantly higher fraction of affected tissue in diseased patients compared to 
healthy individuals (Fig. 7 and Additional file 2: Fig. S16). Using statistical significance 
as a metric, we found that MethAtlas performed best for identifying elevated tissue 
fractions in diseased patients (Additional file 1: Table S7). Additionally, we evaluated 
disease detection performance using the estimated cell type fractions as predictors. 
Based on ROC-AUC, CelFEER and CelFiE demonstrated the overall highest accuracy 
for disease detection (Fig. 7, Additional file 2: Fig. S16, and Additional file 1: Table S7). 
The inclusion of these real-world datasets provides direct evidence of the methods’ 
efficacy in clinical settings.

Summary of the cfDNA deconvolution methods’ performance

To summarize our benchmark results, we developed a scoring-ranking system based 
on the evaluation metrics on the three in silico datasets and two real-world datasets 
(the “Methods” section). CelFEER demonstrated the best overall performance, while 
cfNOMe exhibited the worst overall performance (Fig.  8). However, when consid-
ered for various evaluation aspects, each method displayed distinct characteristics. 
CelFEER showcased relatively high accuracy and robust performance, yet it had a 
slower running speed. UXM emerged as a superior method in terms of accuracy and 
sequencing depth but exhibited sensitivity to missing markers and cell types in the 
reference atlas. CelFiE demonstrated the median overall performance, but with the 
best performance for disease detection effectiveness. Although cfNOMe and Meth-
Atlas did not excel in overall performance, they proved to be the most stable methods 
for missing reference markers. Despite MethAtlas’s lowest accuracy, it had the fastest 
processing speed and the best performance on affected tissue detection of real-world 
datasets.

In brief, for cfDNA deconvolution analysis, we recommend users to (1) choose a 
method stable to sequencing depth, especially with low-coverage data; (2) employ a 
stringent marker selection strategy to retain the most informative and specific mark-
ers; and (3) utilize a comprehensive reference atlas that encompasses as many cell 
types as possible that present in the cfDNA.

Fig. 8 Overall summary of the methods’ performance. The color-coded table displays a concise overview of 
the benchmark results for the five methylation-based cfDNA deconvolution methods. Refer to the “Methods” 
section for detailed information on the ranking criteria and methodology
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Discussion
We conducted a comprehensive evaluation of the performance of five methylation-based 
cfDNA deconvolution methods using in silico cfDNA samples and assessed their per-
formance using five metrics. Given that cfDNA primarily originates from apoptosis of 
diverse cell types, we opted to utilize methylation data of cell types for generating in 
silico cfDNA samples. However, previous methylation datasets often cover only a frac-
tion of genomic regions and are typically based on tissues containing a mixture of cell 
types [32–34]. A recent contribution by Loyfer et  al. provided a human methylome 
atlas encompassing 39 cell types derived from 205 healthy tissue samples through deep 
WGBS [6]. This atlas proves to be a valuable resource for benchmarking methylation-
based cfDNA deconvolution methods. Notably, the inclusion of biological replicates for 
most cell types in this atlas allows us to split replicates into two halves for construct-
ing the reference atlas and generating in silico cfDNA samples, thereby avoiding the 
potential “double dipping” problem [35]. Leveraging the deep sequencing depth of this 
methylome atlas, we can also assess the impact of sequencing depth and reference atlas 
completeness. Based on the comprehensive benchmarking results, we provide general 
guidelines for researchers to choose suitable methods.

Our analyses were conducted on three in silico cfDNA datasets to encompass diverse 
biological scenarios and assess the robustness of these methods. The constrained ran-
dom distribution dataset aimed to mimic the actual cfDNA compositions in healthy 
individuals [5, 6], while the uniform distribution dataset was employed to evaluate the 
methods’ robustness to different cell type compositions. Additionally, the Dirichlet dis-
tribution dataset, which ensures simulated fractions sum to one and allows for adjust-
able variability in cell type proportions, provided moderately diverse mixtures with 
varying contributions from different cell types. Each method exhibited distinct perfor-
mances among those datasets, underscoring the importance of employing evaluation 
on different in silico cfDNA datasets. In practical scenarios, researchers often cannot 
provide a complete reference atlas containing all the markers and cell types. There-
fore, we also evaluated the influence of missing markers and cell types in the reference 
atlas. While some methods, such as MethAtlas, cfNOMe, and CelFEER, demonstrated 
stable performances under these factors, others proved to be sensitive. Consequently, 
researchers should carefully consider the completeness of their data when selecting tools 
for cfDNA deconvolution analysis. In particular, our benchmark results revealed signifi-
cant performance disparities between CelFEER and CelFiE, despite both employing the 
same model and optimization algorithm. The two methods’ primary distinctions lie in 
the methylation metric used for deconvolution and the selection procedure for reference 
markers. Hence, the two methods’ different performance underscores the critical roles 
of the input methylation metric and reference markers in cfDNA deconvolution.

While the benchmarked methods in our study yielded reasonable deconvolution 
results in most analyses, certain limitations require attention. Firstly, no single method 
consistently outperformed others across all evaluated factors, suggesting that the opti-
mization of these methods might prioritize specific considerations. Secondly, the cell 
type specific markers are still far from fully captured, as evidenced by the limited over-
laps between reference markers selected by these methods and cell type specific mark-
ers in the external datasets. Third, none of these methods accounts for the uncertainty 



Page 17 of 26Sun et al. Genome Biology          (2024) 25:318  

of deconvolution results, potentially impacting analytical outcomes [36]. Fourth, when 
deploying cfDNA deconvolution tools, the importance of software maintenance and 
user support cannot be overstated. It is worth noting that some of our benchmarked 
methods lacked a comprehensive user guide and were less responsive to user inquir-
ies. Finally, although benchmarking using in silico data offers a controlled environment 
and ground truth, they may not fully capture the complexity and variability inherent in 
real-world cfDNA samples, such as heterogeneity in methylation patterns caused by bio-
logical factors like tissue-specific cell death, disease progression, or inflammation. These 
factors can substantially affect methylation profiles, making in silico data an imperfect 
stand-in for clinical samples. To address these limitations, adding real-world datasets is 
essential for a more accurate assessment of deconvolution methods’ clinical relevance 
and robustness. However, real-world datasets also come with challenges, including the 
absence of a ground truth for validation and potential biases from sample collection 
methods or patient demographics.

Taken together, our benchmark results provide a general guideline on how to con-
duct cell type deconvolution for cfDNA methylation sequencing data, paving the way 
for methodological enhancements and refinements. Future endeavors should prioritize 
the extraction of comprehensive and accurate cell-type-specific markers, while account-
ing for factors like sequencing depth, biological conditions [37], cellular heterogeneity 
[38], and inter-individual variability [39, 40]. Additionally, integrating methylation-based 
cfDNA deconvolution with other omics data modalities, such as nucleosome footprints 
[9, 41] and chromatin accessibility [42], can yield holistic insights into cellular specificity 
and bolster deconvolution performance by harnessing complementary information from 
diverse omics datasets. Furthermore, with the increasing availability of single-cell DNA 
methylation sequencing data in the foreseeable future [43], aggregating such data will 
enrich the completeness, intricacy, and reliability of the reference atlas utilized in cfDNA 
deconvolution, thereby facilitating the development of more advanced methods.

Conclusions
We benchmarked five methylation-based methods for cell type deconvolution from 
cfDNA, highlighting CelFEER and UXM as the top-performing approaches. Impor-
tantly, the selection of the most appropriate method should be guided by critical factors, 
such as sequencing depth and the comprehensiveness of the reference atlas. Careful con-
sideration of these factors allows researchers to align their methodology with the spe-
cific requirements of their study, thereby enhancing the accuracy and effectiveness of 
cell type deconvolution in cfDNA analyses.

Methods
Data collection and processing

We curated a comprehensive human DNA methylation dataset, including 39 nor-
mal human cell types from Gene Expression Omnibus (GEO) with accession number 
GSE186458 [6]. Our selection criteria focused on including cell types having a minimum 
of two biologically independent replicates of high quality. This rigorous selection process 
yielded a refined dataset comprising 35 distinct cell types, encompassing a total of 182 
samples (Additional file 1: Table S7). Subsequently, we partitioned all samples into two 
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halves. Replicates from the same cell type in each half were merged into unified samples 
utilizing the wgbstools [6]. This process generated two independent datasets, each serv-
ing a specific purpose. One dataset was employed for the creation of in silico cfDNA 
samples, while the other functioned as the reference methylation atlas.

We collected WGBS data of the plasma cfDNA samples from 32 healthy individuals 
and 24 liver cancer patients under the accession code EGAD00001000856 in the Euro-
pean Genome-Phenome Archive (EGA) [25]. We also collected the cfMethyl-Seq data of 
the plasma samples from 193 healthy individuals and 225 cancer patients (67 lung ade-
nocarcinoma, 41 lung squamous cell carcinoma, 30 liver cancer, 54 colon cancer, and 33 
stomach cancer patients) under the accession code EGAD00001009003 in the EGA [26]. 
These real-world data were used for the assessment in clinical settings. For the cfMethly-
Seq dataset, TrimGalore (v0.6.10) was used to trim the default Illumina adapters and 
low-quality bases from both ends of the reads. For the WGBS dataset, we trimmed the 
first 8 bases from the 5′ end of each read and filtered out reads with a quality score 
below 20. The trimmed reads from both datasets were then aligned to the hg38 genome 
using Bismark (v0.24.2). All aligned BAM files were deduplicated using the deduplicate_
bismark function from Bismark (v0.24.2) and filtered with Samtools (v1.1). Finally, the 
bam files were converted to pat files using the bam2pat function from wgbstools, with 
the reference genome being hg38, for subsequent processes.

The generation of in silico cfDNA samples and reference methylation atlas

To investigate the impact of cell type proportion distribution, we generated three sets of 
in silico cfDNA datasets, each consisting of 100 samples. These sets were based on three 
distinct distributions: uniform distribution, Dirichlet distribution, and constrained ran-
dom distribution. For the uniform distribution dataset, we employed the random.uni-
form function from the Python package numpy (v 1.24.3) [44] to create a 35× 100 
matrix, with each column sum normalized to 1. To generate the Dirichlet distribution 
dataset, we utilized the IMIFA (v 2.1.10) in R, setting the distribution parameter α = 0.5 
to create a 35× 100 matrix. The constrained random distribution dataset was generated 
through the following steps: (1) selection of the five immune cell types and random 
inclusion of n additional cell types, where n is an integer ranging from 1 to 10; (2) genera-
tion of a list of (n+ 5) random floating numbers using random function from Python 
package random; (3) division of all numbers by the sum of the random numbers to 
ensure that cell type proportions summed to 1. Then, the proportion ( Pi ) for a cell type i 
was calculated as Pi = ri

n+5
1 ri

 , where ri was the random number; (4) assignment of the 

five largest proportion values to the five immune cell types, with the remaining values 
allocated to the n additional cell types; (5) assignment of a value 0 to all unselected cell 
types. This process was repeated 100 times, resulting in 100 in silico cfDNA samples 
where immune cell types were predominant. Subsequently, the mix_pat command in 
wgbstools was used to generate each cfDNA sample according to the corresponding 
proportions.

The reference methylation atlas was generated for the five deconvolution methods by 
following the specific instructions provided by the respective method. In summary:
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(1) MethAtlas selected the 100 most hypermethylated and hypomethylated CpGs 
based on methylation ratio of the CpG site (the fraction of reads that are methyl-
ated), along with neighboring CpGs up to 50 bp for each cell type. Pairwise-specific 
CpGs were then identified through 500 iterations, focusing on pairs of cell types 
with the smallest Euclidean distance in each iteration

(2) cfNOMe used the same set of reference markers as MethAtlas
(3) CelFiE calculated the distance between the methylation ratio of each cell type and 

the median methylation ratio of all cell types for each CpG. Then, the top 100 CpGs 
with the largest distance for each cell type, along with the proximal CpGs (± 250 
bp) around these CpGs, were selected to form the final reference methylation atlas

(4) CelFEER adapted CelFiE’s method with the following major improvements: (a) use 
500-bp windows instead of CpG sites to find marker regions, (b) employ read aver-
ages (the ratio of methylated CpG sites to the total number of CpG sites on a read) 
instead of methylation ratio as the methylation quantification metric, (c) focus on 
hypomethylated regions, (d) select the top 150 markers and remove markers that 
are in the top 100 of two or more cell types before narrowing down to the top 100 
markers for each cell type

(5) UXM firstly found genomic regions based on the segmentation algorithm that opti-
mizes the CpG sites homogeneity score in each genomic region using the segment 
function (–min_cpg 5 –genome hg38 –betas) from wgbstools. Then, UXM selected 
the top 25 specifically unmethylated genomic regions with at least 5 CpGs with size 
ranging from 10 to 1500 bp using the find_markers function (–pval 0.05 –min_cpg 
5 –min_bp 10 –max_bp 1500 –sort_by delta_means –tg_quant 0.25 –bg_quant 
0.025 –top 25 –only_hypo) from wgbstools

Implementation of each cfDNA deconvolution method

All the five methods took in silico cfDNA samples and reference methylation atlas as 
inputs for the deconvolution process. To execute MethAtlas (https:// github. com/ nloyf 
er/ meth_ atlas), the deconvolve.py script was utilized. For cfNOMe (https:// github. 
com/ Flori anErg er/ cfNOMe), the methylation_deconvolution.py script was employed 
for deconvolution. For CelFiE (https:// github. com/ chris tacag giano/ celfie), celfie.py was 
used with –unknowns set to 0, unless explicitly specified. Similarly, for CelFEER (https:// 
github. com/ pi- zz-a/ CelFE ER), the celfeer.py was employed with –unknowns set to 0, 
unless otherwise specified. Lastly, for UXM (https:// github. com/ nloyf er/ UXM_ deconv), 
the uxm deconv command was executed for deconvolution.

Evaluation of reference markers selection

We evaluated the cell type specificity, non-redundancy, and variability of the reference 
markers identified by each deconvolution method. Specificity was measured in three 
ways: (1) the absolute difference in methylation levels between the target cell type and all 
others; (2) the statistical difference expressed as -log10(P-value), calculated using the Stu-
dent t-test, comparing the target cell type with all others; (3) the overlapped ratio with 
cell-type-specific methylation marks (CpG sites) derived from MethyMark database 
(http:// fame. edbc. org/ methy mark/). We first utilized liftOver from the UCSC Genome 

https://github.com/nloyfer/meth_atlas
https://github.com/nloyfer/meth_atlas
https://github.com/FlorianErger/cfNOMe
https://github.com/FlorianErger/cfNOMe
https://github.com/christacaggiano/celfie
https://github.com/pi-zz-a/CelFEER
https://github.com/pi-zz-a/CelFEER
https://github.com/nloyfer/UXM_deconv
http://fame.edbc.org/methymark/
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Browser [45] to convert the genome coordinates of CpGs from hg19 to hg38. Subse-
quently, BEDTools [46] (v2.31.0, bedtools intersect -wa -u) was employed to intersect 
the reference markers identified by each deconvolution method with cell-type-specific 
markers in MethyMark for each of the 15 overlapping cell types. The overlapped ratio 
was employed to assess the markers’ cell type specificity, with higher ratios indicating 
better specificity. The non-redundancy of the reference markers was assessed as the pro-
portion of paired markers with a Pearson correlation coefficient below 0.2.

To evaluate the cell type variability of the reference markers, we downloaded DNA 
methylation variability data of immune cells from ImmuMethy (http:// immudb. bjmu. 
edu. cn/ immum ethy/ index. jsp). The MethyMark database integrates 50 methylomes 
across 42 human tissues/cell types, with 15 cell types overlapping with those in our ref-
erence methylation atlas (Additional file 1: Table S6). To quantify variability in Immu-
Methy, we measured it in two ways: interquartile range (IQR) and standard deviations 
(SD). Four immune cell types (B cell, granulocyte, monocyte, and T cell) from Immu-
Methy, having more than three conditions overlapping with the reference cell types in 
our study, were selected for subsequent analysis. SD and IQR across different individuals 
of the same cell type and conditions were extracted directly from ImmuMethy. SD and 
IQR across different conditions of the same cell types were calculated based on the mean 
methylation value of each condition. BEDTools was used to obtain SD and IQR values 
for the reference markers selected by each deconvolution method. Higher SD or IQR 
values corresponded to increased variability.

Evaluation of effects of sequencing depth

Firstly, to evaluate the influence of sequencing depth filters, we implemented 17 depth 
filter thresholds (15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, and 300) 
during the generation of the reference methylation atlas. We excluded the threshold of 
300 for MethAtlas, cfNOMe, and CelFiE, as it resulted in no remaining markers for anal-
ysis. Specifically:

• For MethAtlas and cfNOMe, the reference methylation atlases were generated by 
applying each of the 17 thresholds to the median depth per CpG site across all sam-
ples

• In case of CelFiE and CelFEER, reference methylation atlases were generated by 
adjusting the depth_filter parameter accordingly

• For UXM, we simply modified the –min_cov parameter for the find_markers in wgb-
stools, keeping the other parameters unchanged

Secondly, to assess the impact of sequencing depth in the raw reference data used to 
generate the reference atlas on marker selection quality and deconvolution performance, 
we downsampled the reference data to average CpG site coverages of 85, 71, 57, 43, 28, 
14, and 3, corresponding to 5/6, 2/3, 1/2, 1/3, 1/6, and 1/30 of the original coverage, 
using the wgbstools cview with –sub_sample parameter. After generating the new refer-
ence data, we generated the reference atlas for all five methods as described before and 
repeated the deconvolution analyses.

http://immudb.bjmu.edu.cn/immumethy/index.jsp
http://immudb.bjmu.edu.cn/immumethy/index.jsp
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Finally, we investigated impact of the sequencing depth of the samples being analyzed. 
Based on the previously-mentioned three distributions—uniform distribution, Dirichlet 
distribution, and constrained random distribution—we generated additional in silico 
datasets with sample sequencing depths of 1, 5, 10, and 15, alongside our existing data-
sets of 22 (the lowest sequencing depth among data used to generate the in silico sam-
ples) using the coverage parameter (-c) in the mix pat function of wgbstools. Then, all 
five deconvolution methods were run on these in silico datasets with reference atlas gen-
erated using default settings.

Evaluation of effects of missing markers or cell types in the reference methylation atlas

To assess the impact of missing markers, we introduced five gradient missing propor-
tions (10%, 20%, 30%, 40%, and 50%) for reference markers. The corresponding num-
bers of missing markers were randomly removed to represent a diverse range of genomic 
locations and ensure unbiased results. Each missing proportion was repeated 20 times to 
ensure the robustness of our findings. For the evaluation of missing cell types, we ran-
domly deleted one cell type five times to generate five reference atlases with one missing 
cell type. Similarly, we randomly deleted two cell types five times to generate five atlases 
with two missing cell types. To evaluate the impact of missing major cell types in the ref-
erence atlas, we also deleted each of the five blood cell types or one blood cell type cou-
pled with another randomly selected cell type for the constrained random distribution 
dataset to generate ten atlases. Subsequently, each deconvolution method was executed 
using reference methylation atlases with missing markers/cell types. For CelFiE and Cel-
FEER, –unknowns was set to 1 or 2 for atlas with one or two missing cell types respec-
tively. All these analyses were done under a sequencing depth filter of 15. For UXM, an 
additional analysis, which evaluated how varying the number of selected markers (25 per 
cell type as recommended in the original paper, as well as 50, 100, 200, and 300) impacts 
the performance of UXM, was done by setting –top parameter of the find_markers func-
tion of wgbstools.

Evaluation of the marker selection and cell type proportion estimation modules

To assess the relative importance of the marker selection module and cell type propor-
tion estimation module within each method, we fed the markers selected by each of the 
five methods into the cell type proportion estimation modules of all methods, resulting 
in 25 unique combinations. When estimating cell type proportions with MethAtlas and 
cfNOMe, which utilize CpG sites as markers, we extracted all CpG sites falling within the 
marker regions defined by CelFiE, CelFEER, and UXM. These sites were then employed 
to construct the reference atlases. In the case of CelFiE, which employs genomic regions 
for marker selection, we compiled the marker regions (with the CpG sites of MethAtlas/
cfNOMe treated as 1-bp regions) identified by the other four methods into an input ref-
erence atlas, as required by CelFiE. CelFEER and UXM adopted a similar approach to 
that of CelFiE for their procedures.

Assessment of deconvolution performance on real‑world datasets

For the real-world datasets, we consolidated all data of the 35 cell types to generate full 
reference methylation atlases for the evaluation of deconvolution performance. Then, the 
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reference atlases were used to perform deconvolution on the real-world cfDNA samples 
using each of the five methods. Given the absence of ground truth for these real-world data-
sets, we leveraged established knowledge from the literature to evaluate the deconvolution 
performance. One metric we used is the statistical difference in the cfDNA fraction derived 
from affected tissues between diseased and healthy individuals, calculated as -log10(P-value) 
using a one-sided Wilcoxon rank-sum test. Another metric is the ROC-AUC of Random 
Forest models for disease detection constructed using the estimated cell type fractions from 
each deconvolution method as predictors.

Assessment of running time and memory requirements

The running time and memory requirements were evaluated using memory-profiler 
(v0.61.0), a third-party Python package [47]. For analysis, we selected a set of 100 cfDNA 
samples under uniform distribution with sequencing depth filter of 15 for the subsequent 
analysis. The total runtime and peak memory usage for all 100 samples were systematically 
recorded for each deconvolution method. To enhance the reliability of our results, we exe-
cuted each deconvolution method ten times under consistent computational conditions: 
utilizing an Intel(R) Xeon(R) Gold 5218R processor with 40 threads and 192 GB of mem-
ory, operating on Ubuntu 22.04 LTS with Python version 3.10.11.

Evaluation metrics

To assess the performance of each method, we computed root mean squared errors 
(RMSE), Pearson’s correlation coefficient, Spearman’s rank correlation, Lin’s concordance 
correlation coefficient (CCC), and Jensen–Shannon divergence (JSD) between cell type 
proportions predicted by each cfDNA deconvolution method with the ground truth cell 
type proportions. Higher Pearson correlation, Spearman’s rank correlation, and CCC, along 
with lower RMSE and JSD values, were indicative of superior performance. These metrics 
were compiled into a composite measure in each dataset, the normalized performance 
score (NPS), which integrates the min–max normalized values of all five metrics using the 
following equations:
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Here, Xijk
rmse , X

ijk
P  Xijk

JSD,Xijk
CCC and Xijk

Spearman represent the original values of RMSE, Pear-
son correlation, JSD, CCC, and Spearman correlation of method j on the k-th sample of 
i-th dataset, respectively. Lower RMSE and JSD corresponds to higher values of Sijkrmse 
and SijkJSD . And higher Pearson correlation, CCC, and Spearman correlation corresponds 
to higher values of SijkP  , SijkCCC , and SijkSpearman . The scores were then aggregated across dif-
ferent evaluation metrics to the NPS by calculating the arithmetic mean.

Then, to summarize the overall performance of each method across different datasets 
and evaluation factors, we developed a scoring-ranking system based on the NPS.

• Accuracy: For each dataset, we initially calculated the median values of NPS (under a 
sequencing depth filter of 15) and then aggregated these median values across differ-
ent datasets by calculating the arithmetic mean:

• Robustness: We first calculated the median values of NPS and then aggregated these 
median values across different datasets by calculating the arithmetic mean:

Here, SijdkNPS represents NPS values for method j on sample k of dataset i under evalu-
ated factor d (where d represents 17 filter thresholds for Sequencing depth (filter), five 
depth thresholds for Sequencing depth (samples), seven depth thresholds for Sequencing 
depth (reference), six missing proportions for Missing markers, and 11 categories for 
Missing cell types, respectively). Subsequently, to assess the impact of Sequencing depth 
and Missing markers on the deconvolution results of each method, we calculated the 
variance of the above-defined Sjdoverall under different depth thresholds ( V j

filter , V
j
samples , 

V
j
reference ) and missing markers proportions ( V j

markers ), separately. For Missing cell types, 
the relative difference to the score with no cell type missing was calculated using:

where Sj0overall is the score when there is no cell type missing, and Sjdoverall  is the average 
score for all others except no-cell-type-missing category. A higher Dj

cell represents more 
robust performance.

(5)S
ijk
Spearman =

X
ijk
Spearman −min_j(X

ijk
Spearman)

max_j(X
ijk
Spearman)−min_j(X

ijk
Spearman)

(6)S
ijk
NPS =

S
ijk
rmse + S

ijk
P + S

ijk
JSD + S

ijk
CCC + S

ijk
Spearman

5

(7)S
j
accuracy =

1

3

∑3
i=1(median_k(S

ijk
NPS))

(8)S
jd
overall =

1

3

∑3
i=1(median_k(S

ijdk
NPS))

(9)D
j
cell =

S
jd
overall − S

j0
overall

S
j0
overall
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• Real-world datasets: The aggregate score for evaluation metrics of affected tissue 
detection ( Sjp ) and disease detection effectiveness ( Sjauc ) were calculated using the 
same approach as for Accuracy

• Usability: The aggregated score for running time ( Sjtime ) and memory require-
ments ( Sjmem ) were calculated using the same approach as for Accuracy

Finally, we normalized the aggregated scores zj of each evaluation factor for com-
parison and aggregation across different evaluation factors:

Here, zj represents Sjaccuracy,V
j
filter , V

j
samples , V

j
reference , V

j
markers , D

j
cell , S

j
p , Sjauc , S

j
time , and 

S
j
mem respectively. A higher score corresponds to a better deconvolution performance. 

The overall performance for each method was calculated based on the normalized 
scores using 

S
j
overall = 0.5 × S

j′
accuracy + 0.2 ×

(

V
j′
filter+V

j′
samples+V

′j
reference+V

j′
markers+D

j′
cell

5

)

+ 0.2 ×

(

S
j′
auc+S

j′
p

2

)

+ 0.1× (
S
j′
time+S

j′
mem

2
)

 . We 

assigned different weights because we think accuracy are much more important than 
other evaluating factors in practice.
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