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ABSTRACT 

The droplet model of average nuclear properties is briefly explained. 

This model is then incorporated into an atomic mass formula and the coeffi-

cients of the model varied to give the best possible agreement between the 

calculated and experimental values of masses and fission barriers. The re-

sults of the fit are discussed in some detail. The droplet model predic-

tions for nuclear radii are also compared with experiment and found to agree 

quite well. 

tWork performed under the auspices of the U.S. Atomic Energy Commission. 



1. INTRODUCTION 

The droplet model was conceived in order to effect a systematic re-
. 1 

finement of the liquid drop model originated by von Weizsacker ). Early 

. 2 3 
developments can be found in the works of Bethe ), Bohr and Wheeler ), 

4 5 Feenberg ) and Green ). More recent results are contained in the pro-

ceedings of the four international conferences on nuclear masses6- 9), and 

. 10 11 in the proceedings of two conferences on nuclei far from stabil1ty ' ). 

The work that initially stimulated our interest in improving the liquid 

12-16 drop model and some of our preliminary results are contained in refs. ). 

Improved methods for describing average nuclear·properties are rele-

vant now because of the recent advances that have been made in our under-

standing of nuclear masses (and macroscopic properties in general) in 

terms of a two-part approach. This approach considers nuclear properties, 

such as masses or density distributions, as being made up of a smooth 

macroscopic part, and an oscillating microscopic part. Initially the 

idea of a "two-part approach" was confined to the simple addition of empir

ical corrections to nuclear mass formulas 17- 21 ). These corrections were 

found to be necessary because of fluctuations in the masses due to vari-

. ations in the nuclear single particle level densities (such as gaps at 

magic numbers). 

Swiatecki12- 14) developed a method for calculating the shell corrections 

that is based on a physical model whose main feature is the deviation of 

the actual nuclear energy level distribution from uniformity. In t~is 

approach the relatively minor bunching together of levels that produces 

gaps at magic numbers gives rise to nuclear mass-deviations that correspond 

closely to those observed. Eventually, a sound physical basis for the 

two-part approach was provided by the development of Strutinsky's shell 



22 
correction method ). 
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In this method (see refs. ) for example) 

the oscillations observed in nuclear energies and densities are related 

to the properties of the separate particles of the system which are 

assumed to be essentially independent and to move in a common nuclear 

potential. 

Progress has also been made in our understanding of the purely mac-

·rosc:opic aspects of nuclear properties, and three items are of special 

significance for the discussion in the following sections. 

The first development of importance has been the clarification of the 

role of the liquid drop model as an approximate solution of the nuclear 
25 

many-body problem ) • t For saturating leptodermous systems like nuclei, 

we are now aware that the liquid drop model potential energy may be 

thought of simply as a first order description in terms of two small ex-

· pansion parameters: the ratio of the surface diffuseness to the size of 

the system (proportional to A-l/J), and the square of the relative neu-

2 tron excess I , where I equals (N-Z)/A. 

The second item contributing to our improved understanding of macro~ 

scopic properties is the use of the Thomas-Fermi method in self-consistent 
15 

calculations of nuclear properties. ). Such calculations are easily 

performed and they provide a means of relating many macroscopic properties 

to their microscopic origin. Of special significance to us here is the 

fact that the development of the droplet model was supported in a number 

28 
of ways by Thomas-Fermi calculations like those of Seyler and Blanchard ). 

t • 
leptodermous - having a thin skin. · This term has been employed by 
Tsang, Swiatecki and others 26 ; 27 ) for the depiction of distributions 
that are essentially homogenous except at the surface. Its application 
implies that all deviations from bulk behavior are confined to a 
relatively thin surface region. 
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The third item of importance in our improved_un~erstanding of macro-

scopic propert.ies is the droplet model itself. This model (which is 

the main subject of the present paper) is a uniform i~provemertt of the 

liquid drop model that carries the leptodermous expansion to -one higher 

order so as to include 1~ '/. 
mass formula terms in A , I2A2~ 3 , and I 4A. 

13 14 In our earlier work ' ) we had fitted a more or less conventional 

liquid drop model mass formula to the smooth mass surface that results 

when shell corrections, of the type proposed by Swiatecki 12), are 

applied to the experimental'masses. Besides the usual liquid drop model 

terms (which are the volume energy, symmetry energy, surface energy, 

Coulomb energy and the empirical even-odd mass correction) a surface 

symmetry energy and Coulomb diffuseness correction were used. Liquid 

drop model fission barriers were also compared with experiment as a part 

of the fitting procedure. The inclusion of fission barriers permits 

more accurate determination of the separate values of the Coulomb and 

surface energy coefficients, which are highly correlated in a fit to 

ground state masses alone. We found that the Coulomb energy coefficient 

(which is inversely proportional to the nuclear radius constant r ) 
0 

determined in this way differs by 6-10% from that obtained in electron 

scattering measurements of nuclear sizes 29). A real discrepancy was 

seen to exist since both methods were expected to be accurate to one 

or two percent. 

15 ·/ 
In ref. ) we undertook a study to determine whether this discrepancy 

might not be due to the omission o,f higher order terms (such as compress-

ibility and surface curvature effects) in the liquid drop model. 
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Many of these terms had previously been considered one at a time. · For 
17,19,30 

example, the surface symmetry term had been considered in refs. ) 
31 '32 

the compressibility and Coulomb redistribution in refs. ). Other 
2 

Coulomb corrections such as the exchange correction ) and surface diffuse-
17 

ness correction ) had also been used before. The curvature correction 
33,31t 

to the surface energy was discussed in refs. ) . 
The droplet model was developed in the course of our investigation 

of these higher order terms and some preliminary applications of it have 
35 

already been made. In ref. )'the coefficients that appear in the model 

were determined by fitting to experimental nuclear masses. The model 
36 

found other applications in predicting isotope shifts ) and in providing 
37 

a basis for predicting single particle potential well parameters ). 

After the shape dependence of the droplet model had been worked out in 
38 

ref. ) it became possible to investigate the implications of this model 
39 

for the fission process ) . A revised version of the droplet model shape 
16 

dependence is contained in ref. ) along with a preliminary set of the 

adjustable coefficients. 

The purpose of the present work is to redetermine these coefficients 

by fitting to masses, fission barriers, and radii. The predictions of 

the model are then compared with experiment to give an indication of its 

range of applicability. One gratifying result of this work is the ·appar-

ent resolution of the radius constant discrepancy' mentioned above. The 

value of this constant obtained in ~he droplet model fit no longer differs 

from that obtained in electron scattering experiments. 
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2. THE DROPLET MODEL 

The droplet model binding energy expression was first derived in 

15 ref. ). More recently an expanded version of this deriv~tion was given 

1D ref. 16), where the model was extended to include arbitrary shapes. 

this latter work should be referred to if the reader desires a more 

detailed discussion than that given in the brief outline below. 

The feature which distinguishes the droplet model from the standard 

liquid drop model is that the neutron and proton density distributions are 

allowed to vary so as to minimize the total nuclear energy. This additional 

freedom leads to the following expression for the binding energy: 

,{1) 

where 

i • (I+ 136 (c1/Q) ZA-2/3BJ I [1 + : (J/Q)A-1/3Bs J 
£ • f2a2A-l/3 Bs + L<52 + cl Z 2A-4/3BJ I K. 

(2) 

(3) 

ID these expressions N and Z are the neutron and proton numbers, A is 

their sum and I is the relative neutron excess (N-Z)/A. The quantity E 

is a measure of the average deviation of the bulk density from its nuclear 

matter value. It is defined by the expression 

£ • _ i (-P _-_P...;o~) 
Po ave. 

(4) 
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To lowest order in £ the radius of the nucleus is given by 

R • r Al/3(1 + c) , 
0 

(5) 

where the nuclear radius constant r is related to the equilbrium density 
0 

ri of 
0 infinite nuclear mat(t:r by :~h~ ~xpression 

p • - wr 
0 3 0 

(6) 

The quantity ~ is the value of the local relative neutron excess averaged 

over the nuclear volume. 

ave • 
(7) 

Since the effective sharp radii of the neutron and proton distributions can 

differ, producing a neutron skin of thickness t, the quantity ~ is not 

always equal to I as it is in the liquid drop model. For spherical nuclei 

these quantitites are related, to first order in t/R, by the expression, 

3 
• I -- (t/R). 2 

(8) 

The separate effective sharp radii of the neutron and proton distributions 

are given by, 

RN • R +! t , 

N 
Rz•R-At 

(9) 

and this latter quantity is the one to be compared with the results of the 

electron scattering or }.1-mesic atom experiments. 

The coefficients appearing in eqs. (1-3) and the values that have 

been chosen for them are: 

a
1 

• 15.960 MeV, the volume energy coefficient, 

- 20.69 MeV, the surface energy coefficient, 
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J • 36.8 MeV, the symmetry energy coefficient, 
(10) - 1.18 fm, the nuclear radius constant, 

and 

a3 - 0 Mev, the curvature correction coefficient, 

Q - 17 MeV, the effective surface stiffness, 

It - 240 MeV, the compressibility coefficient, (11) 

L - 100 MeV, the density-symmetry coefficient, 

M - 0 MeV, the symmetry anharmonicity coefficient. 

The five Coulomb coefficients that appear are defined in terms of 

the coefficients above, by the expressions: 
3 2 . 

cl • 5 (e /ro) 

• 0.73219 MeV, the Coulomb energy coefficient, 

·where e 2 • 1.4399784 MeV fm is the square of the· electronic charge. 
2 

c2 • (c1/336) (1/J + 18/K) 

(12) 

• 0.00016302 MeV, 
s 2 

volume redistribution coefficient, 
(13) 

• 2 cl(b/ro) 

• 1.28846 MeV, diffuseness correction coefficient, 
27 

where b • 0.99 fm is a measure of the diffuseness of the nuclear surface ), 

• 0.55911 MeV, exchange correction coefficient, (14) 

• 0.00049274 MeV, surface redistribution coefficient. 

The quantities Bi, which introduce shape dependence into eqs. (1-3), 

16 39 are discussed in detail in refs. ' ). Each of them is concerned with 

a different aspect of the shape dependence of the binding energy according 

to the following list: 
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B the surface energy, s 

B the Coulomb energy, c 

Bk the curvature energy, (15) 

B , the volume redistribution energy, r 

B the neutron skin effect, v 

B , the w surface redistribution energy . 
As usual they are defined so as to have the value unity for a spherical 

shape. 

The three lines of eq. (1) represent the volume, surface and Coulomb 

contributions to the total binding energy. The four terms in the volume 

energy contribution (the first line) are: -a1 , the binding energy per 

particle in infinite nuclear matter; 
-2 . 

+JIS , the bulk asymmetry term that 

corrects the binding for the neutron excess; - t K £2
, the term that 

atves the extra binding resulting from the competition between various 

compression and dflitation forces and the bulk compressibility; and, 

+ ~ M64
, which is a higher order symmetry energy term. The second line 

consists of two main terms. The first 

bas the coefficient (a2 + t (J
2 /Q)o2

). 

is the surface energy itself, which 

The quantity 

energy coefficient for semi-infinite nuclear matter. 

a2 is the surface 

9 2 -2 The quantity 4 (J /Q)IS 

corrects for the fact that some of the excess nucleons are pushed into the 

surface when N ~ Z. The second term in the second line is the curvature 

correction to the surface energy. 

The last line in eq. (1) has five separate parts, all concerning the 

Coulomb energy. The first is the Coulomb energy of a sharp-surfaced 

sphere of radius R = r A1
/

3• The-second term is a correction for the 
0 
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redistribution of particles in the bulk in response to the Coulomb 

repulsion which produces a central depression. The third term is a 

t diffuseness correction, the fourth an exchange correction , and ~he last 

term is a surface redistribution energy associated with the nonuniformity 

of the neutron skin thickness caused by electrostatic forces. 

The other two expressions, eqs. (2) and (3), are used to calculate 

the equilibrium values of 6 and € for insertion into eq. (1). They are 

easily understood in terms of a competition between driving and restoring 

forces. In eq. (3) for example, we see that the average deviation E 

of the bulk density from p is driven by 1) surface squeezing, 2) neutron 
0 

excess dilatation, and 3) Coulomb dilatation. These driving terms appear, 

in 'that order, in the numerator of eq. (3), while the restoring force K 

appears in the denominator. In eq. (2) we also see that the driving 

terms I, the overall relative neutron excess, and a Coulomb term that 

acts to increase the average bulk neutron excess are both in the numerator. 

The terms in the denominator act as a restoring force which tends to 

reduce the average bulk asymmetry 6. 
16 

All of these expressions are more thoroughly explained in ref.· ). 

t 4/3/ 1/3 . 2 
The usual exchange term is -c4Z JA , see ref. ). Since this is 
a correction term we have made the simplifying assumption that Z ~ A/2. 
The actual form given in eq. (1) must be used in conjunction with the 
coefficients, eqs. (10-14), given in the text. 
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3. MASS FORMULA 

The droplet model of macroscopic nuclear properties contains a number 

of parameters such as the volume energy, surface energy and symmetry energy 

coefficients. Their values can be determined by varying them until the 

agreement between experimental and predicted values for nuclear masses, 

~ission barri~rs and radii is as good as possible. The form of the mass 

formula employed for this purpose is the following: 

Mass Excess ~ • N + MH • Z + Droplet Model Term 

+ Shell Correction + Even-odd Term + Wigner Term 

- 0.00001433 • z2•39 MeV (16) 

The tabulated masses are atomic rather than nuclear and that is why the 

last term has been added. It provides a small correction to the data for 
40 

the binding of the atomic electrons ) •. Another characteristic of the 

available data is that masses are given as mass excesses relative to 12c 

as a standard. In this scheme the mass excess of 12c is set to zero, and 

the true mass of any atom can be obtained from the tabulated mass excess 
• 41 

. by the relationship ) : 

True Mass • Mass Excess + 931.504 • A MeV (17) 

In this system the coefficients of the first two terms in eq. (16), which 

'+1 
are the mass excesses of the neutron and the hydrogen atom, have the values ); 

·~ • 8.07169 MeV, 

HH • 7.28922 MeV. (18) 
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3.1 Shell Corrections 

The shell corrections employed were the same as in our original 
11., 13 

work ) , with the slight modification in shape dependence added in 
lit 

ref. ) • These references discuss the physical motivation behind the 

expressions which are reproduced here. 

For spherical nuclei the shell correction is taken to be 

S(N,Z) • C .r.F(N) + F(Z) 

l (iA//3 
(19) 

where 

F(N) - (20) 

for Mi-l < N < . Mi • and both C and c are adjustable coefficients. 

The quantities qi are defined by 

3 
- - 0 5 

~/3 _ M5/3 
i i-1 

Mi -Mi-l 
• (21) 

and the quantities Mi (the magic numbers) are chosen to have the values 

2~ 8, 14, 28, 50, 82, 126 and 184. 

As before,the damping of shell effects with deformation is taken 

to have the relatively simple functional form, 

where e, as it is used here and in ref. 
0 

• 
13,14 

>. is a measure of the 

deviation of the nuclear shape from spherical. For small distortions 

described by the Legendre polynomial P 2 according to .the expression 

(22) 
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-
the quantity e is given by 

where 

e - o./a 
0 

a • 
0 

fs (a/r )A-l/3 
0 

(23) 

(24) 

(25) 

The quantity a that appears in eq. (25) is an adjustable coefficient 

that determines how quickly the shell effects damp out as the shape is 

changed. 

Since only the droplet model and shell effect terms in eq. (16) are 

shape dependent, the whole expression can be recast (using the expressions 
16 

for the shape dependences Bi given in Section V of ref. ) in the form 

(26) 

If the lowest minimum in this function is other than spherical then the 

nucleus is predicted to be deformed in its ground state. The resulting 

quadrupole moment is given by the expression 

2 - •••• ) fm 

(27) 

As in previous work, the quantity we refer to here as the Shell Correction 

is the difference between M and the minimum energy in eq. (26). For the 
0 

three adjustable parameters that appear in the shell correction we have 
14 

chosen to retain the values used earlier ), 
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C • 5.8 MeV , 

c .. 0.325 

a/r = 0.444 
0 

(28) 

In the actual fit, an entirely empirical function F(N or Z) similar to 

the one given in section 7.3 of ref. 13) was employed for N, Z < 20. 

·This function was determined from N = Z nuclei with the aid of eq. (19) 

after subtracting the other terms of eq. (16) 

3.2 The Even-Odd Term 

In our previous work 13 ' 1 ~) an even-odd mass term was employed that 

had the value +11/ /'A, 0, -11/ /'A depending on whether the nucleus 

was odd, odd-A, or even. Here we use a slightly different version that 

allows for the fact that the separation between the odd and odd-A mass 

·surfaces is slightly smaller than the separation between the even and 

42 
·Odd-A surfaces (see the caption to fig. 2-5 in ref. ), for example). 

Figure 1 s~ows ho~ the correction was made so the mean mass surface 

continues to pass through the masses halfway between the even and the 

odd nuclei. In this scheme the correction is (6- ~o), (+ ~o), 

(-6 + ~o) depending on whether the nucleus, is odd, odd-A, or even, 

where 6 = 12/ lA and o • 20/A. 

3.3 The "Wigner Term" 

There is a vee-shaped trough in the nuclear mass surface (see ref. 

13 • ) section 7.2, for example) that is not a shell-effect in the usual 
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sense. Nor is it an even-odd effect of the type mentioned in the 

previous section. A term of this kind in the mass equation, proportional 

to III, was first discussed by Wigher, see ref. 
43

) and references there 

to the original works, or ref. 44
) Section III. 

A relatively simple argument serves to show how such a term can 

arise from the increased overlap of the wavefunctions of particles in 

identical orbits. Because of saturation the interaction between two 

particles in the nucleus is proportional to 1/A. If the particles in 

identical orbits interact somewhat more strongly than the average, this 

contribution to the total energy can be obtained by multiplying -eC/A 

times the number of identical pairs. (Here -C/A is the average inter-

action and e is a measure of the enhancement due to the particles being 

in the same orbit.) Figure 2 explains how the identical pairs are counted. 

The considerations there lead us to write, 

0 ' for even 

( Number of ) lA - IN-ZI -
1 for odd A - { 1, for N = Z odd 

· identical pairs = 2 2 , o, for all other 

1 , for odd 
(29) 

The total amount of additional energy contributed by these bonds can 

then be written 

where 

~ • 1/A • 

w[-~+ III +<S+a] 

0 , for even 

1 
2' 
1 , 

for odd-A 

for odd 

(31) 

{ 

1 , for N = Z odd 
L\ • 1/A • O 

, for all other 

(32) 

(30) 
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and W, which replaces e:C, is to be determined by fitting to nuclear 

masses. 

The first term in the bracket is a constant. Such terms (of order 

A•) can arise from many sources •. We will not retain this particular 

contribution in order to be consistent with the general formulation of 

the droplet model where the highest order term is A113• The second term, 

showing the III dependence, is the one we originally sought. The third 

term will not be retained since it is an even-odd correction of the type 

discussed in the previous section, and its contribution to the nuclear 

mass is included in the empirical term described there. The last term 

applies only to N = Z • odd nuclei but we will keep it becau~e it is clearly 
.... 

called for by the experimental masses (see ref. ) , Table. I). The form 

aclopted for our ''Wigner term" is 

lwigner • W(III +A) , (33) 

aad choosing 30 MeV for the value of W gives good agreement with exper-

illeut. 

On the basis of the derivation given above the size of the ''Wigner 

Term" contribution to the total energy appears to be independent of shape. 

However, at scission into two parts the term jump• to twice its original. 

value. In an extreme idealization the shape dependence of this term 
. 0 

(aad the even-odd term and some terms of order A ) is a discontinuous step 

faaction. In practice the step is washed out sine@ particles find it 

more and more difficult to explore the whole nuclear volume when the neck 

formed between nascent fragments closes off as the system moves toward 

ac1asion. In general such a shape dependence, confined to the vicinity 
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of scission, may be expected to lead to (attractive or repulsive) "contact 

potentials" between fission fragments (or colliding heavy-ions). 

4. COMPARISON WITH EXPERIMENT 

The primary data employed for the determination of the droplet model 

coefficients were the 1698 experimental atomic masses with A ~ 10 taken 

from the 1971 compilation of Wapstra and Cove ~ 1 ). These were supplemented 
. 

by 62 experimental fission barriers, 109 ground state deformations and 6 

nuclear charge radii. The actual fit was weighted 3/4 to the masses and 

1/4 to the fission barriers.t If we had given each datum equal weight the 

large number of masses would have dominated leaving the barriers with 

little influence on the results. The radii were only used in the fitting 

procedure when we had to choose between r 0 • 1.17 and 1.18 fm in rounding 

off the final set of coefficients. The deformations are determined 

largely by the coefficients in the shell effect function whose values 

were taken from our previous work 1 ~). The resulting droplet model pre-

dictions for all of these quantities are discussed in the following sections. 

4.1 Beta-Stability Properties 

In order to appreciate the quality of the fit let us compare the 

general features of the experimental mass surface with those predicted by 

the theory. One way of doing this is to recognize that the mass surface 

is essentially a steep-sided valley whose main axis bends away from the 

N • Z line toward neutron rich nuclei and whose cross-section is 

approximately parabolic. 

The solid curves in fig. 3 show how the valley of beta-stability 

is expected to vary as a function of the mass number A. The character-

tA minor error was found in the barrier calculations after the fitting 
was completed. Its correction resulted in slightly improved agreement 
with experiment. 
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is tics of parabolas fitted (at constant A) to the mass surface are 

given in this figure for comparison with the corresponding experimental 

values given by points. The quantity VA is the minimum value of the para~ 

bola, YA is the value of the neutron excess (Y = N-Z) at the minimum, 

and CA is the r.urvature of the parabola. One sees that the lowest point 

on the mass surface is at A~ 115, that the displacement of the valley 

away from the N a Z line increases steadily, and the curvature of the 

bottom of the valley decreases with increasing A •. One also sees that the 

agreement between theory and experiment is so good that we must display 

the difference (as is done in fig. 4) in order to see the remaining 

discrepancies. · 

Figure 4 shows that the minimum values of the parabolas fitted to 

the experimental masses generally lie below those oredicted, and that the 

curvature of the experimental parabolas is generally greater than that pre-

dieted. These two deviations tend to compensate. In addition note the 

relatively large excursion of the experimental values of VA away from those 

predicted in the vicinity of A • 190. This difference seems to be due to 

the relatively poor quality of our shell corrections for nuclei at the end 

of the rare-earth region. Another deviation that is probably due to shell 

effects is the tendency of the experimental valley of beta-stability to 

straighten out in the actinide region and not continue to bend away from 

theN • Z'line as is predicted by the model. This tendency shows up as 

a downward deviation of YA in fig. 4b for A;> 210. In our efforts to 
45-47 

understand this deviation we tried Other sets of shell corrections ) 

which reduced the discrepancy to varying degrees but none of them eliminated 

it entirely. We also found that by choosing what appear to be unphysical 

values for the droplet mode~ coefficients L and M, which are concerned 
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with higher order asymmetry effects, we could straighten out the valley 

of beta-stability in the actinide region. This had the effect of reducing 

the discrepancy at the cost of distorting the whole fitting procedure so as 

to give values that we felt were unreasonable for many of the coefficients. 

To avoid this undesirable tendency the coefficients L and M were fixed at 

nominal values chosen ahead of time and not allowed free variation in the 

fit. The compressibility coefficient K was also fixed at a nominal value 

close to the one that gave the best agreement with experiment. 

4.2 Final Mass Differences 

Another way of displaying the differences between the experimental 

masses and the theoretical predictions is to plot the individual mass 

differences versus the neutron number as is done in fig. 5. This plot, 
1~ 

which should be compared with similar ones in our previous work ), shows 

once again how poor our shell correction function is at the end of the 

rare earth region. The agreement between our shell function and the ex-

perimental one is also poor for the heavy elements.. Microscopic methods 
22-2~ 

for calculating shell effects such as the Strutinsky procedure ) 

were expected to give a better account of these features but their over-

all agreement with experiment (as can be seen in figs. 6 and 7) is about 

the same. 

Of course, it is possible some of the 'deviations seen in figs. 3-7 

are due to as yet unrecognized macroscopic effects rather than being 

completely due to shell effects. Another way of displaying the r~sidual 

errors that might be useful for identifying such trends is a contour plot 

like fig. 8. Here the same data as are shown in fig. 5 are given as 

contours in the N,Z plane. The main feature of this diagram seems to be 
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the hole near N = 110, Z = 75 due to over-correction for the shell effects 

in this region. 

4.3 Fission Barriers 

As was mentioned earlier, the droplet model coefficients were 

adjusted to give the best possible agreement b~tween theory and experi-

ment for both ground state masses and fission barriers. In the previous 

section we saw that the residual errors in the ground state masses seemed 

to be due to insufficiently precise shell corrections. There was no 

indication that improvements were needed in the macroscopic part of the 

theory. However, a comparison between calculated and experimental fission 

barriers shows that systematic deviations remain.that may be due to some 

shortcoming of the droplet model. 

In fig. 9a (based on the data from Table 1) the experimental fission 

barriers have been plotted relative to the ground state mass according 

to the scheme shown in fig. 10. The droplet model saddle masses for the 

same nuclei are shown in fig. 9b and the residual error in fig. 9c. The 

calculated values are seen to differ from the experimental ones in a 

systematic (almost linear) way as one moves through the periodic table. 

If we had included shell corrections at the saddle point our calculated 

values.would have agreed better in the actinide region but would not have 

changed much for the lighter nuclei. Negative values of the curvature 

48 
· correction coefficient, and a modified type of surface energy function ) 

were both found effective in reducing the differences in saddle 

masses but they made the fit to ground state masses worse. So 

far no satisfactory explanation for these deviations has been found. 
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4.4 Deformations 

13 14 As in our previous work ' ) one of the results of the calculation 

of sh~ll effects is a prediction of nuclear ground state deformations. 

During the fitting procedure the calculated values were compared with 

the experimental ones from ref. 49 ). Fig. 11 shows that there is rough 

agreement between theory and experiment for nuclei in the rare-earth and 

actinide regions. The main deviations seem to be associated (as with 

the mass deviations) with the inability of our shell correction function 

to adequately portray the behavior of nuclei at the upper end of the 

rare-earth region. 

4.5 Radii 
I 

The droplet model parameters chosen to give the best fit for masses 

and fission barriers also lead to predictions of nuclear charge radii in 

quite good agreement with experiment. The droplet model fit seems to 

. 13 14 have resolved the d1screpancy, mentioned earlier ' ), that existed 

between the nuclear radius constant inferred from a liquid drop model 

fit to masses, and that obtained from electron scattering measurements 

of nuclear charge radii. Table 2 lists the calculated and experimental 

radii that are compared in fig. 12. This figure also shows how the 

effective sharp radii of the neutron and proton distributions are 

expected to vary for nuclei along beta-stability and how these radii 

are related to the radius constant r • 
0 
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s. ~s 

The development of the droplet model was originally undertaken to 

improve the liquid drop model approach by carrying the leptodermous 

expansion of nuclear properties to one higher order in A1/ 3• We hoped, 

in this way, to help fill the gap existing between the usual liquid drop 

2/3 model (terms of order A and A ) and the various terms of non-statistical 

origin such as shell effects, even-odd effects, Wigner term, etc. This 

work is brought to completion here with the determination of values for 

the various coefficients that enter and the comparison of calculated and 

experimental values for masses, fission barriers and radii. 

The differences that remain when the droplet model is used to 

calculate ground state masses seem to be due to inadequate shell correc-

tions, but this is not the case for fission barriers. Fo.r barriers, the 

differences vary smoothly as one moves up the periodic table indicating 

that some effect of a statistical nature may still be missing. 

Some of the coefficients we have evaluated here (the volume energy 

coefficient, symmetry energy coefficient, surface energy coefficient, 

and nuclear radius constant,
1 
for example) may be considered constants of 

nature. These constants are probably more accurately determined from 

the experimental data when the droplet model is used than was possible 

with the liquid drop model. When the droplet model is used there is less 

need for these coefficients to assume slightly incorrect values to compensate 

for missing higher order terms. The droplet model also provides a more 

accurate way for extra~olating far from beta-stability because of the 

higher order effects that are included. Since a number of higher order 

shape dependencies (such as the shape dependence of the Coulomb redistri-
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bution energy or surface symmetry energy) are included, the droplet model 

will be important in calculations of heavy-ion collisions where highly 

distorted shapes are involved. 

These gains in understanding and completeness are provided by the 

droplet model at the cost of a substantial increase in the complexity of 

the treatment. However, the widespread availability of high-speed 

electronic computers makes this increased complexity tolerable for many 

applications. In addition the author is preparing a table that will 

contain the droplet model values for the masses, fission barriers, 

deformations, radii, etc. for all nuclei that are predicted to be 

particle stable. Copies of this table will be available to interested 

users. 
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Table 1. Experimental Fission Barriers and Saddle Masses 

Experimental Relative Saddle Mass 

Name z A Barrier E~erimental Calculated Difference 

Lu 71 173 28.0 27.2 30.9 -3.7 a) 

Ta 73 179 26.1 25.0 27.9 -2.9 a) 

Re 75 185 24.0 22.0 24.8 -2.8 a) 

Os 76 186 23.4 21.4 23.3 -1.9 a) 

187 22.7 20.5 23.2 -2.7 a) 

188 . 24.2 21.8 23.2 -1.4 a) 

Ir 77 189 22.6 20.2 21.6 -1.4 a) 

191 23.7 20.7 21.5 -0.8 a) 

Tl 81 201 22.3 13.8 15.2 -1.4 a) 

Bi 83 207 21.9 11.1 12.2 -1.1 a) 

209 23.3 11.1 12.0 -0.9 a) 

Po 84 210 21. oh) 10.1 10.9 -0.8 a) 

211 19.7 10.0 10.8 -0.8 a) 

212 19.5 10.9 10.7 0.2 a) 

At 85 213 17.0 9.6 9.8 -0.2 a) 

Rn 86 216 13.5 8.4 8.6 -0.2 c) 

Ra 88 225 9.0 8.2 6.6 1.6 d) 

227 8.0 8.0 6.4 1.6 d) 

Ac 89 226 8.0 7. 0 6.0 1.0 d ) 

227 7.3 6.6 5.9 0.7 d) 

228 7.2 6.8 5.8 1.0 d) 

Th 90 230 6.5 5.8 5.2 0.6 e) 

232 6.2 5.7 5.0 0.7 e) 

234 6.5 6.3 4.8 1.5 e) 

Pa 91 231 5.9 4.9 4.7 0.2 f) 

232 6.1 4.9 4.6 0.3 f) 

233 6.0 5.0 4.5 0.5 f) 

u 92 232 5.5 4.0 4.2 -0.2 e) 

234 6.2 4.6 4.0 0.6 e) 

(Continued) 



-27-

Table 1 (Continued) 

235 6.1 4.5 4.0 0.5 f) 

236 5.7 4.3 3.9 0.4 e) 

237 6.4 5.0 3.8 1.2 f) 

238 5.9 4.9 3.8 1.1 e) 

239 6.6 5.6 3.7 1.9 f) 

240 6.0 5.4 3.6 1.8 e) 

Np 93 234 5.4 3.3 3.7 -0.4 
f . 

) 

235 5.6 3.6 3.6 0.0 f) 

236 5.7 3.6 3.6 0.0 f) 

237 5.7 3.9 3.5 0.4 f) 

238 6.0 4.0 3.4 0.6 
f . 

) 

239 5 .. 9 4.3 3.4 0.9 f) 

Pu 94 238 5.9 3.6 3.1 0.5 e) 

239 6.4 3.9 3.1 0.8 f) 

240 5.8 3.6 3.0 o:.6 e) 

241 6.3 4.1 3.0 .1.1 f) 

242 5.6 3.8 2.9 0.9 
e· 

) 

243 6.1 4. 3' 2.9 1.4 f) 

245 5.7 4.3 2.7 1.6 f) 

Am 95 240 6.4 3.4 2.7 0.7 f) 

241 6.0 3.3 2.7 0.6 f) 

242 6.4 3.7 2.6 1.1 f) 

.243 6.0 3.7 2.6 1.1 f) 

244 6.2 3.8 2.5 1.3 f) 

245 5.9 4.0 2.5 1.5 f) 

247 5.6 4.1 2.4 1.7 f) 

Cm 96 244 6.1 3.2 2.3 0.9 e) 

245 . 6.4 3.4 2.2 1.2 f) 

247 6.2 3.5 2.1 1.4 f) 

248 6.2 3.9 2.1 1.8 e) 

(Continued) 
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Tab.le 1 (Continued) 

249 5.8 3.7 2.0 1.7 f) 

250 5.2 3.6 2.0 1.6 e) 

Bk 97 249 6.1 3.2 1.8 1.4 f) 

Footnotes to Table 1. 

a) L.G. Moretto, et al., Phys. Letters 38B (1972) 471 

b) Average of two values given. 

c) H. Freisleben, H.C. Britt and J.R. Huizenga, Proceedings of the Third 

International Conference on the Physics and Chemistry of Fission, paper 

IAEA/SM - 174/81 

d) Inferred from figu~es in E. Konecny, H.J. Specht and J~ Weber, ibid., 

paper IAEA/SM - 174/20 

e) B. B. Back, et al., ibid., paper IAEA/SM - 174/27. 

f) B. B. Back, et al., ibid., .paper IAEA/SM - 174/201 
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Table 2. Calculated and Experimental Nuclear Charge Radiia) 

b Experiment ) 

e 

e 

. e, ll 

e 

e 

e 

e,').l 

e 

e 

11 

·. " 
e 

e 

c Distribution Parameters ~ 

c a w 

3.650 0.517 0 

3.676 0.585 -0.102 

3.697 0.587 -0.083 

3.669 0.584 -0.102 

e.650 ·o.498 0 

3.744 0.526 -0.03 

3.797 0.534 -0.048 

3.737 0.525 -0.03 

5.315 0.575 0 

5.495 0.507 0 

5.771 9.496 0 

5.83 0.407 0 

5.614 0.587 0.096 

R /Al/3 z 
d Experimental ) e Calculated ) 

1.138 

1.154 1.152 1.133 

1.163 

1.152 

1.066 

1.109 

1.093 

1.1191 1.132 1.124 

1.145 

1.144} 1.145 1.123 

1.146 

1.118 1.133 . 
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208Pb 
lJ 6. 712 0.481 0 1.152 

lJ 6.659 0.514 0 1.146 

lJ 6.720 0.504 ~o.061 1.154 

e 6.47 0.523 0 1.115 

e 6.38 0.537 0.130 1.105 1.134 1.133 

e 6.40 0.542 0.140 1.109 

e 6.66 0.503 0 1.145 

e 6.597 0.550 0 1.139 

e 6.628 0.544 -0.062. 1.142 

Footnotes to Table 2. 

a) Experimental data from table 3 of R. C. Barrett, Rep. Prog. Phys. 37 

(1974) 1-54. 

b) The symbol e is used for electron scattering and 1.1 for JJ-mesic 

atom experiments. 

c) The charge densities were parameterized according to the expression 

-
d) The experimental value of the effective sharp radius of the charge 

distribution can be calculated with the expression 

= [ 
(1 + 2w) 11'

2 
2 ] 15 

c 1 + (l + w) · 3 ·.(a/c) + . . . . , see ref. ) • 

e) Eqs. 2, 3, 5, 8 and 9 are used to calculate the droplet model value 
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FIGURE CAPTIONS 

Fig. 1. Scheme used for the even-odd correction. 

Fig. 2. Origin of the "Wigner term" in terms of increased binding for 

nucleons in identical orbits. 

Fig. 3. Experimental and calculated properties of the valley of beta-

stability are plotted against mass number A. The points shown 

(for every fifth A value) were determined by fitting the quadratic 

function MA = VA + ~ CA (Y- Y A) 
2 

to isobaric sequences after first 

correcting the experimental masses for shell effects, the even-

odd mass differences, the Wigner term and the binding of the 

atomic electrons. The solid lines represent the droplet model 

predictions for these same quantities. 

Fig. 4. The difference between the experimental and calculated values 

of VA, YA and CA from fig. 3 are plotted against mass number A 

in order to. display the remaining deviations. This particularly 

useful way of displaying the data was inspired by the work of 

Y d 
50

) K d 51
) d L d i et al. 35

) ama a , o ama an u w g 

Fig. S. The experimental and calculated shell effects and their differ-

ences are shown as functions of the neutron number. Isotopes of 

an element are.connected by a line. The large negative deviations. 

at the beginning of the periodic table are for nuclei outside 

of the fit region, which began at A= 10. A small histogram to 

the right of part (c) shol:·s how the final errors are distributed 

for nuclei in the fit region. The substantial weight given to 

fitting fission barriers is presumably responsible for pulling 

the error distribution slightly to one side so that the mass 

residuals are not equally distributed about zero. 
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Fig. 6. This figure is like' fig. 5 for N and Z < 20 where an empirical 

shell function is used. The remainder of the calculated shell 

46 
effects are from Seeger ) who used the Strutinsky method. The 

droplet model coefficients were redetermined to obtain the best 

agreement with masses and fission barriers. Their values changed 

·very little and the quality of the fit was about the same. 

· Fig. 7. ·This figure employs an empirical shell function for N and Z < 20 

as in figs. 5b and 6b. It uses the shell corrections provided 

by Seeger (see fig. 6b) up to the middle of the rare earth region 
•. 45 

then switches to a set of corrections provided by Moller ). 

This latter set of corrections was adjusted to the heavy element 

region where it agrees quite well with experiment. Even though 

the droplet model coefficients were also redetermined, the over-

all agreement is about the same as that shown in figs. 5 and 6. 

Fig. 8. The differences that remain between the experimental masses and 

those calculated with eq. (16) after the droplet model coefficients 

have been adjusted to give'the best overall agreement for masses 

and fission barriers. 

Fig. 9. Experimental and calculated saddle masses and their differences 

are plotted against neutron number N for nuclei listed in Table 

1. The relationship between the experimental ground state shell 

correction, fission barrier and saddle mass can be seen in fig. 10. 

Fig. 10. Schematic diagram to show how the calculated fission barrier is 

related to the calculated saddle mass and the ground state shell 

correction. The figure also shows how shell effects can cause 

the experimental barriers to be slightly higher. 
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Pig. 11. Calculated and experimental quadrupole moments for nuclei in 

the rare-earth and actinide region are plotted against neutron 

number. The moments plotted are for those even-even nuclei 

49 listed in ref. ) with the omission of a few points with large 

errors whose tabulated values differed substantially from those 

of adjacent nuclei. 

Pig. 12. Various quantities characteristic of the radial extent.of 
'. 

spherical nuclei are plotted versus the mass number A. The 

dashed lines labeled N and Z correspond to 

predictions for the quantities (~/A113 ) and 

the droplet model 

1/3 RZ/A ) for nuclei 

along the bottom of the valley ~f beta-stability. The solid 

line, which is the weighted mean of the neutron and proton lines, 

represents the value of (R/A
1

/
3
) for the total nucleon density. 

I 1/3 Tbe solid dots correspond to the experimental values of (RZ A ) 

for various spherical nuclei given in table 2. The error bars 

of ± .012 fm were chosen to represent the spread in values 

observed in the tabulated results. Solid triangles indicate 

1/3 . 
the droplet model value of (RZ/A ) for these same nuclei. 

P'or comparison a dot-dashed line is drawn across the figure at 

1.18 fm which is the value of r (the constant related to p 
0 0 

by eq. (6)) determined by the fitting procedure. 
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