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Abstract
Terrestrial ecosystems sequester roughly 30% of anthropogenic carbon emission. However this 
estimate has not been directly deduced from studies of terrestrial ecosystems themselves, but 
inferred from atmospheric and oceanic data. This raises a question: to what extent is the 
terrestrial carbon cycle intrinsically predictable? In this paper, we investigated fundamental 
properties of the terrestrial carbon cycle, examined its intrinsic predictability, and proposed a 
suite of future research directions to improve empirical understanding and model predictive 
ability. Specifically, we isolated endogenous internal processes of the terrestrial carbon cycle 
from exogenous forcing variables. The internal processes share five fundamental properties (i.e., 
compartmentalization, carbon input through photosynthesis, partitioning among pools, donor 
pool‐dominant transfers, and the first‐order decay) among all types of ecosystems on the Earth. 
The five properties together result in an emergent constraint on predictability of various carbon 
cycle components in response to five classes of exogenous forcing. Future observational and 
experimental research should be focused on those less predictive components while modeling 
research needs to improve model predictive ability for those highly predictive components. We 
argue that an understanding of predictability should provide guidance on future observational, 
experimental and modeling research.

The need to advance our predictive 
understanding of the terrestrial carbon cycle
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Terrestrial ecosystems play a crucial role in the global carbon cycle and in the regulation of 

climate change. Anthropogenic CO2 emissions increased from 2.4 Pg C in 1960 to 8.7 Pg C per 

year in 2008 while terrestrial ecosystems absorbed roughly 30% during that period (Le 

Quere et al., 2009). If that absorption capacity were to change, in either direction, it would have 

a large impact on atmospheric CO2 concentrations, resulting in a strong feedback effect on 

climate (Friedlingstein et al., 2006; Denman et al., 2007). It is, therefore, imperative to 

accurately predict dynamics of the terrestrial carbon cycle in order to accurately predict future 

changes in the Earth's climate. Here, we examine the current state of the art of predictive 

modeling of the global carbon cycle, and outline how an understanding of the intrinsic 

predictability of its components can be used to guide future experimental research and develop 

the next generation of carbon cycle models.

To date, the magnitude of the terrestrial carbon sink has been deduced indirectly: combining 

analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net 

terrestrial carbon flux (Denman et al., 2007; Ballantyne et al., 2012). In contrast, when 

knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models 

they make widely different predictions and fit observations poorly (Schaefer et al., 2012; Todd‐

Brown et al., 2013). For example, none of the 11 earth system models (ESM) participating in the 

5th Climate Model Intercomparison Project (CMIP5) could accurately predict patterns of soil 

carbon (the largest terrestrial carbon pool) across the global land surface (Todd‐

Brown et al., 2013) (Fig. 1). Similarly regional evaluation of 26 models against estimated gross 

primary production (GPP) at 39 eddy covariance flux tower sites across the United States and 

Canada shows poor matches of modeled with estimated GPP within observed uncertainty 

(Schaefer et al., 2012). These problems have been known for more than a decade 

(Cramer et al., 2001; Mcguire et al., 2001) and obstruct our ability to adequately inform policy 

and decision makers about the probable consequences of anthropogenic emissions and land use 

change scenarios.
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Figure 1
Open in figure viewer  PowerPoint
Modeled vs. observation‐based soil carbon densities. The modeled soil carbon densities (kg m−2) 
represent 1995–2005 means from the historical simulations of the Climate Model 
Intercomparison Project 5 by 11 Earth system models. The observation‐based soil carbon density
in the top 1 m of soil from the Harmonized World Soil Database (HWSD). All of the models had 
difficulty representing soil carbon at the 1° scale. Despite similar overall structures, the models 
do not agree well among themselves or with empirical data on the global distribution of soil 
carbon although data themselves have great uncertainty. CCSM4 is US Community Climate 
System Model, NorESM1 is Norwegian Earth System Model, BCC‐CSM1.1 is Beijing Climate 
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Center model, HadGEM2 is UK Met Office Climate model, IPSL‐CM5 is French Institut Pierre 
Simon Laplace model, GFDL‐ESM2 is US Geophysical Fluid Dynamics Laboratory model, 
CanESM2 is Canadian Earth System Model, INM‐CM4 is Russian Institute for Numerical 
Mathematics model, MIROC‐ESM is Japan Earth System Model, MPI‐ESM‐LR is Germany 
Max Plank Institute model, and GISS‐E2 is US Goddard Institute for Space Studies model. 
(Replotted from data of Todd‐Brown et al., 2013).

The modeling community has adopted a variety of different approaches to improve the terrestrial

carbon models in ESMs, none of which, unfortunately, has led to significant reductions in the 

variation between model predictions. A common approach has been to incorporate an increasing 

number of processes known to influence the carbon cycle, to make the models as realistic as 

possible. However, the more processes the models incorporate, the more complex and less 

tractable the models are, making it practically impossible to understand why different models 

make different predictions. Model intercomparisons have been effective at revealing the extent of

the differences between model predictions (Schwalm et al., 2010; Keenan et al., 2012; 

Kauwe et al., 2013) but have typically provided limited insights into its origins. Benchmark 

analyses have provided assessments of model performance against standard datasets 

(Luo et al., 2012), but so far been restricted to processes occurring over short time‐scales 

(Randerson et al., 2009) (e.g. days to years). Data assimilation methods have been applied to 

directly constrain simple models or model components with observations (Smith et al., 2013) yet

less extensively to global models (Hararuk et al., 2014).

Many research programs, involving observations and experiments, are underway to improve 

understanding of the terrestrial carbon cycle (Kao et al., 2012). Observations to characterize 

carbon cycle components over all continents on Earth are usually carried out by satellites or 

research networks (Baldocchi, 2008). These have generated various regional and global data 

products, such as global maps of gross and net primary production (GPP and NPP) 

(Running et al., 2004; Jung et al., 2011), and regional and global distributions of soil carbon 

content and soil respiration (Tarnocai et al., 2009). These data products have been extremely 

useful for improving of our understanding of the processes and properties underpinning patterns 

in terrestrial carbon cycle components (Zhou et al., 2009; Jung et al., 2010). Experimental 

studies are also implemented to manipulate factors that are expected to vary as a consequence of 

climate change, such as elevating CO2 concentrations, increasing ambient temperature, and 

altering precipitation rates (Rustad, 2008). This enables direct insights into how ecosystems 

respond to such perturbations and have revealed some important new mechanisms, such as 

acclimation and adaptation of the carbon cycle to climate change (Niu et al., 2012). 

Nevertheless, they have yet to lead to better‐constrained predictions of the terrestrial carbon 

cycle.
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The lack of progress in improving the predictive ability of the models raises a question: to what 

extent is the terrestrial carbon cycle intrinsically predictable by its own nature? By intrinsic 

predictability we mean the degree to which a system's state and dynamics can be predicted given 

knowledge about initial conditions, external forcing and internal properties. If the intrinsic 

predictability of the terrestrial carbon cycle is low, then we should expect further research to 

make limited improvements in the accuracy of model projections despite improving our 

understanding. However if its intrinsic predictability is high, then why do the projections from 

state of the art models continue to differ so widely? The concept of predictability has been 

studied in detail in other fields (Heisenberg & Maclachlan, 1958; Grace & Hütt, 2013). For 

example, intrinsic predictability is famously limited in chaotic systems, where an extreme 

sensitivity to differences in initial conditions and imperfect knowledge of the system state 

combine to fundamentally constrain how accurate future projections can be (Lorenz, 1969; 

Smith, 2007). In the case of terrestrial carbon cycling, the theoretical limits to predictability have

yet to be addressed.

In this article, we investigate the predictability of the terrestrial carbon cycle. We first examine 

its internal properties, which largely determine and constrain its dynamics everywhere on the 

Earth. Those properties also form the basis upon which intrinsic predictability should be 

analyzed. We then identify five key classes of external forcing, and discuss how each influences 

the predictability of the terrestrial carbon cycle. Together, these classes encompass almost all 

possible scenarios that terrestrial ecosystems experience. We then present empirical and 

quantitative evidence to argue that some aspects of the terrestrial carbon cycle appear to be 

highly predictable while others less predictive. The key benefit from understanding predictability

is allowing sources of uncertainty to be targeted for improvement through further research. With 

that, we then highlight key areas for empirical research to improve predictive understanding and 

outline strategies to realize the predictability in terrestrial carbon models. Our analysis here does 

not extend to assessing how confidently Earth System Models as a whole might be able to 

predict the terrestrial carbon sink, but we hope that it can provide guidance for where future 

carbon model development is needed to improve that confidence.

Fundamental properties of the terrestrial carbon 
cycle

Phenomenologically, the dynamics of the terrestrial carbon cycle appear very rich, exhibiting 

fluctuations, directional changes, and tipping points (Scheffer et al., 2001; Cox et al., 2004; 

Hirota et al., 2011; Baudena & Rietkerk, 2012). These occur because multiple environmental 
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forcing variables interact with internal carbon cycle processes to cause diverse dynamics over 

different temporal and spatial scales. However, the internal processes are in fact relatively 

simple, and their responses to external forcing variables, as described in the next section, can be 

highly predictable once the forcing variables are sufficiently well‐characterized.

The internal processes of the terrestrial carbon cycle are compartmentalized into distinct pools. 

The dynamics of carbon within each pool can be largely characterized by the differences 

between the rates of carbon input and output. The vast majority of the input of carbon into an 

ecosystem is through photosynthesis (Schlesinger & Bernhardt, 2013) (Fig. 2a) while we usually 

ignore minor inputs from migratory heterotrophs, lateral flows and carbonate exchange. Carbon 

is then partitioned among pools, principally leaves, stems and roots. Subsequent carbon transfers 

are then donor‐pool dominated, with input rates to litter and soil pools being dependent on the 

output rates of their donor pools. The output rates from these pools, predominantly the decay of 

organic matter in litter and soils, are well‐approximated using simple first‐order kinetics 

(Olson, 1963; Meentemeyer, 1978; Adair et al., 2008; Zhang et al., 2008): in the absence of 

inputs, the pool size of litter or soil organic carbon decays exponentially through time. Carbon in 

the ecosystem is then, ultimately, released back into the atmosphere through respiration. These 

internal carbon processes are universal although their rates vary with ecosystems and 

environments over space and time. Some processes, such as photodegradation in arid and semi‐

arid lands (Austin & Vivanco, 2006) and anaerobic decomposition in peatlands (Bridgham & 

Richardson, 1992), may be ecosystem‐specific but ultimately result in modifications to the rates 

of output processes. Overall, understanding common characteristics of these processes is central 

to predicting carbon cycling in any ecosystem.
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Figure 2
Open in figure viewer  PowerPoint
A generalized model for predictability analysis of the terrestrial carbon cycle The basic carbon 
cycle processes are represented by five fundamental properties for all terrestrial ecosystems (see 
text) (a). The five properties have been incorporated into all terrestrial carbon cycle models with 
a pool‐and‐flux structure (b). The structure is typically encoded using very similar sets of 
balance equations with carbon input into and output from each pool [Eqn 1] (c). The balance 
equations in all terrestrial carbon cycle models can be converted to a matrix equation [Eqn 2] (d).
Thus, the matrix equation can be considered as a general system of equations for the terrestrial 
carbon cycle and has a specific structure that restricts the set of possible behaviors and thus 
offers insights into its intrinsic predictability under different environments.

The internal carbon cycle processes can thus be characterized by five fundamental properties: (i) 

compartmentalization of carbon within distinct pools; (ii) photosynthesis as the dominant carbon 

input; (iii) partitioning of that photosynthetic input between the various pools; (iv) donor pool‐

dominated carbon transfers between pools; and (v) the first‐order decay of litter and soil organic 

matter to release CO2 via respiration (Zhang et al., 2008; Harmon et al., 2009; Luo & 

Weng, 2011; Davidson et al., 2012; Schädel et al., 2013). These fundamental properties are 
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common to all ecosystems on Earth, although their rates vary. This representation of the 

terrestrial carbon cycle has been utilized for decades in models and still forms the backbone to 

the structure of most terrestrial carbon models (Luo & Weng, 2011; Todd‐Brown et al., 2013; 

Xia et al., 2013).

Over time, many elaborations to this structure have been investigated, most notably assessing the

importance of various internal feedbacks. Examples include nitrogen and phosphorus cycling 

(Domingues et al., 2010; Wang et al., 2010; Zaehle et al., 2010), which modify the rates of 

processes but do not change dynamic patterns of the terrestrial carbon cycle over different space 

and timescales. Positive feedbacks between leaf biomass and photosynthesis rate can occur when

leaf area index (LAI) is relatively low: LAI increases with leaf biomass allowing more 

photosynthesis per unit ground area (Williams et al., 2005). However, over timescales of years to

decades this feedback is of minor importance because LAI reaches maximum potential relatively

fast. Recently, various nonlinear microbial models have been developed (Weintraub & 

Schimel, 2003; Allison et al., 2010; Wieder et al., 2013). These models introduce various 

feedbacks that could theoretically generate more complex dynamics (e.g. oscillations) than just 

first order decay of carbon (Wang et al., 2014), but there is no evidence for such complex 

behavior in empirical data from natural ecosystems.

What has been missing to date is an understanding of how the structure of the terrestrial carbon 

cycle itself determines our ability to predict it in the first place given various sources of 

uncertainty in external forcing and initial conditions. Such understanding can be obtained 

through studies focused on analysis of intrinsic predictability.

The intrinsic predictability of the terrestrial carbon
cycle

We evaluate the predictability of the terrestrial carbon cycle primarily based on empirical 

evidence and constraints from its five fundamental properties. One of the most widely observed 

properties of terrestrial carbon dynamics is that the total carbon tends to converge over time to 

some form of equilibrium, if it starts from a carbon content distant to that equilibrium (e.g. after 

disturbances) (Matamala et al., 2008; Yang et al., 2011). Carbon models conforming to the five 

fundamental properties always predict this behavior (Mcguire et al., 2001), which can be 

explained very simply: the rate of carbon input is relatively independent of the vegetation carbon

content (there is typically a weak feedback between photosynthesis and foliage biomass carbon; 

Williams et al., 2005) whereas the rate of output increases with carbon content. Therefore, the 

carbon content adjusts until the rate of carbon losses becomes equal to the rate of carbon inputs. 
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This universal behavior implies that the rate of approach to equilibrium, and the equilibrium 

itself, is relatively predictable given knowledge about carbon input rates, loss rates, the initial 

conditions, and governing environmental constraints.

Intrinsic predictability under five classes of external forcing

Evaluation of the intrinsic predictability of the terrestrial carbon cycle requires an understanding 

of how sensitive carbon cycle components are to known sources of external forcing because a 

range of environmental factors perturb terrestrial ecosystems over different space and time 

scales. Below we discuss how five classes of forcing, encompassing almost all possible 

environmental change scenarios experienced by terrestrial ecosystems on the Earth, likely 

influence the intrinsic predictability of the carbon cycle (Table 1).

Table 1. Intrinsic predictability of response patterns of the terrestrial carbon cycle to five classes 
of external forcing. The predictability of the carbon cycle measures a degree to which the 
response pattern is predictable given one class of external forcing. The predictability is usually 
judged by the sensitivity (e.g., diverging vs. converging) of systems behavior in response to 
various classes of perturbation and external forcing. In general, carbon cycle responses per se are
more predictable than external forcing, which causes much high uncertainty in predicting carbon 
cycle responses to climate change

External forcing Response of the terrestrial carbon cycle

Class Example General 

pattern

Component Intrinsic 

predictability

Cyclic 

environment

Diurnal, seasonal, and 

interannual

Cyclic Diurnal and seasonal High

Interannual Less known

Disturbance 

event

Fire, land use, insect 

outbreak, and storms etc.

Pulse‐recovery Time of events happening Low

Immediate impacts of 

disturbance events on carbon 

Medium

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-tbl-0001


External forcing Response of the terrestrial carbon cycle

Class Example General 

pattern

Component Intrinsic 

predictability

cycle

Recovery High

Recovery to original or new 

equilibrium

Less known

Climate change Rising (CO2)a, climate 

warming, altered precipitation

Gradual Direct impacts High

Indirect impacts via induced 

changes in disturbance regimes 

and ecosystem states

Less known

Shifts in 

Disturbance 

regimes

Regional, long‐term patterns 

of fire, land use, insect 

outbreak, and storm etc.

Disequilibrium Joint probability to describe 

disturbance regimes and their 

shifts

Unknown

Impacts of shifted disturbance 

regimes on mean carbon storage

High



External forcing Response of the terrestrial carbon cycle

Class Example General 

pattern

Component Intrinsic 

predictability

Ecosystem state 

change

Forest to cropland, grassland 

to cropland, reforestation, etc.

Abrupt changes When and where ecosystem 

states change

Less known

Carbon cycle change with 

ecosystem states

High

First, some external variables exhibit cyclic changes; most important are the daily and seasonal 

cycles of light, temperature, and other environmental factors. These typically cause the carbon 

flux rates, such as photosynthesis and respiration, to vary with the same period as the forcing 

(Table 1). The magnitude of the carbon response in different pools depends on the residence 

times – the duration of carbon staying in an ecosystem from entrance via photosynthesis to 

release via respiration. Pools with residence times of the same order as the cycle of the forcing 

(e.g. leaf carbon and seasonal cycles) tend to have larger amplitudes of responses than those with

residence times much longer than the cyclic period of the forcing. The cyclic patterns of 

photosynthesis have long been well‐predicted using a commonly used set of equations that 

capture leaf‐level responses to light, temperature, and water status (Farquhar et al., 1980). 

Similarly, most carbon cycle models can adequately simulate the response of respiration to short‐

term environmental variability if the model parameters are well‐calibrated (Fox et al., 2009). 

This implies that the responses of terrestrial carbon to daily and seasonal cyclic forcing should be

highly predictable. However, interannual variability in the terrestrial carbon cycle, as reflected in 

eddy‐flux measurement (Yuan et al., 2009) and variations in the growth rate of atmospheric 

CO2 (Keeling et al., 1995), is less known for its underpinning mechanisms (Zeng et al., 2005; 

Keenan et al., 2012; Wang et al., 2013), making it difficult at present to evaluate its 

predictability.

The second class of forcing is disturbance events, such as wildfire and climate extremes 

(Foley et al., 2005; Running, 2008; Bowman et al., 2009; Mack et al., 2011; 
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Reichstein et al., 2013). During such events, relatively large amounts of carbon are removed 

rapidly, mostly from the aboveground biomass and organic layers of litter (Mack & 

D'antonio, 1998). Recovery then occurs over the subsequent years and decades following the 

monotonic response pattern described above (Odum, 1969; Yang et al., 2011; 

Williams et al., 2012). Simple pulse‐recovery response patterns such as these are general 

phenomena having been observed in hundreds of studies on carbon dynamics during the 

secondary forest succession (Yang et al., 2011) and grassland restoration (Matamala et al., 2008).

The recovery dynamics following a disturbance then appear to be highly predictable given 

adequate knowledge of the carbon influx rates, the residence times, and the pool sizes following 

disturbance (Weng et al., 2012) (Table 1). Moreover, these three sets of parameters can be 

estimated by analysis of time series data, either by direct calibration or though data‐assimilation 

(Luo et al., 2003). The disturbance events themselves, however, have an inherent random 

component (e.g. chances of a hurricane) making the precise predictability of individual events 

relatively low. Likewise, the severity of disturbance impacts on carbon cycle is not very 

predictable, either. Even so, the typical frequency of disturbance events over a landscape can be 

used to constrain the probability of disturbance events themselves. Moreover, there is evidence 

that some ecosystems may recover to an alternative steady state following disturbance (Suding &

Hobbs, 2009). Our lack of understanding of why this occurs limits our assessment of its 

consequences for carbon cycle predictability.

The third class of external forcing is directional trends in environmental variables, including 

rising atmospheric CO2 concentrations, climate warming, altered precipitation, and nitrogen 

deposition. These climate change factors cause disequilibrium in terrestrial carbon pools though 

their influences on carbon influx rates, residence times and pool sizes (Denman et al., 2007). For 

example, rising atmospheric CO2 concentrations directly stimulate photosynthesis and thus 

increase ecosystem carbon influx (Franks et al., 2013). Most of the direct effects of climate 

changes on the terrestrial carbon cycle can be predicted via relatively simple response functions 

in ESMs (Reynolds & Acock, 1985; Burke et al., 2003). Those functions are usually based on 

experimental and observational studies and incorporated into models (e.g., environmental 

scalars) to translate environmental changes to changes in carbon processes. However, climate 

change also causes indirect effects on the terrestrial carbon cycle (Korner et al., 2005; 

Cernusak et al., 2013), such as changes in plant species composition (Higgins & Scheiter, 2012), 

microbial priming (Kuzyakov et al., 2000), and respiratory acclimation (Luo et al. 2001). The 

indirect effects are much less well‐understood, making it currently unclear just how predictable 

they are (Table 1). Moreover, climate change may induce shifts in disturbance regimes and 

changes in ecosystem states as discussed below (Westerling et al., 2011).
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The fourth class of external forcing is changes in disturbance regimes at decadal, centennial and 

longer time scales (Hu et al., 2010). Each region of the Earth naturally has its own disturbance 

regime, typically determined by stochastic processes such as hurricanes and fires (Arora & 

Boer, 2005; Frolking et al., 2009; Vanderwel et al., 2013). Disturbance regimes can be quantified

by joint probabilistic distributions of disturbance frequency and severity (Weng et al., 2012). 

This can be used in modeling studies to investigate its consequences for terrestrial carbon 

dynamics (Mcguire et al., 2001). Long‐term datasets are needed to characterize frequency and 

severity of the prevailing disturbance regime in a region (Grace et al., 2014), which, in turn, can 

be used to generate a probability distribution of ecosystem carbon storage. The mean of the 

probability distribution determines the realizable carbon storage capacity under a given regime, 

reflecting the mean carbon storage capacity over a sufficiently long‐time period or over a 

sufficiently large area (Luo & Weng, 2011). This mean carbon storage capacity could thus be 

predictable. However, we do not have enough knowledge to predict when the disturbance regime

changes by direct (e.g., slash and burn agricultural expansion) or indirect (e.g., climate change) 

anthropogenic forcing (Westerling et al., 2011). We need to understand how the conditional 

probability distributions of disturbance frequency and severity respond to such changes 

before the consequences for the carbon cycle can be characterized.

The fifth class comprises changes in ecosystem states, usually induced by shifts in climate and 

disturbance regimes (Scheffer et al., 2001; Hirota et al., 2011; Staver et al., 2011; Higgins & 

Scheiter, 2012). Ecosystem state change is usually considered as a response of ecosystems to 

external forcing but we treat it as type of external forcing here. This is because ecosystem state 

changes usually result from vegetation state and/or soil structure changes rather than the five 

fundamental properties of the terrestrial carbon cycle as described in section 2. For example, land

use and land cover changes directly result in ecosystem state changes, such as from forests or 

grasslands to croplands, through human activities (Houghton et al., 2012). Woody encroachment 

into grassland usually results from shifted fire regimes, climate change, and human activities 

(Higgins & Scheiter, 2012). In certain arid ecosystems there can be multiple alternative 

equilibrium states, such as grasslands and woodlands, due to interactions among biomass 

accumulation, fire, and establishment (Baudena & Rietkerk, 2012; Higgins & Scheiter, 2012; 

Staver & Levin, 2012). When ecosystem states change, carbon cycle dynamics within and 

between the plant, litter, and soil carbon pools also change. Dynamic vegetation models usually 

simulate ecosystems state changes and quantitate their consequences on carbon cycle through 

different sets of carbon cycle parameters for vegetation types. Given the change in vegetation 

structures and corresponding parameters, a consequent change in carbon cycle is quantifiable. 

However, while vegetation state changes have been studied (Chapin et al., 1995; 
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Hirota et al., 2011), their relationships with those carbon cycle parameters remains poorly 

understood.

Overall, there is ample evidence to indicate that some components of the terrestrial carbon cycle 

are intrinsically predictable. However, the terrestrial carbon cycle becomes less predictable when

climate change induces indirect effects via changes in species composition and disturbance 

regimes, leading to ecosystem state changes. Even within a stationary disturbance regime, 

individual disturbance events usually occur stochastically and thus their impacts on the carbon 

cycle are less predictable.

Mathematical analysis of predictability

The predictability of a system can be mathematically analyzed if the system model can be 

defined. We first highlight that the terrestrial carbon cycle can be represented by a matrix 

equation. Its mathematical properties restrict the set of possible behaviors the terrestrial carbon 

cycle can exhibit and, thus, defines its predictability.

All of the terrestrial carbon models embedded in ESMs adopt a pool‐and‐flux structure. The 

structure well‐represents the five fundamental properties of the terrestrial carbon cycle (Fig. 2a 

and b) (Luo & Weng, 2011). Such structured models simulate the flow of carbon through 

different pools from its entrance via photosynthesis to its release via respiration, obeying the law 

of mass conservation. The majority of carbon flows in one direction, from entrance to release, 

with a relatively small fraction being recycled through microbial growth, death, and 

decomposition (Xia et al., 2013). The rate of input into the pool is normally independent of the 

pool size but its output rate depends, in part, on how much carbon it contains (Luo et al., 2003). 

This input‐output relationship can be represented as a set of linked carbon balance equations 

(Fig. 2c). In reference to the model structure in Fig. 2b, the set of balance equations are:
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(1)
where Xi(t), i = 1, 2, …, 8, is carbon stock at time t, respectively, in leaf, root, wood, metabolic 
litter, structural litter, active, slow, and passive pools; bi, i = 1, 2, 3, is partitioning coefficients of 
photosynthetic carbon input to leaf, root and wood, respectively; U(t) is photosynthetic carbon 
input; ξ(t) is an environmental scalar to represent temperature and moisture effects on carbon 
processes; ci, i = 1, 2, …, 8, is carbon exit rate, respectively, from leaf, root, wood, metabolic 
litter, structural litter, active, slow, and passive pools; aj,I is transfer coefficient of exited carbon 
from ith pool to jth pool.

Similar carbon balance equations have been encoded in all ESMs despite variations in the 

number of equations. The set of balance equations can be summarized by a matrix equation 

(Luo et al., 2003; Luo & Weng, 2011) (Fig. 2d) as:

(2)
where X(t) is a vector of pool sizes, B is a vector of partitioning coefficients, U(t) is 
photosynthesis rate, ξ(t) is an environmental scalar, A is a matrix of transfer coefficients, C is a 
diagonal matrix of exit rates, and X0 is initial values of pool sizes. Thus, matrix Eqn 2 can 
describe carbon transfers among pools within all types of terrestrial ecosystems as described by 
balance Eqn 1.
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The matrix equation has long been used to examine carbon balance in and transfers among pools 

(Bolin & Eriksson, 1958; Emanuel et al., 1981) and can be argued to represent internal processes

that drive carbon cycle toward equilibrium for all types of terrestrial ecosystems on the Earth 

(Bolker et al., 1998; Luo & Weng, 2011). It has been recently used to derive a semi‐analytic 

solution to accelerate the computationally expensive spin up of the land models (Xia et al., 2012)

and to establish a traceability framework to facilitate model intercomparisons, benchmark 

analyses, and data assimilation (Xia et al., 2013).

As a general system of equations for the terrestrial carbon cycle, the matrix equation describes a 

system that, under constant environments, all pools converge monotonically toward their 

equilibriums through time, regardless of their initial states. This implies that equilibrium carbon 

pool sizes are highly predictable anywhere on the global land surface where carbon influx and 

residence times can be estimated. Initial states, even if unknown, influence the trajectory of 

convergence toward the equilibriums for the duration that is a function of residence time 

(Bolker et al., 1998; Luo & Weng, 2011).

The matrix equation can also be used to analyze the predictability of the terrestrial carbon cycle 

under the five classes of forcing as in Table 1 although these formal studies still need to be 

conducted. First, the cyclic environmental forcing directly influences photosynthetic carbon 

input, U(t), and respiration through the environmental scalar, ξ(t), in the matrix equation. Thus if 

the forcing can be known with confidence, then this implies that the carbon cycle responses to 

the cyclic environmental variation should be highly predictable. Second, disturbance events 

usually remove carbon in different pools, which corresponds to the reduction of pool 

sizes, X (t = t0), in the matrix equation. Once the initial pools after disturbance are known, the 

equation can be used to predict a recovery trajectory unless the system shifts to a new 

equilibrium state. Third, direct responses of the terrestrial carbon cycle to global change can be 

predicted by linking global change factors of temperature and precipitation to the carbon cycle 

via the scalar, ξ(t), or atmospheric CO2 concentrations via a photosynthesis model. Fourth, the 

impacts of shifts in disturbance regimes on carbon can be predicted by quantifying the joint 

probability densities of disturbance frequency and severity (Weng et al., 2012). Fifth, ecosystem 

state changes are usually simulated by dynamic vegetation models and linked to carbon cycle 

with different sets of parameters for different vegetation types to the carbon balance equations. 

Thus their impacts on carbon cycle could be predictable if those sets of parameters are known 

with sufficient confidence.

The terrestrial carbon cycle is one example of a complex system whose dominant dynamics can 

be explained using relatively simple principles. This is similar to a case famously revealed by Dr.

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0089
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-tbl-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0049
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0095
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0094
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0049
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0010
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0022
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0009


Robert May in a sense that simple models can lead to complex dynamics (May, 1976). However, 

the simplest nonlinear models in May's case can lead to chaotic population dynamics with low 

predictability. The terrestrial carbon cycle is different in that its internal processes imply it has 

much higher predictability, even given the effects of multiple environmental forcing variables. 

Unlike chaotic systems, where small perturbations to an initial state grow over time, the internal 

properties of the terrestrial carbon cycle cause any deviations from equilibrium to decay 

monotonically over time. From a dynamical systems perspective this may make the terrestrial 

carbon cycle seem rather uninspiring! However, from the perspective of those aiming to improve

models of the terrestrial carbon cycle this is really important: it gives us the confidence that we 

should indeed be able to improve the models significantly.

Future research to improve predictive ability

Although the above analysis indicates that we should expect high intrinsic predictability for 

some components of the terrestrial carbon cycle, the accuracy of predictions of current ESMs is 

highly limited. Our analysis has also identified components of the terrestrial carbon cycle whose 

predictability we presently have limited or no knowledge about (Table 1). Future observational 

and experimental research should aim to improve predictive understanding of those less known 

components. For those components with high predictability, it is urgent to develop strategies to 

narrow the gaps between the expected and actual predictive ability of terrestrial carbon models. 

Below we highlight future research directions, for both empirical and theoretical research, to 

improve our ability to predict responses of the terrestrial carbon cycle to climate change (Table 2,

Fig. 3).

Table 2. Proposed roadmap of improving terrestrial carbon cycle models

Roadmap Description

State of the art Many essential processes understood

Understanding improvement through further observations, experiments and modeling

Global models synthesizing current understanding make widely diverging predictions
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Roadmap Description

Intrinsic predictability poorly understood

Research needs Identify and fill critical understanding gaps

Identify critical uncertainties

Understand intrinsic predictability

Improve predictive skill

Recommendations Integrated analysis to identify critical traceable components and achieve systemic understanding

Identify key sources of uncertainty in critical components through

Data‐model fusion

Benchmark analyses

Model intercomparisons

Develop new generation of data, theory, and models

Future state of the art Intrinsic and achieved predictability quantified



Roadmap Description

Key sources of uncertainty well‐characterized

Evolving holistic understanding of knowledge gaps

Key data, model and understanding deficiencies targeted



Figure 3
Open in figure viewer  PowerPoint
Proposed roadmap for the future development of terrestrial carbon models. Terrestrial carbon 
cycle research is currently carried out through observation, experimentation, and modeling. 
Benchmark analysis should be promoted to measure model performance against data from 
observation and experiments. Theoretical understanding of the terrestrial carbon cycle has not 
been advanced but has the potential to evaluate essential structural components across all carbon 
models. Ideally, data, theory, and model need to be infused together to guide future data 
collection, theory development, and model improvement. Integrated analyses should eventually 
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narrow the gap between the intrinsic and achieved predictability with major sources of 
uncertainty well‐characterized.

Future empirical research directions

Ecosystem state and its transition

Ecosystem transitions are probably the least understood process in terrestrial carbon dynamics 

over decadal to centennial timescales but potentially have the most profound impacts on the 

global carbon cycle (Cox et al., 2000; Scheffer et al., 2001; Higgins & Scheiter, 2012). Examples

include the respiration of vast stores of organic carbon from thawing permafrost, predominantly 

in polar regions (Schuur et al., 2009), the fixation of new carbon in such regions with vegetation 

transitions from shrublands to forests (Starfield & Chapin, 1996), and the dieback of the Amazon

forests in response to changing precipitation which would release stores of carbon held in 

standing wood (Cox et al., 2000, 2004; Hirota et al., 2011). Such transitions can occur through 

progressive changes (e.g. warming) or stochastic events (e.g. sudden drought) 

(Chapin et al., 1995; Mack & D'antonio, 1998). Ecosystem transition redefines the expected 

equilibrium carbon state. That equilibrium is predictable if we know how carbon cycle 

parameters change with ecosystem states. Unfortunately, our knowledge is poor on ecosystem 

state changes, their predictability, and subsequent influences on carbon cycle processes. Future 

studies are therefore needed to address our critical knowledge gaps about how directional climate

changes, stochastic events of disturbances, and internal mechanisms interact to influence the 

likelihood of ecosystem state change and its predictability.

States of and shifts in disturbance regimes

Disturbance regimes represent long‐term and regional characteristics of disturbance frequency 

and severity (Pickett & White 1985) (Fig. 4). They largely determine the statistical probability 

for the degree of carbon‐cycle disequilibrium in any ecosystem (Hu et al., 2010). A global 

understanding of different disturbance regimes is thus essential to quantitate the degrees of 

disequilibrium across the global land surface. Ideally, global terrestrial carbon models should be 

initialized (or spun up) to reflect the degrees of disequilibrium at prevailing disturbance regimes. 

Presently our understanding of disturbance regimes at the global scale is minimal and even less 

so for their conditional probability distributions on natural and anthropogenic variables to 

describe their shifts with climate change. Without characterization of states of disturbance 

regimes, both at a particular time and their shifts over time, it is impossible to accurately 

quantitate carbon dynamics in terrestrial ecosystems.
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Figure 4
Open in figure viewer  PowerPoint
Probability of occurrence for eight forest disturbance agents, across the eastern United States 
(1995–2011). Disturbances are defined according to the most recent census of 47 723 Forest 
Inventory and Analysis plots and as events that damage or kill at least 25% of trees across an 
area at least one acre (0.405 ha) in size since the last plot measurement (Vanderwel et al., 2013).

Disturbance events and recovery trajectories
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Disturbance events can result in the direct emission of a large amount of carbon into the 

atmosphere (Mack et al., 2011). Following disturbance events, ecosystems typically recover to 

predisturbance states over time (Yang et al., 2011). Individual disturbance events alter the carbon

cycle on yearly and decadal time scales but only have long‐term effects if the ecosystem recovers

to an alternative state. It is therefore critical to characterize the recovery trajectories of different 

ecosystems, and to examine whether they recover to initial or alternative states. In the former 

case, we need to quantitate initial values of carbon pools, carbon influx, and residence times to 

realize the potentially high predictability of carbon dynamics during the disturbance‐recovery 

processes. In the latter case, we have to characterize the conditions under which ecosystems do 

not return to their initial state following disturbances.

Response functions

Response functions relate the rates of different carbon cycle processes to environmental variables

and are thus crucial for predicting carbon cycle dynamics under global change 

(Burke et al., 2003). Presently, our knowledge of response functions is still insufficient to 

effectively improve our predictive ability. Terrestrial carbon models use a variety of response 

functions to predict ecosystem responses to various global change factors (Adams et al., 2004; 

Adair et al., 2008; Smith et al., 2013). New experiments and/or new analyses of existing 

observations are needed to characterize response functions and their variations under different 

conditions and over time so that they can realistically reflect ecosystem responses to 

environmental changes in the future. Highly nonlinear response functions, such as a sudden 

decrease in soil decomposition rates or sudden increase in tree mortality rates at high ambient 

temperatures, are likely to be especially important for understanding the predictability of the 

carbon cycle because small differences in environmental conditions could lead to large 

differences in carbon cycle responses (Adair et al., 2008; Smith et al., 2013). Understanding the 

variations of response functions among carbon processes, ecosystem types, and climate regimes, 

will help to characterize a range of possible dynamics the carbon cycle might exhibit under 

climate variation.

Improvements to the predictive ability of terrestrial carbon 
models

At present, the predictive ability of terrestrial carbon cycle models appears to fall far short of the 

intrinsic predictability (Fig. 1) for components for which we have plenty of data and knowledge. 

Transparent practices for model development, evaluation, and improvements are therefore 

needed if terrestrial carbon cycle models are to achieve high predictive ability. We therefore 

https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-fig-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0077
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0077
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0001
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0002
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0013
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0096
https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12766#gcb12766-bib-0053


recommend the following measures to improve the predictive ability of terrestrial carbon models 

(Table 2; Fig. 3).

Model tractability

The biggest impediment to model evaluation and improvement at present is model intractability. 

The more processes incorporated, the more difficult it becomes to understand or evaluate model 

behavior. As a result, uncertainty in predictions among models cannot be easily diagnosed and 

attributed to its sources (Friedlingstein et al., 2006; Schwalm et al., 2010; Keenan et al., 2012; 

Raczka et al., 2013). It is essential to understand the common core elements among terrestrial 

carbon models (Fig. 2) and to identify and characterize those traceable components so as to 

improve model tractability (Xia et al., 2013) (Fig. 5a). Developing such a traceability framework

would consequently help improve the comparability of models and data, evaluate impacts of 

additional model components (Fig. 5b), facilitate benchmark analyses, model intercomparisons 

(Fig. 5c), and data‐model fusion (Fig. 5d); and improve model predictive power. The 

predictability of the core elements can then be clearly characterized under different sources of 

variation (e.g. external forcing and uncertainty in process understanding) (Fig. 5a) and compared 

to the achieved predictive ability. The traceability framework enables diagnosis of where carbon 

models are clearly lacking predictive ability and evaluation of the relative benefit of adding more

components to the models.
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Figure 5
Open in figure viewer  PowerPoint
Improvements to model predictive ability. The fundamental properties of the terrestrial carbon 
cycle, and their representation in shared structures among existing models, enable key traceable 
elements to be identified and characterized (a). This traceability will make all terrestrial carbon 
models more tractable and attribute model uncertainty in model intercomparison projects to its 
sources (b) and help evaluate impacts of adding new components into an ESM on carbon cycle 
(c) so as to pinpoint parts of models for improvement via model‐data fusion (d). The traceability 
framework in panel A was developed to decompose modeled ecosystem carbon storage capacity 
(Xss) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE). The 

latter τE can be further traced to (ii) baseline carbon residence times , which are usually 
preset in a model according to vegetation characteristics and soil types; (iii) environmental 
scalars (ξ), including temperature and water scalars; and (iv) environmental forcing 
(Xia et al., 2013). Panel (b) shows that model intercomparison traced differences in ecosystem 
carbon storage capacity to differences in parameter settings in Community Land Model 3.5 
(CLM3.5) and CABLE leading to substantial differences in baseline carbon residence times 

. Panel (c) shows the impacts of incorporating nitrogen processes into the Australian 
Community Atmosphere Biosphere Land Exchange (CABLE) model on the ecosystem carbon 
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storage capacity (open symbols) as determined by NPP and the carbon residence time (τE) in 
comparison with carbon‐only simulations (filled symbols). Panel (d) shows that parameter 
adjustment via data assimilation substantially improved data‐model fitting for soil carbon density
in CLM3.5 (Hararuk et al., 2014).

Origin of model uncertainty

We need to identify sources of uncertainty in model predictions so as to pinpoint those 

components most in need of improvement. The dynamics of the carbon cycle can be fully 

defined by Eqn 2 if parameters related to carbon influx, residence time, and initial values are 

specified. Inconsistency among model predictions must arise from uncertainty and discrepancy 

among those parameters and forcing given the fact that model structures are similar. Indeed, as 

shown by Todd‐Brown et al. (2013), initial values of carbon pool sizes differ by 5.9‐fold, carbon 

influx by 2.6‐fold, and residence times by 3.6‐fold among 11 terrestrial carbon models used in 

CMIP5. Those differences in initial pool sizes and parameter values all propagate in the forward 

modeling to generate considerable uncertainty in predicted carbon‐climate feedbacks among 

models. The identification and improvement of processes that generate large differences in those 

parameters among models should substantially reduce uncertainty in model predictions.

Parameterization and model‐data fusion

With similar carbon balance equations encoded in global land models (Fig. 2c and d), future 

trajectories of carbon dynamics can be fully defined at given forcing if the coefficients of the 

carbon balance equations are well‐constrained by observations. However, it is still challenging to

parameterize ESMs to capture the heterogeneity of global vegetation and soil carbon processes. 

It is therefore essential to identify processes, databases, and modeling techniques that can help 

substantially improve representation of carbon processes in the models. In particular, we need to 

examine variations of coefficients of the carbon balance equations and estimate them against best

available observations via model‐data fusion (Raupach et al., 2005; Keenan et al., 2013; 

Smith et al., 2013; Hararuk et al., 2014) (Fig. 5d). There are presently technical difficulties in 

applying model‐data fusion techniques to large, complex models. By isolating model 

components under a framework of traceability, these techniques can be successfully applied 

(Hararuk et al., 2014). This will not only improve model predictive performance but will also 

allow the identification of aspects of the carbon cycle where more empirical data are needed.

A new generation of models

Our analysis indicates that some components of the terrestrial carbon cycle appear to be highly 

predictable whilst our knowledge is limited on predictability of interannual variability, 

disturbance regime shifts, and indirect effects of climate change. It is practically feasible to 
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constrain structures and parameters of model components for which we have solid theoretical 

and empirical understanding (predictive ability meets our understanding of predictability), whilst

allowing structural variations for those components for which we have limited understanding of 

their predictability. In the latter components, alternative hypotheses should be explored. For 

example, we have limited observations on changes in disturbance regimes, vegetation dynamics, 

and ecosystem states under climate change despite potentially important consequences for the 

terrestrial carbon balance (Running, 2008). In the absence of adequate knowledge, different 

hypotheses on the response of the carbon cycle to these changes have been postulated in models. 

The new generation of models must have the capacity to compare the relative influences of the 

alternative hypotheses in greater detail than can be done at present, thus allowing identification 

of the aspects of our understanding in need of improvement.

Conclusions

In this article, we investigated fundamental properties of the terrestrial carbon cycle, examined 

its intrinsic predictability, and proposed a suite of future research directions to improve empirical

understanding and model predictive ability of the carbon cycle. Specifically, we isolated 

endogenous internal processes of the terrestrial carbon cycle from exogenous forcing variables. 

The internal processes share five fundamental properties among all types of ecosystems on the 

Earth, which are (i) compartmentalization of carbon with distinct pools in an ecosystem; (ii) 

photosynthesis as the dominant carbon input; (iii) partitioning of input carbon between the 

various pools; (iv) donor pool‐dominated carbon transfers between pools; and (v) the first‐order 

decay of litter and soil organic matter to release CO2 via respiration. The five properties together 

result in an emergent constraint that carbon pools tend to converge monotonically over time to 

some form of equilibrium. We used this constraint to evaluate the predictability of various 

components of the terrestrial carbon cycle in response to five classes of exogenous forcing. We 

categorize these components into five groups of high, medium, low, less known, and unknown 

predictability.

Future observational and experimental research should be focused on those components for 

which we have a poor understanding of their predictability, such as ecosystem state and its 

transition, states of and shifts in disturbance regimes, disturbance events and recovery 

trajectories, and response functions. Modeling research also needs to improve model predictive 

ability for the highly predictable components. To achieve that, it is essential to cope with 

complexity and gain tractability of ESMs. Then we can effectively evaluate impacts of adding 

model components, facilitate benchmark analyses, empower model intercomparisons, and enable

data‐model fusion. Overall, we suggest that characterizing the intrinsic predictability of different 
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components of the terrestrial carbon cycle can help identify the major priorities for the research 

community.
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