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Abstract

Modularity of residually reducible Galois representations and Eisenstein ideals

by

Hwajong Yoo

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Kenneth Alan Ribet, Chair

The purpose of this thesis is to explain modularity of residually reducible Galois repre-
sentations. More precisely, for a given reducible mod ` representation, we want to classify
the set of newforms whose associated mod ` representations are isomorphic to it.

Modularity of irreducible two-dimensional mod ` Galois representations, which is known
as Serre’s modularity conjecture, has been studied for several decades. On the other hand,
the same question for reducible ones has not been discussed much before.

This problem can be studied by using several methods, which mainly involve the classical
theory of Jacobian varieties of modular curves and Shimura curves. We study the geometry
of these curves. For instance, we prove multiplicity one theorem for Jacobian varieties for
Eisenstein maximal ideals.

We summarize some known results about modularity of reducible representations and
give detailed proofs due to a lack of proper references. We introduce techniques of level
raising and the conjecture of congruence subgroup property of S-arithmetic groups. And we
explain how these techniques shed the light on questions encountered in the thesis.
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Chapter 1

Introduction

1.1 Motivation

It has been known that newforms for congruence subgroups of SL2(Z) give rise to a com-
patible system of `-adic representations, and if the `-adic representations attached to two
newforms are isomorphic for some prime `, then the newforms are, in fact, equal. But the
corresponding statement is not true for the mod ` reductions of `-adic representations at-
tached to newforms, as different newforms can give rise to isomorphic mod ` representations
which arise from reduction mod ` of the corresponding `-adic representations. This mod `
reduction is well defined if we assume that it is absolutely irreducible. (If the mod ` repre-
sentation is reducible, it is well defined after semisimplification.) This is a reflection of the
fact that distinct newforms can be congruent modulo `. To study the different levels from
which a given modular mod ` representation can arise is interesting and has been discussed.

If we consider the image of the classical Hecke operators in the ring of endomorphisms
of the Jacobian J0(N) of the modular curve X0(N) for some integer N , then the resulting
Z-algebra is of finite rank over Z. We denote it by TN . Then to any maximal ideal m of TN
of residue characteristic `, we may attach, after the work of Eichler-Shimura, a semisimple
representation :

ρm : Gal(Q/Q)→ GL2(TN/m),

such that it is unramified at all primes r prime to `N , and for such primes tr(ρm(Frobr)) is
the image of Tr in TN/m and det(ρm(Frobr)) = r. On viewing ρm abstractly, one may try to
classify all the pairs (TM , n), where n is a new maximal ideal of TM , that give rise (in the
above fashion) to a representation isomorphic to ρm. This classification has been essentially
carried out in the work of several people-Mazur, Ribet, Carayol, Diamond, Taylor, and Khare
when ρm is absolutely irreducible.

If ρm is reducible, the above classification has not been studied much until 2008. For
simplicity, if we consider only newforms of weight 2 and square-free level N , there is a
unique semisimple mod ` reducible Galois representation

ρ : Gal(Q/Q)→ GL2(F`)
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arising from each of them. Around 2008, Ribet [3] proved that there is a newform f of level
pq such that the associated mod ` Galois representation ρf is reducible if and only if p and
q satisfy some conditions.

In this dissertation, we study the modularity of the above ρ which is isomorphic to 1⊕χ,
in other words, classify all the pairs (TM , n), where n is a new maximal ideal of TM , that
give rise to a representation isomorphic to ρ. In contrast to the case when ρ is irreducible,
we cannot use so called “level-raising method” directly. The reason is basically that the
kernel of “the level-raising map”, which is the map induced by degeneracy maps between
Jacobians, is “Eisenstein”.

Before studying the modularity of reducible representations, we discuss Eisenstein ideals
and arithmetic of Jacobian varieties. An ideal I of TN is called Eisenstein if Tr − r − 1 ∈ I
for almost all primes r. When N is prime, Mazur [25] studied the index of this Eisenstein
ideal in TN . We generalize this result to the case N = pq up to 2, 3 primary factors. Using
this result, we can understand when there is an Eisenstein maximal ideal of certain type.

For a maximal ideal m of TN , we study the kernel of m,

J0(N)[m] := {x ∈ J0(N)(Q) : Tx = 0 for all T ∈ m}.

If ρm is irreducible and N is square-free, J0(N)[m] is of dimension 2 in most cases. Even
though this multiplicity one theorem has been studied long ago for the irreducible case, when
ρm is reducible, it was not known for composite levels. We treat J0(pq)[m] (partially) in this
case.

We can treat many cases about modularity of mod ` reducible representations by using
the study of geometry of modular and Shimura curves. For completeness, we include many
proofs of known results because they have not been published yet. Furthermore, if we assume
a well known conjecture about “congruence subgroup property of S-arithmetic groups”, we
can prove “Ihara lemma” for Jacobian of Shimura curves. By using this lemma, we can
classify the pairs (TM , n) more concretely.

1.2 Notation

The symbols Z, Q, R, and C denote the ring of integers, the field of rational numbers, the
field of real numbers, and the field of complex numbers, respectively. For a field F, F denotes
an algebraic closure of F.

For a prime `, Z`, Q`, and F` denote the ring of `-adic integers, the field of `-adic numbers,
and the finite field of order `, respectively.

For two integers m and n, m | n denotes that m divides n and m - n denotes that m does
not divide n. For a prime p, p ‖ n denotes p exactly divides n, i.e., n/p is an integer and p
and n/p are relatively prime.

For a ring R, Mn(R) denotes the ring of n×n matrices with coefficients in R and GLn(R)
denotes the group of invertible matrices in Mn(R). For any element x ∈Mn(R), tr(x) denotes
the trace of x and det(x) denotes the determinant of x.
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For two finite groups A and B, we define A ∼ B if the Ap, p-primary subgroup of A, is
isomorphic to the Bp for all primes p but 2, 3. In other words, we wrote A ∼ B if A and B
are isomorphic up to 2, 3 primary factors.

For a set A, #A denotes its cardinality.
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Chapter 2

Background

In the beginning of this Chapter, we recall some basic notions from the classical theory of
modular forms, such as modular forms and modular curves over C and Q, Hecke operators,
and Eisenstein series. In the remainder of the Chapter, we discuss the notions of Shimura
curves and their Jacobian varieties, which are the generalization of classical modular curves.
And we study their integral models which were formulated by Deligne and Rapoport.

The main references are [13], [14], and [4].

2.1 Modular forms and modular curves

Modular curves over C
Let

h := {z ∈ C : Im(z) > 0}

be the complex upper half-plane, where Im(z) is the imaginary part of z. The group

SL2(R) :=

{(
a b
c d

)
: a, b, c, d ∈ R and ad− bc = 1

}
acts by linear fractional transformations (z 7→ (az + b)/(cz + d)) on h∗ := h ∪ P1(Q). Any
discrete subgroup of SL2(R) acts on h in the same way.

Let SL2(Z) be the group of two by two integer matrices of determinant one. The principal
congruence subgroup Γ(N) of level N is the subgroup of matrices in SL2(Z) which reduce
to the identity matrix modulo the positive integer N . A subgroup Γ of SL2(Z) is called a
congruence subgroup if it contains Γ(N) for some N . The level of Γ is the smallest N for
which this is true. The most important examples of congruence groups are :

1. The group Γ0(N) consisting of all matrices that reduce modulo N to an upper trian-
gular matrix.
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2. The group Γ1(N) consisting of all matrices that reduce modulo N to a matrix of the

form

(
1 ∗
0 1

)
.

If Γ is a congruence subgroup of SL2(Z), define YΓ to be the quotient of h by the action
of Γ. One equips YΓ with the analytic structure coming from the projection map π : h→ YΓ.
This makes YΓ into a connected complex analytic manifold of dimension one, i.e., a Riemann
surface. If Γ is Γ0(N) (resp. Γ1(N)), we will also denote YΓ by Y0(N)(resp. Y1(N)). One
compactifies YΓ by adjoining a finite set of cusps which correspond to orbits of P1(Q) under
Γ. Call XΓ the corresponding compact Riemann surface. We can, and will view XΓ as a
complex algebraic curve over C. If Γ is Γ0(N) (resp. Γ1(N)) we will also denote XΓ by
X0(N)(resp. X1(N)).

For details, see [14].

Modular forms over C
Let k be an even positive integer. A modular form of weight k on Γ is a holomorphic function
f on h satisfying :

1. (Transformation property) : f(γτ) = (cτ + d)kf(τ), for all γ =

(
a b
c d

)
∈ Γ.

2. (Behaviour at the cusps) : For all γ ∈ PSL2(Z), the function (cτ + d)−kf(γτ) has a

Fourier series expansion
∞∑
n=0

anq
n/h in fractional powers of q = e2πiτ . We call

∞∑
n=0

anq
n/h

the Fourier expansion of f at the cusp γ−1(i∞).

A modular form which satisfies the stronger property that the constant coefficient of its
Fourier expansion at each cusp vanishes is called a cusp form. We denote by Mk(Γ) the
complex vector space of modular forms of weight k on Γ, and by Sk(Γ) the space of cusp
forms of weight k on Γ.

This dissertation is mainly concerned with modular forms of weight 2, and hence we will
focus our attention on these from now on. A nice feature of the case k = 2 is that the cusp
forms in S2(Γ) admit a direct geometric interpretation as holomorphic differentials on the
curve XΓ.

Lemma 2.1.1. The map f(τ) 7→ ωf := 2πif(τ)dτ is an isomorphism between the space
S2(Γ) and the space Ω1(XΓ) of holomorphic differentials on the curve XΓ.

Proof. See Theorem 3.3.1 of [14].

As a corollary, we find:

Corollary 2.1.2. The space S2(Γ) is finite-dimensional, and its dimension is equal to the
genus g of XΓ.
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To narrow the focus of our interest, we will be mostly concerned with the cases Γ = Γ0(N)
and Γ1(N). From now on, we suppose Γ = Γ0(N) or Γ1(N). Because the transformation
τ 7→ τ +1 belongs to Γ, the forms in S2(Γ) are periodic functions on h of period 1, and hence
their Fourier expansions at i∞ are of the form

f(τ) =
∑
n>0

anq
n , where q = e2πiτ and an ∈ C.

The Petersson inner product

The spaces S2(Γ) are equipped with a natural Hermitian inner product given by

< f, g >=
i

8π2

∫
XΓ

ωf ∧ ω̄g =

∫
h/Γ

f(τ)ḡ(τ)dxdy,

where τ = x+ iy. This is called the Petersson inner product.

Jacobians of modular curves over C
Let V be the dual space

V = S2(Γ)∨ := Hom(S2(Γ),C).

It is a complex vector space of dimension g, the genus of XΓ. The integral homology Λ =
H1(XΓ,Z) maps naturally to V by sending a homology cycle c to the functional φc defined
by φc(f) =

∫
c
ωf . The image of Λ is a lattice in V , i.e., a Z-module of rank 2g which is

discrete. Fix a base point τ0 ∈ h, and define the Abel-Jacobi map Φ : XΓ(C) → V/Λ by

Φ(P )(f) =
∫ P
τ0
ωf . Note that this is well defined, i.e., it does not depend on the choice of

path on XΓ from τ0 to P , up to elements in Λ.
We extend the map Φ by linearity to the group Div(XΓ) of divisors on XΓ, and observe

that the restriction of Φ to the group Div0(XΓ) of degree 0 divisors does not depend on the
choice of base point τ0. Moreover we have the Abel-Jacobi theorem:

Theorem 2.1.3. The map
Φ : Div0(XΓ)→ V/Λ

has a kernel consisting precisely of the group P (XΓ) of principal divisors on XΓ. Hence Φ
induces an isomorphism from Pic0(XΓ) := Div0(XΓ)/P (XΓ) to V/Λ.

The quotient V/Λ is a complex torus, and is equal to the group of complex points of an
abelian variety. We denote this abelian variety by JΓ, the Jacobian variety of XΓ over C. If
Γ = Γ0(N) or Γ1(N), we will also write J0(N) or J1(N) respectively for the Jacobian JΓ.
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Moduli interpretations

The points in YΓ can be interpreted as elliptic curves over C with some extra levelN structure.
More precisely,

1. If Γ = Γ0(N), then the Γ-orbit of τ ∈ h corresponds to the complex torus E =
C/< 1, τ > with the distinguished cyclic subgroup of order N generated by 1/N .
Hence, points on Y0(N) parametrize isomorphism classes of pairs (E,C) where E is an
elliptic curve over C and C is a cyclic subgroup of E of order N .

2. If Γ = Γ1(N), then the Γ-orbit of τ ∈ h corresponds to the complex torus E =
C/< 1, τ > with the distinguished point of order N given by 1/N . Hence, points on
Y1(N) parametrize isomorphism classes of pairs (E,P ) where E is an elliptic curve
over C and P is a point of E of exact order N .

Modular curves over Q
For Γ = Γ0(N) or Γ1(N), the modular curve XΓ has a model over Q. Furthermore, XΓ

has a model over Z. The work of Igusa[20], Deligne-Rapoport[13], Drinfeld[16], and Katz-
Mazur[22] uses the moduli-theoretic interpretation to describe a canonical proper model for
XΓ over Spec Z. These models allow us to talk about the reduction of XΓ over finite fields
Fp, for p prime. The curve XΓ has good reduction at primes p not dividing N , with the
“non-cuspidal” points of XΓ/Fp corresponding to elliptic curves over Fp with Γ-structure.
The singular fibers at primes p dividing N can also be described precisely; an important
special case is that of Γ0(N) with p exactly dividing N . We will discuss this model in the
last section.

From now on, when we write XΓ(resp. X0(N) or X1(N)), we will mean the curve over Q
which are the models for the complex curves defined as h∗/Γ(resp. h∗/Γ0(N) or h∗/Γ1(N)).

Jacobians of modular curves over Q
Weil’s theory of the Jacobian shows that the Jacobian JΓ defined above as complex tori also
admit models over Q. When we speak of JΓ, J0(N), or J1(N) from now on, we will refer to
these as abelian varieties defined over Q. Thus, the points in JΓ(K), for any Q-algebra K,
are identified with the divisor classes on XΓ of degree 0, defined over K.

We let JΓ/Z(resp.J0(N)/Z), denote the Néron model of the Jacobian JΓ(resp.J0(N)) over
Spec Z. Using this model we define JΓ/A for arbitrary ring A. In particular we can consider
JΓ/Fp , the reduction of the Jacobian in characteristic p, which is closely related to the re-
duction of the integral model of the curve XΓ mentioned above. In particular, if p does not
divide the level of Γ, then JΓ/Fp can be identified with the Jacobian of XΓ/Fp .
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2.2 Hecke operators and Hecke rings

Degeneracy maps on modular curves

Let p be a prime not dividing N . Then the points of X0(Np)(K) classify the triples (E,C,D)
where E is an elliptic curve over K, C is a cyclic subgroup of E of order N , and D is a cyclic
subgroup of E of order p. Similarly, the points of X0(N)(K) classify the pairs (E,C). We
can consider natural maps between modular curves

X0(Np)
αp
//

βp
// X0(N),

where αp(E,C,D) := (E,C) and βp(E,C,D) := (E/D,C +D/D). In other words, the map
αp is “forgetting the level p structure” and the map βp is “dividing by the level p structure”.

Degeneracy maps on modular forms

Again let p be a prime not dividing N . The map αp above (resp. βp) also induces a map αp
(resp. βp) between cusp forms of weight two as follows.

S2(Γ0(N))
αp
//

βp
// S2(Γ0(Np)),

where αp(f(τ)) = f(τ) and βp(f(τ)) = pf(pτ). On its Fourier expansions, βp(
∑
anq

n) =
p
∑
anq

pn . For details, see chapter 12 of [4].

Hecke operators on modular curves and modular forms

Let p be a prime not dividing N . The above degeneracy maps induce maps between divisor
groups of modular curves. More specifically, we have

Div(X0(N))
α∗
p
//

β∗
p

// Div(X0(Np))
(αp)∗ //

(βp)∗

// Div(X0(N)),

where

α∗p(E,C) =
∑

D⊂E[p]

(E,C,D), β∗p(E,C) =
∑

D⊂E[p]

(E/D,C +D/D,E[p]/D), (2.1)

(αp)∗(E,C,D) = (E,C), and (βp)∗(E,C,D) = (E/D,C +D/D). (2.2)

In the summation of (2.1), D runs all cyclic subgroups of order p. We define Tp on
Div(X0(N)) to be (αp)∗ ◦ β

∗
p or (βp)∗ ◦ α

∗
p, in terms of divisors we have

Tp((E,C)) =
∑

D⊂E[p]

(E/D,C +D/D).
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This map induces an endomorphism of the Jacobian J0(N). We also denote it by Tp.
The above map is compatible with the action of Hecke operators on modular forms

M2(Γ0(N)), which is (on Fourier expansions)

Tp(
∑

anq
n) :=

∑
anpq

n + p
∑

anq
np.

For more details, see [14].

Atkin-Lehner operators and more on Hecke operators

In this section, we assume p is a prime dividing N . We will only consider modular forms of
weight two and square-free level N , so assume further that p ‖ N , i.e., p exactly divides N .
Let M = N/p which is prime to p. Then we have an involution wp on J0(N) such that

wp(E,C,D) = (E/D,C +D/D,E[p]/D),

where E is an elliptic curve, C is a subgroup of E of order M , and D is a subgroup of order
p. There is the Hecke operator Tp in End(Div(J0(N))) on which acts by

Tp(E,C,D) =
∑
L⊂E[p]

(E/L,C + L/L,E[p]/L),

where L runs all subgroups of E of order p which is different from D. This operator also
induces an endomorphism of J0(N), we also denote it by Tp.

Lemma 2.2.1. As endomorphisms of J0(N), we have Tp + wp = β∗p ◦ (αp)∗, where

J0(N)
(αp)∗ // J0(M)

β∗
p
// J0(N).

Proof. On the Div(J0(N)), (αp)∗(E,C,D) = (E,C) and hence

β∗p ◦ (αp)∗(E,C,D) =
∑
L⊂E[p]

(E/L,C + L/L,E[p]/L),

where L runs all subgroups of E of order p. It is equal to (Tp + wp)(E,C,D), hence they
induce the same map on J0(N).

Remark 2.2.2. Above lemma is proved in [29]
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Hecke algebras

For a fixed square-free level N , we define TN as follows,

TN := Z[Tn] for all positive integers n,

where the Tn are defined by the relations

Tmn = TmTn for (m,n) = 1,

Tpk = Tpk−1Tp − pTpk−2 for primes p - N , and Tpk = (Tp)
k for primes p | N.

Note that the above relations only work for Hecke operators on M2(Γ0(N)), for more general
situations, see [14]. We can consider TN as a subring of End(J0(N)), which is finite over Z.
Therefore all maximal ideals of TN are of finite index.

Remark 2.2.3. From now on, we will denote by Up a Hecke operator Tp for primes p dividing
the level.

2.3 Old and new

Old forms and new forms

We define the old subspace of S2(Γ0(N)) to be the space spanned by those functions which
are of the form g(az), where g is in S2(Γ0(M)) for some M < N and aM divides N . We
define the new subspace S2(Γ0(N))new of S2(Γ0(N)) to be the orthogonal complement of the
old subspace with respect to the Petersson inner product. A normalized eigenform for all
Hecke operators in the new subspace is called a newform of level N .

For details, see [14].

Old subvariety and new quotient

The degeneracy maps induce a map between Jacobians

J0(M)× J0(M)
γp
// J0(N),

where M = N/p for some prime divisor p of N and γp(a, b) = α∗p(a) + β∗p(b) for α∗p, β
∗
p

as in the previous section. The image of γp is called the p-old subvariety of J0(N) and is
denoted by J0(N)p-old. The quotient J0(N)/J0(N)p-old is called the p-new quotient of J0(N)
and is denoted by J0(N)p-new. By the autoduality of Jacobians, we have the following exact
sequence,

0 // (J0(N)p-new)∨ // J0(N) // (J0(N)p-old)∨ // 0.

We call (J0(N)p-new)∨ the p-new subvariety of J0(N). We define the old subvariety of J0(N)
to be the subvariety generated by the p-old subvarieties for any prime divisor p of N and
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denote it by J0(N)old. We also define the new subvariety to be the connected component
of the identity of the intersection of all p-new subvarieties for any prime divisor p of N and
denote it by J0(N)new. The quotient J0(N)/J0(N)old is called the new quotient of J0(N) and
denote it by J0(N)new.

New ideals

Since the map γp is Hecke equivariant and the action of TN preserves J0(N)old, we define
Tnew
N to be the subring of End(J0(N)new) by the action of TN on J0(N)new via the projection

J0(N)→ J0(N)new. The ideal I of TN is called new if it is an inverse image of some non-unit
ideal of Tnew

N by the projection
TN → Tnew

N .

2.4 Galois representations attached to modular forms

Throughout this section, we fix a prime ` > 3 and we only consider modular forms of weight
two and Γ0(N) for square-free N . Assume that N is prime to `.

`-adic Galois representations

Let f =
∑
anq

n be a newform of level N . Let K be the field generated over Q by the Fourier
coefficients an of f . Then K is a totally real number field. Let ` be a prime and λ be a
prime of the ring of integers of K lying over `. Then, by Shimura,

Theorem 2.4.1 (Shimura). There is the `-adic continuous Galois representation

ρ̃f : Gal(Q/Q)→ GL2(Kλ)

such that

1. ρ̃f is unramified outside `N .

2. For p - `N , the characteristic polynomial of ρ̃f (Frobp) is X2 − apX + p, where Frobp
is a Frobenius element in Gal(Q/Q).

By Ribet, ρ̃f is irreducible.
For more details, see Theorem 3.1 in [12].

Mod ` Galois representations

Let V be a two-dimensional Kλ vector space which gives rise to the representation ρ̃f . By
taking a Galois stable lattice of V and reduction modulo λ, we can associate a mod `
Galois representation ρ attached to f . It does depend on the choice of a lattice, but its
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semisimplification does not. (See Chapter 18 of [4].) We denote ρss by ρf , where ρss is the
semisimplification of ρ. If ρf is not irreducible, then it is the direct sum of two characters
χ1 and χ2. Since we restrict our attention on the forms of weight two and square-free level
N which is prime to `, we can describe ρf precisely.

Proposition 2.4.2 (Ribet). ρf is isomorphic to 1 ⊕ χ, where χ is the mod ` cyclotomic
character.

Proof. The semisimplification of ρ is the direct sum of two 1-dimensional representations.
Let α, β : Gal(Q/Q) → F× be the corresponding characters, where F is some finite field
of characteristic `. As is well known, the hypothesis that N is square-free implies that the
representation ρf is semistable outside ` in the sense that inertia subgroups of Gal(Q/Q) for
primes other than ` act unipotently in the representation ρf . It follows that α and β are
unramified outside `. Accordingly, each of these two characters is some power of the mod `
cyclotomic character

χ = χ` : Gal(Q/Q)→ F×` ⊂ F×.

If α = χi and β = χj, the two exponents i and j are determined mod `−1 by the restrictions
of α and β to an inertia group for ` in Gal(Q/Q). Using the results of [17], one sees easily
that these exponents can only be 0 and 1(up to permutation).

Variants

Let m be a maximal ideal of T := TN of residue characteristic `, i.e., the characteristic of
T/m is `. Then,

Proposition 2.4.3. There is a unique semisimple representation

ρm : Gal(Q/Q)→ GL2(T/m)

such that

1. ρm is unramified outside `N .

2. For a prime p - `N , the characteristic polynomial of ρ(Frobp) is

X2 − (Tp (mod m))X + (p (mod m))

.

Proof. This is Proposition 5.1 of [29].

Let F be a finite field of characteristic `. We define a mod ` representation

ρ : Gal(Q/Q)→ GL2(F)
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to be modular of level N if the determinant of ρ is the mod ` cyclotomic character and if
there is a homomorphism

ω : T→ F

such that
tr(ρ(Frobp)) = ω(Tp)

for almost all prime numbers p.
Given ρ as in the definition, set m = ker(ω) and observe that ω embeds T/m into F.

Since their traces and determinants coincide, their semisimplifications are isomorphic over
F.

Remark 2.4.4. The above definition is equivalent to the existence of an eigenform f of weight
two and level N whose associated mod ` Galois representation becomes isomorphic to ρ after
embedding to F. Furthermore, if m is new, f can be taken from S2(Γ0(N))new.

2.5 Eisenstein series and Eisenstein ideals

Eisenstein series

Let Γ be a congruence subgroup Γ0(N) for a square-free positive integer N . The space
M2(Γ) of modular forms naturally decomposes into its subspace of cusp forms S2(Γ) and
the corresponding quotient space M2(Γ)/S2(Γ), the Eisenstein space E2(Γ). We can pick a
natural basis of E2(Γ) which consists of eigenfunctions of all Hecke operators. The number of
cusps of X0(N) is 2t, where t is the number of distinct prime factors of N , and the dimension
of E2(Γ) is 2t − 1. We define some notations for later use.

For more details, see Chapter 4 of [14].

Definition 2.5.1. We define e to be the normalized Eisenstein series of weight two and level
1,

e(τ) := − 1

24
+
∞∑
n=1

σ(n)qn,

where σ(n) =
∑
d|n
d and q = e2πiτ . And we also define em for a positive integer m by

em(τ) = Bm(e(τ)) := e(mτ) = − 1

24
+
∞∑
n=1

σ(n)qnm,

where Bm sends f(τ) to f(mτ). (Thus Bp is 1
p
β∗p on M2(Γ).)

Remark 2.5.2. Note that e is not a modular form and even e (mod `) is not a (mod `)
modular form of weight two which means it cannot be expressible as sum of mod ` modular
forms of weight two of any level prime to `. About this fact, see [25], [3], [33], or [35].
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Using these functions, we can make modular forms of weight two and level N . Recall the
proposition by Agashe [1],

Proposition 2.5.3. For every prime p that divides N , suppose we are given an integer
δp ∈ {1, p} such that δp = 1 for at least one p. Then there is an Eisenstein series E of
weight 2 on Γ0(N) which is an eigenfunction for all the Hecke operators such that for all
primes q - N , we have aq(E) = q + 1, and for all primes p | N , we have ap(E) = δp.

Corollary 2.5.4. The above Eisenstein series form a basis for E2(Γ0(N)).

Proof. Since eigenfunctions which have different eigenvalues are linearly independent, we
have 2t − 1 Eisenstein series which are linearly independent, so they form a basis.

Example 2.5.5. Let N = pq for distinct primes p and q. We can write a basis of E2(Γ0(N))
explicitly. By Mazur (section 5 of Chapter II of [25]), e − pep(resp. e − qeq) is a basis of
E2(Γ0(p))(resp. E2(Γ0(q))). By “raising the level”, we have g1 := (e − pep) − q(eq − pepq),
g2 := (e − pep) − (eq − pepq), and g3 := (e − qeq) − p(ep − qepq). For every prime r - pq,
Tr(gi) = (1 + r)gi for i = 1, 2, 3. Furthermore, we have

Up(g1) = g1 and Uq(g1) = g1,

Up(g2) = g2 and Uq(g2) = qg2,

Up(g3) = pg3 and Uq(g3) = g3.

So, g1, g2, and g3 form a basis for E2(Γ0(pq)).

For later use, we define an Eisenstein series of level N =
t∏
i=1

pi and type (s, t) to be the

Eisenstein series E of level N such that UpiE = E for all 1 ≤ i ≤ s and UpjE = pjE for all
s < j ≤ t, where s ≤ t are positive integers. (The integer s should be positive because of
the above proposition.)

Eisenstein ideals

Let T := TN for a square-free integer N as before, and let m be a maximal ideal of T of
residue characteristic `. Then, we say that m is Eisenstein if the Galois representation ρm
attached to m is reducible, which is isomorphic to 1⊕χ by Proposition 2.4.2, where χ is the
mod ` cyclotomic character. An ideal of T is called Eisenstein if it is generated by Tr− r−1
for almost all primes r. A newform f ∈ S2(Γ0(N))new is called Eisenstein-like (for `) if the
associated (mod `) Galois representation ρf is reducible. In fact, if ρf is reducible, there is
an Eisenstein series E such that f ≡ E (mod `). We define an Eisenstein-like newform of

level N =
t∏
i=1

pi and type (s, t)(for mod `) to be the Eisenstein-like newform f of level N

such that
Upif = f and Upjf = −f,

for 1 ≤ i ≤ s and s < j ≤ t.
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2.6 Shimura curves and Hecke operators

Shimura curves and Jacobians

LetD 6= 1 be the product of even number of distinct primes and B be an indefinite quaternion
algebra over Q of discriminant D. LetO be a maximal order of B. (Up to isomorphism, there
is only one such order.) Then there is the Shimura curve XD

0 (1) over C which is isomorphic
to h/O1, where O1 denotes the group of (reduced) norm 1 elements in O. (Throughout
this section, all norms mean the reduced one.) For each prime p not dividing D, we fix an
isomorphism of Qp-algebras ip : Bp → M2(Qp) such that ip(Op) = M2(Zp) if p 6= ∞, where
Bp := B ⊗Q Qp and Op := O ⊗Z Zp. For a positive square-free integer N prime to D, let
O(N) be an Eichler order of level N . Then, the group ΓD0 (N) := O(N)1 of norm 1 element in
O(N) maps to the upper triangular matrices in SL2(Zp) for p dividing N by ip. This ΓD0 (N)
also defines the Shimura curve XD

0 (N) over C which is isomorphic to h/ΓD0 (N). Moreover,
as the classical modular cases, this curve has moduli theoretic description and it defines an
algebraic curve XD

0 (N) over Q. For more details, see [7].
Let JD0 (N) be the Jacobian variety of XD

0 (N) and JD0 (N)/Z be the Néron model of JD0 (N)
over Spec Z. In the next section, we will discuss fibers of JD0 (N)/Z at primes p dividing N .

Hecke operators and Hecke rings

As in the classical case, the Hecke operator Tp acts on JD0 (N) by the following way. An
element XD

0 (N)(K) represents an isomorphism class of “fake elliptic curves with level N
structure” over K. (For more details, see [15] or [7].) Using this moduli interpretation, we
can define two natural degeneracy maps between Shimura curves,

XD
0 (Np)

αp
//

βp
// XD

0 (N),

where p is a prime not dividing DN . As in the classical cases, we define Tp to be (αp)∗ ◦ β
∗
p

for each prime p not dividing DN . We can also define the Aktin-Lehner operators wq for
primes q dividing DN . If a prime q divides N , wq can be defined similarly as before. For a
q prime dividing D, there is a unique prime ideal Ip of norm p in O and wq can be defined
by the map A → A/A[Ip], where A is a “fake elliptic curve with level N structure” and
A[I] := {x ∈ A(Q) : Tx = 0 for all T ∈ I}. For a prime r dividing D, Tr acts by the
Atkin-Lehner operator wr and Tq acts by β∗q ◦ (αq)∗ − wq for a prime q dividing N , where

XD
0 (N)

αq
//

βq
// XD

0 (N/q).

We denote the Hecke ring generated by all Tr(and the rule we explained in section 2.2)
by TDN , so TDN is a subring of End(JD0 (N)).
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Remark 2.6.1. From now on, we will denote by Up a Hecke operator Tp for each prime p
dividing the level or discriminant.

We finish this section by recalling a famous theorem of Jacquet and Langlands.

Proposition 2.6.2 (Jacquet-Langlands correspondence). The ring TDN is isomorphic to
TD-new
ND .

2.7 Deligne-Rapoport models

Integral models

In their paper [13], Deligne and Rapoport studied integral models of modular curves. Buz-
zard extended their result to the case of Shimura curves [7]. We briefly explain their integral
models of JD0 (N) when N is square-free. For easier notation, assume p does not divide ND.
We study an integral model of XD

0 (Np), where N is a square-free positive integer prime to
D. (In this section, D might be 1, which is the modular curve case.)

Proposition 2.7.1 (Deligne-Rapoport model). The special fiber XD
0 (Np)/Fp of XD

0 (Np)/Z
at p consists of two copies of XD

0 (N)/Fp. They meet transversally at supersingular points.

Let S be the set of supersingular points of XD
0 (Np)/Fp . Then S is isomorphic to the set

of isomorphism classes of right ideals of an Eichler order of level N of the definite quaternion
algebra over Q of discriminant Dp. By the theory of Raynaud [19], we have special fiber
JD0 (Np)/Fp of the Néron model JD0 (Np)/Z. It satisfies the following exact sequence:

0 // J0 // JD0 (Np)/Fp
// Φp(J

D
0 (Np))) // 0,

where J0 is the identity component and Φp(J
D
0 (Np)) denotes the component group. Fur-

thermore, we have

0 // T // J0 // JD0 (N)/Fp × JD0 (N)/Fp
// 0,

where T is the torus of JD0 (Np)/Fp . We define the character group to be X := Hom(T,Gm),
where Gm is the multiplicative group scheme. Then, X is isomorphic to the group of degree
0 elements in the free abelian group ZS which is generated by the elements of S. (Note that,
the degree of an element in ZS is the sum of its coefficients.) There is a natural pairing on
ZS such that

for any s, t ∈ S, < s, t >=
#Aut(s)

2
δst =

#Aut(s)

2
if s = t, 0 otherwise.

This pairing induces an injection X ↪→ Hom(X,Z) and the cokernel of this injection is
isomorphic to Φp(J

D
0 (Np)) by Grothendieck [19]. We called the following exact sequence

“the monodromy exact sequence”;

0 // X i // Hom(X,Z) // Φp(J
D
0 (Np)) // 0.
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For more details, see [29].

Hecke actions on JD
0 (Np)/Fp

By the Proposition 3.8 of Ribet’s paper [29], the Frobenius automorphism on X is equal to
the operator Up on it. Therefore, the Frobenius automorphism acts on T by pUp. It sends
s ∈ S to some other s′ ∈ S, or might fix s. For elements s, t in S the above map i sends
s− t to φs − φt, where

φs(x) :=
#Aut(s)

2
< s, x > for any x ∈ S.

Thus in the group Φ := Φp(J
D
0 (Np)), φs = φt for any s, t ∈ S. Since for all s ∈ S,

the elements 2
#Aut(s)

φs generate Hom(X,Z) and #Aut(s) is 2, 4, or 6, Φ is “cyclic” and
generated by φs for some s ∈ S if we ignore 2, 3 primary factors. Using this description, we
can understand Hecke actions on component groups up to 2, 3 primary factors. Let Φ0 be
the cyclic subgroup of Φ which is generated by φs for some s ∈ S. Then, Φ is an extension
of some finite group which is of order 2a × 3b by Φ0 (Proposition 3.2 of [29]). Thus Φ ∼ Φ0.

Proposition 2.7.2. The Hecke operator Up acts by 1 on Φ0 and Uq acts by 1 on Φ0 for each
prime q dividing D. Moreover Ur acts on Φ0 by r for each prime r dividing N and Tk acts
on Φ0 by k + 1 for each prime k not dividing DNp.

Proof. On the Φ0, φs = φt, so Up(φs) = φt = φs, where t = Frob(s). Since the set S is
isomorphic to the set of isomorphism classes of right ideals on an Eichler order of level N
in the definite quaternion algebra over Q of discriminant Dp, the set of supersingular points
of J

Dp/q
0 (Nq)/Fq is again S. In other words, the character group of J

Dp/q
0 (Nq)/Fq does not

depend on the choice of the prime q dividing Dp. (Hence the same is true for the component
group.) Using the same description as above, we have Uq(φs) = φs for primes q dividing D.

Since the degree of the map Ur is r for primes r | N , Ur(φs) =
∑
aiφsi and

∑
ai = r.

Thus Ur(φs) = rφs because φs = φsi . Similarly, Tk(φs) = (k + 1)φs for primes k - NDp.

Using Eichler’s mass formula on Eichler orders of definite quaternion algebras, we can
compute the order of Φ up to 2, 3 primary factors.

Proposition 2.7.3. Let

m :=
∏
r|Dp

(r − 1)×
∏
k|N

(k + 1).

Then Φ0 ∼ Z/mZ.
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Proof. For any degree 0 divisor
∑
aisi, nφs(

∑
aisi) = 0 if n is the order of φ. We decompose

n as a sum
∑
ni for integers ni. Then∑

j

nj(φs(
∑
i

aisi)) =
∑
j

nj(φsj(
∑
i

aisi)) (2.3)

=
∑
j

njaj
#Aut(sj)

2
= 0. (2.4)

Thus, nj
#Aut(sj)

2
is constant for all j since (2.4) is always true for any

∑
ai = 0. In other

words, nj is c
#Aut(sj)

, where c is the smallest positive integer which makes all c
#Aut(sj)

to be

integers. Note that c is a divisor of 12. Thus

n =
∑
sj∈S

1

#Aut(sj)

up to 2, 3 primary factors.
Recall Eichler’s mass formula. (For more details, see Corollary 5.2.3. of [38].)

Proposition 2.7.4 (mass formula). Let S be the set of isomorphism classes of right ideals
of an Eichler order of level N in a definite quaternion algebra of discriminant Dp over a
number field K. Then,∑

si∈S

#R×

#Aut(si)
= 21−d× | ζK(−1) | ×hK ×

∏
r|Dp

(r − 1)×
∏
k|N

(k + 1),

where ζK is the Dedekind zeta function, R× is the group of units in R, the ring of integers
of K, d is the degree of K over Q, and hK is the class number of the field K.

In our case, K = Q, so | ζK(−1) | is 1
12

, hK = 1, d = 1, and #R× = 2. If we ignore 2, 3
primary factors, we get the result.

We close this section by discussing degeneracy maps between component groups which
are induced by them on Jacobians.

Proposition 2.7.5. Let q be a prime which does not divides DNp. By the above proposi-
tion, the component groups ,Φp(J

D
0 (Np)) and Φp(J

D
0 (Npq)), are cyclic up to 2, 3 primary

factors. Let Φp(J
D
0 (Np))0(resp. Φp(J

D
0 (Npq))0) be the cyclic subgroup of Φp(J

D
0 (Np))(resp.

Φp(J
D
0 (Npq))) generated by φs(resp. φt). Then the degeneracy maps between Jacobians

JD0 (Np)
α∗
q
//

β∗
q

// JD0 (Npq)

induce the same map on Φp(J
D
0 (Np))0

Φp(J
D
0 (Np))0 ιq

// Φp(J
D
0 (Npq))0,

where ιq(φs) = (q + 1)φt.
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Proof. Since the degree of α∗q is q + 1, α∗q(s) =
∑
aiti for some ti, where

∑
ai = q + 1.

Because φti = φt in Φp(J
D
0 (Npq)), ιq(φs) =

∑
aiφti = (q+ 1)φt. The same is true for β∗q .

Corollary 2.7.6. Let K(resp. C) be the kernel(resp. the cokernel) of the map γq,

0 // K // Φp(J
D
0 (Np))× Φp(J

D
0 (Np))

γq
// Φp(J

D
0 (Npq)) // C // 0,

where γq(a, b) = α∗q(a)+β∗q (b). Then, K ∼ Φp(J
D
0 (Np)) and C ∼ Z/2(q + 1)Z ∼ Z/(q + 1)Z.

Proof. By comparing orders of two component groups Φp(J
D
0 (Np))0 and Φp(J

D
0 (Npq))0, ιq

is “injective” if we ignore 2, 3 primary groups. Thus the above result follows.
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Chapter 3

Eisenstein ideals and Jacobian
varieties

3.1 Motivation and notation

The main problem of this dissertation is the modularity of residually reducible Galois rep-
resentations, which are all isomorphic to 1 ⊕ χ after semisimplification if we restrict our
attention on weight two modular forms for Γ0(N), where N is a square-free positive integer
prime to `.(See Proposition 2.4.2.) More specifically, for a fixed prime `, we want to find the
level of newforms for which one of the associated mod ` Galois representations is reducible.
This question is slightly too coarse. Instead we will fix a “signed conductor” : we give
ourselves a set of distinct prime numbers pi(i = 1, . . . , t) and for each pi we give ourselves a

sign ±. We ask whether there is a newform f of level N =
t∏
i=1

pi, for which the api , the pi-th

Fourier coefficients of f , have the chosen signs and for which one of the associated mod `
representations is reducible. We can shuffle the pi so the signs start with a string of 1’s and
end with a string of −1’s. Let s be the number of 1’s.(So, we have 0 ≤ s ≤ t.)

Definition 3.1.1. By an Eisenstein-like newform f of level N =
t∏
i=1

pi and type (s, t)(for

mod `) we mean a newform f ∈ S2(Γ0(N))new such that

1. ρf , the semisimplification of mod ` representations associated to f , is 1⊕ χ.

2. Upif = f for 1 ≤ i ≤ s.

3. Upjf = −f for s < j ≤ t.

Remark 3.1.2. In the definition, we assume that s is not 0. We will prove this fact later.
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Definition 3.1.3. Let s ≤ t be two non negative integers. And let p1, . . . , pt be distinct
primes which are different from `. A t-tuple (p1, . . . , pt) is admissible (for s) if there exists

an Eisenstein-like newform of level N =
t∏
i=1

pi and type (s, t).

Thus our problem can be rephrased as the classification of admissible tuples. As we
discussed in section 2.4, finding an Eisenstein-like newform f of level N and type (s, t) is
equivalent to proving the existence of an Eisenstein maximal ideal m in Tnew

N such that

1. ` ∈ m.

2. Upi − 1 ∈ m for 1 ≤ i ≤ s.

3. Upj + 1 ∈ m for s < j ≤ t.

4. Tr − r − 1 ∈ m for r - N .

We denote m by (`, Upi−1, Upj +1, Tr−r−1) for primes r - N , and call it a new Eisenstein
maximal ideal of level N and type (s, t).

To prove the existence of certain type of Eisenstein maximal ideals in Tnew
N is the same as

to find a faithful Tnew
N module V such that V [m] := {x ∈ V (Q) : Tx = 0 for any T ∈ m} is

non-zero. One of candidates for V is the Neron model of the Jacobian variety J0(N)new. Since
Tnew acts faithfully on J0(N)new, J0(N)new[m] is not zero if m is new maximal. However, the

Neron model J0(N)new
/Z is hard to study, instead we try to understand JN0 (1)(resp. J

N/p
0 (p))

when the number of primes dividing N is even(resp. odd).
Before studying new Eisenstein maximal ideals, we will discuss Eisenstein ideals of given

level and if there is an Eisenstein maximal ideal m of level N , we will study the kernel of m,
i.e, J0(N)[m] := {x ∈ J0(N)(Q) : Tx = 0 for all T ∈ m}.

These study will be used in next chapter for classifying admissible tuples.
From now on we will fix a prime ` > 3 and the level N will be always square-free and

prime to ` for simplicity.

3.2 Index of Eisenstein ideals of level pq

Since we want to understand the order of sets up to 2, 3 primary factors, we define a notion
for convenience.

Definition 3.2.1. We say that the order of a set S is “roughly” n if #S = n×2a3b for some
integer a, b.

Eisenstein ideals are generated by Tr− r−1 for almost all primes r. If r divides the level
N , the eigenvalue of Ur can only be 1 or r, because it satisfies X2− arX + r = 0. Recall the
result about Eisenstein ideals of level N when N is prime.
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Proposition 3.2.2 (Mazur). Let N be a prime. The ideal I = (Tr − r − 1) for all primes
r 6= N of TN is “roughly” of index N − 1.

In fact, he proved that I contains UN − 1 and the index is exactly the numerator of N−1
12

.
In this section we generalize his result to a composite level pq.

We fix two distinct primes p, q and consider Eisenstein ideals of level pq.

Eisenstein ideal of level pq and type (2,2)

Let I = (Up − 1, Uq − 1, Tr − r − 1) for primes r - pq be the indicated Eisenstein ideal of
T := Tpq.

Theorem 3.2.3. The index of I in T is “roughly” (p− 1)(q − 1).

Proof. The natural map Z → T/I is surjective, since, modulo I, the operators Tp are all

congruent to integers. Let F (τ) =
∞∑
n=1

anx
n be the formal power series, where x = e2πiτ ,

ar = r+1 for primes r not dividing pq, ap = 1, and aq = 1.(For general n, an is defined by the
rule in section 2.2.) We cannot have T/I = Z, for then F would be the Fourier expansion of
a cuspidal eigenform over C, which contradicts the Ramanujan-Petersson bounds. Therefore

T/I = Z/nZ for some integer n. Let f(τ) =
∞∑
n=1

(Tn (mod I))xn be a cusp form over the

ring Z/nZ. Let g1 := e− pep − qeq + pqepq be an Eisenstein series of level pq as in example
2.5.5. Then f − g1 is a modular form over the ring Z/nZ, which has the Fourier expansion
(p−1)(q−1)

24
. By Mazur (see Lemma 5.3 of [25]), a non-zero constant cannot be a modular form

over the ring Z/nZ if (n, 6) = 1. In other words, h should be 0 modulo n up to 2, 3 primary

factors, where h is the numerator of (p−1)(q−1)
24

.
Since I annihilates < C1 >, the cuspidal group generated by C1, which will be introduced

in next section, there is a surjection

T/I → End(< C1 >) ' Z/hZ.

Therefore n should be a multiple of h.

Remark 3.2.4. In the proof above, we use a formal variable x. Even we consider x as a formal
variable, we set it e2πiτ for using “q-expansion principle” after modulo I. (Here since we use
q as a prime number, we substitute the variable q by x.)

Therefore;

Corollary 3.2.5. There is an Eisenstein maximal ideal m such that

1. m contains Up − 1 and Uq − 1.

2. T/m = F`

if ` | (p− 1)(q − 1).
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Eisenstein ideals of level pq and type (1, 2)

The eigenvalue of Uq should be 1 or q as we mentioned earlier. However, for newforms all
eigenvalues Uq for q dividing N are ±1. We can consider two Eisenstein ideals of this type.
Let I = (Up − 1, Uq + 1, Tr − r − 1) and J = (Up − 1, Uq − q, Tr − r − 1) for primes r - pq be
Eisenstein ideals of T.

By the similar reason as above, the quotients T/I and T/J cannot be Z. Thus T/I =
Z/mZ and T/J = Z/nZ for some integers m,n.

Theorem 3.2.6.

1. m is “roughly” q + 1.

2. n is “roughly” (p− 1)(q − 1)(q + 1).

Proof.

1. Let C be the cokernel of the map Φp(J0(p)) × Φp(J0(p)) → Φp(J0(pq)) which we
discussed in Corollary 2.7.6. It is “roughly” of order q + 1. Since I annihilates C, m
is a multiple of q + 1. Let m = (q + 1)× k for some positive integer k.

Let f(τ) :=
∑
i≥1

(Ti (mod I))xi be a cusp form of level pq over the ring Z/(q + 1)k,

where x = e2πiτ . Consider g2 − f , where g2 is the Eisenstein series which we discussed
in Example 2.5.5. This is a modular form of level pq over Z/(q + 1)kZ whose Fourier
expansion is ∑

n≥1

(q + 1)anx
qn,

where ap = p+ 1 for primes p 6= q, aq = q − 1, and aqn =
n∑
i=0

(−1)(n−i)qi.

By the lemma 5.9 of [25], there is a modular form h of level p over Z/(q + 1)kZ such
that

(q + 1)h(τ) = (q + 1)
∑
n≥1

anx
n.

Since h is an eigenform of all Hecke operators Tr for primes r 6= q, it is an eigenform
(over Z/kZ). It is an Eisenstein-like eigenform, which means ap = 1 and ar ≡ r + 1
(mod k) for primes r 6= p. Thus,

q − 1 = aq ≡ q + 1 (mod k),

which implies that 2 ≡ 0 (mod k), i.e, k divides 2. Thus, m is “roughly” q + 1.

2. Consider the cuspidal group generated by the cusp P1 − Pp, which will be introduced
in next section. It is of order “roughly” (p− 1)(q − 1)(q + 1) and it is annihilated by
J . Therefore there is a surjection

T/J → End(< P1 − Pp >) ' Z/(p− 1)(q − 1)(q + 1)Z.
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In other words, n is a multiple of (p− 1)(q − 1)(q + 1).

Again, consider g(τ) :=
∑
i≥1

(Ti (mod J))xi. Then g2 − g is a modular form of level pq

over Z/nZ. Its Fourier expansion at i∞ is 0. Thus it should be 0. By the result of
Faltings and Jordan(Proposition 3.34 of [18]), we can calculate the constant term of
the Fourier expansion of g2 at the 0-cusp.

We shall use the same notation as Faltings and Jordan(loc.cit.). In our case, α = β = 1,
the trivial character, and k = 2. The Eisenstein series e − pep is (α(p) − wp)(e),
so its constant term at i∞ is α(p)(1 − p)a0 = p−1

24
and its constant term at 0 is

b0 := α(p)(1− 1/p)a0 = 1−p
24p

, where a0 = −1
24

the constant term of e. Thus for

g2 = (e− pep)− (eq − pepq) =
1

q
(β(q)q − wq)(e− pep),

its constant term at i∞ is 0 and its constant term at 0 is

1

q

(
qβ(q)− α(q)

q

)
× b0 =

(1− p)(q2 − 1)

24pq2
.

Since g is a cusp form over Z/nZ, the constant term of g − g2 at 0, which is

(1− p)(q2 − 1)

24pq2
,

should be 0 over Z/nZ because g − g2 is 0 over Z/nZ. Thus n should be “roughly”
(p− 1)(q − 1)(q + 1). (The factor pq2 on the denominator of above term occurs when
we change the Fourier expansion at i∞ to other cusps, such as 0. See section 4 of
Chapter II of [25].)

Note that if we invert 2, 3, I contains q + 1, Uq + 1, hence, Uq − q ∈ I. Namely, I ⊃ J if
we invert 2, 3. Thus;

Corollary 3.2.7. There is an Eisenstein maximal ideal m(resp. n) such that

1. m(resp. n) contains Up − 1 and Uq − q(resp. Uq + 1).

2. T/m = F`

if ` | (p− 1)(q − 1)(q + 1)(resp. ` | q + 1).

This corollary means that the existence of a new Eisenstein maximal ideal of level pq and
type (1, 2) implies the congruence q ≡ −1 (mod `). We will prove the converse of this fact
later.
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3.3 Multiplicity one theorem for Jacobians

Let m be a maximal ideal of T := TN of residue characteristic `, i.e., T/m is a finite field of
characteristic `, and J := J0(N). Since T acts faithfully on J ,

J [m] := {x ∈ J(Q) : Tx = 0 for any T ∈ m}

is non-zero. If m is not Eisenstein, then J [m] = V ⊕r for some integer r, where V is the Galois
module which defines two-dimensional mod ` Galois representation ρm. In most cases, r = 1,
which we call multiplicity one theorem holds for J .

Proposition 3.3.1. For a non-Eisenstein maximal ideal m, multiplicity one holds if ` - 2N .

Proof. This is Theorem 5.2.(b) of [29].

On the other hand, when m is Eisenstein, this multiplicity one theorem was not considered
much. In the Eisenstein case, multiplicity one just means “the dimension of J [m] is two.”
Mazur proved that multiplicity one theorem holds for J0(N) whenN is prime. We generalized
this result to the case N = pq.

Let T := Tpq and J := J0(pq) from now on(till next section). We have two Eisenstein
ideals of certain types up to permutation. Let m := (`, Up − 1, Uq − 1, Tr − r − 1)(resp.
n := (`, Up − 1, Uq + 1, Tr − r − 1)) for primes r - pq be an Eisenstein maximal ideal of type
(2, 2)(resp. (1, 2)). Then we have the following theorems.

Theorem 3.3.2 (Multiplicity one theorem for type (2, 2)). Assume p ≡ 1 (mod `). Then
multiplicity one theorem holds for m if one of the following conditions holds.

1. q 6≡ ±1 (mod `).

2. q ≡ −1 (mod `) and q is not an `-th power modulo p.

Furthermore the Galois module J [m] is unique up to isomorphism.

Theorem 3.3.3 (Multiplicity one theorem for type (1, 2)). Assume q ≡ −1 (mod `). Then
multiplicity one theorem holds for n if one of the following conditions holds.

1. p 6≡ 1 (mod `).

2. p ≡ 1 (mod `) and J [n] is unramified at q.

Furthermore the Galois module J [n] is unique up to isomorphism.

Before proving these theorems, we introduce the general ideas to understand J [m] for
Eisenstein ideals m. By similar argument as in Mazur’s paper[25], all Jordan-Hölder factors
of J [m] are Z/`Z’s and µ`’s. Moreover, since we assume that ` is prime to 2pq, by Mazur
[2], the dimension of H1(X0(pq),Ω1)[m] is at most 1. When we consider the local behaviour
of J [m] over F`, F`-points of J [m] maps injectively to H1(X0(pq),Ω1)[m], so the étale part of
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J [m] over F` is at most of dimension 1(page 119 of [25], [8]). Therefore the Jordan-Hölder
factors of J [m] are µ`’s and (possibly) one Z/`Z. In our cases, J [m] always contains a copy of
Z/`Z which comes from the cuspidal group. Let M be the quotient of J [m] by Z/`Z. Then
all Jordan-Hölder factors of M are µ`’s, i.e., it is a multiplicative group. Since ηr := Tr−r−1
annihilates J [m] for almost all primes r, it annihilates M . By the theorem of constancy [25],
M is a direct sum of µ`’s. (We can directly follow Mazur’s argument on page 126-129 of
[25].) If J [m] is a direct sum of Z/`Z and M which is a direct sum of µ`’s, it contains many
µ-type subgroups of J . Here we recall the theorem of Vatsal [37].

Theorem 3.3.4 (Vatsal). Let W denote any finite Q-rational subgroup of J0(N)(Q) such
that

1. W ' µn for some odd integer n; and

2. J0(N) has semistable reduction at ` for each prime ` dividing n.

Then, W is contained in the Shimura subgroup of J0(N).

The Shimura subgroup of J0(N) is the Cartier dual of a quotient group of (Z/NZ)×,
therefore its order divides φ(N) where φ is the Euler function. So, if ` - (p−1)(q−1), J0(pq)
can’t contain µ`. (Thus J [m] cannot be a direct sum of Z/`Z and M .) In this case, we
need to understand possible extensions of µ` by Z/`Z. Recall the theorem of Brumer and
Kramer[6].

Theorem 3.3.5 (Brumer-Kramer). Let S be a set of primes and n(S) be the number of
primes p ∈ S such that p ≡ ±1 (mod `). The group of extensions of µ` by Z/`Z over
ZS := Z[p−1 : p ∈ S], denoted by ExtZS

(µ`,Z/`Z), is a vector space over F` of dimension
n(S). Moreover, the extensions in ExtZS

(µ`,Z/`Z) are unramified at r ∈ S such that r 6≡ ±1
(mod `).

Thus all we need to prove multiplicity one theorems are information about Shimura
subgroups and cuspidal groups.

Shimura subgroups of J0(pq)

The Shimura subgroup is the kernel of the map

J0(N)→ J1(N).

Since the covering group of X1(N) → X0(N) is (Z/NZ)×/{±1}, the covering group of the
maximal étale subcovering of X1(N)→ X0(N) is a quotient of (Z/NZ)×/{±1}, which is the
Cartier dual of the Shimura subgroup. When N is prime, Mazur discussed it on section 11
of Chapter II in [25]. (In general, see the paper of Ling and Oesterlé [23].) Let Σp(resp. Σq)
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be the Shimura subgroup of J0(p)(resp. J0(q)). Then by the degeneracy map γq(resp. γp),
(Σp,Σp)(resp. (Σq,Σq)) maps to the Shimura subgroup of J0(pq), where

γq : J0(p)× J0(p)→ J0(pq),

γp : J0(q)× J0(q)→ J0(pq).

And these two images generate the Shimura subgroup of J0(pq). Let Σ1(resp. Σ2) be the
image of Σp(resp. Σq) on J0(pq). The action of Hecke operators on the Shimura subgroup
is well known to be “Eisenstein”, which means ηr := Tr − r − 1 annihilates it. (See [30].)
Furthermore,

Lemma 3.3.6. Up acts by 1 on Σ1 and by p on Σ2. Similarly, Uq acts by q on Σ1 and by 1
on Σ2.

Proof. Since γq is equivariant for all Tr but Tq, and Up − 1 annihilates Σp, Up acts by 1 on
Σ1. Let αq and βq be two degeneracy maps from X0(pq) to X0(p). Then αq and βq induce
the map between Jacobians as we discussed in section 2.2.

J0(pq)
(αq)∗ //

(βq)∗

// J0(p)
α∗
q
//

β∗
q

// J0(pq).

Let wq be the Atkin-Lehner operator of J0(pq). Then Uq+wq = β∗q (αq)∗ by Lemma 2.2.1.
Since Σ1 = (α∗q + β∗q )(Σp) and β∗q = wqα

∗
q , wq acts by 1 on Σ1. Moreover (βq)∗Σ1 = (αq)∗Σ1.

Thus Uq + wq acts by β∗q (αq)∗ = β∗q (βq)∗ = q + 1 on Σ1.

Cuspidal groups of J0(pq)

Let P1, Pp, Pq, and Ppq be four cusps of X0(pq) as in [26]. Then the cuspidal group of
J0(pq) is the subgroup generated by cuspidal divisors. Let C1 = P1 − Pp − Pq + Ppq, C2 =
P1 − Pp, and C3 = P1 − Pq. The order of C1(resp. C2, C3) is “roughly” (p− 1)(q − 1)(resp.
(p− 1)(q − 1)(q + 1), (p− 1)(p+ 1)(q − 1)). The action of Hecke operators on the cuspidal
group is also known to be “Eisenstein”. Moreover,

Lemma 3.3.7. On C1, Up and Uq both act by 1. On C2, Up acts by 1 and Uq acts by q.
Similarly, on C3, Up acts by p and Uq acts by 1.

Proof. Let P1 and Pp(resp. Pq) denote cusps of X0(p)(resp. X0(q)). Then, P1, Pq(resp. Pp,
Ppq) maps to P1(resp. Pp) by αq, βq, where (as before)

X0(pq)
αq
//

βq
// X0(p).

Furthermore, since the ramification indices of P1 and Pq in the covering X0(pq)→ X0(p) are
1 and q, up to permutation. Thus we have α∗q(P1) = P1 + qPq and β∗q (P1) = qP1 + Pq. Since
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β∗q (αq)∗(C1) = β∗q (0) = 0 and wq acts by −1 on C1 (note that wq(P1) = Pq and wq(Pp) = Ppq),
Uq acts by 1 on C1. A similar computation works if we permute p and q.

Because β∗q (αq)∗(C2) = β∗q (P1 − Pp) = qP1 + Pq − qPp − Ppq and wq(P1 − Pp) = Pq − Ppq,

(Uq + wq)(P1 − Pp) = β∗q (αq)∗(P1 − Pp) (3.1)

(Uq)(C2) + Pq − Ppq = q(P1 − Pp) + Pq − Ppq. (3.2)

Therefore Uq acts by q on C2. On C3, as before, since (αq)∗(C3) = 0 and wq(C3) = −C3, Uq
acts by 1. Similar computation works if we permute p and q.

For more details about the cuspidal groups of J0(pq), see [31], [10].

Proofs

Now we are ready to prove the theorems above.

Proof of Theorem 3.3.2. By Corollary 3.2.4, m is maximal, so J [m] is nontrivial. Let T`J be
the `-adic Tate module of J , i.e. T`J := lim

←n
J [`n]. It is of rank 2 over T` := T⊗Z`. Since T`

is a product of Ta := lim
←n

T/an for all maximal ideals a containing `, Tm is a direct factor of

T`. Using an idempotent em of Tm in T`, TmJ = emT`J is of rank 2 over Tm. So, TmJ/mTmJ
is at least of dimension 2 over Tm/mTm. Therefore J [m] is at least of dimension 2 over T/m.
(See section 7 of Chapter II of [25].) From the above discussion, if J [m] contains µ` as a
subgroup, q should be 1 modulo `. Therefore J [m] cannot contain µ` and it should contain
Z/`Z.(We can actually make the order ` subgroup of the cuspidal group generated by C1

which is annihilated by m.) Assume that q 6≡ ±1 (mod `) and J [m] is of dimension bigger
than 2. Then it contains W which is of dimension 3 and is an nontrivial extension of µ`⊕µ`
by Z/`Z. Let α(resp. β) be a natural inclusion of µ` into the first(resp. second) component
of µ` ⊕ µ`,

0 // Z/`Z //W // µ` ⊕ µ` // 0

0 // Z/`Z

OO

// V

OO

// µ`

α

OO

β

OO

// 0.

Then α∗W and β∗W are elements in ExtZpq(µ`,Z/`Z), where Zpq := Z[p−1, q−1]. Since
the dimension of ExtZpq(µ`,Z/`Z) is 1 if q 6≡ ±1 (mod `), there is a, b ∈ F` such that
aα∗W + bβ∗W = 0. In other words, W contains a two dimensional split extension of µ` by
Z/`Z. Therefore it contains µ`, which is contradiction. So, J [m] is of dimension 2. Since
ExtZpq(µ`,Z/`Z) is generated by an extension which is only ramified at p, J [m] is a non-zero
scalar(in F`) multiple of it. As Galois modules, these are all isomorphic.

For the second case, we cannot use the above method because the dimension of ExtZpq(µ`,Z/`Z)
is 2. However we can get the bound of the dimension of J [m]. If the dimension were greater
than 3, it would contain W of dimension 4 which is an extension of µ`

⊕3 by Z/`Z. By the
similar argument as above, we have three elements in ExtZpq(µ`,Z/`Z). So they are linearly
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dependent, which implies W contains a split extension. This contradicts to the fact that
J [m] does not have µ` as a subgroup. Thus J [m] is at most of dimension 3.

Consider special fiber of the Néron model of J over Fq. By the assumption and Theorem
4.2.2.3 below, m is not new, hence it is not q-new. (Otherwise there would exist an Eisenstein
maximal ideal of level q which is not 1 (mod `). This contradicts to Theorem 4.2.1.2.)
It implies that J [m] is unramified at q. The order of the component group is “roughly”
(p + 1)(q − 1) which is prime to `. Thus J [m] maps injectively to J0[m], where J0 is the
identity component of J/Fq . Since m is not q-new, T [m] = 0, where T is a torus of J0. (Note
that the action of T on T factors through Tq-new, see Theorem 3.10 of [29].) Since J0(p)2[m]
is an antidiagonal image of J0(p)[mp] in J0(p)2, where mp is an Eisenstein maximal ideal of
level p, it is of dimension 2. Thus the dimension of J [m] which satisfying this exact sequence

0 // T [m] = 0 // J0[m] = J [m] // J0(p)2[m]

is at most 2. Thus it is of dimension 2. Since J [m] cannot contain µ`, it is ramified at p but
unramified at q. This extension is unique up to isomorphism.

Proof of Theorem 3.3.3. By the Corollary 3.2.6, when q ≡ −1 (mod `), n is maximal. For
the first case, we assume further p 6≡ ±1 (mod `). Then the dimension of ExtZpq(µ`,Z/`Z)
is 1. Again, by lemma 3.3.6, we know that J [n] can’t contain µ`. By similar argument as
above, it follows that J [n] is of dimension 2 which is only ramified at q.

When p ≡ −1 (mod `), the dimension of ExtZpq(µ`,Z/`Z) is 2, so J [n] is at most dimen-
sion 3. Consider J [n] over Fq. Let J [n]Iq be the inertia fixed part of J [n], where Iq is the
inertia group of Gal(Q/Q) at q. It maps to J0(pq)/Fq . By the result of section 2.7, Φq[n] is
trivial. Moreover, since p 6≡ 1 (mod `), J0(p)[mp] is trivial, where mp = (`, Up−1, Tr− r−1)
which is Tp by Mazur.(See Theorem 4.2.1.2.) Therefore J [n]Iq lies in a torus T . On T , Frobq
acts by qUq, which is −q ≡ 1 (mod `). So µ` can’t lie in T . In other words, J [n]Iq is of
dimension 1. Since J [n] is an extension of µ`

⊕r by Z/`Z, J [n]Iq is at least of dimension r,
which implies J [n] is of dimension 2. Furthermore if we consider J [n] over Fp, J [n]Ip maps to
J0(pq)/Fp . By the result of section 2.7, Φq[n] is not trivial, of dimension 1 since it is “cyclic”.
On a torus, since n is new, T [n] is not trivial, which implies J [n]Ip is at least of dimension
2. Thus J [n] is unramified at p but ramified at q. In the ExtZpq(µ`,Z/`Z), the class of the
above extension is one dimensional, which means that J [n] is unique up to isomorphism as
a Galois module.

For the second case, J [n] contains one µ` from the Shimura subgroup. Consider J [n]Iq .
Since the order of the component group of J/Fq is prime to `, J [n]Iq maps injectively to J0[n].
Thus we have the following exact sequence ;

0 // T [n] // J [n]Iq // J0(p)[mp]
2

J0(p)[mp] ' Z/`Z⊕ µ`

s

OO
ψ

55
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where s(x) = α∗qx + β∗qx and ψ(x) = ((1 + v)x, (1 + v)x) for v the Vershiebung over Fq.
As before, T [n] can’t contain µ`. By ψ, Z/`Z maps to 0, and µ` maps injectively. Thus
T [n] and the image of J [n]Iq in J0(p)[mp]

2 are both one dimensional, which implies J [n]Iq

is of dimension 2.(Since s is injective, the image of J [n]Iq is equal to one of ψ.) If J [n] is
unramified at q, it should be of dimension 2. In this case, J [n] is a direct sum of Z/`Z and
µ`.

Remark 3.3.8. In the case when p 6≡ 1 (mod `) and q ≡ −1 (mod `), T [n] is of dimension
1. Since T [n] is a dual of L/nL where L is the character group of J0(pq)/Fp , it is also of
dimension 1 over T/n.

3.4 Failure of multiplicity one

When p ≡ q ≡ 1 (mod `), there is non trivial intersection of the old subvariety and the
new subvariety of J which is annihilated by Eisenstein maximal ideals. In this case, all
three different Eisenstein ideals are contained in a single maximal ideal m, so J [m] is very
complicated. Multiplicity one certainly fails in this case because J [m] already contains one
Z/`Z from the cuspidal group and two µ`’s from the Shimura subgroup. In this section, we
discuss when this phenomenon occurs.

Theorem 3.4.1. Assume p ≡ 1 (mod `). And let m := (`, Up − 1, Uq − 1, Tr − r − 1) be an
Eisenstein maximal ideal of type (2, 2). Then, multiplicity one fails for m if

1. q ≡ 1 (mod `) or

2. q ≡ −1 (mod `) and J [m] is ramified at q.

Furthermore, in the first case, J [m] is of dimension 4 or 5, and in the second case, it is of
dimension 3 and also ramified at p.

Theorem 3.4.2. Assume q ≡ −1 (mod `). And let n := (`, Up− 1, Uq + 1, Tr − r− 1) be an
Eisenstein maximal ideal of type (1, 2). Then, multiplicity one fails for n if p ≡ 1 (mod `)
and J [n] is ramified at q. Furthermore the dimension of J [n] is 3 and it is unramified at p.

The proofs of above theorems are really similar to those of the previous section.

Proof of Theorem 3.4.1. Assume q ≡ 1 (mod `). By the result of Shimura subgroups on
previous section, Σ1[m] and Σ2[m] are both one dimensional. Thus J [m] contains two µ`’s
from the Shimura subgroup and one Z/`Z from the cuspidal group. Since J [m] is an extension
of µ`

⊕r by Z/`Z, two µ`’s are actually direct factors. By the similar reason as previous section,
the dimension of J [m] over F` = T/m is at most 5 because the dimension of ExtZpq(µ`,Z/`Z)
is 2. On µ` which is contained in Σ1(resp. Σ2), Uq + wq(resp. Up + wp) acts by q + 1(resp.
p + 1) which is 6≡ 0 (mod `). Therefore these µ`’s do not meet the new subvariety because
on the new subvariety Uq + wq and Up + wp act by 0. By the same argument using Tate
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modules, we can prove Jnew[m] is at least of dimension 2. Therefore the dimension of J [m]
is 4 or 5.

For the second case, J [m] cannot contain µ` as a subgroup. Since the dimension of
ExtZpq(µ`,Z/`Z) is 2, the dimension of J [m] is at most 3. Consider J [m] over Fq. As we
discussed in the proof of Theorem 3.3.2, Φq[m] = 0. So J [m]Iq maps injectively to J0,
the identity component. Since J [m] is ramified at q, m should be q-new. By the similar
discussion as above, we have T [m] is at least of dimension 1 and the image of J [m]Iq on
J0(p)2[m] is at least of dimension 1. In other words, J [m]Iq is at least of dimension 2. Since
it is ramified at q and J [m] is at most of dimension 3, J [m]Iq should be of dimension 2 and
J [m] is of dimension 3. Furthermore if J [m] is unramified at p, J [m]Iq which is 2 dimensional
is unramified everywhere, i.e., it is a direct sum of µ` and Z/`Z, which is contradiction. Thus
J [m] is also ramified at p.

Proof of Theorem 3.4.2. When p ≡ 1 (mod `), as before we have J [n]Iq is of dimension 2.
Thus it J [n] is ramified at q, it should be of dimension 3. Consider J [n] over Fp. Since
Z/`Z ⊂ J [n] maps to the component group of J/Fp , we can copy Mazur’s argument on page
125-126 of [25]. Thus there is an exact sequence,

0 // Z/`Z // J [n]Ip // (µ`
⊕2)Ip = µ`

⊕2 // 0.

Thus J [n] is unramified at p. In this case, T [n] is of dimension two, where T is a torus of
J/Fp because J0(q)2[n] = 0. (Note that there is no Eisenstein maximal ideals of level q of
characteristic `.) Thus the dimension of L/nL is 2 where L is the character group of J/Fp

which is a Gm-dual of T .

3.5 Multiplicity one theorem for Shimura curves

Let J := Jpq0 (1) be the Jacobian of the Shimura curve Xpq
0 (1) and T := Tpq be the Hecke ring

in End(J). During this section, we will assume that p 6≡ 1 (mod `) and q ≡ −1 (mod `).
Then, n := (`, Up − 1, Uq + 1, Tr − r − 1) is not old in any way, which means n cannot be
q-old nor p-old. In this case we can prove multiplicity one theorem holds for J [n].

Theorem 3.5.1 (Ribet). J [n] is of dimension 2.

For the proof, we need the following proposition.

Proposition 3.5.2. Tn is Gorenstein.

Proof. Let Y be the character group of J/Fp which is a Gm-dual of the torus, then by Ribet
[29], there is an exact sequence;

0 // Y // L // X ⊕X // 0,
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where L is the character group of J0(pq)/Fq and X is the character group of J0(q)/Fq . Since
n is not old, (Tpq)a ' Tn and Xb = 0, where a(resp. b) is the image of n in Tpq(resp. Tq
which should be Tq itself). Thus we have Yn ' La. Since for a, multiplicity one theorem
holds, it implies that La is free of rank 1 over (Tpq)a, i.e., Yn is free of rank 1 over Tn. By
Grothendieck [19], there is a monodromy exact sequence,

0 // Y // Hom(Y,Z) // Φ // 0,

where Φ := Φp(J/Fp) is the component group of J/Fp . After tensoring with Z` over Z,

0 // Y ⊗ Z` // Hom(Y ⊗ Z`,Z`) // Φ`
// 0.

Using an idempotent en ∈ T` := T⊗ Z`, we get

0 // Yn // Hom(Yn,Z`) // Φn
// 0.

By Ribet [29], there is an exact sequence,

0 // Φq(J0(q)/Fq) // (X ⊕X)/(A(X ⊕X)) // Φ // C // 0,

where A =

(
p+ 1 Tp
Tp p+ 1

)
and C is the cokernel of the map Φq(J0(q)/Fq)×Φq(J0(q)/Fq)→

Φq(J0(pq)/Fq) which we discussed in section 2.7.(See Corollary 2.7.6.) Note that there is no
Eisenstein maximal ideal of level q of characteristic ` and Cn = 0 since Uq acts by 1 on C.
Thus first, second, and fourth terms vanish after localizing at n (resp. b). In other words,
Φn = 0, which implies that Yn ' Hom(Yn,Z`) is self-dual. Therefore Tn is Gorenstein.

Now we prove the theorem above.

Proof of Theorem 3.5.1. Let Jn := ∪mJ [nm] be the n-divisible group of J and let TnJ be
local factor of the Tate module of J at n, which is Hom(Jn,Q`/Z`). Then TnJ is free of rank
2 if and only if J [n] is of dimension 2 over T/n. Since J has purely toric reduction at p,
there is an exact sequence for any m ≥ 1 [28]:

0 // Hom(Y/`mY , µ`m) // J [`n] // Y/`mY // 0.

By taking projective limit, we have

0 // Hom(Y ⊗ Z`,Z`(1)) // T`J // Y ⊗ Z` // 0,

where Z`(1) is the Tate twist. By applying idempotent en, we get

0 // Hom(Yn,Z`(1)) // TnJ // Yn // 0.

Since Yn is free of rank 1 over Tn, TnJ is free of rank 2 over Tn.

Remark 3.5.3. By Mazur(appendix of [36]), Tn is Gorenstein if and only if J [n] is of dimension
2.
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Chapter 4

Modularity of reducible
representations

In this chapter, we discuss modularity of reducible mod ` representation 1⊕χ, more precisely,
we want to classify admissible tuples for prime ` ≥ 5. Recall that for positive integers s, t such
that s ≤ t, a t-tuple (p1, · · · , ps, · · · , pt) is admissible (for s) if there is a mod ` Eisenstein-like

newform f =
∞∑
n=1

anq
n of level N =

t∏
i=1

pi such that api = 1 for 1 ≤ i ≤ s and apj = −1 for

s < j ≤ t. Since we treat only modular forms of weight two(and trivial character if it is an
eigenform), ar ≡ 1 + r (mod `) for primes r - `N .

From now on, fix a prime ` ≥ 5 and let s, t be positive integers such that s ≤ t. (Since
there is no modular forms of weight 2 and level 1, t is always positive. Moreover, we will prove
s should not be 0.) We also assume that a square-free level N is prime to ` for simplicity.

4.1 Known results I

In this section, we study results about classification of admissible tuples before this disserta-
tion. It started from Mazur, he proved the case for t = 1 in his famous paper [25]. After his
work, it has not been studied much. Around 2008, Ribet generalized Mazur’s result to many
cases, and he could classify them completely when t = 2. Before handling specific cases, we
consider necessary and sufficient conditions for admissibility.

Necessary conditions

Theorem 4.1.1 (Ribet). For non-negative integers s ≤ t assume a t-tuple (p1, · · · , ps, · · · , pt)
is admissible. Then the following hold.

1. s ≥ 1.

2. If t = s, ` | φ(N) =
t∏
i=1

(pi − 1).
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3. For s < j ≤ t, pj ≡ −1 (mod `).

Proof. 1. When s = 0, t = 1, Mazur proved that a prime p is not admissible [25]. Ribet
generalized his result to the case s = 0, t = 2 [3] and this method also works for
general t. Here we prove it for s = 0, t = 3 by following Ribet’s method. Assume
(p, q, r) is admissible and f is a mod ` Eisenstein-like newform of type (0, 3). Let
E := e− ep− eq− er + epq + epr + eqr− epqr. Then, for any Hecke operator Tk for prime
k not dividing pqr, we have

Tk(E) = (k + 1)E, and Tk(f) ≡ (k + 1)f (mod `).

Moreover since p ≡ q ≡ r ≡ −1 (mod `) by 3, we have

Tp(E) ≡ Tq(E) ≡ Tr(E) ≡ −E (mod `)

Tp(f) = Tq(f) = Tr(f) = −f.
Thus E and f have the same Fourier expansion modulo ` at i∞ modulo `, therefore
E ≡ f (mod `).

Again p ≡ −1 (mod `) implies that e − pep ≡ e + ep (mod `) is a mod ` Eisenstein
series of level p of type (1, 1). Similarly, e+ eq, e+ er are mod ` Eisenstein series. By
the map Bp and Bq which are induced by the degeneracy maps, ep + epq, epq + epqr,
and e+ epqr = (e+ ep)− (ep + epq) + (epq + epqr) are also mod ` modular forms of level
pqr. Since p ≡ q ≡ r ≡ −1 (mod `), F := e + ep + eq + er + epq + epr + eqr + epqr is
a mod ` Eisenstein series of type (3, 3). Using these mod ` modular forms, we have
8e = F −E − 2(e+ ep)− 2(e+ eq)− 2(e+ er)− 2(e+ epqr), a mod ` modular form of
level pqr which is prime to `. This contradicts to the fact that the ”filtration” of e is
`+ 1 which means e cannot be a linear combination of mod ` modular forms of weight
two of level prime to `.(See Remark 2.5.2.)

2. Let f be a mod ` Eisenstein-like newform of type (t, t) and E be the Eisenstein series

of type (t, t). Let N =
t∏
i=1

pi. Then, by the definition, E is

e−
t∑
i=1

piepi +
∑

1≤i<j≤t

pipjepipj + · · ·+ (−1)tNeN .

So, its constant term of Fourier series is (−1)t−1

24
φ(N) that is the Fourier expansion of

the mod ` modular form E − f . Therefore it should be 0 modulo ` by Mazur (section
5 of Chapter II of [25]).

3. Let f =
∑
anq

n be a mod ` Eisenstein-like newform of type (s, t). Then the semisim-
plification of a mod ` Galois representation ρ associated to f is 1⊕χ. The semisimpli-
fication of the local representation ρp := ρ |Gal(Qp/Qp) for p dividing N is ε⊕ εχ where ε
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is an unramified quadratic character. For s < j ≤ t, ε(Frobpj) = apj = −1 where Frobp
is a Frobenius element of Gal(Qp/Qp). Therefore pj = χ(Frobpj) ≡ −1 (mod `).

Sufficient conditions

Theorem 4.1.2 (Ribet). For positive integers s ≤ t a t-tuple (p1, · · · , ps, · · · , pt) is admis-
sible if one of the following conditions holds.

1. t = s, s is odd, and ` | φ(N) =
t∏
i=1

(pi − 1).

2. t = s+ 1, s is odd, and pt ≡ −1 (mod `).

Proof. 1. Let p1 = p and D =
t∏
i=2

pi. (Since the number of prime factors of D is even,

there is the Shimura curve XD
0 (p).) Then Φ := Φp(J

D
0 (p)), the component group of

JD0 (p)/Fp , is annihilated by an Eisenstein ideal I := (Up − 1, Ur − 1, Tk − k − 1) for
primes r | D and primes k - N = Dp in TDp . Since the order of Φ is “roughly” φ(N),
for m := (I, `), Φ[m] 6= 0, which means m is maximal. By Ribet [29], the action of
TDp on the character group X of JD0 (p)/Fp is p-new and we have the monodromy exact
sequence,

0 // X // Hom(X,Z) // Φ // 0.

Therefore the action of TDp on Φ factors through its p-new quotient, which implies m
is p-new. By Jacquet-Langlands correspondence, we can consider m as a new maximal
ideal of TN , in other words, there is a mod ` Eisenstein-like newform of level N of type
(t, t).

2. Let N =
t∏
i=1

pi, D =
t∏
i=2

pi, p = p1, and q = pt+1. (Since the number of prime factors of

D is even, there are Shimura curves XD
0 (p), XD

0 (pq), and XDpq
0 (1).) By Ribet, there

are Hecke equivariant exact sequences:

Φp(J
D
0 (p))× Φp(J

D
0 (p))

g
// Φp(J

D
0 (pq)) // C // 0

and
Φq(J

Dpq
0 (1)) // C // 0.

From the first one, I := (Up− 1, Uq − q, Ur − 1, Ts− s− 1) for primes r | D and primes
s - Nq annihilates C. By the previous discussion about Deligne-Rapoport model of the
Jacobians, Φp(J

D
0 (p)) and Φp(J

D
0 (pq)) are almost cyclic groups. By Proposition 2.7.5

and the condition that q ≡ −1 (mod `), C[m] 6= 0 where m := (I, `). Therefore, m is
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maximal. From the second exact sequence, the action of Hecke operators on C factors
through Tnew, so m is a new maximal ideal.

Here is a theorem of “level raising” which we will prove later. (See section 4.3.)

Theorem 4.1.3 (Ribet). For positive integers s ≤ t assume that a t-tuple (p1, · · · , ps, · · · , pt)
is admissible and t is odd. Then a t + 1-tuple (p1, · · · , ps, · · · , pt, pt+1)(with the same s) is
admissible if and only if pt+1 ≡ −1 (mod `).

4.2 Known results II

In this section, we classify admissible tuples for t ≤ 2.

The case t = 1

Theorem 4.2.1 (Mazur). 1. For s = 0, (p) is not admissible.

2. For s = 1, (p) is admissible if and only if p ≡ 1 (mod `).

Proof. 1. This is proved by Theorem 4.1.1.1.

2. This is proved by Theorem 4.1.1.2 and Theorem 4.1.2.1.

The case t = 2

Theorem 4.2.2 (Ribet). 1. For s = 0, a pair (p, q) is not admissible.

2. For s = 1, a pair (p, q) is admissible if and only if q ≡ −1 (mod `).

3. For s = 2, if a pair (p, q) is admissible, then ` | (p−1)(q−1). Assume ` | p−1. Then,
a pair (p, q) is admissible if and only if q ≡ 1 (mod `) or q is an `-th power modulo p.

Proof. 1. This is done by Theorem 4.1.1.1.

2. This is done by Theorem 4.1.1.3 and Theorem 4.1.2.2.

3. See section 4.3.
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4.3 Level-raising methods

In his paper [27], Ribet studied the kernel of the map γp between the Jacobians of mod-
ular curves which is induced by degeneracy maps. Using this result, Ribet could find the
intersection of the p-old subvariety and the p-new subvariety of the Jacobians. Diamond
and Taylor generalized Ribet’s results [15] and their results can be applied to level raising
for irreducible modular representations. On the other hands, we cannot directly use their
results to raise level of reducible modular representations. The reason is basically that the
kernel of γp induced by degeneracy maps is ”Eisenstein”. We circumvent this method by
using Ribet’s exact sequences. We prove the known results about admissible tuples in the
previous sections which can be done by this new one.

Definition

Let m be a new maximal ideal of Hecke ring TN of residue characteristic ` and let ρm be the
associated mod ` Galois representation to m. Assume p is prime which does not divide N .
We call level raising occurs from level N to level Np (for given maximal ideal m or Galois
representation ρm) if there is a maximal ideal n of Hecke ring TNp such that

1. n is p-new.

2. The mod ` representation ρn associated to n is isomorphic to ρm.

Equivalent conditions

Let T := TNp. Tp-old is isomorphic to TN and a maximal ideal m of TN can be thought as
one of Tp-old. By abusing notation, let m be a maximal ideal of T whose image in Tp-old is
m. If level raising occurs for m, m should be also p-new, in other words, the image of m in
Tp-new is maximal.

To detect level-raising phenomena, Ribet proved the following theorem.

Theorem 4.3.1 (Ribet). Let J := J0(Np). As before, assume Np is prime to ` and p does
not divide N . Let m be a maximal ideal of TN of residue characteristic `. Then m is also
p-new if and only if

(Jp-old ∩ Jp-new)[m] 6= 0.

Proof. Let Ω := Jp-old ∩ Jp-new. If Ω[m] 6= 0, Jp-new[m] is not zero, which implies m is p-new.
Conversely, assume Ω[m] = 0. Consider the following exact sequence;

0 // Ω // Jp-old × Jp-new
// J // 0.

Let e = (1, 0) ∈ Tp-old × Tp-new. If e 6∈ End(J), J 6' Jp-old × Jp-new. Thus Ω[m] = 0, which
means that m is not in the support of Ω, implies e ∈ End(J) ⊗T Tm. Moreover e ∈ T ⊗ Q
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because Tp-old × Tp-new is finite over T. Thus

e ∈ (T⊗Q) ∩ (EndJ ⊗T Tm).

The intersection (T⊗Q) ∩ (EndJ ⊗T Tm) is equal to the localization of the saturation of T
in End(J) at m. Since T is saturated in End(J) locally at m by the Agashe, Ribet and Stein
[2], e ∈ Tm.

If m is also a maximal ideal after projection T→ Tp-new, the injection T ↪→ Tp-old×Tp-new

is not an isomorphism after localizing at m. Thus e = (1, 0) ∈ Tp-old × Tp-new cannot be in
Tm, which is contradiction. Therefore m is not p-new.

Remark 4.3.2. The theorem of Agashe, Ribet, and Stein is the following.

Theorem 4.3.3 (Agashe, Ribet, and Stein). Let ` be the characteristic of TN/m. TN is
saturated in End(J0(N)) locally at m if

1. ` - N , or

2. `‖N and T` ≡ ±1 (mod m).

In our case, the level Np is prime to `, so TNp is saturated in End(J0(Np)) locally at m.

Intersection of p-old subvariety and p-new subvariety

Let p be a prime and N be an integer which is prime to p. Let Ω be the intersection of p-old
subvariety and p-new subvariety of J0(Np). By degeneracy maps, we have the following
maps

J0(N)× J0(N)
γp
// J0(Np)

dp
// J0(N)× J0(N).

The composition of dp and γp is the matrix

δp :=

(
p+ 1 Tp
Tp p+ 1

)
.

Let ∆ be the kernel of the above composition δp, i.e.,

∆ := J0(N)2[δp] = {(x, y) ∈ J0(N)2 : Tpx = (p+ 1)y and (p+ 1)x = Tpy}.

And let Σ be the kernel of γp. Then ∆ contains Σ and is endowed with a canonical non-
degenerate alternating Gm-valued pairing. Let Σ⊥ be the orthogonal to Σ relative to this
pairing; this subgroup of ∆ contains Σ, and we have the formula

Ω = Σ⊥/Σ.

For more details, see [27].
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If we invert 2, we can decompose ∆ into eigenspaces. Let

∆+ := {(x,−x) ∈ J0(N)2 : x ∈ J0(N)[Tp − p− 1]}

and
∆− := {(x, x) ∈ J0(N)2 : x ∈ J0(N)[Tp + p+ 1]}.

Then ∆ ' ∆+ ⊕∆− if we invert 2. Furthermore, these eigenspaces have filtration;

0 ⊂ Σ+ ⊂ (Σ⊥)+ ⊂ ∆+

and
0 ⊂ Σ− ⊂ (Σ⊥)− ⊂ ∆−.

Since ∆/Σ⊥ is the Gm-dual of Σ and Σ is an antidiagonal embedding of the Shimura subgroup
of J0(N) by Ribet [27], Σ+ = Σ and Σ− = 0. Thus,

(Σ⊥)− = ∆−.

By the map γp, (Σ⊥)+ maps to (Σ⊥)+/Σ and (Σ⊥)− = ∆− maps to ∆−. (Σ⊥)+/Σ(resp.
∆−) corresponds to the +1-eigenspace(resp. −1-eigenspace) of Ω of the Up operator.

Proofs

Proof of Theorem 4.1.3. Let p = p1, M =
∏s

i=2 pi, N =
∏t

j=s+1 pj, and q = pt+1. (Since the

number of prime factors of MN is even, there are Shimura curves XMN
0 (p), XMN

0 (pq), and
XpMNq

0 (1).) If a t+ 1-tuple (p, p2, . . . , pt, q) is admissible, then q ≡ −1 (mod `) by Theorem
4.1.1.3.

Conversely, assume q ≡ −1 (mod `). Since a t-tuple (p, p2, . . . , pt) is admissible, there
is a new Eisenstein maximal ideal m in TpMN of type (s, t). In other words, m := (`, Um −
1, Un + 1, Tk− k− 1) for primes m | pM , n | N , and k - pMN is new maximal. Let X be the
character group of JMN

0 (p)/Fp . Then, by Ribet, there is a Hecke equivariant exact sequence

0 // X/(Tq + q + 1)X // Φq(J
pMNq
0 (1))

where Φq(J
pMNq
0 (1)) is the component group of JpMNq

0 (1)/Fq . Because q ≡ −1 (mod `), Tq +
q+1 ≡ Tq−q−1 (mod `) and Tq+q+1 ∈ m. By the Jacquet-Langlands correspondence and

the fact that TMN,p-new
p acts faithfully on X, X/(Tq + q + 1)X[m] 6= 0, so Φq(J

pMNq
0 (1))[n] 6=

0, where n := (`, Um − 1, Un + 1, Tk − k − 1) for primes m | pM , n | Nq, and k - pMNq
in TpMNq. In other words, n is maximal. By the Jacquet-Langlands correspondence, n is
new.

Proof of Theorem 4.2.2.3. By Theorem 4.1.1.2, first statement follows. For the second one,
consider an exact sequence of Ribet,

0 // Φ // X/(Tq − q − 1)X // Ψ+ // 0,
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where Φ is the component group of J0(p)/Fp , X is the character group of J0(p)/Fp , and Ψ+ is
the +1-eigenspace of Uq on the component group of Jpq0 (1)/Fq . Let I be an Eisenstein ideal
of T := Tp and m := (I, `), in other words, I := (Up − 1, Tr − r − 1) for primes r - p. (By
Theorem 4.2.1.2, m is maximal because p ≡ 1 (mod `).) Since Φ is a free module of rank 1
over T/I and Xm is free of rank 1 over Tm [25],

#(X/IX)m = #(T/I)m = #(Φ)m.

Therefore, if Tq − q − 1 is not a local generator of I at m,

#(X/(Tq − q − 1)X)m > #(X/IX)m = #(Φ)m,

so Ψ+
n is not zero, where n := (`, Up− 1, Uq − 1, Tr − r− 1) for primes r - pq in Tpq. Hence, n

is maximal. By the Jacquet-Langlands correspondence, n is new. By Mazur [25], Tq − q − 1
is not a local generator if and only if q ≡ 1 (mod `) or q is an `-th power modulo p.

Conversely, assume Tq − q − 1 is a local generator of I. We use the similar notations as
the previous subsection. Let Ω be J0(pq)q-old ∩ J0(pq)q-new, ∆ be J0(pq)2[δq], and Σ be the
kernel of γq. We have filtration of ∆+;

0 ⊂ Σ ⊂ (Σ⊥)+ ⊂ ∆+.

And ∆+ is isomorphic to J0(p)[Tq − q − 1]. Since Tq − q − 1 is a local generator of I, (∆+)m
is isomorphic to J0(p)[I]m. By Mazur [25], J0(p)[I] is free of rank 2 over T/I and Σ is free
of rank 1 over T/I. Thus the m-primary subgroup of (Σ⊥)+/Σ is 0 because ∆+/(Σ⊥)+ is
the Gm-dual of Σ. In other words, the m-primary subgroup of Ω is 0, i.e., Ω does not have
support at m. By the Theorem 4.3.1, m is not q-new. In other words, a pair (p, q) is not
admissible.

4.4 The main theorem

One of main theorems of this dissertation is the conditions of admissibility of a triple (p, q, r)
for s = 2. Namely, the problem we want to solve is to find necessary and sufficient conditions
for the existence of an Eisenstein-like newform f of level pqr such that Upf = f , Uqf = f ,
and Urf = −f . If a triple (p, q, r) is admissible, r ≡ −1 (mod `) by Theorem 4.1.1.3.

So, assume r ≡ −1 (mod `). Let I = (Up − 1, Ur − r, Tk − k − 1) for primes k - pr be an
Eisenstein ideal of level pr. Since r ≡ −1 (mod `), m := (`, I) is new maximal by Theorem
4.2.2.2. We want to understand admissibility of a triple (p, q, r) by using level-raising method.
Here is one of our main theorems.

Theorem 4.4.1. Assume that p 6≡ 1 (mod `) and if q ≡ 1 (mod `), assume p is not an `-th
power modulo q. Let ηq be the operator Tq − q − 1. Then,

1. a triple (p, q, r) is admissible for s = 2 if ηq is not a local generator of I at m.
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2. Assume further that r 6≡ −1 (mod `2). Then, a triple (p, q, r) is not admissible for
s = 2 if ηq is a local generator of I at m.

Proof. 1. The condition that ηq is not a local generator of I at m implies that (L/ηqL)m 6=
(L/IL)m, where L is the character group of J0(pr)/Fp . By the Ribet, there is an exact
sequence,

0 // Φ // L/ηqL // Ψ+ // 0,

where Φ := Φp(J0(pr)) is the component group of J0(pr)/Fp and Ψ+ is the +1-eigenspace
of the operator Uq on the component group Ψ := Φq(J

pq
0 (r)) of Jpq0 (r)/Fq . Let n be the

ideal of Tpqr which is generated by `,Up − 1, Uq − 1, Ur + 1, and Tk − k − 1 for primes
k - pqr. Then, after localizing at m we have

0 // Φm
// (L/ηqL)m // (Ψ+)n.

If #(L/ηqL)m is bigger than #Φm, (Ψ+)n is non-zero, i.e.,n is maximal. Let n be an
exact power of ` which divides r + 1, i.e., `n ‖ r + 1. Then, #(Φm) = `n since the
order of Φ is “roughly” (p − 1)(r + 1) and p 6≡ 1 (mod `). (Note that Φm is equal to
the `-primary part of Φ.) Since L/mL is of dimension 1 over T/m(see Remark 3.3.8.),
Lm is free of rank 1 over Tm. The order of Tm/Im = (T/I)m is `n, which is the largest
power of ` which divides (p− 1)(r − 1)(r + 1) because ` - (p− 1)(r − 1). Thus

#(L/(ηq)L)m > #(L/IL)m = #(T/IT)m = #(Φm)

since ηq is not a local generator of I at m. As we discussed above, this implies that n
is maximal. By Jacquet-Langlands correspondence, n can be considered as a pq-new
maximal ideal of Tpqr. If it were r-old, a pair (p, q) should be admissible for s = 2.
The assumption implies that a pair (p, q) is not admissible by Theorem 4.2.2.3. Thus
n is genuinely new, which implies the admissibility of a triple (p, q, r) for s = 2.

2. See Remark 5.4.1.

Remark 4.4.2. Examples in next section tell us that ηq is not a local generator if a pair
(p, q) is admissible for s = 2. This phenomenon can be proved by assuming a well known
conjecture about congruence subgroup property for S-arithmetic groups.

4.5 Examples

When N is prime, ηq is a local generator of an Eisenstein ideal I = (Tr − r − 1) for primes
r not dividing N at m := (`, I) if and only if q ≡ 1 (mod `) or q is not an `-th power
modulo N . In contrast, when N is composite, we don’t know what congruence implies local
generation.
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Consider the easiest case. As in Theorem 4.4.1, we assume r ≡ −1 (mod `) and p 6≡ 1
(mod `). Assume further ` ‖ (p − 1)(r + 1), in other words, r 6≡ −1 (mod `2). In this case
Im = m. Let f(τ) =

∑
anx

n be an Eisenstein-like newform of level pr and type (1, 2) where
x = e2πiτ . If aq ≡ q + 1 (mod `2), ηq := Tq − q − 1 ∈ m2, so ηq is not a local generator of I
at m.

Moreover in our examples below, all newforms are defined over Q, i.e., Tpr = Z and
m = `Z, which implies that ηq is not a local generator if and only if ηq ∈ m2.

Admissibility of (2, q, 19) for s = 2 when ` = 5

An Eisenstein-like newform of level pr = 38 and type (1, 2) is 38.2b. Let an be the eigenvalue
of Tn for 38.2b. Then aq ≡ 1 + q (mod 25) when q = 23, 41, 97, 101, 109, 113, 149, 151,
193, 199, 239, 241, 251, 257, 277, 347, 359, 431, and 479 for primes q < 500. Since only
(2, 151), (2, 241), (2, 251), and (2, 431) for s = 2 are admissible, a triple (2, q, 19) for s = 2 is
admissible if

q = 23, 41, 97, 101, 109, 113, 149, 193, 199, 239, 257, 277, 347, 359, and 479

for q < 500.

Admissibility of (3, q, 19) for s = 2 when ` = 5

An Eisenstein-like newform of level pr = 57 and type (1, 2) is 57.2b. Let bn be the eigenvalue
of Tn for 57.2b. Then bq ≡ 1 + q (mod 25) when q = 41, 97, 101, 167, 197, 251, 257, 269,
313, 349, 409, 419, 431, and 491 for primes q < 500. Since only (3, 41), (3, 431), and (3, 491)
for s = 2 are admissible, a triple (3, q, 19) for s = 2 is admissible if

q = 97, 101, 167, 197, 251, 257, 269, 313, 349, 409, and 419

for q < 500.

Admissibility of (2, q, 29) for s = 2 when ` = 5

An Eisenstein-like newform of level pr = 58 and type (1, 2) is 58.2b. Let cn be the eigenvalue
of Tn for 58.2b. Then cq ≡ 1+q (mod 25) when q = 89, 97, 137, 151, 181, 191, 223, 241, 251,
347, 367, 401, 431, 433, and 491 for primes q < 500. Since only (2, 151), (2, 241), (2, 251),
and (2, 431) for s = 2 are admissible, a triple (2, q, 29) for s = 2 is admissible if

q = 89, 97, 137, 181, 191, 223, 347, 367, 401, 433, and 491

for q < 500.
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Admissibility of (2, q, 13) for s = 2 when ` = 7

An Eisenstein-like newform of level pr = 26 and type (1, 2) is 26.2b. Let dn be the eigenvalue
of Tn for 26.2b. Then dq ≡ 1 + q (mod 49) when q = 43, 101, 223, 229, 233, 269, 307, 311,
and 349 for primes q < 500. Since a pair (2, q) for s = 2 is not admissible for q < 500, a
triple (2, q, 13) for s = 2 is admissible if

q = 43, 101, 223, 229, 233, 269, 307, 311, and 349

for q < 500.

Remark 4.5.1. In the last case, a pair (2, q) for s = 2 is admissible when q = 631 and q = 673.
As before,

d631 ≡ 1 + 631 (mod 49) and d691 ≡ 1 + 691 (mod 49).
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Chapter 5

Congruence subgroup property

In this chapter we discuss the conjectural generalization of Ribet’s result [27] to Shimura
curves. In other words, we want to find the kernel of γr, where

JD0 (1)× JD0 (1)
γr
// JD0 (r).

By assuming a well known conjecture about congruence subgroup property, Ciavalla and
Terracini proved the kernel of γr is Eisenstein [11]. However, their result was not enough
to raise the level of mod ` modular Galois representation 1 ⊕ χ for ` > 3. By considering
the localization of quaternion algebras, we can exhibit the kernel of γr specifically up to 2,
3 primary factor if we assume the conjecture and this is enough for applications.

5.1 Quaternion algebras and congruence subgroups

Let B be an indefinite quaternion algebra over Q of discriminant D 6= 1. Thus D is the
product of the even number of distinct primes. All maximal orders in B are conjugate; so let
us fix one maximal order O ⊂ B. For each prime p not dividing D, we fix an isomorphism of
Qp-algebras ip : Bp → M2(Qp) such that ip(Op) = M2(Zp) if p 6= ∞, where Bp := B ⊗Q Qp

and Op := O ⊗Z Zp. Let Hp be a quaternion algebra over Qp. Up to isomorphism, it is
unique. Let Rp be the maximal order of Hp and mp be the maximal ideal of Rp. For each
prime p dividing D, there is the unique two-sided ideal Ip ⊂ O of norm p. (In this chapter,
a norm will mean a reduced one.) We fix an isomorphism of Qp-algebras ip : Bp → Hp such
that ip(Op) = Rp and ip(Jp) = mp for a prime p dividing D, where Jp := Ip ⊗Z Zp.

Let BA be the adelization of B, B×A be the topological group of invertible elements in
BA, and B×,∞A be the subgroup of finite ideles. For an integer N prime to D, let K0

p(N) and
K1
p(N) be the subgroups of O×p for a prime p not dividing D as follows,

K0
p(N) := i−1

p

{(
a b
c d

)
∈ SL2(Zp)

∣∣∣∣∣
(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
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K1
p(N) := i−1

p

{(
a b
c d

)
∈ SL2(Zp)

∣∣∣∣∣
(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
.

And let V0(N) and V1(N) be the subgroups of B×,∞A as follows,

V0(N) :=
∏
p-N

O1
p ×

∏
p|N

K0
p(N)

V1(N) :=
∏
p-DN

O1
p ×

∏
p|N

K1
p(N)×

∏
p|D

(1 + Jp),

where O1
p is the group of norm 1 elements in O×p which is i−1

p (SL2(Zp)) for a prime p - D.

If U is an open compact subgroup of B×,∞A , we put Φ(U) := GL+
2 (R)U∩B×. Let ΓD0 (N) be

the group of norm 1 elements in an Eichler order of level N , then ΓD0 (N) = Φ(V0(N)). Define
ΓD1 (N) by Φ(V1(N)). For a square-free integer N prime to D, the quotient ΓD0 (N)/ΓD1 (N) is∏

p|D

(
O1
p/(1 + Jp)

)
×
∏
p|N

(Z/pZ)× '
∏
p|D

(Z/(p+ 1)Z)×
∏
p|N

(Z/pZ)× .

For a prime r not dividing D let Γr := (O⊗ZZ[1
r
])1, the group of norm 1 elements of the

ring O ⊗Z Z[1
r
]. If we localize Γr at each prime p different from r, we have the same image

as the localization of ΓD0 (1) at p. But the localization of Γr at r is isomorphic to SL2(Qr) by
the map ir.

Let U(M) be the subgroup of B×,∞A as follows,

U(M) :=
∏
p-M

O1
p ×

∏
p|M

(1 +MOp).

Now we can define congruence subgroups of Γr and introduce the conjecture of congruence
subgroup property which is well known when D = 1.

Definition 5.1.1 (Congruence subgroups). A subgroup of Γr is a congruence subgroup if it
contains Φ(U(M)) for some integer M .

Conjecture 5.1.2 (Congruence subgroup propery for Γr). Every subgroup of Γr of finite
index is a congruence subgroup.

Let Γder
r be the commutator subgroup of Γr, i.e. Γder

r = [Γr,Γr] := {aba−1b−1 : a, b ∈ Γr}.
Then Γder

r is of finite index ([24], [21]). So it contains Φ(V (M)) for some integer M if we
assume congruence subgroup property for Γr. By the Chinese remainder theorem, we can
understand Γder

r more. For each prime p dividing D, the commutator subgroup of O1
p is 1+Jp

by Riehm [32], so the image of Γder
r by the localization at p should be 1 +Jp. Therefore, Γder

r



CHAPTER 5. CONGRUENCE SUBGROUP PROPERTY 46

contains Φ(V1(N)) for some integer N prime to D. For a prime p | N and p > 3, we can
define the map πp by the composition jp ◦ ip, where

O1
p

ip
// SL2(Zp)

jp
// PSL2(Zp/pZp).

Then the kernel of πp contains localization of Φ(V1(N)) at p. Since the only quotients of
SL2(Zp/pnZp) are of the form SL2(Zp/pmZp) for m ≤ n [5] and PSL2(Zp/pZp) is simple,
the image of localization of Γder at p by πp should be PSL2(Zp/pZp), which implies Γder

r =
Φ(V1(1)r) up to 2, 3 primary factors, where

V1(1)r :=
∏
p-rD

O1
p ×

∏
p|D

(1 + Jp)× SL2(Qr).

Therefore Γab
r := Γr/Γ

der
r is isomorphic to∏

p|D

(
O1
p/(1 + Jp)

)
'
∏
p|D

(
F×p2/F×p

)
'
∏
p|D

(Z/(p+ 1)Z) ' ΓD0 (1)/ΓD1 (1)

up to 2, 3 primary factors. The inverse image of Γder
r by an injection O ↪→ O ⊗Z Z[1

r
] is

ΓD1 (1) up to 2, 3 primary factors.

5.2 Skorobogatov groups

In his paper [34], Skorobogatov introduced “Shimura coverings” of Shimura curves. For
primes p | D, let ΓDp (N) be the inverse image of (1 + Jp) by ip in ΓD0 (N). Then ΓD1 (N) =⋂
p|D

ΓDp (N). Let XD
p (N) be the Shimura curve associated to ΓDp (N), i.e., its complex points are

isomorphic to h/ΓDp (N). Then the covering map XD
p (N) → XD

0 (N) is of degree (p+ 1)/2.
By the Jordan [34], there is an unramified subcovering X → XD

0 (N) whose Galois group
is Z/((p+ 1)/ε(p)), where ε(p) is 1, 2, 3, or 6.(About ε(p), see page 781 of [34].) Since
unramifed abelian coverings of XD

0 (N) correspond to subgroups of JD0 (N), we can define the
Skorobogatov subgroup of Jacobians of Shimura curves.

Definition 5.2.1. The p-Skorobogatov subgroup Σp of JD0 (N) for prime p dividing D is
the subgroup of JD0 (N) which corresponds to the above unramified covering X above. The
Skorobogatov subgroup Σ of JD0 (N) is

Σ :=
∏
p|D

Σp.

These subgroups have very similar properties to the Shimura subgroups. For example,

Lemma 5.2.2. On Σp, Up acts by −1, Uq acts by 1 for primes q dividing D/p, Ur acts by
r for primes r dividing N , and Ts acts by s+ 1 for primes s - DN .
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Proof. The proof is very similar to the action of Hecke operators on Shimura subgroups. By
using moduli theoretic description of XD

0 (N), the complex points of X classifies (A,P ) where
A is a false elliptic curve with level N structure and P is a generator of A[Ip]. Since the level
structures at other primes r dividing DN are compatible with the level structure at p, which
gives rise to our covering X, wr acts trivially on the covering group. This gives the action of
Uq when q divides D/p because Uq = wq. Since for primes r dividing N , Ur + wr = β∗r (αr)∗
by Lemma 2.2.1 and β∗r = wrα

∗
r , Ur = wrα

∗
r(αr)∗ − wr = wr(r + 1) − wr = r on Σp. For

primes s - DN , Ts = (βs)∗α
∗
s = (βs)∗wsβ

∗
s = (βs)∗β

∗
s = s+1 since the image of Skorobogatov

groups by degeneracy maps lies in the Skorobogatov group and ws acts trivially on it.
Consider Up on Σp. By the pairing < −, − > between A[Ip] and A[p]/A[Ip](about this

pairing, see [7]), the map Up sends (A,P ) to (A/A[Ip], Q), where < P,Q >= ζp for some
fixed primitive p-th root of unity. For σ in the covering group, it sends (A,P ) to (A, σP ).
Thus UpσU

−1
p = σ−1, which implies Up acts by −1 on Σp.

Remark 5.2.3. It might be easier than above if you consider the actions of wr on the group
of 2× 2 matrices as in Calegari and Venkatesh. See page 29 of [9].

5.3 Ihara’s lemma for Shimura curves

In this section, by assuming Congruence subgroup property, up to 2, 3 primary factors, we
compute the kernel of γr,

JD0 (1)× JD0 (1)
γr
// JD0 (r).

By the interpretation of Jacobians as cohomology groups, the kernel of γr is isomorphic to
one of κr, where

H1(XD
0 (1),Q/Z)×H1(XD

0 (1),Q/Z)
κr // H1(XD

0 (r),Q/Z).

Since H1(XD
0 (1),Q/Z) is isomorphic to a group cohomology H1(ΓD0 (1),Q/Z), we compute

the kernel of κr by

H1(ΓD0 (1),Q/Z)×H1(ΓD0 (1),Q/Z)
κr // H1(ΓD0 (r),Q/Z).

Since Γr is the amalgamated product of ΓD0 (1) and ΓD0 (1) over ΓD0 (r) ([11], [9]), by Lyndon
exact sequence, we have the following exact sequence :

0 // H1(Γr,Q/Z) i // H1(ΓD0 (1),Q/Z)×H1(ΓD0 (1),Q/Z)
κr // H1(ΓD0 (r),Q/Z).

Since Γr acts trivially on Q/Z,

H1(Γr,Q/Z) = Hom(Γr,Q/Z) (5.1)

= Hom(Γab
r ,Q/Z) (5.2)

' Hom(ΓD0 (1)/ΓD1 (N),Q/Z) (5.3)

= H1(ΓD0 (1)/ΓD1 (N),Q/Z) (5.4)



CHAPTER 5. CONGRUENCE SUBGROUP PROPERTY 48

There is an inflation and restriction exact sequence :

0 // H1(ΓD0 (1)/ΓD1 (N),Q/Z) inf // H1(ΓD0 (1),Q/Z) res // H1(ΓD1 (N),Q/Z)

and H1(ΓD0 (1)/ΓD1 (N),Q/Z) is isomorphic to the Skorobogatov group of the Jacobian JD0 (1).
Therefore H1(Γr,Q/Z) maps into Σ × Σ by i, in other words, the kernel of γr is contained
in Σ× Σ.

Proposition 5.3.1. The maps

JD0 (1)
αr //

βr
// JD0 (r)

by the degeneracy maps are injective.

Proof. Since the covering group of XD
0 (r) over XD

0 (1) is isomorphic to PSL2(Fr) which is
simple, there is no abelian covering between them.

Since wr acts as 1 on the Skorobogatov group, the kernel of γr is an antidiagonal embed-
ding of Σ in JD0 (1)× JD0 (1) by the above proposition.

Theorem 5.3.2. Assume congruence subgroup property holds for Γr. Then the kernel of
γr : JD0 (1) × JD0 (1) → JD0 (r) is an antidiagonal embedding of the Skorobogatov subgroup of
JD0 (1) up to 2, 3 primary factors.

Remark 5.3.3. In their paper[24], Longo, Rotger, and Vigni discussed the kernel of γr, they
didn’t prove it though.

Remark 5.3.4. Even without congruence subgroup property for Γr, we can prove that the
kernel of γr contains an antidiagonal embedding of the Skorobogatov subgroup of JD0 (1) by
the same arguments as above.

5.4 Application to admissibility

Since the kernel of γr is an antidiagonal embedding of Skorobogatov subgroup, the intersec-
tion of r-old subvariety and r-new subvariety is

Σ⊥/Σ,

where Σ is an antidiagonal embedding of Skorobogatov subgroup of JD0 (1) to JD0 (1)2 and Σ⊥

is an orthogonal complement of Σ with respect to the natural pairing on JD0 (1)2[δr].( About
δr, see section 4.3.) (The proof of this fact is exactly same as one in Ribet’s paper [27].)
Since wr acts by −1 on Σ and Ur + wr acts by 0 on the r-new subvariety, Ur acts by +1 on
Σ. Thus we have two filtrations of the kernel of the operator δr(

r + 1 Tr
Tr r + 1

)
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on JD0 (1)× JD0 (1) as follows.

0 ⊂ ∆+ = ∆ ⊂ (∆⊥)
+ ⊂ JD0 (1)[Tr − r − 1]

0 = ∆− ⊂ (∆⊥)− = JD0 (1)[Tr + r + 1],

whereA+ denotes +1-eigenspace of Ur andA− denotes−1-eigenspace of Ur. Thus (Σ⊥/Σ)
−

=
JD0 (1)[Tr + r + 1]. (Note that JD0 (1)[Tr − r − 1] maps into JD0 (1)2 by an anti-diagonal em-
bedding and JD0 (1)[Tr + r + 1] maps into JD0 (1)2 by a diagonal embedding.)

Level raising methods II

We still fix a prime ` which is greater than 3. By using the results in previous sections, we
can prove this theorem.

Theorem 5.4.1. Assume congruence subgroup property holds for Γr and assume a t-tuple
(p1, . . . , pt) is admissible for s. Then a t+ 1-tuple (p1, . . . , pt, r) is admissible (with the same
s) if and only if r ≡ −1 (mod `).

Proof. By Theorem 4.1.1.3, if a t+ 1-tuple (p1, . . . , pt, r) is admissible then r ≡ −1 (mod `).
Conversely, assume that r ≡ −1 (mod `). If t is odd, this is Theorem 4.1.3. So assume

that t is even. Let D =
t∏
i=1

pi. Then there is a Shimura curve XD
0 (1). Since a t-tuple

(p1, . . . , pt) is admissible, there is a new Eisenstein maximal ideal of given type. Thus there
is an Eisenstein maximal ideal m of given type in TD. Since TD acts faithfully on JD0 (1),
JD0 (1)[m] 6= 0 and m contains Tk− k− 1 for primes k not dividing D. Since r ≡ −1 (mod `)

and m contains `, Tr+r+1 ≡ Tr−r−1 (mod `) lies in m. Thus (Σ⊥/Σ)
−

= JD0 (1)[Tr+r+1]
contains JD0 (1)[m], i.e., the intersection of r-new subvariety and r-old subvariety has support
at m. This implies that m is r-new in TDr . By Jacquet-Langlands correspondence, there
is a new Eisenstein maximal ideal of type (s, t + 1) in TDr, in other words, a t + 1-tuple
(p1, . . . , pt, r) is admissible.

the case t = 3

By combining previous results, we can classify the case t = 3 more specifically.

Theorem 5.4.2. Fix a prime ` > 3 and assume congruence subgroup property holds for Γr.

1. A triple (p, q, r) is admissible for s = 3 if and only if ` | (p− 1)(q − 1)(r − 1).

2. A triple (p, q, r) is admissible for s = 1 if and only if q ≡ r ≡ −1 (mod `).

3. A triple (p, q, r) is admissible for s = 0 is not admissible.

4. A triple (p, q, r) is admissible for s = 2 only if r ≡ −1 (mod `).
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5. A triple (p, q, r) is admissible for s = 2 if a pair (p, q) is admissible for s = 2 and
r ≡ −1 (mod `).

6. Assume a pair (p, q) is not admissible for s = 2 and r ≡ −1 (mod `). Then by
shuffling p and q, we can assume p 6≡ 1 (mod `). Let I = (Up − 1, Ur − r, Tk − k − 1)
for primes k - pr be an Eisenstein ideal of Tpr. A triple (p, q, r) is admissible for s = 2
if ηq := Tq − q − 1 is not a local generator of I at m := (`, I).

Proof. 1. This is by Theorem 4.1.1.2 and Theorem 4.1.2.1.

2. By Theorem 4.1.1.3, if a triple (p, q, r) is admissible for s = 1 then q ≡ r ≡ −1
(mod `).

Conversely, assume q ≡ r ≡ −1 (mod `). Then by Theorem 4.2.2.2, a pair (p, q) is
admissible for s = 1. By Theorem 5.4.1, a triple (p, q, r) is admissible for s = 1 because
r ≡ −1 (mod `).

3. This is by Theorem 4.1.1.1.

4. This is by Theorem 4.1.1.3.

5. This is by Theorem 5.4.1.

6. This is by Theorem 4.4.1.

As we have discussed above, admissibility for triples (p, q, r) with s = 2 is not classified
by the explicit congruence. However, in some specific case, we can understand a bit more.

Theorem 5.4.3. Assume p 6≡ 1 (mod `) and r ≡ −1 (mod `). Moreover assume r 6≡ −1
(mod `2). As before let I = (Up − 1, Ur − r, Tk − k − 1) for primes k - pr be an Eisenstein
ideal of Tpr and m := (`, I). Then a triple (p, q, r) is admissible for s = 2 if and only if
ηq := Tq − q − 1 is not a local generator of I at m.

Proof. Only thing we have to prove is the following; If ηr is a local generator of I at m,
then a triple (p, q, r) is not admissible. As we discussed before(e.g. Theorem 4.3.1), if
n := (`, Up−1, Uq−1, Ur +1, Tk−k−1) is new maximal, it is also q-new. Then (Jpr0 (q)q-old∩
Jpr0 (q)q-new)[n] 6= 0. (Note that n is q-old since a pair (p, r) is admissible for s = 1.) Let Σ be
an antidiagonal embedding of the Skorobogatov subgroup of Jpr0 (1) in Jpr0 (1)×Jpr0 (1). Then

Jpr0 (q)q-old ∩ Jpr0 (q)q-new = Σ⊥/Σ.

As in the proof of Theorem 4.2.2.3, there is a filtration of Jpr0 (1)[ηq],

0 ⊂ Σm ⊂ Σ⊥m ⊂ Jpr0 (1)[ηq].

Since Σm is of dimension one over Tpr/m and Jpr0 (1)[m] is of dimension 2 by Theorem 3.5.1,
if ηq is a generator of Im = m, (Σ⊥/Σ)m = 0, in other words, m is not q-new, which is
contradiction. Thus a triple (p, q, r) is not admissible for s = 2.
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Remark 5.4.4. Even without congruence subgroup property, we can prove that a triple
(p, q, r) is not admissible for s = 2 if ηq is a local generator of I at m if a pair (p, q) is
not admissible for s = 2. The reason is that Σ, an antidiagonal embedding of the Sko-
robogatov subgroup, is contained in the kernel K of γr. (The conjecture of congruence
subgroup property of Γr implies that K is not bigger than Σ up to 2, 3 primary factors.)
Thus (K⊥/K)m = 0 by the same reason. This is proof of Theorem 4.4.1.2.
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