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ABSTRACT

Neural networks and deep learning are changing the way that engineering is
being practiced. New and more efficient deep learning models are having a large
impact in many engineering fields. Common engineering applications of deep learn-
ing are prognostics and health assessment of mechanical systems, design of optimal
control, and surrogate modeling for computational fluid dynamics.

However, for a deep learning application to be successful there are a number
of key decisions that have to be taken. Some of these decisions include the choice
of a certain model architecture or topology, hyper-parameter tuning, and a suitable
data pre-processing method. Efficiently choosing these key components is a time-
consuming task usually entailing a staggering number of possible alternatives. This
thesis aims to develop methods that make this process less cumbersome.

In this thesis, we propose a framework for efficiently estimating the remaining
useful life (RUL) of mechanical systems. The framework mainly focuses on the data
pre-processing stage of a machine learning pipeline. Making use of evolutionary
algorithms and strided time windows, the presented framework can help process the
data in a way that even simple deep learning models can make good predictions on it.
The framework is tested using the C-MAPSS dataset, which consists of data recorded
from the sensors of simulated jet engines. The obtained results are competitive
compared against some of the recent methods applied to the same dataset.

Furthermore, an algorithm for efficiently selecting a neural network model
given a specific problem (classification or regression) is also developed. The al-
gorithm, named Automatic Model Selection (AMS), is a modified micro-genetic
algorithm that automatically and efficiently finds the most suitable neural network
model for a given dataset. The major contributions of this development are a simple
list based encoding for neural networks as genotypes in an evolutionary algorithm,
new crossover and mutation operators, the introduction of a fitness function that
considers both, the accuracy of the model and its complexity and a method to
measure the similarity between two neural networks. AMS is evaluated on two dif-
ferent datasets. By comparing some models obtained with AMS to state-of-the-art
models for each dataset we show that AMS can automatically find efficient neural
network models. Furthermore, AMS is computationally efficient and can make use
of distributed computing paradigms to further boost its performance.

xvi



Chapter 1

INTRODUCTION

Not all that long ago, engineering was a profession conducted with pencils
and paper. Today, engineering is a discipline intensely involved with computational
and software tools. Computer-assisted design, computational fluid dynamics, and
finite-element analysis applications are some of the basic tools that engineers deploy
when tackling difficult challenges.

In the recent years there has been an increasing interest in using artificial
intelligence techniques to reach higher levels of product automation and accelerate
innovation of new products. Advances in IA, combined synergistically with other
technologies such as cognitive computing, Internet of Things, 3-D printing, advanced
robotics, etc., are transforming what, where, and how products are designed, man-
ufactured, assembled, distributed, serviced and upgraded [1].

Machine learning (ML) advances in the last few years have seen the blos-
som of a number of techniques that, while mainly applied at fields such as image
processing, object detection and natural language processing, can be used to solve
and/or gain a better understanding of some mechanical processes. Methods like
reinforcement learning have been successfully applied for control [2–4] , fault detec-
tion in mechanical systems is often times solved using clustering methods [5], neural
networks [6], or support vector machines [7], estimation of remaining useful life has
been tackled through regression using neural networks [8,9] and convolutional neural
networks [10], finally computational fluid dynamics has seen an increase in the use
of neural networks [11,12].

Flexibility is at the core of the success of many of the recent machine learning
algorithms, nevertheless it is this flexibility that may make the use of machine learn-
ing techniques somewhat frustrating for practitioners not familiar with the founda-
tions of the algorithms; among such practitioners we can find economist, doctors,
and, to a large extent, engineers. Indeed, an increasing number of non-machine
learning experts require off-the-shelf solutions that hide the cumbersome details of
building efficient machine learning models [13]. The machine learning community
has aided these users by making available a variety of easy to use learning algo-
rithms and feature selection methods as WEKA [5] and PyBrain [14]. Nevertheless,
the user still needs to make some choices which not may be obvious or intuitive
(selecting a learning algorithm, hyper-parameters, features, etc).

1



Two of the key decisions that have to be made when applying a machine
learning model are the choice of a suitable algorithm and the fine tuning of the
algorithm’s hyper-parameters. A poor choice of any of these two factors usually
leads to poor inference and sub-optimal results. This thesis aims to develop tools
and methods for finding high performance machine learning models that are efficient
and easy to use and implement.

1.1 Building Machine Learning Pipelines

Usually, the process of selecting a suitable machine learning model for a par-
ticular problem is done in an iterative manner. First, an input dataset must be
transformed from a domain specific format to features which are predictive of the
field of interest. Once features have been engineered users must pick a learning set-
ting appropriate to their problem, e.g. regression, classification or recommendation.
Next users must pick an appropriate model, such as support vector machines (SVM),
logistic regression, any flavor of neural networks (NN), etc. Each model family has
a number of hyper-parameters, such as regularization degree, learning rate, number
of neurons, and each of these must be tuned to achieve optimal results. Finally,
users must pick a software package that can train their model, configure one or
more machines to execute the training and evaluate the model’s quality. It can
be challenging to make the right choice when we face so many degrees of freedom,
leaving many users to select a model based on intuition or randomness and/or leave
hyper-parameters set to default. Such an approach will usually yield sub-optimal
results. Figure 1.1 shows a flowchart describing the usual pipeline used by most of
the machine learning practitioners

Start Gather Data Set Performance
Metrics

Perform Feature
Selection and

Extraction

Choose ML
Algorithm

Tune Algorithm's 
Hyper-parameters

No

YesExpected
Performance
Achieved?

End

Key decisions that have to be made by the ML
practitioner

Figure 1.1: Machine learning pipeline.

The main focus of this thesis is on the red part of the process displayed
in Figure 1.1. In this thesis we develop methods and guidelines for the feature
selection, choice of machine learning algorithm and hyper-parameter tuning parts
of the machine learning pipeline.
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1.1.1 Algorithm Selection

One of the most critical parts of a machine learning pipeline is the selection
of a suitable model. Given some data and some inference task (regression or clas-
sification), the machine learning practitioner must choose a proper algorithm based
on the characteristics of the data. For instance, if the user is dealing with a clas-
sification task and the data is linearly separable, logistic regression [15] or support
vector machine [15] may be a good choice. Nevertheless if the data is not linearly
separable, if it entails nonlinear operations or if the dataset is too complex, neural
networks [9, 10,16] may be a better option.

There are several different types of neural networks. Among the most popular
ones are multilayer perceptrons (MLPs) [17], convolutional neural networks (CNNs)
[18], recurrent neural networks (RNNs) [18], and generative adversarial networks
(GANs) [19]. The choice of what type of network depends mainly on the type of
problem at hand; CNNs have demonstrated to be really efficient for image processing
[20,21], nevertheless some other applications such as remaining useful life have been
successfully solved using CNNs [8, 10]. Applications of MLPs range from image
classification [22, 23], to fault detection [6], to the estimation of remaining useful
life [10], finally RNNs are extremely useful for tasks involving sequences such as
natural language processing [24] or prognostic tasks [25].

Given the wide range of neural network types, an inexperienced machine
learning practitioner can easily make a poor choice when selecting a neural network
for its problem which, even for experienced users, can be time-consuming given the
iterative nature of the process. It is therefore important to have tools that make
this choice easier and, to some extent, reduce the effective time spent on it.

1.1.2 Hyper-parameter Tuning

Hyper-parameters are parameters that are defined before the learning process
begins and they do not change during the learning process. Furthermore, hyper-
parameters define the behavior of the machine learning algorithm and ultimately
its inference power, common examples of hyper-parameters include: learning rate of
neural network, number of clusters for K-means algorithm, tree depth for decision
trees, etc. Some simple algorithms (such as least squares method) require none
hyper-parameters while many of the most sophisticated algorithms (such as support
vector machines, decision trees or neural networks) require several of them. In
the following, an example to illustrate the influence of hyper-parameters in the
outcome of a machine learning algorithm is provided. For the sake of the example
the definitions and notation used will be rather informal.

Consider the C hyper-parameter used in support vector classifiers (SVCs),
which are a type of support vector machines (SVMs) used for classification tasks. In-
formally, SVCs separate different classes by finding the hyper-plane that maximizes
the margin between the classes (by maximizing the distance between the support
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vectors). An example of such hyper-plane (in this case line since there are only two
variables) is provided in Figure 1.2. In the example there are two linearly separable
classes, cupcake and muffin. The SVC must classify each one of them based on the
amount of sugar and butter used for its baking.
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Figure 1.2: Intuition behind a support vector classifier. There are 2 linearly sep-
arable classes, blue and red. The hyper-plane is depicted as a black
solid line and the confidence margin is depicted as dashed lines.

In SVMs the C hyper-parameter is used to balance the trade-off between a soft
margin, i.e. prioritizing a simple model by loosely penalizing the miss-classifications,
and a hard margin, which will make the algorithm try harder to minimize miss-
classifications but at the same time making the model more prone to over-fitting
the data. Figure 1.3 shows the effect of the C parameter on the behavior of a SVC
trying to distinguish whether a piece of bread is a muffin or a cupcake based on the
amount of sugar and butter used for each.
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(a) SVC with C = 2−5
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(b) SVC with C = 25

Figure 1.3: SVC with different C parameters
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As can be observed, when C is small the algorithm finds a boundary with a
wider margin of confidence while affording some miss-classifications. On the other
hand, if C is big the SVC will try to avoid miss-classifications leading to a very
narrow confidence margin which may limit the ability of the model to generalize its
results when subject to unseen data.

As the example shows, hyper-parameters play a very important role in the
outcome of a machine learning algorithm. Furthermore, some of them are used to
trade off between the complexity of the method and the performance, usually a good
balance between these two is sought as very complex algorithms tend to require more
computational power.

1.2 Algorithm Selection and Optimal Hyper-parameters

The problem of selecting an appropriate algorithm and tune its hyper-parameters
can be modeled as an optimization algorithm. The objective can be defined as min-
imizing the error yielded by a machine learning algorithm on a given dataset. As
mentioned in [26] the combined space of learning algorithm and hyper-parameters
is very challenging to search: the response function is noisy and the space is high
dimensional, involves categorical and continuous choices and contains hierarchical
dependencies (e.g. hyper-parameters of the algorithm are only meaningful if that
algorithm is chosen). Thus, identifying a high quality model is typically costly (in
the sense that entails a lot of computational effort) and time-consuming.

Naive techniques such as grid search [15] and random search [27] result inef-
fective when dealing with algorithms as complex as neural networks. Gradient based
optimization techniques such as line searchers or trust regions [28] are impossible
to use, since gradient information is not known and also the selection of the model
and its hyper-parameters is often times mixed-integer. Therefore, finding a suitable
ML model for a given task requires a method that can handle a high dimensional
search space, doesn’t rely on gradient information and performs well even with the
presence of noisy responses.

1.3 Evolutionary Algorithms for Finding Efficient Machine Learning
Models

This thesis focuses on the development of methods that, given a dataset, an
inference task (classification or regression) and a performance indicator, efficiently
select a machine learning algorithm and tune its hyper-parameters, providing the
user a reliable and efficient machine learning model. Since the number of machine
learning algorithms available is extensive, this thesis will only focus on the three
major neural network types, namely Multi-layer Peceptrons (MLPs), Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
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Given the complexity of the search space we are left with two options for
performing the optimization: Bayesian optimization [13, 29] and evolutionary algo-
rithms [17, 30]. Nevertheless, given the robustness of evolutionary algorithms when
dealing with noisy functions they are preferred over Bayesian optimization for this
thesis.

One of the major disadvantages of evolutionary algorithms is that they usu-
ally require a high number of function evaluations in order to find optimal points.
This thesis makes a big emphasis on the development of methods that are computa-
tionally efficient, therefore using few computations to estimate good ML models. On
the other hand we exploit the parallelization properties of evolutionary algorithms
to accelerate the optimization process.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 introduces
basic concepts of machine learning and gives a brief introduction of deep learning
and some of its more common architectural models. Chapter 3 presents a framework
for the prognostics of mechanical systems. The framework makes use of genetic
algorithms to perform feature extraction and then estimates the remaining useful
life of jet engines using deep neural networks. In Chapter 4 we further extend
the idea presented in Chapter 3. In Chapter 4 we develop a genetic algorithm for
automatically selecting deep learning models and performing some hyper-parameter
tuning. Conclusions and future work are presented in Chapter 5.
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Chapter 2

MACHINE LEARNING BASICS AND NEURAL
NETWORKS

This chapter introduces concepts required for a good understanding of this
work. A brief introduction to machine learning is given, including a description
of the process of building a machine learning solution (pipeline) and some basic
concepts such as model tuning, performance assessment and model selection. Next,
a brief description of neural networks is presented. Topics such as the training
process of a neural network, neural network hyper-parameters and different neural
network architectures are discussed. This chapter concludes with a review of some
modern methods used for model selection and hyper-parameter tuning.

2.1 General Concepts of Machine Learning

Data is everywhere! Each of us is not only a consumer but also a generator
of data. The gadgets we use everyday generate big amounts of data; the web pages
we visit, the things we post in our social media, the places we visit, the things we
buy. All of these actions generate valuable information that can say a lot about
us. Things like what kind of movies we like, where are we likely to spend our next
vacation and even who are we likely to vote for [31]. Machines also generate valuable
data. Several machines come with lots of sensors installed to measure a wide variety
of things; temperature, pressure, voltage, etc., are some of the many things things
that are usually measured in machines. Such data can often give us insights on what
the operational status of a machine is, if its has failed or is likely to fail in the near
future [6, 32], and even help us apply better control techniques [33].

Machine learning (ML) is the sub-field of artificial intelligence that, by com-
bining optimization, statistics and algorithm design, can find complex patterns (re-
lationships) in data. As opposed to traditional algorithms (such as search or sorting
algorithms), where a flow of steps on how to obtain the output from the input is
clearly defined, machine learning algorithms do not depend on rules or steps defined
by a human expert. Instead, an ML algorithm “learns” this rules by analyzing sev-
eral examples of input and, in the case of supervised learning, output data. The
process of analyzing the data and finding patterns in it is formally known training.
As an example consider the famous “Handwritten Digit Recognition” task [34]. In
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this task the algorithm is trained on thousands of handwritten digits images like the
ones in Figure 2.1, the algorithm is also told which number each image represents.
Once trained, the algorithm is given a new batch of images and must predict which
is the number written on the image.

Figure 2.1: Handwritten digits examples extracted from MNIST dataset. Blurri-
ness is part of the original dataset.

2.1.1 Training, Test and Cross-validation Sets

In this section we briefly introduce the sets of data used by machine learning
algorithms. Consider a dataset D made up of points di = (xi,yi) ∈ X ×Y where
X is the set of data points and Y is the set of labels. Usually, the dataset D is
split into three datasets. A training set Dt is used for training the machine learning
algorithm while a test set De is used to assess the performance of the model. A
third set, called the cross-validation set Dv is used to tune the hyper-parameters of
the machine learning algorithm. It is common practice to split D into Dt/Dv/Dp
using 70%/15%/5% of D for each subset respectively [35].

2.1.2 Machine Learning Paradigms

Broadly speaking, there are three types of machine learning paradigms. While
all of them have in common that they learn patterns from data, the way they learn
this patterns (the training process), and the kind of data they can deal with are
different. In the following, a brief description of each type is given. This thesis deals
only with supervised learning techniques, therefore a more in depth explanation of
it is provided in later sections.

Supervised learning

Supervised learning algorithms require that the data consists of a target/outcome
variable (or dependent variable) which is to be predicted from a given set of obser-
vations (independent variables). Mathematically speaking, let X ∈ Rn×m be the
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matrix formed by n observations where each observation is a vector of dimension m
and Y ∈ Rn×p be the matrix formed by the labels corresponding to the observations
in X. Supervised learning algorithms try to approximate a function f(X) 7→ Y.
This is usually accomplished by minimizing the error E(Y, Ŷ) between the real
target values Y and the ones predicted by the algorithm Ŷ. Examples of super-
vised learning algorithms include: Linear regression, decision tree, support vector
machines, neural networks, etc.

Unsupervised Learning

In unsupervised algorithms only the data of the observations (X ∈ Rn×m) is
available, there are no target values. Unsupervised algorithms try to find patterns
or relationships within this unlabeled data. Instead od responding to feedback,
unsupervised learning identifies commonalities in the data and reacts based on the
presence or absence of such commonalities in each new piece of data. Examples
of unsupervised learning are: apriori algorithm, K-means clustering and generative
adversarial networks (GANs).

Reinforcement Learning

Reinforcement learning algorithms deal with agents taking actions in an en-
vironment and what actions tend to maximize a cumulative reward. These are
closed-loop problems because the learning actions of the system influence its latter
inputs [36], that is, the algorithms learns from its previous experience and continues
to improve over time. It differs from supervised learning in that labeled input/output
pairs need not be present, and sub-optimal actions need not be explicitly corrected.
A typical example of reinforcement learning are the Markov decision processes.

2.1.3 Regression and Classification Problems

Regression and classification are two of the most popular kind of problems
solved using supervised learning. Typically, a regression/classification problem has
labeled data X,Y and a measurement of the error E(Y, Ŷ) made by the algorithm
when inferring new instances. The task is to learn a mapping from the input X to
the output Y. In this section both kinds of problems are introduced to the reader,
required notation and definitions for a good understanding of the rest of the thesis
are also presented next.

Regression

Regression aims to find a mapping f(X) 7→ Y where X ∈ Rn×m and Y ∈
Rm×p, that is the labels/target values are continuous and often p = 1. Usually, a
mapping f(.) that exactly maps the points of X to Y is impossible to find. Instead,
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a curve φ(.) is fitted to the data. The curve φ(.) is chosen such that the error
E(Y, Ŷ), where Ŷ = φ(X), is minimized. Consider the following example.

We want to build a system that can predict the price of a house. Inputs are
the house attributes: size, zip code, number of bedrooms, median income in the
block, etc. The output is the price of the house (in U.S. dollars). Let X ∈ R506×8

be the data of 506 different houses with 8 attributes each, also let Y ∈ R506 be the
price for each house. The task is then to predict the price y for an unseen house
x. By training a regression model a machine learning algorithm can fit a function
φ(.) to the observed data and then use this function to make predictions for new
observations. Figure 2.1 shows a linear model fitted to the house pricing dataset,
the plot is a projection of an 8-dimensional space onto the plane formed by the avg.
number of rooms in a house and its price.
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Figure 2.2: Linear regression for house pricing estimation.

Naturally, a lot of the data can not be fitted using simple linear models as the
one shown in 2.2, thus polynomial and even non-linear models are often required.
Support vector machines [37,38], decision trees [39], and neural networks [9,18] are
often used when dealing with regression problems .

Classification

Classification is the problem of identifying to which set of categories an ob-
servation belongs to. In classification we aim to to find a mapping f (X) 7→ Y where
X ∈ Rn×m and Y ∈ Nm×p, when p > 1 the problem is called a multi-label classifi-
cation problem. Opposite to regression, in classification problems the labels/target
values are discrete. Instead of fitting a curve φ(.) to the data as in regression, in
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classification problems the curve φ(.) defines a decision boundary. Once again The
curve φ(.) is chosen such that the error E(Y, Ŷ), where Ŷ = φ(X) and X is a set
of observations whose class is known, is minimized. As an example take the muffin
vs cupcake problem described in Section 1.1.2.

In the example there two are classes, cupcake and muffin. The mapping φ(.)
must classify each one of them based on the amount of sugar and butter used for
its baking. For such a simple task a linear classifier is enough. Indeed, both classes
are linearly separable (see Figure 2.3). More complex datasets exhibit non-linear
decision boundaries. Support vector classifiers [15], artificial neural networks [16,40]
and convolutional neural networks [20,41] are some of the most popular algorithms
used in classification.
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Figure 2.3: Classification of desserts into muffins and cupcakes.

2.1.4 Capacity, Over-fitting and Under-fitting

A key challenge in machine learning is that our model φ(.) must perform
well on new, previously unseen inputs. The ability to perform well on previously
unobserved inputs is called generalization.

When training a machine learning model we reduce the error Et of the model
φ(.) on the training set Dt by means of optimization. What separates machine
learning from optimization is that we want the generalization error (also known
as test error) to be low as well. The generalization error, Ep, is defined as the
expected value of the error on unseen data (often referred as the test set Dp). Here
the expectation is taken across different possible inputs, drawn from the distribution
of inputs we expect the system to encounter in practice.
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Typically, two assumptions about the data can be made: that the examples
in each dataset are independent from each other, and that the training and test sets
are identically distributed and drawn from the same probability distribution.

Based on the previous assumptions we can infer that the expected test error
is greater than or equal to the expected value of training error. The factors that
determine how well a machine learning algorithm performs depend on:

• Its ability to minimize the training error.

• Its ability to make the gap between training error and test error small.

These two factors are closely related with two central challenges in machine
learning and statistical inference: under-fitting and over-fitting. Under-fitting
occurs when the model is not able to obtain a sufficiently low error value on the
training set. Over-fitting occurs when the gap between the training error and test
error is too large.

We can control whether a model is more likely to over-fit or under-fit by
altering its capacity. Informally, a model’s capacity is its ability to fit a wide
variety of functions. Models with low capacity may struggle to fit the training set.
Models with high capacity can over-fit by memorizing properties of the training set
that do not serve them well on the test set.

One way to control the capacity of a learning algorithm is by choosing its
hypothesis space, the set of functions that the learning algorithm is allowed to
select as being the solution. For example, the linear regression algorithm has the set
of all linear functions of its input as its hypothesis space. We can generalize linear
regression to include polynomials, rather than just linear functions, in its hypothesis
space. In the case of neural networks the hypothesis space can be modified by
increasing/reducing the number of layers and/or neurons in the network. Doing so
modifies the model’s capacity.

Machine learning algorithms will generally perform best when their capacity
is appropriate for the true complexity of the task they need to perform and the
amount of training data they are provided with. Models with insufficient capacity
are unable to solve complex tasks. Models with high capacity can solve complex
tasks, but when their capacity is higher than needed to solve the present task they
may over-fit.

Figure 2.4 shows this principle in action. We compare a linear, degree-4 and
degree-15 predictor attempting to fit a problem where the true underlying function
is non-linear. The linear function is unable to capture the curvature in the true un-
derlying problem, so it under-fits. The degree-15 predictor is capable of representing
a function that exactly passes through a lot of the sample points, thus over-fitting
to the sample data and with very poor generalization performance. We have little
chance of choosing a solution that generalizes well when so many wildly different
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solutions exist. In this example, the degree-4 model is almost perfectly matched to
the true structure of the task so it generalizes well to new data.

x

y

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

Model
True function
Samples

x

y

Degree 4
MSE = 4.32e-02(+/- 7.08e-02)

Model
True function
Samples

x

y

Degree 15
MSE = 1.81e+08(+/- 5.42e+08)

Model
True function
Samples

Figure 2.4: Three models fitted to the same data. It is observable that dependent
on the model’s capacity, it can over-fit, under-fit or adequately fit the
data.

In practice, the learning algorithm does not actually find the best function
for the data, but merely one that significantly reduces the training error. We must
remember that while simpler functions are more likely to generalize (to have a small
gap between training and test error) we must still choose a sufficiently complex
hypothesis to achieve low training error. Typically, training error decreases until it
asymptotically reaches the minimum possible error value as model capacity increases
(assuming the error measure has a minimum value). Often, generalization error has
a U-shaped curve as a function of model capacity. This is illustrated in Figure 2.5.
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Figure 2.5: Typical relationship between capacity and error.
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2.1.5 Regularization

We must design our machine learning algorithms to perform well on a specific
task. This is achieved by building a set of preferences into the learning algorithm.
When these preferences are aligned with the learning problems we ask the algorithm
to solve, it performs better.

The behavior of machine learning algorithms is strongly affected not just by
how large we make the set of functions allowed in its hypothesis space, but by the
specific identity of those functions. For example, linear regression would not perform
very well if we tried to use it to predict sin(x) from x. We can thus control the
performance of our algorithms by choosing what kind of functions we allow them to
draw solutions from, as well as by controlling the amount of these functions.

We can also give a learning algorithm a preference for one solution in its
hypothesis space to another. This means that both functions are eligible, but one is
preferred. The un-preferred solution will be chosen only if it fits the training data
significantly better than the preferred solution. One way to do so is by means of
regularization.

We can regularize a model that learns a function φ(x;θ) by adding a penalty
called a regularizer to the cost function. Expressing preferences for one function over
another is a more general way of controlling a model’s capacity than including or
excluding members from the hypothesis space. We can think of excluding a function
from a hypothesis space as expressing an infinitely strong preference against that
function.

Regularization is any modification we make to a learning algorithm that is
intended to reduce its generalization error but not its training error. Regulariza-
tion is one of the central concerns of the field of machine learning, rivaled in its
importance only by optimization.

As an example consider linear regression with weight decay. Let X ∈ Rn×m

be the set of observations and Y ∈ Rn×1 the values corresponding each x ∈ X. A
linear model φ(x;θ) parametrized by θ is defined as

φ(x;θ) = xiθ + θ0. (2.1)

The cost function of a linear regressor φ(x;θ) for a set of parameters θ is
given by

L(y, ŷ) =
1

2

n∑

i=0

(ŷi − yi)2 , (2.2)

where ŷi = φ(xi;θ).
To perform linear regression with weight decay, we minimize a sum compris-

ing both the mean squared error on the training and a criterion L(θ) that expresses
a preference for the weights to have smaller squared L2 norm. Specifically,
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L(y, ŷ,θ) =
1

2

n∑

i=0

(ŷi − yi)2 + λθTθ, (2.3)

where λ is a value chosen ahead of time that controls the strength of our preference
for smaller weights. When λ = 0, we impose no preference, and larger λ forces the
weights to become smaller. Minimizing L(θ) results in a choice of weights that make
a trade-off between fitting the training data and being small. This gives us solutions
that have a smaller slope, or put weight on fewer of the features. As an example
of how we can control a model’s tendency to over-fit or under-fit via weight decay,
we can train a high-degree polynomial regression model with different values of λ.
See Figure 2.6 for the behavior of a polynomial model with different regularization
terms α.
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Figure 2.6: Behavior of a polynomial model when using different regularization
values.

2.1.6 Hyper-parameters and Validation Set

Most machine learning algorithms have several settings that we can use to
control the behavior of the learning algorithm. These settings are called hyper-
parameters. The values of hyper-parameters are not adapted by the learning algo-
rithm itself. An example of a hyper-parameter is the regularization term λ used in
Equation (2.3), other examples include the number of neurons of a neural network.

Sometimes a setting is chosen to be a hyper-parameter that the learning
algorithm does not learn because it is difficult to optimize. More frequently, the
setting must be a hyper-parameter because it is not appropriate to learn that hyper-
parameter on the training set. This applies to all hyper-parameters that control
model capacity. If learned on the training set, such hyper-parameters would always
choose the maximum possible model capacity, resulting in over-fitting. To solve this
problem, we need a validation set Dv of examples that the training algorithm does
not observe.
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Earlier we discussed how a held-out test setDv, composed of examples coming
from the same distribution as the training set Dt, can be used to estimate the
generalization error of a learner, after the learning process has completed. It is
important that the test examples are not used in any way to make choices about the
model, including its hyper-parameters [18]. For this reason, no example from the test
set can be used in the validation set. Therefore, we always construct the validation
setDv from the training data. Specifically, we split the training data into two disjoint
subsets Dt and Dv. One of these subsets is used to learn the parameters. The other
subset is our validation set, used to estimate the generalization error during or after
training, allowing for the hyper-parameters to be updated accordingly.

Dividing the dataset into a fixed training set and a fixed test set can be prob-
lematic if it results in the test set being small. A small test set implies statistical
uncertainty around the estimated average test error, making it difficult to claim
that algorithm φ1(.) works better than algorithm φ2(.) on the given task. When the
dataset is too small, there are alternative procedures enable one to use all of the
examples in the estimation of the mean test error, at the price of increased compu-
tational cost. The most common of these is the k-fold cross-validation procedure
in which a partition of the dataset is formed by splitting it into k non-overlapping
subsets. The test error may then be estimated by taking the average test error
across k trials. On trial i, the i-th subset of the data is used as the test set and the
rest of the data is used as the training set.

2.2 Neural Networks

In this section we introduce the basics of neural networks. A brief description
of the logic and ideas behind them is given. Furthermore, we present different
types of neural networks such as convolutional neural networks and recurrent neural
networks.

2.2.1 Artificial Neurons

In general, artificial neural networks (ANNs) are systems vaguely inspired
by the neurological networks in the brain [17, 42]. Units (also referred as artificial
neurons) are the building blocks of any type of ANN. The unit (neuron), implements
a nonlinear mapping a : Rn → [c, d], where n is the number of inputs the unit receives
and c and d depend on the chosen activation function. Usual combinations for c
and d are [0, 1] or [−1, 1].

A unit receives a vector of n input signals, x = (x1, x2, · · · , xn), either from
the environment (input variables) or from other units and applies an activation func-
tion g to the net input signal to compute the output signal, a. The strength of the
output signal is influenced by a set of weights θi and a bias value b. Mathematically
speaking a unit performs the following operation
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a = g(
n∑

i=1

θixi + b). (2.4)

Figure 2.7 presents an illustration of an artificial neuron. As can be observed,
the net input signal to a unit is computed as the weighted sum of all input signals.
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Figure 2.7: An artificial neuron

The function g(.) receives the net input signal and bias, and determines the
output of the neuron. This function is referred as the activation function. Different
types of activation functions can be used [17], among the most popular ones we find
the sigmoid function, tanh function and the Rectified Linear Unit (ReLU) function.
The values of the weights θi and the bias b are adjusted through an optimization
process called training [15, 17]. In supervised learning the neuron is provided with
a dataset consisting of input vectors and a target (desired output) associated with
each input vector. This data is referred as training set (Dt). The aim is then to
adjust the weight values and bias such that the error between the predicted output
of the neuron, a = g(x;θ), and the target output, y = f(x), is minimized.

Note that this approach is very similar to that of linear regression except for
the application of the activation function g. Indeed, if g is the identity function,
the neuron acts as a linear regressor, nevertheless most of the inference power of
neural networks comes from the use of non-linear activation functions such as the
ones described in [15,17,18]

2.2.2 Multi-layer Perceptron

Widely used, multi-layer perceptrons (MLPs) also known as feed-forward
neural networks (FFNN), are the quintessential deep learning models [18]. The goal
of a feed-forward network is to approximate some function f(.). For example, for
a classifier, y = f(x) maps an input x to a category y. A feed-forward network
defines a mapping ŷ = φ(x;θ) and learns the value of the parameters θ that result
in the best function approximation.

MLPs are formed by stacking together layers of artificial neurons. A layer is
a set of units whose input is the same and whose output can be used as the input
for upcoming layers. As such, MLPs compose together many different functions.
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The model is associated with a directed acyclic graph describing how the functions
are composed together. For example, we might have three functions φ(1), φ(2), φ(3)

connected in a chain, to form φ(x) = φ(3)(φ(2)(φ(1)(x))). These chain structures
are the mathematical representation of the layers of a neural network. In this case,
φ(1) is called the first layer of the network, φ(2) is called the second layer of the
network and so on. The overall length of the chain gives the depth of the model.
The final layer of a neural network is called the output layer, the layers between
the output layer and the input layer are called hidden layers.

Each hidden layer in the network is typically vector-valued. The dimension-
ality of these layers determines the width of the model. Rather than thinking of
the layer as representing a single vector-to-vector function, we can also think of the
layer as consisting of many units that act in parallel, each representing a vector-to-
scalar function φ(i) where i denotes the layer number. Each unit resembles a neuron
in the sense that it receives input from many others units and computes its own
activation value. Figure 2.8 depicts a MLP with one hidden layer. Each unit of a
layer is connected to every other unit of the next layer.
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Figure 2.8: A MLP with input size of xn and output size of 2. The hidden layer
is made up of 3 units. θ

(1)
ji and θ
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ji are the trainable parameters, θ,

of the neural network φ(x;θ).

Activation Functions

Key to the concept of artificial neural networks are the activation functions.
The activation function of a unit defines the output of such unit given a set of inputs
(Equation (2.4)) by mapping the net sum of the unit into a range [c, d] (depending
upon the choice of the function). Being inspired by the action potential firing in a
neuron [43], activation functions operate under the following principle: the stronger
the input signal is, the stronger the output signal. Figure 2.9 plots some of the most
common activation functions. Some desirable properties of an activation function
are:
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• Non-linear: A two-layer neural network can be proven to be a universal func-
tion approximator [44].

• Range: Gradient-based training methods tend to be more stable.

• Continuously differentiable: Enables gradient-based optimization methods.

• Monotonic: Error surface associated with a single-layer model is convex.

• Smooth functions with a monotonic derivative: Better generalization.

• Approximates identity near the origin: The neural network will learn efficiently
when its weights are initialized with small random values.
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Figure 2.9: Common activation functions used in deep learning
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2.2.3 Training the Neural Network

Before making accurate predictions, the MLP needs to be trained. The train-
ing process is the process of adjusting the set of parameters θ of the neural network
so that it minimizes the error between the predicted values and the real values. The
training process uses a split of the original dataset D called the training set Dt (see
Section 2.1.1). In order to perform training two things are needed: a loss function,
that measures the error between the predicted and target values, L(Y, Ŷ) and an
optimization algorithm.

Loss Function

The measurement of the error depends on the type of problem at hand. For
simplicity we will assume that y ∈ R in the case of regression and y ∈ [, 1]. That
is regression problems are single-objective while for classification we only consider
binary classification. Extended formulas for multi-variate regression and multi-class
classification can be found in [45] and [15] respectively. For regression problems a
usual measurement of the error is the mean squared error defined as:

L(y, ŷ) =
1

2n

n∑

i=1

(yi − ŷi)2 , (2.5)

Equation (2.5) measures the euclidean distance between the target values yi and he
predicted values ŷi = φ(.). By minimizing the cost L, we are effectively fitting the
curve φ(.) to the data X.

For classification problems, the cross-entropy function [15] is used. Binary
cross-entropy loss function is defined as follows:

L(y, ŷ) =
1

2n

n∑

i=1

− (yi log ŷi + (1− yi) log 1− ŷi) . (2.6)

Given two classes C1 and C2. Equation (2.6) measures the performance of
the model whose output is a probability value between 0 and 1. Cross-enthropy de-
creases as the predicted probability diverges from the actual label. So, for instance,
predicting a probability p(x|C1) = 0.12 when x belongs to class C1 would yield a
high error. This behavior is illustrated in Figure 2.10 note how as the probabil-
ity approaches 1, for a true label of 1, the cost (cross-enthropy) decreases rapidly.
Cross-enthropy penalizes both types of errors, but specially those that are confident
and wrong.
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Figure 2.10: Binary cross-enthropy function.

Minimizing the Loss Function

The aim of the training process is to minimize the cost function L. Hence,
maximizing the similarity between the predicted and target values ŷ and y. Since
neural networks are often non-linear models, usually the cost function becomes non-
convex [18]. Therefore, neural networks are usually trained using iterative, gradient-
based optimizers [28] that drive the cost function to a very low value, rather than
the linear equation solvers used to train linear regression models or the convex
optimization algorithms with global convergence guarantees used to train logistic
regression or SVMs.

The general form of any gradient-descent based algorithm is the following:
Let x ∈ Rn be a vector of parameters and f : Rn 7→ R a smooth function. To
minimize f w.r.t. x, a line searcher method computes, iteratively, a search direction
pk and then decides how far to move along that direction. The iteration is given by

xk+1 = xk + ηkpk, (2.7)

where the positive scalar ηk is called the step length. The success of a line search
method depends on the effective choice of both the direction pk and the step length
ηk (in the machine learning literature ηk is often referred as the learning rate).
In general pk is chosen such that it is a descent direction, i.e. pTk∇f < 0. The
most popular descent direction for machine learning applications is gradient descent
pk = −∇fk. Almost every optimization method for neural network training uses
gradient descent as descent direction. Popular optimization methods used for neural
network training are: Adam, RMSProp, Momentum and Nesterov. A good survey
of all of these methods can be found in [46].

Based on the amount of data used for every iteration gradient-descent meth-
ods can be further classified into: Batch gradient descent, which computes the
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gradient of the cost function, w.r.t. θ, using the entire training set Dt. Stochastic
gradient descent, which performs a parameter update (θ) for each training exam-
ple xi,yi ∈ Dt. And mini-batch gradient descent, that performs a parameter
update for every mini batch of n training samples. Stochastic and mini-batch gra-
dient descent are the most widely used methods, since they speed up the training
process and allow for online training.

Finally, opposite to convex optimization solvers, which converge from any
initial parameter, gradient-descent methods applied to non-convex loss functions
have no such convergence guarantee. For neural networks, it is important to initialize
all weights, θ, to small random values. The biases, b, may be initialized to zero or
to small positive values [18].

The Backpropagation Algorithm

As mentioned in the last section, in order to minimize the cost function L
the gradient of the function L w.r.t. θ is needed. When we use a feedforward neural
network to map an input x into an output Ŷ, information flows forward through
the network. The inputs x provide the initial information that then propagates up
to the hidden units at each layer and finally produces Ŷ. This is called forward
propagation. During training, forward propagation continues onward until it pro-
duces a scalar cost L(Y, Ŷ). The back-propagation algorithm [47], often simply
called backprop, allows the information from the cost to flow backwards through
the network, in order to compute the gradient.

Computing an analytic expression for the gradient is straightforward, but
numerically evaluating such an expression can be computationally expensive. The
back-propagation algorithm does so using a simple and inexpensive procedure.

The term back-propagation is often misunderstood as meaning the whole
learning algorithm for multi-layer neural networks. Actually, back-propagation
refers only to the method for computing the gradient, while another algorithm,
such as stochastic gradient descent, is used to perform learning using this gradient.
Furthermore, back-propagation is often misunderstood as being specific to multi-
layer neural networks, but in principle it can compute derivatives of any function.

In learning algorithms, the gradient we most often require is the gradient of
the cost function with respect to the parameters,∇θL(Y, Ŷ). The idea of computing
derivatives by propagating information through a network is very general, and can be
used to compute values such as the Jacobian of a function f with multiple outputs.

The backpropagation algorithm is a complex algorithm to explain in a cou-
ple of pages, and thus is out of the scope of this thesis. Good references for the
backpropagation algorithm are [15,18,47].
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The Training Process

We know have all the blocks to describe the training process of a neural
network. This training process is generic and applies for any neural network (multi-
layer perceptrons, convolutional neural networks, recurrent neural networks, etc.).
Let φ(X;θ) 7→ Y be a mapping from input X ∈ Rn×m to a target value Y ∈ Rn×k

parametrized by θ. Given a training set Dt of labeled data di = (xi,yi) ∈ X ×Y
and a loss function L, the training process of φ(.) is described in Algorithm 1.

Algorithm 1: Neural network training algorithm.

Data: A training set Dt.
Input : A neural network model φ(X;θ), a loss function L(θ), learning

rate η, batch size b and training epochs t.
Output: Trained neural network model φ(X;θ).

Randomly initialize the parameters θ. Set k = 0.
for epoch = 0 : t do

Randomly split the training set Dt into b batches B.
for Each mini-batch Bi. do

Compute Ŷ = φ(X;θ) by doing a forward pass on φ(.) with
batch B.
Compute the loss L(Y, Ŷ).
Compute ∇θL(Y, Ŷ) using backprop.
Update the parameters of the model using any gradient descent
method for instance: θk+1 = θk − ηk∇θL(Y, Ŷ).

end

end

2.2.4 Convolutional Neural Networks

Convolutional networks [48], also known as convolutional neural networks or
CNNs, are a specialized kind of neural network for processing data that has a known,
grid-like topology. Examples include time-series data, which can be thought of as
a 1D grid taking samples at regular time intervals, and image data, which can be
thought of as a 2D grid of pixels. Convolutional networks have been tremendously
successful in practical applications. The name convolutional neural network indi-
cates that the network employs a mathematical operation called convolution, which
is a kind of linear operation. Convolutional networks are simply neural networks
that use convolution in place of general matrix multiplication in at least one of their
layers.
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Convolution

In general, convolutional layers operate over tensors, this in contrast with
MLPs where the input is a vector. A standard convolutional layer takes as input a
DF × DF ×M tensor F and produces a DG × DG × N tensor G where DF is the
spatial width and height of a square input tensor, M is the number of input channels
(input depth), DG is the spatial width and height of the a square output tensor,
and N is the number of output channels (output depth). Figure 2.11 illustrates a
tensor of dimensions 32× 32× 3.

32

32

3

Figure 2.11: A tensor like the ones used by CNNs

The standard convolutional layer is parametrized by a convolution kernel K
of size DK ×DK ×M ×N where DK is the spatial dimension of the kernel assumed
to be square, M is the number of input channels and N is the number of output
channels as previously defined.

In a convolution operation the input map F is convoluted with the filter K
using a stride S and padding P . The output map’s, G, width and height follow the
formula:

DG =
bDF −DK + 2P c

S
+ 1. (2.8)

Figure 2.12 gives a visual interpretation of the size of the output tensor after
convoluting the input tensor with the kernel. In the example DF = 32, DK = 5,
S = 1, and P = 0. By formula 2.8 DG = 28. Since only one filter is used, the
output is a tensor of rank 2 (a matrix instead of a volume).
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28* =
Figure 2.12: Convoluting the input volume DF with a filter K gives a results an

output volume DG example.
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The output tensor for standard convolution assuming stride one and valid
padding is computed as:

Gk,l,n =
∑

i,j,m

Ki,j,m,n ∗ Fk+1−1,l+j−1,m. (2.9)

Figure 2.13 gives a visual interpretation of the convolution operation. The
filter moves along the input volume with stride of S and applies the convolution
operation.
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<latexit sha1_base64="frBzYPAsNbvHyd7BNNLxMobaNU8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9lUQY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31ve/vcLa+sbmVnG7tLO7t39QPjxqGZVqyppUCaU7ITFMcMmallvBOolmJA4Fa4fj25nffmLacCUf7CRhQUyGkkecEuukFulnGE/75Ypf9edAqwTnpAI5Gv3yV2+gaBozaakgxnSxn9ggI9pyKti01EsNSwgdkyHrOipJzEyQza+dojOnDFCktCtp0Vz9PZGR2JhJHLrOmNiRWfZm4n9eN7XRdZBxmaSWSbpYFKUCWYVmr6MB14xaMXGEUM3drYiOiCbUuoBKLgS8/PIqadWq+KJau7+s1G/yOIpwAqdwDhiuoA530IAmUHiEZ3iFN095L96797FoLXj5zDH8gff5Ax84jtQ=</latexit>
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<latexit sha1_base64="OLU6LEcMFNiGDLU/HKiOI8bEv9U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1cD8LatN+ueJX/TnQKglyUoEcjX75qzdQJBVUWsKxMd3AT2yYYW0Z4XRa6qWGJpiM8ZB2HZVYUBNm82un6MwpAxQr7UpaNFd/T2RYGDMRkesU2I7MsjcT//O6qY2vw4zJJLVUksWiOOXIKjR7HQ2YpsTyiSOYaOZuRWSENSbWBVRyIQTLL6+SVq0aXFRr95eV+k0eRxFO4BTOIYArqMMdNKAJBB7hGV7hzVPei/fufSxaC14+cwx/4H3+ACC9jtU=</latexit>
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<latexit sha1_base64="uQwOry5ElnlgGYC1JFojCJcBEuQ=">AAACKXicbZBLSwMxEMez9VXrq+rRS7BYBKHsbov1WPTisYJ9QLcs2TRtQ7MPklmhLP06XvwqXhQU9eoXMW1X1NaBwH9+M8Nk/l4kuALTfDcyK6tr6xvZzdzW9s7uXn7/oKnCWFLWoKEIZdsjigkesAZwEKwdSUZ8T7CWN7qa1lt3TCoeBrcwjljXJ4OA9zkloJGbrzkwZEBcCxPXxmc4TW2dlnFxCpxvVtbs/KelotMqLrr5glkyZ4GXhZWKAkqj7uafnV5IY58FQAVRqmOZEXQTIoFTwSY5J1YsInREBqyjZUB8prrJ7NIJPtGkh/uh1C8APKO/JxLiKzX2Pd3pExiqxdoU/lfrxNC/6CY8iGJgAZ0v6scCQ4intuEel4yCGGtBqOT6r5gOiSQUtLk5bYK1ePKyaNolq1yybyqF2mVqRxYdoWN0iixURTV0jeqogSi6R4/oBb0aD8aT8WZ8zFszRjpziP6E8fkFEbiiNA==</latexit>
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<latexit sha1_base64="gk8cqb/ajkBSzWVDLHG3Oh6ixQc=">AAACKXicbZBLSwMxEMez9VXra9Wjl2CxCELZbQvtsejFYwX7gHZZsmm2Dc0+SGaFUvp1vPhVvCgo6tUvYtquqK0Dgf/8ZobJ/L1YcAWW9W5k1tY3Nrey27md3b39A/PwqKWiRFLWpJGIZMcjigkesiZwEKwTS0YCT7C2N7qa1dt3TCoehbcwjpkTkEHIfU4JaOSa9R4MGRDXxsQt4wucpiWdVnBhBnrfrKxZ9aelotMaLrhm3ipa88Crwk5FHqXRcM3nXj+iScBCoIIo1bWtGJwJkcCpYNNcL1EsJnREBqyrZUgCppzJ/NIpPtOkj/1I6hcCntPfExMSKDUOPN0ZEBiq5doM/lfrJuDXnAkP4wRYSBeL/ERgiPDMNtznklEQYy0IlVz/FdMhkYSCNjenTbCXT14VrVLRLhdLN5V8/TK1I4tO0Ck6Rzaqojq6Rg3URBTdo0f0gl6NB+PJeDM+Fq0ZI505Rn/C+PwCGDSiOA==</latexit>
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<latexit sha1_base64="9dFUSQnUsItqobNdye6cEOlROhw=">AAACLHicbZBbSwJBFMdn7WZ22+qxlyFJgkB21W5vki89GuQFVJbZcdTB2QszZwNZ/EC99FWC6CGJXvscjbpRaQcG/ud3zuHM+buh4Aosa2KkVlbX1jfSm5mt7Z3dPXP/oK6CSFJWo4EIZNMlignusxpwEKwZSkY8V7CGO6xM640HJhUP/HsYhazjkb7Pe5wS0MgxK20YMCCOjYlzjs9wkhZ0eoFzU9D+ZkXNrn9aSjqNbWuMc46ZtfLWLPCysBORRUlUHfOl3Q1o5DEfqCBKtWwrhE5MJHAq2DjTjhQLCR2SPmtp6ROPqU48O3aMTzTp4l4g9fMBz+jviZh4So08V3d6BAZqsTaF/9VaEfSuOjH3wwiYT+eLepHAEOCpc7jLJaMgRloQKrn+K6YDIgkF7W9Gm2Avnrws6oW8XcwX7krZ8k1iRxodoWN0imx0icroFlVRDVH0iJ7RG5oYT8ar8W58zFtTRjJziP6E8fkFhMOjfQ==</latexit>
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<latexit sha1_base64="R4VUICYEYTh2z87Z55RfFChbcPM=">AAACL3icbZBLSwMxEMezPmt9VT16CRaLIJTdtliPRUE8VrAP6JYlm6ZtaPZBMiuUZb+RF79KLyKKePVbmLYrautA4D+/mWEyfzcUXIFpvhgrq2vrG5uZrez2zu7efu7gsKmCSFLWoIEIZNslignuswZwEKwdSkY8V7CWO7qe1lsPTCoe+PcwDlnXIwOf9zkloJGTu7FhyIA4FibOBT7HaVrSaRUXpsD+ZmXNYstMfroqM2IluODk8mbRnAVeFlYq8iiNupOb2L2ARh7zgQqiVMcyQ+jGRAKngiVZO1IsJHREBqyjpU88prrx7N4En2rSw/1A6ucDntHfEzHxlBp7ru70CAzVYm0K/6t1IuhfdmPuhxEwn84X9SOBIcBT83CPS0ZBjLUgVHL9V0yHRBIK2uKsNsFaPHlZNEtFq1ws3VXytavUjgw6RifoDFmoimroFtVRA1H0iCboFb0ZT8az8W58zFtXjHTmCP0J4/ML8Yukvg==</latexit>

✓1a7 + ✓2a8+

✓3a11 + ✓4a12
<latexit sha1_base64="MFRQVC1oXzMQSGIwGrB01YBT+pU=">AAACL3icbZBbSwJBFMdnu5rdrB57GZIkCGRXBX2UgujRIC/gLsvsOOrg7IWZs4EsfqNe+iq+RBTRa9+iUTcq7cDA//zOOZw5fy8SXIFpvhhr6xubW9uZnezu3v7BYe7ouKXCWFLWpKEIZccjigkesCZwEKwTSUZ8T7C2N7qe1dsPTCoeBvcwjpjjk0HA+5wS0MjN3dgwZEBcCxO3ii9xmpZ0WsOFGbC/WVmzxLImP12VOSlNcMHN5c2iOQ+8KqxU5FEaDTc3tXshjX0WABVEqa5lRuAkRAKngk2ydqxYROiIDFhXy4D4TDnJ/N4JPtekh/uh1C8APKe/JxLiKzX2Pd3pExiq5doM/lfrxtCvOQkPohhYQBeL+rHAEOKZebjHJaMgxloQKrn+K6ZDIgkFbXFWm2Atn7wqWqWiVS6W7ir5+lVqRwadojN0gSxURXV0ixqoiSh6RFP0it6MJ+PZeDc+Fq1rRjpzgv6E8fkF+Bikwg==</latexit>

Figure 2.13: An example of 2-D convolution. In this case we restrict the output to
only positions where the kernel lies entirely within the image, called
valid convolution in some contexts. We draw boxes with arrows to
indicate how the upper-left element of the output tensor is formed
by applying the kernel to the corresponding upper-left region of the
input tensor.
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Finally, a bias b is added to each of the units in the output tensor, then a
nonlinear activation function is applied to the output volume. Each entry of the
output tensor is computed as:

Gk,l,n = g

(∑

i,j,m

(Ki,j,m,n ∗ Fk+1−1,l+j−1,m) + b

)
. (2.10)

Convolution leverages two important ideas that can help improve a machine
learning system: sparse interactions and parameter sharing.

Traditional neural network units interact with every other unit in the next
layer (by means of a matrix multiplication). Convolutional networks, however, typi-
cally have sparse connections. This is accomplished by making the kernel smaller
than the input. For example, when processing an image, the input image might
have thousands or millions of pixels, but we can detect small, meaningful features
such as edges with kernels that occupy only tens or hundreds of pixels. This means
that we need to store fewer parameters, which in turn improves overall efficiency of
CNNs over MLPs for some applications [18].

Parameter sharing refers to using the same parameter for more than one
function in a model. In a traditional neural net, each element of the weight matrix
is used exactly once when computing the output of a layer. It is multiplied by one
element of the input and then never revisited. In a convolutional neural net, each
member of the kernel is used at every position of the input (except perhaps some
of the boundary units). The parameter sharing used by the convolution operation
means that rather than learning a separate set of parameters for every location, we
learn only one set. This does not affect the run-time of forward propagation but
further reduces the storage requirements of the model.

Pooling

Pooling is one of the steps done in a convolutional layer. A pooling function
replaces the output a convolutional layer with a summary statistic of the nearby
outputs. For example, the max pooling [49] operation reports the maximum out-
put within a rectangular neighborhood. Other popular pooling functions include the
average of a rectangular neighborhood, the L2 norm of a rectangular neighborhood,
or a weighted average based on the distance from the central pixel [18].

There are two major types of pooling. Let’s say we have a 4x4 tensor repre-
senting our initial input. Let’s say, as well, that we have a 2x2 filter that we’ll run
over our input. We’ll have a stride of 2 and won’t overlap regions. Max pooling is
done by applying a max filter to (usually) non-overlapping sub-regions of the initial
representation. Average pooling, on the other hand, computes the average of the
sub-region selected by the filter.
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In max pooling, for each of the units in the output tensor is computed by
taking the maximum element of the region of the input tensor selected by the kernel.
For average pooling, each of the units of the output tensor is computed by taking
the average of the region represented by the filter. Figure 2.14 depicts a graphical
representation of max an average pooling.
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Figure 2.14: Max and average pooling.

In all cases, pooling helps to make the representation become approximately
invariant to small translations of the input. Invariance to translation means that if
we translate the input by a small amount, the values of most of the pooled outputs
do not change. The use of pooling can be viewed as adding an infinitely strong prior
that the function the layer learns must be invariant to small translations. When
this assumption is correct, it can greatly improve the statistical efficiency of the
network.

Pooling over spatial regions produces invariance to translation, but if we pool
over the outputs of separately parametrized convolutions, the features can learn
which transformations to become invariant to.

Because pooling summarizes the responses over a whole neighborhood, it
is possible to use fewer pooling units than detector units, by reporting summary
statistics for pooling regions spaced k units apart rather than 1 unit apart. This
improves the computational efficiency of the network because the next layer has
roughly k times fewer inputs to process.

Building Convolutional Neural Networks

A typical convolutional layer consists of three stages (see Figure 2.15). In
the first stage, the layer performs several convolutions to produce a set of linear
activations. In the second stage, each linear activation is run through a nonlinear
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activation function. This stage is sometimes called the detector stage. In the third
stage, we use a pooling function to modify the output of the layer further.
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Figure 2.15: A convolutional layer composed of three “stages”.

Convolutional neural networks (CNNs) are formed by stacking several convo-
lutional layers together followed by a number of fully connected layers (See Section
2.2.2.). The convolutional layers act as feature extractor while the fully connected
layers at the end act as the classifier/regressor. Consider the task of image classifi-
cation. The convolutional and pooling layers will extract features from the pixels.
For instance, the first layers may learn to identify simple features like edges, learning
more complex shapes like eyes or faces in the last convolutonal layers. The fully
connected layers will then take the learned features by the convolutional layers and
learn the function to classify the different images. The training process for a CNN
is analogous to that for the feedforward networks. Figure 2.16 shows a depiction of
a CNN used for image classification.
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Figure 2.16: A convolutional neural network with two convolutional layers and
two fully connected layers for image detection.
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2.2.5 Recurrent Neural Networks

Recurrent neural networks or RNNs [50] are a family of neural networks for
processing sequential data, that is, a sequence of values x<1>, . . . ,x<τ>. Unlike stan-
dard feedforward networks, RNNs retain a state that can represent information from
an arbitrarily long context window. Furthermore, they can scale to much longer se-
quences than would be practical for networks without sequence-based specialization.
Most recurrent networks can also process sequences of variable length.

Despite their power, standard neural networks have limitations when dealing
with sequenced data. Most notably, they rely on the assumption of independence
among the data samples. After each sample (data point) is processed, the entire
state of the network is lost. If each example is generated independently, this presents
no problem. But if data points are related in time, this represents a big problem.
Frames from video, words in sentences and sensor information from different ma-
chines represent settings where the assumption of independence of the data fails.

The input to an RNN is a sequence. An input sequence can be denoted as
(x<1>,x<2>, . . . ,x<τ>) where each data point x<τ> is a real valued vector. Similarly,
a target sequence can be denoted (y<1>,y<2>, . . . ,y<τ>). Sequences may be of finite
or countably infinite length. When they are finite, the maximum time index of the
sequence is called τ .

Using temporal terminology, an input sequence consists of data points x<τ>

that arrive in a discrete sequence of time steps indexed by τ . A target sequence
consists of data points y<τ>. We use superscripts with parentheses for time, and
not subscripts, to prevent confusion between sequence steps and indices of nodes in
a network. When a model produces predicted data points, these are labeled ŷ<τ>.

The time-indexed data points may be equally spaced samples from a con-
continuous real-world process. Examples include the still images that comprise the
frames of videos or the discrete amplitudes sampled at fixed intervals that comprise
audio recordings. The time steps may also be ordinal, with no exact correspondence
to duration. In fact, RNNs are frequently applied to domains where sequences
have a defined order but no explicit notion of time. This is the case with natural
language. In the word sequence “David Laredo plays the guitar, x<1> = David,
x<2> = Laredo, etc.

An Extension of Feedforward Networks

Recurrent neural networks are feedforward neural networks augmented by
the inclusion of edges that span adjacent time steps, introducing a notion of time to
the model. A recurrent neural network can be thought of as multiple copies of the
same feedforward network, each passing a message to a successor (See Figure 2.17).
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Figure 2.17: An unrolled recurrent neural network. At each time step τ , activation
is passed along edges as in a feedforward network.

This chain-like nature reveals that recurrent neural networks are intimately
related to sequences and lists. They’re the natural architecture of neural network
to use for such data.

At time τ , nodes with recurrent edges receive input from the current data
point x<τ> and also from hidden node values h<τ−1> in the network’s previous state.
The output ŷ<τ> at each time τ is calculated given the hidden node values h<τ> at
time τ . Input x<τ−1> at time τ − 1 can influence the output ŷ<τ> at time τ and
later by means of the recurrent connections.

Two equations specify all calculations necessary for computation at each time
step on the forward pass in a simple recurrent neural network as in Figure 2.17:

h<τ> = gh
(
θxx

<τ> + θhh
<τ−1> + bh

)
(2.11)

ŷ<τ> = gy (θyh
<τ> + by) , (2.12)

where θx is the conventional matrix between the input and the hidden layer, θh is
the matrix of recurrent weights between the current layer and itself at adjacent steps
and θy is the matrix between the hidden layer and the output layer. The vectors
bh and by are bias parameters that allow each node to learn an offset. Finally, gh
and gy are nonlinear functions. Usually gh is the tanh function while gy can either
be the sigmoid (or softmax) function for classification or the linear function for
regression.

The dynamics of the network depicted in Figure 2.17 across time steps can
be visualized as a deep network with one layer per time step and shared weights
across time steps. It is then clear that the unfolded network can be trained across
many time steps using backpropagation. The algorithm called backpropagation
through time (BPTT) [51] is used by all the recurrent neural networks to optimize
its parameters θx, θh and θy.
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The architecture presented here is known as the basic RNN cell (unit), an
illustration of it can be seen in Figure 2.18. In the diagram, each line carries an
entire vector, from the output of one node to the inputs of others. The yellow boxes
are learned neural network layers. Lines merging denote concatenation, while a line
forking denote its content being copied and the copies going to different locations.
Stacking together several of this units gives rise to deep RNN models.
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Figure 2.18: A basic RNN cell. This basic structure is repeated for every time
step τ . The parameters θ are shared across the network. σ stands
for the sigmoid function.

Modern RNN Architectures

One major disadvantage of basic RNN cells is that they do not handle long-
term time dependencies well. For example, consider a language model trying to
predict the next word based on the previous ones. If we are trying to predict the
last word in “the clouds are in the ..,” we don’t need any further context, it’s pretty
obvious the next word is going to be “sky”. In such cases, where the gap between
the relevant information and the place that it’s needed is small, basic RNN cells can
learn to use the past information.

There are nevertheless cases where we need more context. Consider trying to
predict the last word in the text I grew up in France I speak fluent French. Recent
information suggests that the next word is probably the name of a language, but
if we want to narrow down which language, we need the context of France, from
further back. It’s entirely possible for the gap between the relevant information and
the point where it is needed to become very large.
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Long short term memory (LSTM) [52] and Gated recurrent unit (GRU) [53]
are RNN cell types that can handle very large time dependencies. The structure
of both cells is similar to that of the basic RNN but they incorporate a new set of
weights θc that are related to a so-called “cell state” c<τ−1>. The cell state is kind
of like a conveyor belt. It runs straight down the entire chain, with only some minor
linear interactions. It’s very easy for information to just flow along it unchanged.
LSTMs and GRUs also have have the ability to remove or add information to the
cell state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are composed
out of a sigmoid neural net layer and a point-wise multiplication operation. The
sigmoid layer outputs numbers between zero and one, describing how much of each
component should be let through. A value of zero lets nothing through the gate
while a value of one lets everything flow through it.

LSTM and GRU cells mainly differ in the number of gates used to update
the cell state. GRU cells introduce two gates to the basic RNN cell. An update gate
controls how much of the current information to pass to the next cell state while at
the same time controlling how much of the previous information to preserve. LSTM
introduces two additional gates a separate forget gate to control how much of the
previous information to preserve in the cell state and an output gate that controls
what to output (ŷ<τ>) based on the cell state. Figure 2.19 shows the diagrams of
the three RNN cells.
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Figure 2.19: A comparison between basic RNN, GRU and LSTM cells.

The steps for computing the output ŷ<τ>, hidden value h<τ> and cell state
c<τ> for LSTM and GRU cells are shown in Equations (2.14) and (2.15) respectively.

32



f<τ> = σ
(
θf ·

[
h<τ−1>,x<τ>

]
+ bf

)

i<τ> = σ
(
θi ·

[
h<τ−1>,x<τ>

]
+ bi

)
(2.13)

o<τ> = σ
(
θo ·

[
h<τ−1>,x<τ>

]
+ bo

)

c̃<τ> = tanh
(
θc ·

[
h<τ−1>,x<τ>

]
+ bc

)

c<τ> = f<τ> ∗ c<τ−1> + i<τ> ∗ c̃<τ>

h<τ> = o<τ> ∗ tanh(c<τ>).

Here i<τ>, f<τ>, and o<τ> are called input, forget and output gates, respec-
tively. The input gate defines how much of the newly computed state for the current
input you want to let through. The forget gate defines how much of the previous
state you want to let through. Finally, the output gate defines how much of the
internal state you want to expose to the external network. All the gates have the
same equations except that they use different parameter matrices (θf , θi, θo). The
gates also have the same dimension dh, which is the size of the hidden state.

c̃<τ> is a candidate hidden state that is computed based on the current
input and the previous hidden state. c<τ> is the internal memory of the unit. It
is a combination of the previous memory, multiplied by the forget gate, and the
newly computed hidden state, multiplied by the input gate. Thus, intuitively it is a
combination of how we want to combine previous memory and the new input. h<τ>

the is output hidden state, computed by multiplying the memory with the output
gate. Not all of the internal memory may be relevant to the hidden state used by
other units in the network.

Intuitively, basic RNNs could be considered a special case of LSTMs. If fix
the input gate all 1’s, the forget gate to all 0’s (say, always forget the previous
memory) and the output gate to all 1’s (say, expose the whole memory), it will
almost behave as a basic RNN.

o<τ> = σ
(
θo ·

[
h<τ−1>,x<τ>

]
+ bo

)

r<τ> = σ
(
θr ·

[
h<τ−1>,x<τ>

]
+ br

)
(2.14)

h̃<τ> = tanh
(
θh ·

[
r<τ> ∗ h<τ−1>,x<τ>

]
+ bh

)

h<τ> = (1− o<τ>) ∗ h<τ−1> + o<τ> ∗ h̃<τ>.

For GRU cell h<τ> is the hidden state of the cell. Here r<τ> is a reset gate,
and z<τ> is an update gate. Intuitively, the reset gate determines how to combine
the new input with the previous memory, and the update gate defines how much of
the previous memory to keep around. If set the reset to all 1’s and update gate to
all 0’s, it will arrive at the vanilla RNN model.
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Chapter 3

ESTIMATION OF REMAINING USEFUL LIFE OF
MECHANICAL SYSTEMS

This chapter presents a framework for estimating the remaining useful life
(RUL) of mechanical systems. The framework consists of a multi-layer perceptron
and an evolutionary algorithm for optimizing the data-related parameters. The
framework makes use of a strided time window to estimate the RUL for mechanical
components. Tuning the data-related parameters can become a very time consuming
task. The framework presented here automatically reshapes the data such that the
efficiency of the model is increased. Furthermore, the complexity of the model is
kept low, e.g. neural networks with few hidden layers and few neurons at each
layer. Having simple models has several advantages like short training times and
the capacity of being in environments with limited computational resources such as
embedded systems. The proposed method is evaluated on the publicly available C-
MAPSS dataset [54], its accuracy is compared against other state-of-the art methods
for the same dataset.

3.1 Related Work and Motivation

Traditionally, maintenance of mechanical systems has been carried out based
on scheduling strategies. Such strategies are often costly and less capable of meeting
the increasing demand of efficiency and reliability [55,56]. Condition based mainte-
nance (CBM) also known as intelligent prognostics and health management (PHM)
allows for maintenance based on the current health of the system, thus cutting
down the costs and increasing the reliability of the system [57]. Here, we refer to
prognostics as the estimation of remaining useful life of a system. The remaining
useful life (RUL) of the system can be estimated based on the historical data. This
data-driven approach can help optimize maintenance schedules to avoid engineering
failures and to save costs [58].

The existing PHM methods can be grouped into three different categories:
model-based [59], data-driven [60, 61] and hybrid approaches [62, 63]. Model-based
approaches attempt to incorporate physical models of the system into the estimation
of the RUL. If the system degradation is modeled precisely, model-based approaches
usually exhibit better performance than data-driven approaches [64]. This comes
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at the expense of having extensive a priori knowledge of the underlying system and
having a fine-grained model of the system, which can involve expensive computa-
tions. On the other hand, data-driven approaches use pattern recognition to detect
changes in system states. Data-driven approaches are appropriate when the un-
derstanding of the first principles of the system dynamics is not comprehensive or
when the system is sufficiently complex such as jet engines, car engines and complex
machinery, for which it is prohibitively difficult to develop an accurate model.

Common disadvantages for the data-driven approaches are that they usu-
ally exhibit wider confidence intervals than model-based approaches and that a fair
amount of data is required for training. Many data-driven algorithms have been pro-
posed. Good prognostics results have been achieved. Among the most popular al-
gorithms we can find artificial neural networks (ANNs) [55], support vector machine
(SVM) [65], Markov hidden chains (MHC) [66] and so on. Over the past few years,
data-driven approaches have gained more attention in the PHM community. A num-
ber of machine learning techniques, especially neural networks, have been applied
successfully to estimate the RUL of diverse mechanical systems. ANNs have demon-
strated good performance in modeling highly nonlinear, complex, multi-dimensional
systems without any prior knowledge on the system behavior [10]. While the confi-
dence limits for the RUL predictions cannot be analytically provided [67], the neural
network approaches are promising for prognostic problems.

Neural networks for estimating the RUL of jet engines have been previously
explored in [9] where the authors propose a multi-layer perceptron (MLP) coupled
with a feature extraction (FE) method and a time window for the generation of the
features for the MLP. In the publication, the authors demonstrate that a moving
window combined with a suitable feature extractor can improve the RUL prediction
as compared with the studies with other similar methods in the literature. In [10],
the authors explore a deep learning ANN architecture, the so-called convolutional
neural networks (CNNs), where they demonstrate that by using a CNN without any
pooling layers coupled with a time window, the predicted RUL is further improved.

Despite the success some neural network models have exhibited in prognostics
one challenge remains. Many of the state-of-the-art models [10,25,37] use very com-
plex neural networks to perform the RUL estimation. Furthermore, architectures
such as RNNs that may be more suitable for this kind of task are very computa-
tionally demanding. Here we present a novel framework for estimating the RUL
of complex mechanical systems. The framework consists of a MLP to estimate the
RUL of the system, coupled with an evolutionary algorithm for the fine tuning of
data-related parameters. We refer to data-related parameters as parameters that
define the shape, defined in terms of window size and window stride, and quality of
the data, measured with respect to some performance indicators, used by the MLP.
Please note that while this specific framework makes use of a MLP, the framework
can in principle use several other learning algorithms, our main objective is the
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treatment of the data instead of the choice of a particular learning algorithm. The
publicly available NASA C-MAPSS dataset [54] is used to assess the efficiency and
reliability of the proposed framework, by efficiency we mean the complexity of the
used regressor and reliability refers to the accuracy of the predictions made by the
regressor. This approach allows for a simple and small MLP to obtain better results
than those reported in the current literature while using less computing power.

3.2 NASA C-MAPSS Dataset

The NASA C-MAPSS dataset is used to evaluate performance of the proposed
method [54]. The C-MAPSS dataset contains simulated data produced using a
model based simulation program developed by NASA. The dataset is further divided
into 4 subsets composed of multi-variate temporal data obtained from 21 sensors.

For each of the 4 subsets, a training and a test set are provided. The training
sets include run-to-failure sensor records of multiple aero-engines collected under
different operational conditions and fault modes as described in Table 3.1.

C-MAPSS
Dataset FD001 FD002 FD003 FD004
Training Trajectories 100 260 100 248
Test Trajectories 100 259 100 248
Operating Conditions 1 6 1 6
Fault Modes 1 1 2 2

Table 3.1: C-MAPSS dataset details.

The data is arranged in an N × 26 matrix where N is the number of data
points in each subset. The first two variables represent the engine and cycle numbers,
respectively. The following three variables are operational settings which correspond
to the conditions in Table 3.1 and have a substantial effect on the engine perfor-
mance. The remaining variables represent the 21 sensor readings that contain the
information about the engine degradation over time.

Each trajectory within the training and test sets represents the life cycles of
the engine. Each engine is simulated with different initial health conditions, i.e. no
initial faults. For each trajectory of an engine the last data entry corresponds to
the cycle at which the engine is found faulty. On the other hand, the trajectories
of the test sets terminate at some point prior to failure, hence the need to predict
the remaining useful life. The aim of the MLP model is to predict the RUL of each
engine in the test set. The actual RUL values of test trajectories are also included
in the dataset for verification. Further discussions of the dataset and details on how
the data is generated can be found in [68].
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3.2.1 Performance Metrics

To evaluate the performance of the proposed approach on the C-MAPSS
dataset, we make use of two scoring indicators, namely the Root Mean Squared
Error (RMSE) denoted as ERMS(e) and a score proposed in [68] which we refer as
the RUL Health Score (RHS) denoted as ERH(e). The two scores are defined as
follows,

ERMS =

√√√√ 1

n

N∑

i=1

e2i (3.1)

ERH =
1

n

N∑

i=1

si

si =

{
exp(− ei

13
)− 1, ei < 0

exp( ei
10

)− 1, ei ≥ 0,
(3.2)

where n is the total number of samples in the test set and e = ŷ − y is
the error between the estimated RUL values ŷ, and the actual RUL values y for
each engine within the test set. It is important to note that ERH(e) penalizes late
predictions more than early predictions since usually late predictions lead to more
severe consequences in fields such as aerospace.

3.3 Framework Description

In this section, the proposed ANN-EA based method for prognostics is pre-
sented. The method makes use of a multi-layer perceptron (MLP) as the main
regressor for estimating the RUL of the engines in the C-MAPSS dataset. The
choice of a MLP as the learning algorithm instead of any of the other choices (SVM,
RNN, CNN, Least-Squares, etc) obeys to the fact that MLPs are in general good
for nonlinear data like the one exhibited by the C-MAPSS dataset, but at the same
time are less computationally expensive than some of the more sophisticated algo-
rithms as the CNN or the RNN. Indeed, the RNN may be a more suitable choice
for this particular problem since it involves time-sequenced data, nevertheless, we
will show that by doing a fine tuning of the data-related parameters (and thus data
processing), the inference power of a simple MLP can be competitive even when
compared against that of an RNN. For the training sets, the feature vectors are
generated by using a moving time window while a label vector is generated with
the RUL of the engine. The label has a constant RUL for the early cycles of the
simulation, and becomes a linearly decreasing function of the cycle in the remaining
cycles. This is the so-called piece-wise linear degradation model [69]. For the test
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set, a time window is taken from the last sensor readings of the engine. The data
of the test set is used to predict the RUL of the engine.

The window-size nw, window-stride ns, and early-RUL Re are data-related
parameters, which for the sake of clarity and formalism in this study, form a vector
v ∈ Z3 such that v = (nw, ns, Re). The vector v has a considerable impact on the
quality of the predictions by the regressor. It is computationally intensive to find
the best parameters of v given the search space inherent to these parameters. We
propose an evolutionary algorithm to optimize the data-related parameters v. The
optimized parameter set v allows the use of a simple neural network architecture
while attaining better results in terms of the quality of the predictions compared
with the results by other methods in the literature.

3.3.1 The Network Architecture

After careful examinations of the C-MAPSS dataset, we propose to use a
rather simple MLP architecture for all the four subsets of the data. The choice
of a simple architecture over a more complex one follows the fact that simpler
neural networks are less computationally expensive to train, furthermore, the in-
ference is done also faster since less operations are involved. To measure the sim-
plicity/complexity of a neural network we use the number of trainable parameters
(weights) of the neural network, usually the more trainable parameters in a net-
work the more computations that need be done, thus increasing the computational
burden of the training/inference process. The implementations are done in Python
using the Keras/Tensorflow environment. The source code is publicly available at
the git repository https://github.com/dlaredo/NASA_RUL_-CMAPS- [70].

The choice of the network architecture is made by following an iterative
process, our goal was to find a good compromise between efficiency (simple neu-
ral network models) and reliability (scores obtained by the model using the RMSE
metric): We compared 6 different architectures (see Appendix A), training each for
100 epochs using a mini-batch size of 512 and averaging their results on a cross-
validation set for 10 different runs. L1 (Lasso) and L2 regularization (Ridge) [71]
are used to prevent over-fitting. L1 regularization penalizes the sum of the absolute
value of the weights and biases of the networks, while L2 regularization penalizes
the sum of the squared value of the weights and biases. The data-related param-
eters v used for this experiment are v = (30, 1, 140). Two objectives are pursued
during the iterations: the architecture must be minimal in terms of the number of
trainable parameters and the performance indicators must be minimized. Table 3.2
summarizes the results for each tested architecture.
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RMSE RHS
Tested Architecture Min. Max. Avg. STD Min. Max. Avg. STD
Architecture 1 15.51 17.15 16.22 0.49 4.60 7.66 5.98 0.91
Architecture 2 15.24 16.46 15.87 0.47 4.07 6.26 5.29 0.82
Architecture 3 15.77 17.27 16.15 0.45 5.11 8.25 5.93 0.94
Architecture 4 15.13 17.01 15.97 0.47 3.90 7.54 5.65 1.2
Architecture 5 16.39 17.14 16.81 0.23 5.19 6.58 5.98 0.42
Architecture 6 16.42 17.36 16.87 0.30 5.15 7.09 6.12 0.62

Table 3.2: Results for different architectures for subset 1, 100 epochs.

Table 3.3 presents the architecture chosen for the remainder of this work
(which provides the best compromise between compactness and performance among
the tested architectures). Each row in the table represents a neural network layer
while each column describes each one of the key parameters of the layer such as the
type of layer, number of neurons in the layer, activation function of the layer and
whether regularization is used, where L1 denotes the L1 regularization factor and
L2 denotes the L2 regularization factor, the order in which the layers are appended
from the table is top-bottom. From here on we refer to this neural network model
as φ(.).

Layer Neurons Activation Additional Information
Fully connected 20 ReLU L1 = 0.1, L2 = 0.2
Fully connected 20 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2

Table 3.3: Proposed neural network architecture φ(.).

3.3.2 Shaping the Data

This section covers the data pre-processing applied to the raw sensor read-
ings in each of the datasets. Although the original datasets contain 21 different
sensor readings, some of the sensors do not present much variance or convey re-
dundant information, our choice of the sensors is based on previous studies such
as [9,10] where it was discovered that some sensor values do not vary at all through-
out the entire engine life cycle while some others are redundant according to PCA
or clustering analysis. These sensors are therefore discarded. In the end, only
14 sensor readings out of the 21 are considered for this study. Their indices are
{2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21}. The raw measurements are then used to
create the strided time windows with window-size nw and window-stride ns. For the
training labels, Re is used at the early stages and then the RUL is linearly decreased.
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Assuming x ∈ Rm is the vector whose components are the sensor readings at each
time stamp, then the min-max normalized vector x̂ can be computed by means of
the following formula:

x̂i = 2 ∗ xi −min(xi)

max(xi)−min(xi)
− 1. (3.3)

Time Window and Stride

In multivariate time-series problems such as RUL, more information can be
generally obtained from the temporal sequence of the data as compared with the
multivariate data point at a single time stamp. For a time window of size nw with
a stride ns = 1, all the sensor readings in the time window form a feature vector
x ∈ Rs∗nw , where s denotes the number of sensors being read. Stacking together mw

of this time windows forms feature vector X ∈ Rmw×s∗nw while its corresponding
RUL values are defined as y ∈ Zm. It is important to mention that the shape of X
defines the number of input neurons for the neural network, therefore changing the
shape of X effectively changes the number of inputs to the neural network. This
approach has successfully been tested in [9, 10] where the authors propose the use
of a moving window with sizes ranging from 20 to 30. We propose not only the
use of a moving time window, but also a strided time window that updates more
than one element (ns > 1) at the time. A graphical depiction of the strided time
window is shown in Figure 3.1. For Figure 3.1 the numbers and time-stamps are
just illustrative, the window size exemplified is of 30 time-stamps while the stride
is of 3 time-stamps.
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Figure 3.1: Graphical depiction of the time window used in this framework.

Figure 3.2 shows an example of how to form a sample vector, in this example
s = 14, nw = 5 and ns = 4. Each one of the plotted lines denotes the readings for
each of the fourteen chosen sensors. The dashed vertical lines (black lines) represent
the size of the window, in this case we depict a window size of 5 cycles. For the next
window (red dashed lines) the time window is advanced by a stride of 4 cycles, note
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that some sensor readings may be overlapped for different moving windows. For
every window, the sensor readings are appended one after another to form a vector
of 14 ∗ 5 features, for this specific case the unrolled vector will be of 70 features.
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Figure 3.2: Window size and stride example.

The use of a strided time window allows for the regressor to take advantage
not only of the previous information, but also to control the ratio at which the
algorithm is fed with new information. With the usual time window approach,
only one point is updated for every new time window. The strided time window
considered in this study allows for updating more than one point at the time for the
algorithm to make use of the new information with less iterations. Our choice of the
strided time window is inspired by the use of strided convolutions in Convolutional
Neural Networks [72]. Further studies of the impact of the stride on the prediction
should be done in the future.

Piece-wise Linear Degradation Model

Different from common regression problems, the desired output value of the
input data is difficult to determine for a RUL problem. It is usually impossible to
evaluate the precise health condition and estimate the RUL of the system at each
time step without an accurate physics based model. For this popular dataset, a
piece-wise linear degradation model has been proposed in [69]. The model assumes
that the engines have a constant RUL label in the early cycles, and then the RUL
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starts degrading linearly until it reaches 0 as shown in Figure 3.3. The piece-wise
linear degradation assumption is used in this work. We denote the value of the
RUL in the early cycles as Re. Initially, Re is randomly chosen between 90 and 140
cycles which is a reasonable range of values for this particular application. When
the difference between the cycle count in the time window and the terminating cycle
of the training data is less than the initial value of Re, Re begins the linear descent
toward the terminating cycle.

0 25 50 75 100 125 150
Time (Cycle)

60

70

80

90

100

110

120

R
U

L

Test Engine Unit #21

Figure 3.3: Piece-wise linear degradation for RUL.

3.3.3 Optimal Data Parameters

As mentioned in the previous sections the choice of the data-related param-
eters v has a large impact on the performance of the regressor. In this section, we
present a method for picking the optimal combination of the data-related parameters
nw, ns and Re while being computationally efficient.

Vector v = (nw, ns, Re) components specific to the C-MAPSS dataset are
bounded such that nw ∈ [1, b], ns ∈ [1, 10], and Re ∈ [90, 140], where all the variables
are integer. The value of b is different for different subsets of the data, Table 3.4
shows the different values of b for each subset.
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FD001 FD002 FD003 FD004
b 30 20 30 18

Table 3.4: Allowed values for b per subset.

Let X(v) be the training/cross-validate/test sets parametrized by v and
ŷ(v) = φ(X(v);θ) be the predicted RUL values of our model φ(.) with X(v). Thus,
ERMS depends directly on the choice of v since φ(.) is fixed (See Section 3.2.1). Here
we propose to solve the following optimization problem

min
v∈Z3

ERMS(v). (3.4)

The problem to find optimal data-related parameters has no analytic descrip-
tions. Therefore, no gradient information is available. An evolutionary algorithm
is the natural choice for this optimization problem. Nevertheless, since the com-
putation of the error ERMS(v) requires re-training φ(.) an strategy to make the
optimization process computationally efficient must be devised.

True Optimal Data Parameters

The finite size of C-MAPSS dataset and finite search space of v allow an
exhaustive search to be performed in order to find the true optimal data-related
parameters. We would like to emphasize that although exhaustive search is possible
for the C-MAPSS dataset, it is in no way a possibility in a more general setting.
Nevertheless, the possibility to perform exhaustive search on the C-MAPSS dataset
can be exploited to demonstrate the accuracy of the chosen EA and of the framework
overall. In the following studies, we use the results and computational efforts of the
exhaustive search as benchmarks to examine the accuracy and efficiency of the
proposed approach.

We should note that the subsets of the data FD001 and FD003 have similar
features and that the subsets FD002 and FD004 have similar features. Because of
this, we have decided to just optimize the data-related parameters by considering
the subsets FD001 and FD002 only. An exhaustive search is performed to find the
true optimal values for v. The MLP is only trained for 20 epochs. Table 3.5 shows
the optimal as well as the worst combinations of data-related parameters and the
total number of function evaluations used by the exhaustive search. It is important
to notice that for this experiment the window size is limited to be larger than or
equal to 15.
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Dataset argmin v min ERMS(v) argmax v max ERMS(v) Function evals.
FD001 [24, 1, 127] 15.11 [25, 10, 94] 85.19 8160
FD002 [16, 1, 138] 30.93 [17, 10, 99] 59.78 3060

Table 3.5: Exhaustive search results for subsets FD001 and F002.

Numerical experiments seem to suggest that, at least for CMAPSS dataset,
the window size plays a big role in terms of the meaningful information used for
prediction by the MLP. It also reflects the history-dependent nature of the aircraft
engine degradation process. Furthermore, overlapping in the generated time win-
dows seems to benefit the generated sequences of sensors.

3.3.4 Evolutionary Algorithm for Optimal Data Parameters

Evolutionary algorithms (EAs) are a family of methods for optimization prob-
lems. The methods do not make any assumptions about the problem, treating it as
a black box that merely provides a measure of quality given a candidate solution.
Furthermore, EAs do not require the gradient when searching for optimal solutions,
making them very suitable for applications such as neural networks.

For the current application, the differential evolution (DE) method is chosen
as the optimization algorithm [73]. Though other meta-heuristic algorithms may also
be suitable for this application, the DE has established as one of the most reliable,
robust and easy to use EAs. Furthermore, a ready to use Python implementation
is available through the scipy package [74]. Although the DE method does not have
special operators for treating integer variables, a very simple modification to the
algorithm, i.e. rounding every component of a candidate solution to its nearest
integer, is used for this work.

As mentioned earlier, evolutionary algorithms such as the DE use several
function evaluations when searching for the optimal solutions. It is important to
consider that, for this application, one function evaluation requires retraining the
neural network from scratch. This is not a desirable scenario, as obtaining the
optimal data-related parameters would entail an extensive computational effort.
Instead of running the DE for several iterations and with a large population size,
we propose to run it just for 30 iterations, i.e. the generations in the literature
of evolutionary computation, with a population size of 12, which seems reasonable
given the size of the search space of v.

During the optimization, the MLP is trained for only 20 epochs. The small
number of epochs of training the MLP is reasonable in this case because a small
batch of data is used in the training, because we only look for the trend of the scoring
indicators. Furthermore, it is common to observe that the parameters leading to
lower score values in the early stages of the training are more likely to provide better
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performance after more epochs of training. The settings of the DE algorithm to find
the optimal data-related parameters are listed in Table 3.6.

Population Size Generations Strategy MLP epochs
12 30 Best1Bin [17] 20

Table 3.6: Differential evolution hyper-parameters.

The optimal data-related parameters for the subsets FD001 and FD002 found
by the DE algorithm are listed in Table 3.7. As can be observed, the results are
in fact very close to the true optimal ones in Table 3.5 for both the subsets of the
data. The computational effort is reduced by one order of magnitude when using the
DE method as compared to the exhaustive search for the true optimal parameters.
From the results in Table 3.7, it can be observed that the maximum allowable time
window is always preferred while, on the other hand, small window strides yield
better results. For the case of early RUL, it can be observed that larger values of
Re are favored.

Dataset argmin v min ERMS(v) Function evals.
FD001 [24, 1, 129] 15.24 372
FD002 [17, 1, 139] 30.95 372

Table 3.7: Data-related parameters for each subset obtained with differential evo-
lution.

3.3.5 The Estimation Algorithm

Having described the major building blocks of the proposed method, we now
introduce the complete framework in the form of Algorithm 2.

Algorithm 2: ANN-EA RUL estimation framework.

Data: Training/testing data X ∈ Rmw×s∗nw

Input : Initial set of data-related parameters v ∈ Z3, , training labels
y ∈ Zm and number of training epochs for each evaluation of
φ(v).

Output: Optimal set of data-related parameters v∗ ∈ Z3.

Choose regressor architecture (ANN, SVM, linear/logistic regression,
etc).
Define φ(v) as in Section 3.3.3.
Optimize φ(v), by means of an evolutionary algorithm, using the
proposed guidelines from Section 3.3.4.
Use v∗ to train the regressor for as many epochs as needed.
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3.4 Evaluation of the Proposed Method

3.4.1 Experimental Settings

In this section, we evaluate the performance of the proposed method. The
architecture of the MLP is described in Table 3.3. We define an experiment as
the process of training the MLP on any of the subsets (FD001 to FD004) and
evaluate its performance using the subset’s test set. The combinations of the optimal
window size nw, window stride ns and early RUL Re are presented in Table 3.8. We
perform 10 different experiments for each data subset, the MLP is trained for 200
epochs using the train set for the corresponding data subset and evaluated using
the subset’s test set. The results for each dataset subset are averaged and presented
in Table 3.9. Furthermore, the best model is saved and later used to generate
the results presented in Section 3.4.2. All of the experiments were run using the
Keras/Tensorflow framework, an NVIDIA GeForce 1080Ti GPU was used to speed
up the training process.

Dataset nw ns Re Input size (neurons)
FD001 24 1 129 336
FD002 17 1 139 238
FD003 24 1 129 336
FD004 17 1 139 238

Table 3.8: Data-related parameters for each subset as obtained by DE.

3.4.2 Experimental Results

The obtained results for φ(v) using the above setting are presented in Table
3.9. Notice that the performances obtained for datasets FD001 and FD002 are
improved as compared with the results in Table 3.7. This is due to the fact that the
MLP is trained for more epochs, thus obtaining better results.

ERMS ERH

Data Subset min max avg STD min max avg STD
FD001 14.24 14.57 14.39 0.11 3.25 3.58 3.37 0.11
FD002 28.90 29.23 29.09 0.11 45.99 53.90 50.69 2.17
FD003 14.74 16.18 15.42 0.50 4.36 6.85 5.33 0.95
FD004 33.25 35.10 34.74 0.53 58.52 78.62 74.77 5.88

Table 3.9: Scores for each dataset using the data-related parameters obtained by
DE.
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We now compare the predicted RUL values versus the real RUL values for
each of the datasets. For Figures 3.4 to 3.7 we plot on the top sub-figure the
predicted RUL values (red lines) vs the real RUL values (green lines) while on the
bottom sub-figure we plot the error between real RUL and predicted RUL.

Figure 3.4 shows the comparison for subset FD001, it can be observed that
the predicted RUL values closely follow the real RUL values with the exception of
a pair of engines. The error remains small for most of the engines. Meanwhile, for
FD002 it can be observed in Figure 3.5 that the regressor overshoots several of the
RUL predictions, especially in the positive spectrum. That is, the method predicts
a RUL when in reality the real RUL is less than the predicted value. This is more
evident in the second subplot where the maximum error is 138 at the magenta peak
in the leftmost part of the plot.

Figure 3.6 shows that for FD003 the predictions follow closely the real RUL
values. The behavior for FD004 is similar to FD002 as depicted in Figure 3.7, with
most of the error such that the predictions of the RUL are larger than the real value.
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Figure 3.4: Comparison of predicted RUL values vs real RUL values for dataset
FD001
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Figure 3.5: Comparison of predicted RUL values vs real RUL values for dataset
FD002
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Figure 3.6: Comparison of predicted RUL values vs real RUL values for dataset
FD003
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Figure 3.7: Comparison of predicted RUL values vs real RUL values for dataset
FD004
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Finally, Figure 3.8 shows that most of the RUL predictions by the method
are highly accurate. In the case of FD001, the predictions of 50% of the engines is
smaller than 6 cycles. In the case of FD002, the predictions are acceptable with the
error of first quartile being lower than 6 cycles and the error for 50% of the engines
being less than 19 cycles. The cases for FD003 and FD004 are similar to FD001
and FD002, respectively.
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Figure 3.8: Prediction error of the MLP for each dataset.

Two conclusions can be drawn from the previous discussions. First, it can
be observed that the number of operating conditions has a larger impact on the
complexity of the data than the number of fault modes. This is because the subsets
FD002 and FD004 exhibit larger errors than the subsets FD001 and FD003, although
the general trend of prediction errors is similar among those two groups of data
sets. Second, for the subsets FD002 and FD004, most of the error is related to
the predictions larger than the real RUL values. Another observation is that larger
window sizes usually lead to better predictions. This may be related to the history-
dependent nature of the physical problem.

3.4.3 Comparison to Other Approaches

The performance of the proposed method is also compared against other
state-of-the-art methods. The methods chosen for the comparison obey to two
criteria: 1) that the method used is a machine learning (or statistical) method and
2) that the method is recent (6 years old at most). Most of the methods chosen
here have only reported results on the test set FD001 in terms of Erms. The results
are shown in Table 3.10. The Erms value of the proposed method in Table 3.10 is
the mean value of 10 independent runs. The values of other methods are identical
to those reported in their respective original papers.
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Method Erms
ESN trained by Kalman Filter [75] 63.45
Support Vector Machine Classifier [37] 29.82
Time Window Neural Network [9] 15.16
Multi-objective deep belief networks ensemble [76] 15.04
Deep Convolutional Neural Network [8] 18.45
Proposed method with nw = 30, ns = 1 and Re = 128 14.39
Modified approach with classified sub-models of the ESN [75]. 7.021
Only 80 of 100 engines predicted
Deep CNN with time window [10]. 13.32
RNN-Encoder-Decoder [25]. 12.93

Table 3.10: Performance comparison of the proposed method and the latest related
papers on the C-MAPSS dataset.

From the comparison studies, we can conclude that the proposed method
performs better than the majority of the chosen methods when taking into con-
sideration the whole dataset FD001. Two existing methods come close to the per-
formance of the proposed approach here, namely the time window ANN [9] and
the Networks Ensemble [76]. While the performance of these two methods comes
close to the results of the proposed method, our method is computationally more
efficient. We believe that the use of the time window with a proper size makes
the difference. Notice that three of the methods presented in Table 3.10 perform
better than the proposed method, namely, the Convolutional Neural Network [10],
the RNN-Encoder-Decoder [25] and the modified ESN [75]. Nevertheless in the
case of [75], the method can only predict 80 out of the 100 total engines while the
deep CNN [10] and RNN [25] approaches are much more computationally expensive
than the MLP used in this work. In the case of the method proposed in [10], the
neural network model has four layers of convolutions and two more layers of fully
connected layers. On the other hand, the RNN-Encoder-Decoder [25] makes use
of a much more complicated scheme of two RNNs, one for encoding the sequences
and one for decoding them. While specialized libraries such as TensorFlow or Keras
make RNNs easier to use, they still remain up to date as some of the most compu-
tationally expensive architecture to train given their sequential nature. Finally, we
would like to emphasize that the used MLP for this approach is one of the simplest
ones in the reviewed literature. Furthermore, the framework proposed is simple to
understand and implement, robust, generic and light-weight. These are the fea-
tures important to highlight when comparing the proposed method against other
state-of-the-art approaches.
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Chapter 4

AUTOMATIC SELECTION OF DEEP LEARNING
MODELS

Neural networks and deep learning are changing the way that artificial intel-
ligence is being done. Efficiently choosing a suitable network architecture and fine
tune its hyper-parameters for a specific dataset is a time-consuming task given the
staggering number of possible alternatives. In this chapter, we address the problem
of model selection by means of a fully automated framework for efficiently selecting
a neural network model for a given task: classification or regression. The algo-
rithm, named Automatic Model Selection, is a modified is a modified micro-genetic
algorithm that automatically and efficiently finds the most suitable neural network
model for a given dataset. The main contributions of this method are: a simple list
based encoding for neural networks as genotypes in an evolutionary algorithm, new
crossover and mutation operators, the introduction of a fitness function that consid-
ers both, the accuracy of the model and its complexity and a method to measure the
similarity between two neural networks. AMS is evaluated on two different datasets.
By comparing some models obtained with AMS to state-of-the-art models for each
dataset we show that AMS can automatically find efficient neural network mod-
els. Furthermore, AMS is computationally efficient and can make use of distributed
computing paradigms to further boost its performance.

4.1 Motivation

Machine learning studies algorithms that improve themselves through experi-
ence. Given the large amount of data currently available in many fields such as engi-
neering, bio-medical, finance, etc. and the increasingly more computing power avail-
able, machine learning is now practiced by people with very diverse backgrounds.
More users of machine learning tools are non-experts who require off-the-shelf so-
lutions. Automated Machine Learning (AutoML) is the field of machine learning
devoted to developing algorithms and solutions to enable people with limited ma-
chine learning background knowledge to use machine learning models easily. Tools
like WEKA [26], PyBrain [14] and MLLib [77] follow this paradigm. Nevertheless,
the user still needs to make some choices, which may not be obvious or intuitive in
selecting a learning algorithm, hyper-parameters, features, etc. and thus leads to
the selection of non-optimal models.
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Recently, deep learning models such as CNN, RNN and Deep NN have gained
a lot of attention due to their improved efficiency on complex learning problems
and their flexibility and generality for solving a large number of problems including
regression, classification, natural language processing, recommendation systems, etc.
Furthermore, there are many software libraries which make their implementation
easier. TensorFlow [78], Keras [79], Caffe [80] and CNTK [81] are some examples of
such libraries. Despite the availability of such libraries and tools, the tasks of picking
the right neural network model and its hyper-parameters are usually complex and
iterative in nature, specially among non-computer scientists.

Usually, the process of selecting a suitable machine learning model for a
particular problem is done in an iterative manner. First, an input dataset must
be transformed from a domain specific format to features which are predictive of
the field of interest. Once the features have been engineered, users must pick a
learning setting which is appropriate to their problem, e.g. regression, classification
or recommendation. Next, users must pick an appropriate model, such as support
vector machines (SVM), logistic regression or any flavor of neural networks (NNs).
Each model family has a number of hyper-parameters, such as regularization degree,
learning rate, number of neurons, etc. and each of these must be tuned to achieve
optimal results. Finally, users must pick a software package that can train their
model, configure one or more machines to execute the training and evaluate the
model’s quality. It can be challenging to make the right choice when facing so
many degrees of freedom, leading many users to select a model based on intuition
or randomness and/or leave hyper-parameters set to default. This approach will
usually yield sub-optimal results.

This suggests a natural challenge for machine learning: given a dataset, to
automatically and simultaneously choose a learning algorithm and set its hyper-
parameters to optimize performance. As mentioned in [26], the combined space of
learning algorithm and hyper-paremeters is very challenging to search: the response
function is noisy and the space is high dimensional involving both, categorical and
continuous choices and containing hierarchical dependencies, e.g. hyper-parameters
of the algorithm are only meaningful if that algorithm is chosen. Thus, identifying
a high quality model is typically costly in the sense that it entails a lot of computa-
tional effort and time-consuming.

To address this challenge, we propose Automatic Model Selection (AMS), a
flexible and scalable method to automate the process of selecting artificial neural
network models. The key contributions of the method are: 1) a simple, list based
encoding of neural networks as genotypes for evolutionary computation algorithms,
2) new crossover and mutation operators to generate valid neural networks mod-
els from an evolutionary algorithm, 3) the introduction of a fitness function that
considers both, the accuracy of the model and its complexity and 4) a method for
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measuring the similarity between two neural networks. All these components to-
gether form a new method based on an evolutionary algorithm, which we call AMS,
and that can be used to find an optimal neural network architecture for a given
dataset.

4.2 Problem Statement

In this section we mathematically define the general neural network architec-
ture search problem. Consider a dataset D made up of training points di = (xi,yi) ∈
X ×Y where X is the set of data points and Y is the set of labels. Furthermore,
we split the dataset into training set Dt, cross validation set Dv, and test set Dp.
Given a neural network architecture search space H, the performance of a neural
network architecture φ ∈ H trained on Dt and validated with Dv is defined as:

p = Perf(φ(Dt),Dv), (4.1)

where Perf(.) is a measurement of the generalization error attained by the learning
algorithm φ(.) on the validation set Dv. Common error indicators are accuracy
error, precision error and mean squared error. Their definitions along with some
other common error indicators are presented in Table 4.1.

Indicator name Application Definition

Mean Squared Error Regression EMSE = 1
2

n∑
i=1

(ŷ − y)2

Accuracy Classification EA = tp+tn
tp+tn+fp+fn

Precision Classification EP = tp
tp+fp

Recall Classification ER = tp
tp+fn

F1 Classification F1 = 2 EPER

EP+ER

Table 4.1: Common performance metrics for neural networks. ŷ represents the
predicted value of the model for a sample x. tp stands for true positives
count. tn stands for true negatives count. fp stands for false positives
count. fn stands for false negatives count.

Finding a neural network φ∗ ∈ H that achieves a good performance has been
explored in [82, 83] among others. While this task alone is challenging, usually the
efficiency of φ∗ is not measured. Indeed, it turns out that there can be several
candidate models that can attain similar performances with improved efficiency. By
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efficiency we mean, in practical terms, how fast is to train φ∗ as compared to other
possible solutions.

We aim at achieving neural network models φ∗ that not only exhibit good
performance on D as measured by p, but also achieve such performance by using a
simple structure, which directly translates to improved efficiency of the model. To
measure the complexity of the architecture, we make use of the number of trainable
parameters w(φ) of the neural network. We will also refer to w(φ) as the “size” of
the neural network.

The problem of finding a neural network φ that achieves a good performance
on the dataset D while using a simple model can be mathematically stated as the
following multi-objective optimization problem:

min
φ∈H

(p(φ), w(φ)). (4.2)

In this chapter we develop an algorithm to efficiently solve Problem (4.2).

4.3 Related Work and Motivation

Automated machine learning has been of research interest since the uprising
of deep learning. This is no surprise since selecting an effective combination of
algorithm and hyper-parameter values is currently a challenging task requiring both
deep machine learning knowledge and repeated trials. This is not only beyond the
capability of layman users with limited computing expertise, but also often a non-
trivial task even for machine learning experts [84].

Until recently most state-of-the-art neural network architectures have been
manually designed by human experts. To make the process easier and faster, re-
searchers have looked into automated methods. These methods intend to find,
within a pre-specified resource limit in terms of time, number of algorithms and/or
combinations of hyper-parameter values, an effective algorithm and/or combination
of hyper-parameter values that maximize the accuracy measure on the given ma-
chine learning problem and data set. Using an automated machine learning, the
machine learning practitioner can skip the manual and iterative process of selecting
an efficient combination of hyper-parameter values and neural network model, which
is labor intensive and requires a high skill set in machine learning.

In the context of deep learning, neural architecture search (NAS), which
aims at searching for the best neural network architecture for the given learning
task and dataset, has become an effective computational tool in AutoML. Unfor-
tunately, the existing NAS algorithms are usually computationally expensive where
its time complexity can easily scale to O(nt) where n is the number of neural archi-
tectures evaluated, and t is the average time consumption for each of the n neural
networks. Many NAS approaches such as deep reinforcement learning [85–87] and
evolutionary algorithms [30, 88–90] require a large n to reach good performance.

55



Other approaches, including Bayesian Optimization [91, 92] and Sequential Model
Based Optimization (SMBO) [93, 94], are often as expensive as NAS while being
more limited to the kind of models they can explore.

In the recent years, a number of tools have been made available for users to
automate the model selection and/or hyper-parameter tuning. In the following, we
present a brief description of some of them.

4.3.1 Auto-Keras

Auto-Keras [82] is a method to automatically generate model architectures.
It defines an edit-distance kernel to measure the difficulty of transferring the current
model to a new one. This kernel makes it possible to search the model structures
in a tree-structured space constructed from the network morphism. Bayesian opti-
mization is used along with the kernel to optimize the tree-structure of the model.
The consistency of the input and output shapes is guaranteed throughout the pro-
cess. The use of Auto-Keras does not require an extensive knowledge of machine
learning, making it very accessible for starters. However, training the model is
very time-consuming since a new model must be trained from scratch every time.
Furthermore, acquiring the parameters in the middle steps is also computational
expensive. An example on MNIST dataset may take several hours to converge
(depending on the used equipment).

4.3.2 AutoML Vision

AutoML [95] uses evolutionary algorithms to perform image classification.
Without any restriction on the search space such as network depth, skip connections,
etc., the algorithm starts from a simple model without convolutions and iteratively
evolves the model into more a complex one. A massively-parallel and lock-free
infrastructure is designed, and many computers may be used to search the large
solution space. Communication between different nodes in the network is handled
by using a shared file system that keeps track of the population. Among the main
disadvantages of AutoML are that it requires extremely high computational power.
Furthermore, since the candidate models start from a very simple structure poor
performing models are likely to be obtained as a solution.

4.3.3 Auto-sklearn

Auto-sklearn [94] is a system designed to help machine learning users by
automatically searching through the joint space of sklearn’s learning algorithms and
their respective hyper-parameter settings to maximize performance using a state-of-
the-art Bayesian optimization method. Auto-sklearn addresses the model selection
problem by treating all of sklearn algorithms as a single, highly parametric machine
learning framework, and using Bayesian optimization to find an optimal instance
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for a given dataset. Auto-sklearn also natively supports parallel runs on a single
machine to find good configurations faster and save the n best configurations of each
run instead of just the single best. Nevertheless, and to the best of our knowledge,
Auto-sklearn does not provide support for neural networks and it does not take into
consideration the complexity of the proposed models for assessing their optimality.

4.4 Proposed Evolutionary Algorithm for Model Selection

While there are a number of methods for automatic model selection and
hyper-parameter tuning, many of them do not provide support for some of the most
sophisticated deep learning architectures. For instance, Auto-sklearn does not pro-
vide good support for deep learning methods, support for distributed computing is
also very limited. On the other hand Auto-Keras and AutoML Vision do provide
support for deep learning methods, but they do not consider the model’s com-
plexity when assessing its overall performance. Indeed, Auto-Keras and AutoML
require clusters of or hours of computing time to yield models with good accuracy.
Furthermore, Auto-Keras and AutoML do not provide good support for regression
problems.

We propose an efficient method that, for a given dataset D, will automatically
find a neural network model that attains high performance while being computa-
tionally efficient. The proposed model is capable of performing inference tasks for
both classification and regression problems. Furthermore, the proposed system is
scalable and easy to use in distributed computing environments, allowing it to be
usable for large datasets and complex models. For this task, we make use of Ray [96],
a distributed framework designed with large scale distributed machine learning in
mind.

Our method provides support for three of the major neural networks architec-
tures, namely multi-layer percepetrons (MLPs) [17], convolutional neural networks
(CNNs) [97] and recurrent neural networks (RNNs) [50]. Our method can construct
models of any of these architectures by stacking together a valid combination of any
of the four following layers: fully connected layers, recurrent layers, convolutional
layers and pooling layers. Our method does not only build neural networks for the
aforementioned architectures, but also tunes some of the hyper-parameters such as
the number of neurons at each layer, the activation function to use or the dropout
rates for each layer. Support for skip connections is left for future work.

We say that a neural network architecture is valid if it complies with the
following set of rules, which we derived empirically from our practice in the field:

• A fully connected layer can only be followed by another fully connected layer.

• A convolutional layer can be followed by a pooling layer, a recurrent layer, a
fully connected layer or another convolutional layer.
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• A recurrent layer can be followed by another recurrent layer or a fully con-
nected layer.

• The first layer is user defined according to the type of architecture chosen
(MLP, CNN or RNN).

• The last layer is always a fully connected layer with either a softmax acti-
vation function for classification or a linear activation function for regression
problems.

4.4.1 Automatic Model Selection (AMS)

The key idea of our method is to develop an evolutionary algorithm (EA)
which is capable of evolving different neural network architectures to find a suitable
model for a given dataset D, while being computationally efficient. EAs are chosen
for this work since, contrary to the more classical optimization techniques, they do
not make any assumptions about the problem, treating it as a black box that merely
provides a measure of quality for given a candidate solution. Furthermore, they do
not require the gradient, which is impossible to obtain for a neural network φ when
searching for optimal solutions.

In the following, we describe the very basics of evolutionary algorithms as an
introduction for the reader. Further reading can be found in [17,98,99].

Every evolutionary algorithm consists of a population of individuals which
are potential solutions to the optimization problem such as the one described by
the fitness function in Equation (4.5). Each individual in the population is a neural
network model. Every individual has a specific genotype or encoding, in the evolu-
tionary algorithm domain, that represents a solution to the given problem while the
actual representation of the individual, in the specific application domain, is often
referred as the phenotype. For the current application, the phenotype represents
the neural network architecture while the genotype is represented by a list of lists.
When assessing the quality of an individual, EA makes use of a so-called fitness
function, which indicates how every individual in the population performs with re-
spect to a certain performance indicator, establishing thus an absolute order among
the various solutions and a way of fairly comparing them against each other.

New generations of solutions are created iteratively by using crossover and
mutation operators. The crossover operator is an evolutionary operator used to com-
bine the information of two parents to generate a new offspring while the mutation
operator is used to maintain genetic diversity from one generation of the population
to the next.

The basic template for an evolutionary algorithm is described in Algorithm
3.
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Algorithm 3: Basic evolutionary algorithm.

Data: None
Input : An objective function f(x)
Output: A vector x∗ such that f(x∗) is a local minimum.

Let t = 0 be the generation counter. Create and initialize an
nx-dimensional population, C(0), consisting of n individuals.
while Stopping condition not true. do

Evaluate the fitness, f(xi(t)), of each individual, xi(t) in the
population.
Perform reproduction to create offspring.
Select the new population, C(t+ 1).
Advance to the new generation, i.e. t = t+ 1.

end

One of the major drawbacks of EAs is the time penalty involved in evaluating
the fitness function. If the computation of the fitness function is computationally
expensive, as in this case, then using any variant of EA may be very computationally
expensive and in some instances unfeasible. Micro-genetic algorithms [100] are one
variant of GAs whose main advantage is the use of small populations, for example,
less than 10 individuals per population, in contrast to some other EAs like the genetic
algorithms (GAs), evolutionary strategies (ES) and genetic programming (GP) [17].
Since computational efficiency is one of our main concerns for this work, we will
follow the general principles of micro-GA in order to reduce the computational
burden of the proposed method.

The pseudocode for our proposed method is described in Algorithm 4. Let
ρc and ρm be the crossover and mutation probabilities, respectively. Let γg be the
maximum number of allowed generations and γr the maximum number of repetitions
for the micro-GA. Finally, let B be an archive for storing the best architectures found
at every run of the micro-GA. Our algorithm Automatic Model Selection (AMS) is
stated in Algorithm 4. In the following sections, we describe in detail each one of
the major components of the AMS algorithm.
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Algorithm 4: Automatic model selection algorithm.

Data: Training/cross-validation dataset Dt, Dv.
Input : Algorithm’s hyper-parameters. See Table 4.8 for an example.
Output: The most suitable neural network φ∗ according to the user

preferences.

Let te = 0 be the experiments counter Create and initialize an
nx-dimensional population, C(0), consisting of n individuals.
while te < γr do

Let tg = 0 be the generation counter.
Create and initialize an initial population C(0), consisting of n
individuals, where n <= 10. See section 4.4.4.
while tg < γg or nominal convergence not reached do

Check for nominal convergence in C(t). See section 4.4.8.
Evaluate the cost, c(φ) of each candidate model f . See section
4.4.2.
Identify best and worst models in C(t).
Replace worst model in C(t) with best from C(t− 1).
Perform selection. See section 4.4.5.
Perform crossover of models in C(t) with ρc = 1. Let O(t) be the
offspring population. See section 4.4.6.
For each model in O(t) perform mutation with ρm probability.
See section 4.4.7.
Make C(t+ 1) = O(t).
tg = tg + 1.

end
Append best solution from previous run to B.
te = te + 1.

end
Normalize the cost for each model in the archive B. See section 4.4.2.
Final Solution is best existing solution in B.

4.4.2 The Fitness Function

To establish a ranking among the different tested architectures, a suitable cost
or fitness function is required. While Equation (4.2) can be used as the cost function,
this would give rise to a multi-objective optimization problem (MOP). We leave this
approach for a future revision of this work and instead make use of scalarization
to transform the MOP into a single-objective optimization problem (SOP). The
scalarization approach taken here is the well known weighted sum method [101].
Equation (4.2) is restated as

min
φ∈H

(1− α)p(φ) + αw(φ). (4.3)
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The cost function associated with Equation (4.3) is

c(φ) = (1− α)p(φ) + αw(φ), (4.4)

where α ∈ [0, 1] is a scaling factor biasing the total cost towards the size of the net-
work or its performance. Equation (4.3) measures the cost in terms of performance
and size of a given neural network φ.

Note that making an accurate assessment of the inference performance, p(φ),
of a neural network involves training φ for a large number of epochs. Since the
training process usually involves thousands of computations, training every candi-
date solution and then assessing its performance becomes unfeasible. Instead, we
relax the training process for each of the candidate models by using a partial training
strategy which, in short, is training the model for a very small number of epochs,
for example, only a few tens of them. This approach was been successfully tested
in Chapter 3. Even though the models are just partially trained, a clear trend in
terms of whether a model is promising or not can be clearly observed.

Computing the fitness of individuals using the current definitions of p(φ) and
w(φ) present a challenge because the performance indicator p(φ) and the number of
trainable weights w(φ) are on entirely different scales. While w(φ) can range from
a few hundreds up to several millions, the range of p(φ) depends on the type of
scoring function used. Table 4.2 presents some common ranges for p(φ).

Perf(.) Range Common range
Accuracy [0, 1] [0, 1]
Precision [0, 1] [0, 1]

Recall [0, 1] [0, 1]
MSE [0,+∞) [0, 104]

RMSE [0,+∞) [0, 102]

Table 4.2: Common ranges for some neural network performance indicators.

For the present application, it is necessary that the range of p(φ) is consistent
independent of the type of score Perf(.). Thus, we normalize the values of p(φ)
to be within the range [0, 1]. The normalization is done as follows. Assume that
a population C has n individuals. Let p = [p0(f), p1(f), . . . , pn(f)] be the vector
whose components are the scores pi for the ith element in the population. Then
p∗ = p/norm2(p) is the vector with the normalized values of p, hence p∗i ∈ [0, 1]
for any score Perf(.).

Now we focus on w(φ). For the sake of simplicity, let us just consider the
case of the MLP class of neural networks since this is usually the model where w(φ)
is larger. Let A be the maximum number of possible layers for any model. For
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this work, we limit A = 64 since this is a reasonable number for most mainstream
deep learning models. Table 4.3 shows that the maximum number of neurons at any
layer is set to be 1024. Thus, the maximum number of w(φ) for any given model
is W = 226. Furthermore, we want neural networks that are similar to have the
same score w(φ). Therefore, we replace the last 3 digits of the w(φ) with 0′s, and
let w+(φ) be this new size score. Finally, considering that p∗(φ) ∈ [0, 1], we make
w∗(φ) = log(w+(φ)), therefore W∗ ≈ log(2) ∗ 26. Hence, w∗(φ) ∈ [0, 7.8] which is in
the same order of magnitude as p∗(φ).

Thus, we rewrite Equation (4.4) as

c(φ) = 10(1− α)p∗(φ) + αw∗(φ), (4.5)

where we multiply p∗(φ) by a factor of 10 to make the scaling similar to that of
w∗(φ). As can be observed, Equation (4.5) is now properly scaled. Therefore, it is
a suitable choice as the fitness function for assessing the performance of a neural
network model while also considering its size.

4.4.3 Neural Networks as Lists

In order to perform the optimization of neural network architectures, a suit-
able encoding for the neural networks is needed. A good encoding has to be flexible
enough to represent neural network architectures of variable length while also mak-
ing it easy to verify the validity of the candidate neural network architecture.

Array based encodings are quite popular for numerical problems. They often
use a fixed-length genotype which is not suitable for representing neural network
architectures. While it is possible to use an array based representation for encoding
a neural network, this would require the use of very large arrays. Furthermore, ver-
ifying the validity of the encoded neural network is hard to accomplish. Tree-based
representation as those used in genetic programming [17] enables more flexibility
when it comes to the length of the genotype. Imposing constraints for building a
valid neural network requires traversing the entire tree or making use of complex
data structures every time a new layer is to be stacked in the model.

In this work, we introduce a list-based encoding. In this new list-based
encoding, neural network models are represented as a list of arrays, where the length
of the list can be arbitrary. Each array within the list represents the details of a
neural network layer as described in Table 4.3. A visual depiction of the array is
presented in Figure 4.1.

Dropout
Rate

Layer
Type

Number of
Neurons

Activation
Function

Kernel 
Size

Kernel 
Stride

CNN
Pooling size

Number of
Filters

Figure 4.1: Visual representation of a neural network layer as an array.
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Cell name Data Type Represents Applicable to Values
Layer type Integer The type of layer. See table 4.4 MLP/RNN/CNN x ∈ {1, . . . , 5}

Neuron number Integer Number of neurons/units in the layer MLP/RNN 8 ∗ x where x ∈ {1, . . . , 128}
Activation function Integer Type of activation function. See table 4.5 MLP/RNN/CNN x ∈ {1, . . . , 4}
Number of filters Integer Number of convolution filters CNN 8 ∗ x where x ∈ {1, . . . 64}

Kernel size Integer Size of the convolution kernel CNN 3x where x ∈ {1, . . . , 6}
Kernel stride Integer Stride used for convolutions CNN x ∈ {1, . . . , 6}
Pooling size Integer Size for the pooling operator CNN 2x where x ∈ {1, . . . 6}
Dropout rate Float Dropout rate applied to the layer MLP/RNN/CNN x ∈ [0, 1]

Table 4.3: Details of the representation of a neural network layer as an array.

Layer type Layer name Can be followed by
1 Fully connected [1, 5]
2 Convolutional [1, 2, 3, 5]
3 Pooling [1, 2]
4 Recurrent [1, 4]
5 Dropout [1, 2, 4]

Table 4.4: Neural network stacking/building rules.

Index Activation function
0 Sigmoid
1 Hyperbolic tangent
2 ReLU
3 Softmax
4 Linear

Table 4.5: Available activation functions.

The proposed representation is capable of handling different types of neu-
ral network architectures. In principle, the representation can handle multi-layer
perceptrons (MLPs), convolutional neural networks (CNNs) and recurrent neural
networks (RNNs). For any given neural network layer, the array will only contain
values for the entries that are applicable to the layer, values for other types of layers
are set to 0.

Let us illustrate the proposed encoding with an example. The following
example considers an MLP. Layer type, Number of neurons, Activation function
and Dropout rate entries are applicable values. Consider Se as a model made up of
several stacked layers as shown in Figure 4.1. The neural network representation of
the presented model is shown in Table 4.6.
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Se = [[1, 264, 2, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0.65] ,

[1, 464, 2, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0.35] ,

[1, 872, 2, 0, 0, 0, 0, 0] , [1, 10, 3, 0, 0, 0, 0, 0]]

Layer Type Neurons Activation Function Dropout Ratio
Fully Connected 264 ReLU n/a

Dropout n/a n/a 0.65
Fully Connected 464 ReLU n/a

Dropout n/a n/a 0.35
Fully Connected 872 ReLU n/a
Fully Connected 10 Softmax n/a

Table 4.6: Neural network model.

Encoding the neural network as a list of arrays has two advantages. First,
the number of layers that can be stacked is, in principle, arbitrary. Second, the
validity of an architecture can be verified every time a new layer is to be stacked
to the model. This is due to the fact that in order to stack a layer to the model,
one only needs to check the compatibility between the previous and next layers.
The ability of stacking layers dynamically and verifying its correctness when a new
layer is stacked allows for a powerful representation. We can build several kinds of
neural networks such as fully connected, convolutional and recursive. The rules for
stacking layers together are described in Table 4.4.

4.4.4 Generating Valid Models

With the rules for stacking layers together in place, generating valid models
is straightforward. An initial layer type has to be specified by the user, which can be
fully connected, convolutional or recurrent. Defining the initial layer type effectively
defines the type of architectures that can be generated by the algorithm. That is,
if the user chooses fully connected as the initial layer, all the generated models will
be fully connected. If the user chooses convolutional as initial layer, the algorithm
will generate convolutional models only and so on.

Just as the initial layer type has to be user-defined, the final or output layer
is also user-defined. In fact, all the generated models share the same output layer.
The output layer is always a fully connected layer. Furthermore, it is generated
based on the type of problem to solve, i.e. classification or regression. In the case
of classification, the number of neurons is defined by the number of classes in the

64



problem and the softmax function is used as activation function. For regression
problems, the number of neurons is one and the activation function used is the
linear function.

Having defined the architecture type and the output layer, generating an
initial model is an iterative process of stacking new layers that comply with the
rules in Table 4.4. A user-defined parameter γl is used to stop inserting new layers.
Every time a new layer is stacked in the model, a random number ψ ∈ [0, 1] is
generated using the following probability distribution

ρl = 1−
√

1− U, (4.6)

where U is a uniformly distributed random number. If ρl < γl and if the current
layer is compatible with the last layer according to Table 4.4, then no more layers
are inserted. Equation (4.6) is used to let the user choose the probability with which
more layers are stacked to a neural network model. Thus, if the user wants that a
new layer is inserted with 80% probability, the user must choose γl = 0.8.

With regards to layers that have an activation function, even though in prin-
ciple any valid activation functions are allowed, for this application we choose to
keep the same activations for similar layers across the model since this is usually
the common practice.

4.4.5 Selection

In order to generate n offsprings, 2n parents are required. The parents are
chosen using a selection mechanism which takes the population C(t) at the current
generation and returns a list of parents for crossover. For our application, the
selection mechanism used is based on the binary tournament selection [17, 100]. A
description of the mechanism is given next.

• Select m parents at random where m < n.

• Compare the selected elements in a pair-wise manner and return the most fit
individuals.

• Repeat the procedure until 2n parents are selected.

It is important to note in the above procedure that the larger m is, the higher
the probability that the best individual in the population is chosen as one of the
parents, this is not a desirable behavior, thus we warn the users to keep m small.
Also, since our algorithm uses elitism best individual of a current generation remains
unchanged in the next generation.
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4.4.6 Crossover Operator

Since the encoding chosen for this task is rather peculiar, the existing opera-
tors are not suitable for it. We design a new crossover operator. In this section, we
describe in detail the proposed crossover operator. The operator is based on the two
point crossover operator for genetic algorithms [102] in the sense that two points
are selected for each parent. The operator is more restrictive as to which pairs of
points may be selected in order to ensure the generation of valid architectures.

The key concept behind our crossover operator is that of “compatibility be-
tween pairs of points”. Consider two models S1 and S2 that will serve as parents for
one offspring. Assume that the offspring will be generated by replacing some layers
in S1 from some layers in S2. S1 is thus the base parent. If we select any two pairs of
points (r1, r2) from S1 and (r3, r4) from S4, it may happen that such pairs of points
cannot be interchangeable because layer r3 cannot be placed instead of layer r1 or
layer r4 cannot be placed instead of layer r2. Therefore, the selection mechanism
must ensure that the interchange points, (r1, r2), (r3, r4), are compatible. That is
to say, layer r3 is compatible with the layer preceding r1 and the layer after r2 is
compatible with layer r4. Compatibility is defined in terms of the rules described in
Table 4.4. A selection mechanism that guarantees the compatibility between pairs
of points is described in Algorithm 5. This method assume that the offspring will
be generated by replacing some layers in S1 from some layers in S2.

Algorithm 5: Crossover method.

Data: None
Input : Two neural network string representations S1 and S2.
Output: A neural network string representation S3.

Let S1 and S2 be the arrays containing the stacked layers of a neural
network model in parents 1 and 2, respectively. Take two random points
(r1, r2) from S1 where r1 <= r2.
if r1 = r2 then

r2 = len(S1 − 1)
end
else

pass
end
Find all the pairs of points (r3, r4)i in S2 that are compatible with
(r1, r2) where r3 < r4 and (r4 − r3)− (r2 − r1) < A.
Randomly pick any of pairs (r3, r4)i.
Replace the layers in S1 between r1, r2 inclusive with the layers in S2

between r3, r4 inclusive. Label the new model as S3.
Rectify the activation functions of S3 to match the activation functions
of S1.
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It is possible that the mechanism described in Algorithm 5 requires more than
one attempt to find valid interchange points (r1, r2) and (r3, r4) for models S1 and
S2. Based on our experience with the method and the obtained results, Algorithm
5 usually requires only one attempt to successfully generate a valid offspring. To
prevent the crossover mechanism from getting trapped in an infinite loop, we limit
the number of trials to γc where γc = 3 is the default and can be adjusted by the
user. Let us illustrate Algorithm 5 with an example. Consider the following models

S1 = [[1, 264, 2, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0.65] ,

[1, 464, 2, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0.35] ,

[1, 872, 2, 0, 0, 0, 0, 0] , [1, 10, 3, 0, 0, 0, 0, 0]]

S2 = [[1, 56, 0, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0.25] ,

[1, 360, 0, 0, 0, 0, 0, 0] , [1, 480, 0, 0, 0, 0, 0, 0]

[1, 88, 0, 0, 0, 0, 0, 0] , [5, 0, 0, 0, 0, 0, 0, 0.2] ,

[1, 10, 3, 0, 0, 0, 0, 0]]

Let us take r1 = 1 and r2 = 3, since these points are going to be removed
from the model we need to find the compatible layers with S1[r1 − 1] and S1[r2]
according to the rules described in Table 4.4. Note that if r1 = 0, i.e. the initial
layer, only a layer whose layer type is equal to the layer type of S1[0] is compatible.
Thus, for this example, the compatible pairs of points (r3, r4)i are

[(0, 0), (0, 2), (0, 4), (0, 5), (1, 2), (1, 4), (1, 5),

(2, 2), (2, 4), (2, 5), (4, 4), (4, 5), (5, 5)]

Assume that we pick at random the pair (2, 4). The offspring, which we will call S3,
looks like

S3 = [[1, 264, 2, 0, 0, 0, 0, 0] , [1, 360, 2, 0, 0, 0, 0, 0] ,

[1, 480, 2, 0, 0, 0, 0, 0] , [1, 88, 2, 0, 0, 0, 0, 0] ,

[1, 872, 2, 0, 0, 0, 0, 0] , [1, 10, 3, 0, 0, 0, 0, 0]]

which is a valid model. The reader is encouraged to check the actual neural network
representations for each of the models in Appendix B. Notice that all the activation
functions of the same layer types are changed to match the activation functions
of the first parent S1. We call this process “activation function rectification”. It
basically implies changing all the activation functions of the layers that share the
same layer type between S1 and S3 to the activation functions used in S1.
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Finally, one important feature of this crossover operator is that it has the
ability to generate neural network models of different sizes, i.e. it can shrink or
increase the size of the base parent. This behavior mimics that of machine learning
practitioners, which will often start with a base model and iteratively shrink or
increase the size of the base model in order to find the one that has the best inference
performance.

4.4.7 Mutation Operator

The mutation operator is used to induce small changes to some of the models
generated through the crossover mechanism. In the context of evolutionary compu-
tation, these subtle changes tend to improve the exploration properties of the current
population, i.e. to keep genetic diversity, by injecting random noise to the current
solutions. Although mutation is not needed in the micro-GA according to [100], we
believe some sort of mutation is beneficial for our application to get more diverse
models which could potentially lead to better inference abilities. Nevertheless, our
mutation approach will be less aggressive in order to mitigate its effect. In the
following, we discuss the core ideas of our mutation mechanism.

As stated above, our mutation approach is less aggressive than common mu-
tation operators [17]. Our design follows two main reasons: First, the fact that
usually micro genetic algorithms don’t make use of the mutation operator since the
crossover operator has already induced significant genetic diversity in the popula-
tion, thus we want to minimize its impact. The second reason is related to the way
neural networks are usually built by human experts. Usually, experts try a number
of models and then make subtle changes to each of them in order to improve their
inference ability. Such changes usually involve adjusting the parameters in a layer,
adding or removing a layer, adding regularization or changing the activation func-
tions. Based on these reasons, our mutation process randomly chooses one layer of
the model, using a probability ρm, and then proceeds to make one of the following
changes to it:

• Change a parameter of the layer chosen for a value complying the values stated
in Table 4.3.

• Change the activation function of the layer. This would involve rectifying the
entire model as described in Section 4.4.6.

• Add a dropout layer if the chosen layer is compatible.

These operations altogether provide a rich set of possibilities for performing
efficient mutation while still generating valid models after mutation is performed.
Furthermore, the original model is barely changed.
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4.4.8 Nominal Convergence

Nominal convergence is one of the criteria used for early stopping of the
proposed evolutionary algorithm. Some literature defines the convergence in terms
of the fitness of the individuals [17], while in [100] the convergence is defined in
terms of the genotype or phenotype of the individuals. Although convergence based
on the actual fitness of the individuals may be easier to assess given that the fitness
is already calculated, we believe that an assessment of convergence based on the
actual genotype of the individuals suits the current needs better.

Since neural networks are stochastic in nature, we expect some variations in
the fitness of the individuals at every different run. Furthermore since we are running
the training process for only few epochs, the final performance of the networks can
be quite different and would not be a reliable indicator of convergence. Instead,
to assess the convergence we, look at the genotype of the actual neural network
architecture and compute the layer-wise distance between the different individuals
in population C.

Let S1 and S2 be the genotypes representing any two different models such
that where len(S2) >= len(S1). Let S1[j] be the vector representation of the jth

layer of model S1. The method for computing the distance d(S1, S2) between any
two models S1 and S2 is defined in Algorithm 6.

Algorithm 6: Layer-wise distance d(S1, S2) between model genotypes.

Data: None
Input : Two neural network string representations S1 and S2.
Output: Distance between models S1 and S2

Let d ∈ R be the distance between S1 and S2. Make d = 0.
for Each layer i in S1 except last layer do

d = d+ norm2(S2[i]− S1[i]).
end
for Each remaining layer i in S2 except last layer do

d = d+ norm2(S2[i]).
end
Return d.

This method is computationally inexpensive since the size of the population
is small. Furthermore, it helps accurately establish the similarity between two neural
network models. Given two neural network models S1 and S2, if d(S1, S2) = 0, then
S1 = S2. We say that AMS (Algorithm 4) has reached a nominal convergence if at
least mc pairs of models have d(S1, S2) ≤ dt, where both mc and dt are user defined
parameters.
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4.4.9 Implementation

AMS is implemented in about 700 lines of code in Python. The code can be
found in https://github.com/dlaredo/automatic_model_selection [103]. We
took an object oriented programming approach for its implementation. The models
Si generated by the algorithm are fetched to Keras [79] and then evaluated. The
models can be fetched and evaluated in any other framework such as TensorFlow or
Pytorch and even other programming languages including C++.

In order to boost performance of AMS, we make use of Ray [96] which is a
distributed computing framework tailored for AI applications. In order to distribute
workloads in Ray, developers only have to define Remote Functions by making use
of Python annotations. Ray will then distribute these Remote Functions across
the different nodes in the cluster. There are three different types of nodes in Ray:
Drivers, Workers and Actors. A Driver is the process executing the user program,
a Worker is a stateless process that executes remote functions invoked by a driver
or another worker, and finally, an Actor is a stateful process that executes, when
invoked, the methods it exposes.

For the implementation, we code the individual fetching to Keras and its
fitness evaluation as Ray Remote Functions, i.e. Workers, while the rest of the al-
gorithm is implemented within the Driver. Partial training of each neural network
within the current population can therefore be performed in a distributed way, lead-
ing to a highly increased performance of the algorithm. Furthermore, since the only
messages being sent over the cluster are arrays of the neural network representa-
tion Si and the performance p of the neural network model, there is little chance
that the interchange of data causes a bottleneck or increases latency in the system.
Nevertheless, each node in the cluster has to maintain a local copy of the dataset.

4.5 Evaluation

We evaluate AMS with two different datasets, each of which represents a
different type of inference problem. We also compare our results with the state-of-
the-art neural network models for each problem. For the experiments in this section,
each model generated by AMS is trained using the following parameters.

Dataset Epochs Learning Rate Optimizer Loss Function Metrics
MNIST 5 0.001 Adam Categorical Categorical

cross-entropy accuracy
CMAPSS 5 0.01 Adam MSE MSE

Table 4.7: Training parameters for each of the used datasets.

For the CMAPSS dataset, we use a larger learning rate since we intend to
evaluate the model using very few epochs for this complex problem. In order to get
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a clear idea of which individuals within the population may be promising, we make
the learning process more aggressive during the first iterations of the algorithm.

All of the experiments were run using the Keras/Tensorflow GPU framework.
A desktop PC with a Core i7-8700k processor and an NVIDIA GeForce 1080Ti GPU.
Ray was not used for the results presented here.

4.5.1 MNIST Dataset - A Classification Problem

We first test our algorithm on the MNIST dataset [48]. The MNIST dataset
of handwritten digits is one of the most commonly used datasets for evaluating the
performance of neural networks. It has a training set of 60,000 examples and a
test set of 10,000 examples. The digits have been size-normalized and centered in
a fixed-size image, while the size of each image is of 28x28 pixels. As a part of the
data pre-processing, we normalize all the pixels in each image to be in the range of
[0, 1] and unroll the 28x28 image into a vector with 784 components.

We use MNIST dataset as a baseline for measuring the performance of the
proposed approach. Furthermore, we use MNIST to analyze each one of the major
components of AMS. Given the popularity of MNIST, several neural networks with
varying degrees of accuracy have been proposed in the literature. Therefore, it is
easy to find good models to compare with.

We start by running AMS to find a suitable fully connected model for classi-
fication of the MNIST dataset. The details for the parameters used in this test are
described in Table 4.8. Each of the experiments carried out by AMS takes about 4
minutes in our test computer.

Parameter AMS Value
Problem Type 1

Architecture Type FullyConnected
Input Shape (784,M)

Output Shape (10,M)
Cross Validation Ratio γv = 0.2
Mutation Probability ρm = 0.4

More Layers Probability γl = 0.4
Network Size Scaling Factor α = 0.5

Population Size n = 10
Tournament Size nt = 4

Max Similar Models γc = 3
Training epochs γt = 5
Max generations γg = 10

Total Experiments γr = 5

Table 4.8: AMS Parameters for MNIST dataset.

We first take a look at the generated initial population. For the sake of
space, we will only discuss the sizes of the models. Furthermore, we make a small
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change in our notation for describing neural network models. For the remainder of
this section, we denote a layer of a neural network as (ne, af ) where ne denotes the
number of neurons for fully connected layer or the dropout rate for a dropout layer,
and af denotes the activation function of the fully connected layer. The initial five
generated individuals are presented below. Fitness, accuracy and raw size of the
models in the initial population are presented in Table 4.9.

S1 = [(64, 0), (0.4), (10, 3)]

S2 = [(760, 2), (0.5), (608, 2), (0.65), (10, 3)]

S3 = [(864, 0), (0.15), (536, 0), (928, 0), (10, 3)]

S4 = [(40, 0), (0.45), (912, 0), (10, 3)]

S5 = [(968, 1), (976, 1), (32, 1), (0.15), (808, 1),

(10, 3), (832, 2)]

Model Score (Accuracy) Trainable Parameters Fitness
S1 91.7% 50890 2.7688
S2 98.7% 1065378 3.0812
S3 94.6% 1649506 3.3791
S4 92.1% 77922 2.8427
S5 96.6% 1771642 3.2867

Table 4.9: Scores for the initial population found by AMS for MNIST. α = 0.5

Observe that the sizes of the models in the initial population are diverse
with some models having as few as 1 hidden layer and some having more than 5
hidden layers. The number of layers of the models in the initial population is defined
by the parameter nr. We set this value to be small on purpose, since MNIST is a
dataset that is easy even for simple neural network models. Also note that the initial
population has models with different activation functions. The Sigmoid, Tanh and
ReLU are all used by some models. This is beneficial to the search process as some
activation functions may yield better results than others.

Finally, we note that some models in the initial population already yield de-
cent accuracy (about 90%). They also have a large number of trainable parameters.
It is decided that, in the case of MNIST dataset, the task for AMS is to find a model
with an accuracy higher than 95% and a small number of trainable parameters.

For a value of the network size scaling factor α = 0.5 in Equation (4.4),
after 5 experiments and 10 generations for each experiment, AMS converges to the
following five models. As a side note, for all of the experiments in this section we
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denote the best model found at experiment i ∈ {1, · · · , n} as S∗i and the best model
out of n experiments for a given α as S+

i . The fitness, accuracy and raw size of the
models are presented in Table 4.10.

S∗1 = [(56, 2), (10, 3)]

S∗2 = [(168, 2), (10, 3)]

S∗3 = [(40, 2), (0.2), (10, 3)]

S+
4 = [(48, 2), (48, 2), (10, 3)]

S∗5 = [(312, 2), (10, 3)]

Model Score (Accuracy) Trainable Parameters Fitness
S∗1 93.9% 44530 2.6287
S∗2 95.8% 133570 2.7736
S∗3 93.4% 31810 2.5826
S+
4 94.7% 40522 2.5693
S∗5 95.0% 248050 2.9431

Table 4.10: Scores for the best models found by AMS for MNIST. α = 0.5

Table 4.10 shows a clear preference for small models. Furthermore, there
seems to be a preference for ReLU activation functions. It can also be observed
that for α = 0.5, a good balance between size of the network and its performance
is obtained. In the following, we perform tests with α = 0.3 and α = 0.7 to further
analyze the behavior of the algorithm with respect to the preference of the network
size scaling factor. A smaller α value will prioritize a better performing network
while a larger value of α instructs AMS to focus on light-weight models.

The best models for each experiment with α = 0.3 are listed below. The
fitness and raw size of the models are described in Table 4.11.

S∗1 = [(32, 0), (10, 3)]

S∗2 = [(32, 1), (32, 1), (10, 3)]

S+
3 = [(64, 1), (64, 1), (64, 1), (64, 1), (10, 3)]

S∗4 = [(56, 1), (10, 3)]

S∗5 = [(40, 1), (10, 3)]
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Model Score (Accuracy) Trainable Parameters Fitness
S∗1 91.5% 25450 1.9126
S∗2 95.2% 26506 1.6677
S+
3 97.2% 63370 1.6358
S∗4 94.7% 44530 1.7640
S∗5 94.4% 31810 1.7412

Table 4.11: Scores for the best models found by AMS for MNIST, α = 0.3.

The models presented in Table 4.11 exhibit, in general, better performance
than those depicted in Table 4.10. This is due to the fact that α = 0.3 prioritizes
the model accuracy over model size. Surprisingly, the sizes of the models obtained
when α = 0.3 are on the same order of magnitude as those obtained when α = 0.5.
A discussion on this behavior is provided later in this section.

We repeat the experiment with α = 0.7. The obtained models are listed
below and their fitness, raw size and accuracy are shown in Table 4.12.

S∗1 = [(24, 2), (10, 3)]

S∗2 = [(104, 2), (0.2), (10, 3)]

S+
3 = [(16, 2), (24, 2), (10, 3)]

S∗4 = [(56, 2), (10, 3)]

S∗5 = [(208, 2), (10, 3)]

Model Score (Accuracy) Trainable Parameters Fitness
S∗1 92.2% 19090 3.2284
S∗2 95.2% 82690 3.5856
S+
3 92.1% 13218 3.1158
S∗4 94.5% 44530 3.4200
S∗5 95.8% 165370 3.7762

Table 4.12: Scores for the best models found by AMS for MNIST, α = 0.7.

The results in Table 4.12 show that when the number of trainable parameters
has a large impact on the overall fitness of the individuals, and the algorithm tends to
prefer smaller networks, which is specially useful for cases where the computational
power is limited, such as embedded systems. This brings a dilemma, namely that
neural networks that exhibit a lower performance as compared to larger neural
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networks may be preferred. Nevertheless, this trade-off can be controlled by the
user by varying the α parameter.

As a side note, we point out that the difference in the fitness exhibited among
the models of the three different experiments is due to the fact that the size of the
neural network is scaled as described in Section 4.4.2. Thus, there is no fair way
to compare the fitness of the models shown in Tables 4.10, 4.11 and 4.12 against
each other. We are clearly dealing with a multi-objective optimization problem with
conflicting objective functions.

Figure 4.2 shows the results obtained by all of the models for α ∈ {0.3, 0.5, 0.7},
which are trained for 100 epochs using 5-fold cross-validation to assess their accu-
racy. It is observed that the models cluster around a model size less than 50000 and
an error less than 0.15. As expected, the models obtained with α = 0.7 yield, in
general, the smallest sizes. Outliers are mostly due to the fact that for such experi-
ments the algorithm is unable to find a smaller model, which is likely due to a bad
initial population for such experiments. It could also be attributable to the scaling
done to the network size as seen in Equation (4.5). Since AMS uses a logarithmic
scale to measure the size of the networks, a few thousands of weights are unlikely
to make a big difference in the fitness of a model.
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Figure 4.2: Cluster formed by the found models for different α values for MNIST
cross-validation set.

Finally, we compare the best models for each value of α against each other.
A 10-fold cross-validation process, with a training of 50 epochs per fold, is carried
out for each one of the best models in order to obtain the mean measure of accuracy
for each model. The three models are feed the same training data and are validated
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using the same folds for the cross-validation data. We also measure the accuracy
of each models by using a test set that is never used during the training or hyper-
parameter tuning processes of the models. The accuracy averages and size of the
networks are summarized in Table 4.13.

Model 5-fold Avg. Score Test Accuracy Network size
S+
0.3 97.3% 97.4% 63370
S+
0.5 96.8% 97.0% 40522
S+
0.7 95.0% 95.4% 13218

Table 4.13: Accuracy obtained by each of the top 3 models for MNIST dataset.

As expected, the model obtained for α = 0.7 yields the smallest neural net-
work, about 4 times smaller than the model obtained when α = 0.3. Nevertheless,
its accuracy is the worst of the three models, though only by a small margin. On
the opposite, the resulting model for α = 0.3 gets the best performance in terms of
accuracy, but also attains the largest neural network model of the three. Finally,
when α = 0.5 AMS yields a model with a good balance between the model size and
performance. It is important to highlight that to obtain the models presented in
Table 4.13, at most 50 different models are tried. Nevertheless, since each model is
trained for only 5 epochs, the total time spent by the algorithm to find the models
in Table 4.13 is less than 4 minutes in our test computer.

Figure 4.3 plots the size of the model vs. the error. As can be observed, the
resulting models for different α values form a so called Pareto front [28], i.e., none
of the resulting models is better than the others in terms of the size and error. The
trade-off between the size and performance of the model can be clearly seen in the
figure. Although this is a nice property exhibited by the MNIST dataset, this need
not always hold since it is known that the performance of a neural networks does
not monotonically increase with the size of the model.
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Figure 4.3: Influence of α on the model’s size and error on MNIST dataset
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Table 4.14 shows three of the top hand-crafted models along with their ob-
tained accuracy for the MNIST dataset, it can be observed that the accuracy ob-
tained by AMS is close to that obtained by the fine tuned models.

Method Test accuracy Size
3 Layer NN, 300+100 hidden units [48] 96.95% 266610

2 Layer NN, 800 hidden units [104] 98.4% 636010
6-layer NN (elastic distortions) [22] 99.65% 11972510

Table 4.14: Top results for MNIST dataset.

By comparing the models obtained by AMS in Table 4.13 against the models
in Table 4.14 we can observe that, even though AMS models don’t attain the highest
accuracy, they exhibit good inference capabilities with a much lesser number of
trainable parameters, at least one order of magnitude smaller. This shows that
AMS models have a good balance between the inference power of the model and
its size. Furthermore, the score-size trade-off can be controlled by means of the
parameter α, where a value closer to α = 0 makes AMS prefer networks with higher
accuracy and a value closer to α = 1 makes AMS prefer networks with smaller sizes.

4.5.2 CMAPSS Dataset - A Regression Problem

Here we analyze the performance of AMS when dealing with regression prob-
lems. For testing regression, we use the C-MAPSS dataset [54]. The C-MAPSS
dataset contains the data produced using a model based simulation program de-
veloped by NASA. A description of the C-MAPSS dataset was given in Section
3.2.

For this test, we follow the data pre-processing described in Section 3.3.2.
Only 14 out of the total 21 sensors are used as the input data. Furthermore, we
also use a strided time-window with window size of 24, a stride of 1 and early RUL
of 129, to form the feature vectors for the MLP. Further details of the time-window
approach can be found in Chapter 3.

We run AMS to find a suitable MLP for regression using the C-MAPSS
dataset. The parameters used by the algorithm are described in Table 4.15.
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Parameter AMS Value
Problem Type 1

Architecture Type FullyConnected
Input Shape (336,M)

Output Shape (1,M)
Cross Validation Ratio γv = 0.2
Mutation Probability ρm = 0.4

More Layers Probability γl = 0.7
Network Size Scaling Factor α = 0.8

Population Size n = 10
Tournament Size nt = 4

Max Similar Models γc = 3
Training epochs γt = 20
Max generations γg = 10

Total Experiments γr = 5

Table 4.15: Parameters for the CMAPSS dataset.

We perform experiments for α ∈ {0.3, · · · , 0.7} with an increment ∆α = 0.1.
For the sake of space, we only discuss the results obtained when α ∈ {0.4, 0.5, 0.6},
which are the α values giving the best results. The best models out of the five
experiments obtained for each of the α values by AMS are listed in Table 4.16 along
with their RMSE scores and sizes. As with the MNIST dataset, AMS partially
evaluates at most 50 different models for each α value. The experiments for each α
take about 2 minutes in our test computer.

S+
0.4 = [(104, 1), (824, 1), (1, 4)]

S+
0.5 = [(264, 2), (1, 4)]

S+
0.6 = [(80, 1), (80, 1), (1, 4)]

Model 5-fold Avg. Score Test RMSE Network Size
S+
0.4 14.87 14.99 122393
S+
0.5 15.27 15.90 89233
S+
0.6 14.78 15.74 33521

Table 4.16: RMSE of the top 3 models for the CMAPSS dataset.

The results presented in Table 4.16 further demonstrate the impact of the α
parameter. As can be observed, the size of the networks grows as α is smaller. It
can also be observed that the results obtained by the three proposed models in the
cross-validation sets are very close to each other. Again, small networks are usually
preferred. Table 4.17 presents some of the top results obtained by the hand-crafted

78



MLPs for the CMAPSS dataset. The performance of the models is measured in
terms of the root mean squared error (RMSE) between the real and predicted RUL
values.

Method Test RMSE Network Size
Time Window MLP [9] 15.16 6041

Time Window MLP with EA [70] 14.39 7161
Deep MLP Ensemble [76] 15.04 n/a

Table 4.17: Top results for the CMAPSS dataset.

The obtained models are also competitive when compared against some of
the latest MLPs designed for the CMAPSS dataset as shown in Table 4.17. We
compare the score obtained in the test set for all the models. It is shown that one of
the three models obtained by AMS produces a better score than the two of the three
compared models, i.e. Time Window MLP and Deep MLP ensemble. Although the
sizes of the neural networks obtained by AMS are one order of magnitude bigger
than the hand-crafted models, we can observe that AMS delivered compact models
(having few layers with few neurons in each layer).

Finally, Figure 4.4 shows that all of the obtained models have a small model
size with few hundred thousand parameters while all of them deliver a very good
performance for this dataset. See references [70] and [10] for other models and their
scores. Once again, it can be observed that the model size decreases with larger
α values. One important observation is that, for the CMAPSS dataset, there does
not seem to be a correlation between the model size and its performance. Indeed,
the model size is just one simple indicator of a networks architecture. Trying to
characterize a network only by its size may leave out valuable information about it.
The information could be used in the search of new individuals with better traits
for the dataset. We leave out further analysis of this behavior for future work.
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Figure 4.4: Influence of α on the model’s size and error on CMAPSS dataset
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Concluding Remarks

We presented two methods for the application of deep learning. Though the
methods are of general application, they were inspired by some common problems
encountered by practitioners who are not experts in deep learning. In mechanical
engineering the presented methods are applicable to a variety of problems; fault
detection, prognostics, and control are some of the potential applications for the
methods developed in this thesis.

The presented framework for the estimation of the remaining useful life of
jet-engines is applicable to any kind of mechanical system so long as data describing
the behavior of the system is available. The use of a strided moving time window to
form a feature vector instead of independent samples is a powerful technique that
better captures the dynamic behavior of the system. Nevertheless, the use of the
strided time-window introduces additional parameters that have to be tuned by the
practitioner.

Coupling the time-window strategy with a simple, yet efficient, evolutionary
algorithm allows for practitioners with little experience to get results out of the box.
Though the framework comes packed with a shallow MLP to make the inference,
which proved to be enough in the experiments thanks to the data treatment with
the time-window, the end user can easily change the model for one that better suits
its needs. In fact, the user need not use a deep learning model at all, having the
possibility to choose from some more conventional models as polynomial regression
or SVMs. Furthermore, the compactness of the default model makes the framework
suitable for applications that have limited computational resources such as embed-
ded systems. It is important to note that the framework itself does involve some
computations, nevertheless such computations are done off-line.

This thesis also presents AMS, a new evolutionary algorithm for efficiently
finding suitable neural network models for classification and regression problems.
Making use of efficient mutation and crossover operators, AMS is able to generate
valid and efficient neural networks, in terms of both the size of the network and its
performance. Furthermore, AMS design is highly parallelizable and distributable.
With the use of frameworks such as Ray [96] or Spark [105], the performance of the
algorithm can be greatly boosted.
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By allowing the user to control the trade-off between the total size of the
network and its performance, AMS is capable of finding small neural networks for
applications with limited memory, mobiles or embedded systems that may have con-
straints on the size of the models or prioritizing the model performance. Although
not every model found by AMS is a Pareto point, the found models yield a good
balance between the performance and size.

Furthermore, AMS is computationally efficient since it only needs to evaluate
a few tens of models to find suitable ones. As demonstrated in this Chapter 4, even
a medium tier computing rig consisting of a modern, medium-range processor and
a general purpose GPU can find good models in less than 5 minutes depending on
the dataset. This is achievable mainly due to the partial train strategy, which is
demonstrated to be an efficient method for assessing the fitness of a given model.

Overall, AMS provides an easy to use, efficient and robust algorithm for
finding suitable neural network models given a dataset. We believe that the method
can be easily used by somebody who has a basic knowledge of programming, making
it possible for non-expert machine learning practitioners to obtain out-of-the-box
solutions.

5.2 Future Work

Two major features of the framework for estimating remaining useful life are
its generality and scalability. While for this study, specific regressors and evolution-
ary algorithms are chosen, many other combinations are possible and may be more
suitable for different applications. Future work for the framework will consider the
use of different machine learning algorithms. An analysis of the influence of the
window stride parameter ns is also considered for future work.

In the case of AMS future work will consider more complex neural network
architectures such as RNNs and CNNs. Techniques for assembling entire neural
network pipelines will also be explored in the future as well as the inclusion of
more hyper-parameters in the tuning process. An analysis of what information
can be used to better characterize a neural network is also left for future work.
Finally, a better way of measuring distance between two neural network architectures
will be explored, since this element is of high importance for applications such as
visualization and evolutionary computation.

Finally, a graphical user interface that makes the algorithms easier to use is
also considered for future versions of the presented methods.
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[71] P. Bühlmann, G. S., Statistics for High Dimensional Data. Methods, Theory
and Applications, Springer, 2011.

[72] C. Kong, S. Lucey, Take it in your stride: Do we need striding in CNNs?,
arXiv:1712.02502 (2017).

[73] R. Storn, K. Price, Differential evolution: A simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization
11 (4) (1997) 341–359.

[74] E. Jones, T. Oliphant, P. Peterson, et al., SciPy: Open source scientific tools
for Python, [Online; accessed 06/2018] (2001).
URL http://www.scipy.org/

87



[75] Y. Peng, H. Wang, J. Wang, D. Liu, X. Peng, A modified echo state net-
work based remaining useful life estimation approach, in: IEEE Conference
on Prognostics and Health Management, 2012, pp. 1–7.

[76] C. Zhang, P. Lim, A. Qin, K. Tan, Multiobjective deep belief networks en-
semble for remaining useful life estimation in prognostics, IEEE Transactions
on Neural Networks and Learning Systems 99 (2016) 1–13.

[77] X. Meng, J. Bradley, B. Yavuz, B. Sparks, S. Venkataraman, D. Liu, et al.,
MLlib: Machine learning in apache spark, Journal of Machine Learning Re-
search 17 (34) (2016) 1–7.

[78] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado,
et al., TensorFlow: Large-scale machine learning on heterogeneous systems,
software available from tensorflow.org (2015).
URL http://tensorflow.org/

[79] C. Francois, Keras, https://github.com/fchollet/keras (2015).

[80] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, et al., Caffe: Convo-
lutional architecture for fast feature embedding, arXiv:1408.5093 (2014).

[81] F. Seide, A. Agarwal, CNTK: Microsoft’s open-source deep-learning toolkit,
in: 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, 2016, pp. 2135–2135.

[82] H. Jin, Q. Song, X. Hu, Auto-keras: An efficient neural architecture search
system, arXiv:1806.10282 (2018).

[83] E. Real, A. Aggarwal, Y. Huang, Q. V. Le, Regularized evolution for image
classifier architecture search, arXiv:1802.01548 (2018).

[84] E. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzales, Au-
tomated model search for large scale machine learning, in: SoCC, 2015, pp.
368–380.

[85] B. Zoph, Q. V. Le, Neural architecture search with reinforcement learning
(2016).

[86] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing neural network architec-
tures using reinforcement learning, arXiv:1611.02167 (2016).

[87] Z. Zhong, J. Yan, W. Wu, J. Shao, C.-L. Liu, Practical block-wise neural
network architecture generation, arXiv:1708.05552 (2017).

88



[88] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, et al., Progressive neural
architecture search, arXiv:1712.00559 (2017).

[89] P. Angeline, G. Saunders, J. Pollack, An evolutionary algorithm that con-
structs recurrent neural networks, IEEE Transactions on Neural Networks
5 (1) (1994) 54–65.

[90] M. Suganuma, S. Shirakawa, T. Nagao, A genetic programming approach to
designing convolutional neural network architectures, in: Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’17, ACM, 2017,
pp. 497–504.

[91] L. Kotthoff, C. Thornton, H. H. Hoos, F. Hutter, K. Leyton-Brown, Auto-
WEKA 2.0: Automatic model selection and hyperparameter optimization in
weka, Journal of Machine Learning Research 18 (25) (2017) 1–5.

[92] E. Brochu, V. M. Cora, N. de Freitas, A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierar-
chical reinforcement learning, arXiv:1012.2599 (2010).

[93] F. Hutter, H. Hoos, K. Leyton-Brown, Sequential model-based optimization
for general algorithm configuration, in: Proceedings of the 5th International
Conference on Learning and Intelligent Optimization, LION’05, Springer-
Verlag, 2011, pp. 507–523.

[94] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter,
Efficient and robust automated machine learning, in: Advances in Neural
Information Processing Systems 28, Curran Associates, Inc., 2015, pp. 2962–
2970.

[95] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, et al., Large-scale
evolution of image classifiers, arXiv:1703.01041 (2017).

[96] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, et al.,
Ray: A distributed framework for emerging ai applications, arXiv:1712.05889
(2017).

[97] J. Deng, W. Dong, R. Socher, L. Li, and, ImageNet: A large-scale hierarchical
image database, in: 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009, pp. 248–255.

[98] R. Ebehart, Y. Shi, Computational Intelligence, Morgan Kauffman, 2007.

[99] S. Sumathi, P. Surekha, Computational Intelligence Paradigms. Theory and
Applications using MATLAB, CRC Press, 2010.

89



[100] K. Krishnakumar, Micro-genetic algorithms for stationary and non-stationary
function optimization, in: SPIE Proceedings: Intelligent Control and Adaptive
Systems, 1989, pp. 289–296.

[101] C. Hillermeier, Nonlinear Multiobjective Optimization, Springer, 2001.

[102] J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, 1992.

[103] D. Laredo, Y. Quin, O. Schütze, J. Q. Sun, Automatic model selection for
neural networks, source code, [Online] (2019).
URL https://github.com/dlaredo/automatic_model_selection

[104] P. Simard, D. Steinkraus, J. Platt, Best practices for convolutional neural
networks applied to visual document analysis, in: the 7th International Con-
ference on Document Analysis and Recognition (ICDAR 2003), 2-Volume Set,
3-6 August 2003, Edinburgh, Scotland, UK, 2003, pp. 958–962.

[105] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark:
Cluster computing with working sets, in: Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, 2010, pp. 10–
10.

90



Appendix A

TESTED NEURAL NETWORK ARCHITECTURES

In this appendix we present the tested neural network architectures used in
Chapter 3. Each table represents a neural network model. Each row in the table
represents a neural network layer while each column describes each one of the key
parameters of the layer such as the type of layer, number of neurons in the layer,
activation function of the layer and whether regularization is used, where L1 denotes
the L1 regularization factor and L2 denotes the L2 regularization factor, the order
in which the layers are appended from the table is top-bottom.

Table A.1: Proposed neural network architecture 1.
Layer Neurons Activation Additional Information
Fully connected 20 ReLU L1 = 0.1, L2 = 0.2
Fully connected 20 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2

Table A.2: Proposed neural network architecture 2.
Layer Neurons Activation Additional Information
Fully connected 50 ReLU L1 = 0.1, L2 = 0.2
Fully connected 20 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2

Table A.3: Proposed neural network architecture 3.
Layer Neurons Activation Additional Information
Fully connected 100 ReLU L1 = 0.1, L2 = 0.2
Fully connected 50 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2
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Table A.4: Proposed neural network architecture 4.
Layer Neurons Activation Additional Information
Fully connected 250 ReLU L1 = 0.1, L2 = 0.2
Fully connected 50 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2

Table A.5: Proposed neural network architecture 5.
Layer Neurons Activation Additional Information
Fully connected 20 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2

Table A.6: Proposed neural network architecture 6.
Layer Neurons Activation Additional Information
Fully connected 10 ReLU L1 = 0.1, L2 = 0.2
Fully connected 1 Linear L1 = 0.1, L2 = 0.2
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Appendix B

GENERATED NEURAL NETWORK MODELS

In this appendix we present the generated neural network models generated
in Chapter 4. Each table represents a neural network model. Each row in the table
represents a neural network layer while each column describes each one of the key
parameters of the layer. The order in which the layers are appended from the table
is top-bottom.

Layer type Neurons Activation Function Dropout Ratio
Fully connected 264 ReLU n/a

Dropout n/a n/a 0.65
Fully Connected 464 ReLU n/a

Dropout n/a n/a 0.35
Fully Connected 872 ReLU n/a
Fully Connected 10 Softmax n/a

Table B.1: Neural network model corresponding to S1.

Layer type Neurons Activation Function Dropout Ratio
Fully connected 56 Sigmoid n/a

Dropout n/a n/a 0.25
Fully Connected 360 Sigmoid n/a
Fully Connected 480 Sigmoid n/a
Fully Connected 80 Sigmoid n/a

Dropout n/a n/a 0.20
Fully Connected 10 Softmax n/a

Table B.2: Neural network model corresponding to S2.
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Layer type Neurons Activation Function Dropout Ratio
Fully connected 264 ReLU n/a
Fully Connected 360 ReLU n/a
Fully Connected 480 ReLU n/a
Fully Connected 88 ReLU n/a
Fully Connected 872 ReLU n/a
Fully Connected 10 Softmax n/a

Table B.3: Neural network model corresponding to S3.
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