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ABSTRACT OF THE DISSERTATION

Computational Study of Cellular Budding at Different Physical Length Scales

by

Kevin Yueh Tsai

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, September 2020

Dr. Mark Alber, Chairperson

Cellular budding is an important biological process utilized by cells to survive and

reproduce. It is characterized by the local protrusion on a cell surface that proceeds to form

a vesicle separated from the original cell. The underlying mechanisms of cellular budding

vary according to different cell types but can be generally categorized into the non-growth

related and growth related process. For non-growth related budding, the process is often

driven by the adhesive interaction between nanoparticle, surface-bound proteins, or actin

filaments and the cell membrane at the nanometer scale. For growth related budding,

similar contributors in the non-growth related budding may be present but the budding

process at this scale requires recruitment of new cell surface materials. Novel tunable and

biologically relevant 3D mathematical model is developed for studying the budding of yeast

(Saccharomyces cerevisiae). The model incorporates growth of the cell via expansion of

the cell surface and it is used to investigate the role of changes in mechanical properties

on bud emergence and bud shape maintenance. Model simulations suggest that changes

in the mechanical properties of the cell surface are necessary for yeast budding, and the
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resulting quality of the shape of the bud depends on the types and patterns of changes.

The 3D model is also applied, with modifications, to study the process of endocytosis

and virus budding in the context of nanoparticle-membrane interactions. This model is

capable of representing the fluidic property of the cell membrane that allows reorganization

of membrane components leading to various geometrical shapes. Model computational

simulations have demonstrated the impact of different levels of membrane fluidity on the

efficiency and surface coverage in the wrapping of a nanoparticle by the membrane. In

particular, higher level of membrane fluidity was shown to lead to efficient wrapping of the

nanoparticle.
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Chapter 1

Role of combined cell membrane

and wall mechanical properties

regulated by polarity signals in cell

budding

1.1 Introduction

The content of this chapter is based on my recently published paper, ”Role of

combined cell membrane and wall mechanical properties regulated by polarity signals in

cell budding,” on journal of Physical Biology on August 24, 2020 [109].

In this chapter, a three-dimensional model is introduced for studying asymmet-

ric cell growth, a prominent reproductive process utilized in many organisms to generate

1



Figure 1.1: Experimental image (A) and representative diagram (B) of the yeast mother
cell (right) and the developing bud (left) separated by the chitin and septin ring. (B)
Cell wall (outer boundary) and membrane (inner boundary) are represented by two curves.
Internal components of the mother cell include nucleus and vacuole. Actin cables (dashed
red lines) polarize at the bud site and recruit new cell membrane/wall materials (black
points). (Image A is reproduced with permission from Hanschke et al. [47]).

cell diversity during development. It is also important in determining cell fate when, for

example, stem cells divide for the purpose of proliferation or differentiation. The bud-

ding yeast Saccharomyces cerevisiae is a fungus that can reproduce via asymmetric growth

and serves as a classic model to study the principles underlying this fundamental process

[27, 66, 116, 48, 54, 8, 34, 68]. Reproduction in yeast, i.e. budding, is a delicate process

governed by a combination of dynamically changing biochemical signaling networks, turgor
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pressure, transport of subcellular organelles, and regulation of the mechanical properties of

the yeast cell surface, consisting of cell wall, cell membrane and periplasm between them.

Structurally, the yeast cell wall is a dynamic network primarily composed of

polysaccharides. The cell wall network is composed of 1,3-β-glucan, 1,6-β-glucan, and a

relatively small amount of chitin proteins. Linkage between the 1,3-β-glucan, 1,6-β-glucan,

and chitin proteins are established to maintain the structural integrity of the cell wall [61].

Beneath the cell wall structure lies the cell membrane consisting of lipids and membrane-

bound proteins similar to the membrane in animals. While the cell wall mechanically

supports the cell integrity in response to forces from the environment and maintains cell

shape, the cell membrane acts as the barrier to the free diffusion in the cytosol, provides

binding sites for molecular signaling pathways involved in the biosynthesis of cellular compo-

nents, and relays the environmental conditions to the cell interior via signaling transduction

pathways to regulate the osmotic balance [49].

Yeast budding starts with a protrusion in the cell surface and results in cell division

to form a daughter cell separated from the mother (Figure 1.1A). A single bud is generated

in one cell cycle. Notice that no nucleus is formed yet in the bud at the early stage (Figure

1.1B) [50]. The location of the protrusion site, or the bud site, is determined by asymmetric

distribution of Cdc42 and growth-associated proteins established before cell shape change,

which is followed by a polarization of structural components including actin cables, septin,

and myosin [19, 64]. These polarization events play an important role in budding. It has

been shown experimentally that multiple concurrent protrusions during the budding process

occur when the Cdc42 signaling pathway is impaired [15].
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Shortly before the protrusion occurs, septins and chitins within the cell membrane

and cell wall are assembled to form ring-like structures [65, 12] (Figure 1.1). It has been

shown that the septin ring and the chitin ring, located in the cell membrane and cell

wall, respectively, have similar functionality in controlling the size of the budding neck via

different mechanisms, and the synthases responsible for the assembly of these two rings

are related [98]. Presence of the rings is essential. They colocalize and, along with the

linkage between the chitin ring and 1,3-β-glucan, limit the expansion along the neck during

budding. Moreover, these two rings, especially the septin ring, act as a diffusion barrier

impacting bud morphogenesis [8, 9]. Meanwhile, actin cables polarize to direct the transport

of secretory vesicles as well as new cell membrane and cell wall materials from the cytosol

to the budding site. Several studies have suggested that mutants which have improper

formation of the chitin and septin rings or polarized actin cables give rise to wide budding

necks, which can be detrimental to the survival of the cell [35, 36, 74].

During the early stages of the budding process, the mother cell exhibits marginal

change in size and the turgor pressure remains sufficiently constant in the rage of 0.1 - 1.0

MPa [23, 97, 92]. A recent study also suggests that during the entire reproduction cycle,

the turgor pressure remains at approximately 0.21 MPa [38]. While the turgor pressure acts

as the driving force to generate a bulge on the cell surface, the cell wall of the bud region

where Cdc42 polarizes is weakened by the secreted hydrolases and cell wall remodeling is

promoted by the actin-mediated delivery of secretory vesicles [64]. This leads to degradation

of the β-glucan network in the cell wall and at the same time the recruitment of new

materials to the cell wall and cell membrane. While Cdc42 has not yet been reported to
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directly regulate the cell surface elasticity, its polarization leads to the correct polarization

of the actin cables responsible for secretory vesicle and subcellular component delivery,

which has been identified in [89]. On the other hand, Cdc42 has been shown to promote

cell wall degradation during yeast mating by colocalization with Fus2p protein [104, 45],

demonstrating its contribution on altering cell wall properties. Hence it is reasonable to

assume that the cell surface mechanical properties are indirectly regulated, if not a direct

regulation, and influenced by Cdc42 polarization and its downstream processes.

However, it is challenging to experimentally measure mechanical properties of the

cell surface in actively growing cells. Recently, the elasticity of the cell wall was measured

during the yeast budding process and it was found that stiffness of the bud was slightly

higher than that of the mother cell, although the obtained value may depend on the timing

of measurements and the highly curved surface [2]. This result is different from an earlier

observation in which the cell wall at the budding site becomes less rigid prior to bud emer-

gence [64, 58]. It, therefore, remains unclear whether the change in mechanical properties

of the yeast cell surface is necessary for the bud emergence. Moreover, it is not known how

the mechanical properties of the cell surface are regulated to form a bud with appropriate

shape.

Multiple computational models have been developed to propose and test differ-

ent mechanisms underlying the budding process such as the clathrin-mediated endocytosis

[26, 55] and the wrapping of nanoparticles [95, 4, 94]. In Gompper et al. [40, 41, 60], a

tether-and-bead model was developed to study cell surfaces with fixed sizes and fluctuating

topologies, where the cell surface was discretized by triangulated mesh and a probabilistic
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re-meshing algorithm was introduced to represent cell growth. This model has been ex-

tended into a particle-based framework to study the effect of molecular turnover and the

material exchange between the cell membrane and cytosol on the cell shape by incorporat-

ing a mesh-refinement algorithm [85] to facilitate the stability of the model in capturing

local cell surface deformation.

On the other hand, several computational models have been developed to study

morphogenesis based on description of the entire inhomogeneous cell wall. For example, in

the model for mating yeast, cell wall was described as an inhomogeneous viscous fluid shell

and coupled with the cell wall integrity signaling pathway, which governs the wall synthesis

and controls its stiffness, to study the coordination of mechanical feedback in cell wall

expansion and assembly in mating yeast [5]. Similar approach has been applied to study the

tip growth of the pollen tube in plants [13]. In papers [2], the interplay between the turgor

pressure and the elasto-plasticity of the cell wall during yeast budding was investigated

by using a single-cell growth model (SCGM). Mother cell and bud are represented as two

separate spheres with identical wall elasticity but different levels of plasticity. Growth

is described by the dynamics of cell radius, which is impacted by different levels of wall

plasticity and fluctuating turgor pressure. Simulation results suggest that the bud must be

significantly more exposed to plastic expansion compared to the mother cell in order for

proper bud formation to take place.

In this chapter, a novel 3D coarse-grained particle-based model is described and

used to examine the impact of changing mechanical properties of combined cell membrane

and cell wall (called cell surface hereafter) on the bud formation in yeast cells. Specifically,
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model simulations show how local cell surface growth and deformation in an early bud

formation, controlled by experimentally observed polarized distribution of Cdc42, impacts

the global deformation of the cell surface. Model parameters were calibrated to resemble

the Young’s modulus of the cell wall measured in experiments [22]. The model assumes that

the turgor pressure remains constant throughout the early stages of the budding process

which we focus on in this chapter. Additionally, the model assumes ratios of stretching to

bending modulus of the bud and mother cell to be different from each other, which is based

on the experimentally observed presence of wall-degrading enzymes at the bud site.

Model simulation results indicate that increased dimensionless stretching to bend-

ing stiffness ratio, Föppl-von-Kármán number, within the bud region at the early stage can

influence bud emergence and the resulting bud shape. The reduction in bending stiffness,

leading to a higher Föppl-von-Kármán number, is necessary to drive bud emergence, and

an unweakend or stiffer budding region leads to bud inhibition in our simulation. Chitin

and septin rings were shown to impact the neck shape without changing the bud sphericity,

as well as reducing the high Föppl-von-Kármán number required for bud emergence. By

varying the distribution of the polarized mechanical regulator, we demonstrate that reduced

polarized signal distribution may lead to asymmetric bud formation. Moreover, by assum-

ing that the mechanical properties at the bud site can recover in time to the same level

as those of the mother cell, we show that buds can acquire a symmetric shape similar to

those observed in experiments. The new model can be extended to study the impact of

dynamical changes of molecular distributions in yeast budding, as well as viral budding and

other vegetative reproduction processes performed via budding.
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1.2 2 Methods

1.2.1 General model description

Yeast mother cells can be either egg-shaped, elliptical, or spherical [24]. While the

size of an yeast cell varies depending on the cell types, for simplicity we assume that the

mother cell initially is a sphere with a radius of 2.0 µm [101]. The sphere, representing the

cell wall and membrane, is discretized into a triangulated mesh. The triangulated surface

is a simplified representation of the elastic network of the yeast cell surface. The nodes are

connected by linear springs in each triangle to capture the in-plane elasticity, whereas the

bending springs are applied to triangles sharing a common edge to model the out-of-plane

elasticity (Figure 1.2) [67, 88, 87]. This mesh discretization allows calibration of the model

elasticity using experimental data by probing the elastic response under stress (Section 2.5).

We also assume that the bud site has been predetermined and Cdc42 becomes polarized to

regulate the elasticity at the bud site.

The bud site is enclosed by the chitin and septin ring which is approximately 1 µm

in diameter [16]. The size of the ring remains unchanged throughout the budding process.

While the mechanical role of the ring has yet to be confirmed experimentally, the lack of

the change of the ring and bud neck size, indicates a constraining effect. In the model,

the bud neck is represented by using a set of linear springs with a stiffness an order of

magnitude higher than the one used to model the surface of the mother resulting in a rigid

ring type behaviour (1.2). Furthermore, the ring acts as a demarcation separating bud site

and mother cell (Figure 2)[16, 37]. Distinct mechanical properties are assigned to the
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Figure 1.2: Schematic diagram of components comprising the 3D computational yeast cell
model. (A) Initial simulated mother cell representation including predetermined bud region
(dark grey), combined chitin and septin rings (grey tubes), and mother cell surface (light
grey). (B-C) Individual model spring elements are shown at equilibrium (left) and non-
equilibrium (right).
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bud surface under the influence of wall degrading enzymes and to the mother cell surface.

Previously developed re-meshing techniques [40, 41, 85, 1, 88] are utilized in the model to

capture the structural response to osmotic pressure [69, 53].

Computational implementation. The iFEM [17], a MATLAB software pack-

age, was used to generate the initial mesh configuration. The density of the triangulated

mesh can be changed according to the requirement of the resolution of the modeling system.

In all simulations included in this chapter without specification, the number of triangles used

for the mother cell at the beginning of the simulation is 1280, and out of them 24 triangles

belong to the budding region. For detailed description of the numerical simulation process,

see Section 2.6. The code was originally prototyped using MATLAB but was converted to

C++ with GPU computing platform for improved performance1.

1.2.2 Equations of motion

Motion of each node i from the model representation of the cell surface is described

by the following equation:

cẋt(t) = −∇xi(Etotal) + Fturgor,xi (1.1)

where c is the friction coefficient depicting the viscosity of the cell surface, ∇xi represents

the gradient with respect to the ith node position, Etotal represents the total potential

energy used to model the mechanical properties of the surface of the cell and Fturgor is the

force derived from the force-stress relationship originating from the constant turgor pressure

acting on the cell surface. The numerical integration for solving this differential equation

1The code is available at https://github.com/librastar1985/Yeast_Budding.
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is performed using the standard Euler’s method. (More details are provided in Sections

2.3− 2.6.)

We define the total potential energies used to model the cell surface: Etotal =

Elinear + Earea + Ebend + Evolex. Here, Elinear is the linear potential between connected

nodes and Evolex is volume exclusion property imposed between nodes that are not con-

nected by an edge, modeling the self-avoiding property preventing cell-cell intersection.

Earea and Ebend represent area and bending potentials yielding forces that control the area

expansion resistance of each individual triangular element and level of bending between tri-

angular elements. Due to the micron scale of the yeast cell and fluid environment required

for yeast reproduction, the surrounding microenvironment acts as an overdamping media.

We therefore assume that the cell in the model is in the overdamped regime where the

inertia force is negligible [85, 29]. Between two successive re-meshing steps, we simulate

Nrelaxation = 200 iterative steps. Nrelaxation is chosen such that the relative change in total

energy of the system converges to a value below a threshold of 0.01.

Notice that each mechanical potential comprising Etotal is chosen to represent cell

surface elasticity, shape maintenance, and surface incompressibility, as described in Section

2.2. While the choice of the components of energy potential function is not unique, we

believe that our results is inline with other form of energy potential function which have

previously been used to describe the cell surface [85, 82, 83, 30]. Potentials in the model

were calibrated via simulated cell stretching tests, and adjusted to match the experimental

atomic force microscopy (AFM) data, as described in Section 2.2.5.
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1.2.3 Interaction potentials

We assume linear stiffness of the cell surface under low stress and use the internodal

potential for nodes connected via an edge in the following form:

Elinear =
∑

i,j∈B(cell

(ks
2

)
(Lij − L0)

2 (1.2)

where ks is the linear spring coefficient, Lij is the length of the spring connecting node i and

node j, and L0 is the equilibrium length of the bond. The sum is taken over all edges of the

mesh, denoted by B(cell). As described in Section 2.1, interactions between nodes of edges

separating the budding region and the remainder of the mother cell are also represented by

a similar internodal potential but the coefficient is scaled with L02. Namely, the sum of

the energy potentials of the form Ering
linear = (krings /(2L2

0))(Lij − L0)
2 models the stiffness of

segments of the chitin and septin ring on the mesh.

Following previous work [85, 82], the local area expansion resistance of each indi-

vidual triangular facet is represented using a harmonic potential:

Earea =
∑

Tijk∈T (cell)

( ka
2L0A0

)
(Aijk −A0)

2 (1.3)

where ka is the area expansion resistance coefficient, Aijk is the current area of the triangle

Tijk, A0 is the equilibrium triangle area, and L0 represents the equilibrium edge length in

each triangular element. The sum is taken over all triangle elements T (cell).

To maintain the spherical shape, we adopt the approach that utilizes the angle-

bending potentials between neighboring triangles that share a common edge to enforce cell

curvature. In particular, we apply the method proposed in [111]. The explicit relationship

between the equilibrium angle and the radius of curvature is sin(θ0)/2 = (12R2
0/L

2
0 −3)−

1
2
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where θ0 is the equilibrium dihedral angle between unit normal vectors of edge-sharing

triangles, R0 is the radius of curvature, and L0 is the equilibrium edge length of the triangle.

Hence, the bending behavior is determined by the cosine bending potential based on the

unit normal vectors of edge-sharing triangles:

Ebend =
∑

bij∈B(cell)

kb(1− cos(θij − θ0)) (1.4)

where kb is the bending coefficient, θij is the current dihedral angle between the unit normal

vectors of two triangles sharing edge bij , and θ0 is the equilibrium dihedral angle. The sum

is taken over all edges over the surface B(cell).

Volume exclusion constraints, Evolex, are introduced to incorporate the self-avoiding

property of different domains of the cell surface avoiding each other. Several models,

whether with or without defining an absolute minimum distance between cell surface nodes,

have employed compression-resistance potential [85, 83]. The self-avoiding property is also

necessary to maintain the numerical stability and cell surface topology to avoid concav-

ity. We apply the standard Morse potential to enforce the self-avoiding property for non-

connected nodes:

Evolex =
∑
i,j

D(1− exp(−a(Lrep
ij − L

rep
0 )))2 (1.5)

for Lrep
ij ≤ Lrep

0 , j /∈ N(i). Here D represents the well depth of the Morse potential with

width a. Lrep
ij represents the distance between any two non-connecting nodes, Lrep

0 is the

optimal distance between any two non-connecting nodes, and N(i) is the collection of nodes

connected to a given node i. Parameter values and the calibration are described in Section

2.2.5.
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1.2.4 Modeling cell growth

During the budding process, the yeast cell undergoes a local deformation with a

narrow neck formation and cell surface material insertion to the bud site. To capture both

geometric change and the expansion of the surface, we incorporate a re-meshing technique

into the model.

To alter the edge-connectivity in the current mesh, which is to obtain a new geome-

try favoring bud formation, we employ the Monte Carlo edge re-connectivity algorithm. The

Monte Carlo simulation for edge re-connectivity (also termed bond-flip) is a well-established

approach and has been shown to effectively capture the topological change which is essential

in surface deformation and protein folding [1, 41, 88]. The edge re-connectivity is deter-

mined probabilistically via energy-based comparison between the pre- and post-flip of edges

in the existing mesh. For a detailed description of such edge re-connectivity, please see

Section 2.2.4.

In order to describe an increase of the area of the bud, we define a quantity called

strain associated with the area expansion

γ =
Aijk −A0

A0
(1.6)

where A0 is the equilibrium area and Aijk is the current area of the triangle. During the

simulation, if the value of γ exceeds a critical value, γ̄, then new triangles are introduced into

the system following the approach from [85]. Physically, this corresponds to the instance

when new material insertion to the cell surface from the bulk is more energetically favorable.

Biologically, it represents the response of a cell to excessive mechanical stress. Specifically,

if the relative change in average area of two adjacent triangles, T1 and T2, is larger than
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γ̄, a new node, m, is introduced at the center of the shared edge (Figure 1.3). T1 and T2

are subsequently divided using the newly placed node, thereby creating four new triangles,

Q1, · · · , Q4.

To utilize this form of growth algorithm, we check this growth condition over every

pair of triangles sharing a common edge inside the budding region, and call this sweeping

process as one growth step.

Figure 1.3: The growth (expansion) algorithm. Initial pair of triangles with a common edge
(left) expands under stress (middle) resulting in a triangulation (right) after addition of a
new node and new edges. This algorithm is used if the average area of T1 and T2 exceeds
the critical value of γ.

We assume that the turgor pressure is constant at the initiation of the budding

stage we model, and the surface deformation at every step is small. For each triangle in the

model, the force due to the turgor pressure acting on the node i is as follows,

Fturgor,xi =
∑

Tijk∈T (i)

1

3
AijkPn̂ (1.7)

where Aijk is the current area of the triangle Tijk, P is the constant turgor pressure and n̂ is

the outward unit normal vector of the triangle. The sum is taken over triangles containing

node i, denoted by T (i), in order to obtain the consistent force due to the turgor pressure

applied to the overall cell surface [38].
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1.2.5 Model calibration

In experiments, whole cell compression [103] and probing via atomic force mi-

croscopy (AFM) [22] are common approaches to measure the mechanical properties of a

single cell including the stretching modulus and bending modulus on the cell surface.

Figure 1.4: Calibration of the mechanical model for a single yeast cell without budding.
(A) Forces of opposite directions are applied to detect the elasticity properties of the cell
based on a chosen parameter set. (B) The stress-strain ratio (dashed line) using parameters
ks = 2.0, ka = 2.0 and kb = 0.5.

While both methods have been applied to identify the elasticity of the yeast cell

wall, the reported values differ from each other by up to two orders of magnitude. The

model described in this chapter was calibrated by using the measurement of the cell surface

elasticity obtained by AFM in [22]. In this experiment, a nanoindentation on the cell wall

was created and the modulus of elasticity was identified as 1.62± 0.22 MPa for a yeast cell

prior to bud emergence.

During calibration, linear stiffness, bending stiffness and area expansion resistance

coefficient are calculated after applying forces of the same magnitude in the opposite di-
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rections to a single cell having initially a spherical shape (Figure 1.4A). Re-meshing is not

allowed in this simulation by assuming that the cell is not actively growing at this step of the

algorithm. To reduce the sample size required in exploring the parameter space, we apply

Latin Hypercube Sampling to generate a sufficient amount of samples distributed over the

wide range [73, 70]. Model simulations with the parameter set ks = 2.0, ka = 2.0, kb = 0.5

obtained as a result of calibration, produced an elastic response which results in the correct

material behavior of the cell surface, plotted in a dashed line, falling within the experimen-

tal data shown as solid lines in Figure 1.4B. We use this parameter set as the wild type

condition for the mother cell in the following sections unless specified otherwise. Parameter

values used in the model simulations, including the equilibrium edge length and dihedral

angle, are provided in the following table.

Table 1.1: Parameters used in the model

Parameter Value(s) Source

ks 2.0µN/µm Calibrated using AFM[22]

kb 0.5µNµm Calibrated using AFM[22]

ka 2.0µN Calibrated using AFM[22]

krings 50µN/µm Model assumption

L0 0.301µm Relaxed initial system

θ0 0.08725rad Relaxed initial system

Lrep
0 0.301µm Model assumption

D 0.01 Model assumption

a 9.0 Model assumption

A0 0.03927µm2 Relaxed initial system

P 0.2 MPa [38, 2]
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1.2.6 Numerical model implementation

Following the modeling construction described in Section 2.1, basic data structures

such as the x,y,z-coordinates of each node and associated nodes for each triangle must be

generated. Advanced data structures of edge-sharing triangles, connectivity between nodes,

and associated edges for each triangle are necessary for inefficient simulation. These data

structures are generated via both built-in functions in iFEM and in-house functions written

by us. The positional update of each node is described in Section 1.2.2.

During the calibration of model parameters using the Latin Hypercube sampling

(LHS), we divide the parameter value range into three uniform subspaces which in total give

us 27 subspaces. We draw six sample points abiding the Latin Hypercube sampling require-

ments. Our initial ranges are [0.0, 40.0], [0.0, 20.0], and [0.0, 40.0] for ks, kb, ka, respectively.

The sampling undergoes a total of six rounds of LHS, narrowing down the parameter space

in each round, to reach a parameter set that grants similar elasticity from the experimental

data. In each round, the subspace with the closest match to the experimental data is again

divided into four subspaces. Fine tuning of the parameter set is carried out manually when

the parameter set found using the sampling technique produces a fair estimate.

Numerical simulations of the model involve cycles of relaxation of the system to

reach a local minimum of the total energy and growth cycles of the cell surface. During a

relaxation cycle, a maximal number ofNrelaxation = 200 steps, which is sufficient to approach

a local minimal energy, are performed with each relaxation step size t = 0.001. Immediately

following each relaxation cycle, the Monte Carlo based edge re-connectivity algorithm (see

Section 1.2.4) is performed ([85, 1, 87]), to explore a sufficiently large number of different
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edges connecting cell surface nodes prior to implementing the stochastic cell surface growth

algorithm. A growth cycle is triggered after N times of edge re-connectivity algorithm

implementation, where N is chosen to be 100 in our model. The numerical simulation is

terminated when the total volume of the cell reaches some target value or the maximum

number of steps (1.6107 steps) is reached. Note that the choices of Nrelaxation, N, and t are

case dependent and adjustable in different applications to achieve both numerical stability

and computational efficiency.

To accurately calculate the total cell volume, we utilize the volume formula pro-

vided in [39],

V =
1

6
|[
∑
j

(P0j ·Nj) |Nj ·
∑
k

Pkj × Pk+1,j |]| (1.8)

where P∗j are the vectors formed by connecting a reference point to each node of a given

triangle in the mesh and Nj is the unit normal vector of the given triangle. Using this

formulation, the cell volume can be accurately calculated despite the surface concavity

presented in the budding process. This formula provides the total volume using the absolute

value of the sum of volumes which can be positive or negative [1]. The sign indicates whether

the triangular pyramid is initiated within the interior or exterior of the surface. The total

volume is calculated by summing up volumes of all the triangular pyramids created by

connecting each triangle on the mesh to the center of the mother cell

1.3 Results

Prior to budding, Cdc42, small molecule GTPase, forms a cluster at a predeter-

mined cortical site and orients actin cables toward the cluster. These cables then direct
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delivery of more Cdc42 as well as new cell membrane and cell wall materials using secretory

vesicles to the cluster. This establishes a positive feedback loop to help establish the Cdc42

polarization and regulates cell surface mechanics at the bud site to prepare for budding

[64, 113, 89].

The 3D computational model described in the previous section is used to deter-

mine whether changes in the cell surface elasticity at the bud site are required for bud

formation and to determine how these changes impact bud shape. In particular, we tested

time-independent, spatial-dependent, and time-dependent changes in the mechanical prop-

erties, based on the spatiotemporal distribution of Cdc42 observed at different stages in

experiments.

Figure 1.5: Sample simulation of bud formation under uniformly altered mechanical prop-
erties of the cell surface in the budding region after different numbers of growth cycle. After
protrusion occurs, the growth of the bud starts as a tubule growth (left) then transitions to
a more spherical expansion (right). The strong constraint from the chitin and septin ring
we impose naturally restricts the cell surface expansion at the bud neck. Between growth
cycles, the system is allowed to relax and have edge connections between nodes changed.
The relaxation (iterative) step size is ∆t = 0.001.
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To model the impact of Cdc42 on the bud site enclosed by chitin and septin rings,

each coefficient k∗ defined in Eq. 2-4, is multiplied by a weight constant α∗ varied between

0.0 and 1.0 (Figure 1.2A). αs, αb, and αa, denote the weights for the stretching coefficient,

bending coefficient, and the area expansion resistance coefficient, respectively.

In each simulation, the maximum number of iterative steps is N = 1.6× 107 with

a total number of 800 growth steps. Since the focus of the chapter is on the early stage

to mid-stage of the budding process, a simulation is terminated when all growth steps are

performed or cell volume reaches 1.5 of the initial volume. All simulations described in this

section used the turgor pressure P = 0.2 MPa. A snapshot of a typical bud emergence

simulation is shown in Figure 1.5.

1.3.1 Role of elasticity of cell surface in yeast budding

In this section we keep the weights constant throughout the bud site in time by

assuming that polarization of Cdc42 is established before the mechanical properties of the

bud are changed. First, the dimensionless ratio of stretching to bending moduli and the

critical value γ̄ required for bud emergence are determined. Next, their impact on the

shape after budding occurs is studied.

Dimensionless ratio of stretching to bending stiffness. In the theory of

elasticity, the ratio between the stretching and bending moduli determines the physical

property of the material [110, 10]. This ratio is often described by the dimensionless Föppl-

von-Kármán (FvK) number, ksL0
2/kb, where ks is the stretching stiffness, L0 is an equilib-

rium edge length of linear spring in the mesh, and kb is the bending stiffness. By following
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the same definition, we determine the range of the FvK number characterizing the budding

region resulting in bud generation.

Bud emergence dependence on the Föppl-von-Kármán number. Simula-

tions with different FvK numbers were performed to test whether a bud can be generated

(Table 1). In this section, γ̄ = 0.1 and αa = 0.1 are fixed.

Table 1.2: Bud emergence for different FvK numbers

αs αb FvK number Bud Emergence

0.2 0.02 3.624 YES

0.75 0.075 3.624 YES

0.2 0.05 1.450 NO

0.4 0.1 1.450 NO

The simulations suggest that bud emergence depends on the FvK number. Bud

emergence does not change if the FvK number remains the same while weight constants

α∗ ≤ 1. We will discuss scenarios where α∗ > 1 in more detail toward the end of the chapter.

Because the FvK number is the ratio of parameters representing level of stretching and

bending, for the parameter values giving the same FvK number, the resulting deformations

would be the same. Furthermore, this idea is used to reduce the number of parameter sets

tested in our paper. Budding is more likely to occur with a sufficiently large FvK number,

which can be achieved by either increasing the stretching stiffness or reducing the bending

stiffness.

Bud emergence depends on critical elasticity. We first vary bending stiffness

at the bud site using weight constant αb, and the critical value, γ̄, for Equation (1.6), to

study the effect on bud formation for cell surfaces with different fixed FvK numbers. Notice

that according to the definition, larger αb indicates stronger resistance of the cell surface
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to bending deformation. Nine simulations were performed for most of the parameter sets

(αb, γ̄). For each simulation, the outcome was counted as a bud emergence if a visible

protrusion from the cell surface with a volume at least 5.5% of the total cell volume was

generated. Otherwise, it was counted as a bud inhibition and indicated by “No Bud”.

Different values of αb and γ̄ were chosen as described in Table 1.3.1. Simulation results

indicate a clear cutoff value for bud emergence dependent on (αb) and this cutoff reduces

as increases, separating the parameter space into two different zones (Figure 1.6).

Table 1.3: Weights and critical values of expansion strain used

Fixed Parameter αs 0.5

Fixed Parameter αa 0.1

Variable αb 0.052, 0.06, 0.0725, 0.09, 0.121, 0.181, 0.362

Variable γ̄ 0.01, 0.05, 0.1, 0.15, 0.2

The effect of stochasticity is insignificant for parameter sets well within these two

zones. However, for simulations with parameter sets near the boundary between these

two zones, the effect of stochasticity involved in the cell wall remodelling becomes more

significant (Figure 1.6). In particular, with the parameters chosen near the boundary,

budding can occur but not in every single trial.

Next, simulations were performed with fixed αa and αb, and perturbed αs and

γ̄. A cutoff value, αs, for bud emergence was also observed for each value of γ̄ and this

cutoff value increases as γ̄ increases (Figure 1.6B). This is expected because bud emergence

depends on the physical properties described by the FvK number . The same ratio can be

achieved by increasing the stretching stiffness or reducing the bending stiffness, while fixing

the other.
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Figure 1.6: Diagrams describing the influence of γ̄ on bud emergence. (A) Variation of
bending stiffness (αb) with fixed αs and αa. (B) Variation of stretching stiffness (αs) with
fixed αb and αa. Both plots show that budding can occur when increasing FvK number
(dimensionless stretch-bend ratio) over a certain cutoff value, i.e. reducing αb or increasing
αs.
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Impact of the Föppl-von-Kármán number on bud shape. In this section

we investigate how different ratios of stretching and bending stiffness affect the bud shape.

Since increasing the stretching stiffness is equivalent to reducing the bending stiffness when

changing the Föppl-von-Kármán number , in this section we fix αs, αa and vary both αb

and γ̄. To evaluate the sphericity of the bud, we define Ω(αb, γ̄) as the distances between

the cell surface nodes within the bud area to the center of the bud, for given αb and γ̄ that

can generate a bud. Here the bud center is determined by the average of the x-, y-, and

z-coordinate of all nodes in the bud region. Therefore, smaller range of Ω(αb, γ̄) indicates

more spherical shape and the average of Ω(αb, γ̄) represents the radius of the sphere that

fits the bud. We observe that the range of Ω(αb, γ̄) becomes smaller as the weight αb

applied to the bending modulus of the bud increases for γ̄ = 0.05 (Figure 1.7). For different

values, we observe the same trend regarding the deviation of Ω(αb, γ̄) versus αb (Table 2.4).

This behavior is expected as higher b leads to stronger resistance to bending deformation

at the bud site and therefore more spherical shape can be maintained. We also expect more

spherical shapes can be obtained when reducing the stretching modulus.

Table 1.4: Average standard deviation with different αb and γ̄

αb = 0.052 0.06 0.0725 0.09 0.121

γ̄ = 0.01 0.1005 0.1014 0.1055 0.0746 0.0748

γ̄ = 0.05 0.0893 0.0930 0.0743 0.0771 0.0514

γ̄ = 0.10 0.0796 0.699 0.0724 0.0476 No bud

γ̄ = 0.15 0.0586 0.0547 0.0734 No bud No bud

γ̄ = 0.20 0.0476 0.0644 No bud No bud No bud
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This behavior is expected, as higher αb leads to stronger resistance to bending

deformation at the bud site and therefore more spherical shape can be maintained. We also

expect more spherical shapes can be obtained when reducing the stretching modulus.

Figure 1.7: (A) Boxplot of the bud radii, Ω(αb, 0.05), for different αb. As αb increases,
the budding region becomes more resistant to bending deformation and maintains better
roundness in shape, hence leading to smaller standard deviation of Ω(αb, 0.05). (B) A
sample sequence of simulation snapshots for increasing values of αb.

Taken together, results in this section suggest a tradeoff based on FvK numbers

for any fixed critical value for γ, i.e. the dimensionless stretching-to-bending ratio must be

sufficiently high at the bud site to generate a bud, while a higher ratio leads to less spherical

bud shapes. Therefore, the ratio of stretching to bending moduli must be appropriately
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tuned by the polarizing molecules to give rise to buds with spherical shapes as observed in

experiments.

Effect of the bending stiffness on the evolution of the bud shape. The

target cell volume, 1.5V0, is a termination criterion for simulations. We record and analyze

the standard deviation of the budding process using simulations described in Section 2.3.1

that reached the target volume. Based on the simulation results, we observe an overall

downward trend of the standard deviation at the early- to mid-stage of the simulation,

which corresponds to the transition from apical growth to isotropic growth. Qualitatively

this trend is represented by the first four snapshots of the sample simulations (Figure 1.5).

Before reaching the target volume, a majority of the standard deviations increase, and cases

such as Ω(0.052, 0.01) and Ω(0.0725, 0.01) show a sharp increase (Figure 1.8). However,

this increase in the standard deviation can be biased due to the inclusion of the budding

neck into the calculation of Ω(αb, γ̄). The increase in standard deviation can be alleviated

by increasing the weight for bending stiffness or by increasing the critical value of γ. Out

of all trajectories, only Ω(0.52, 0.2) shows consistent decrease in the standard deviation.

Ω(0.6, 0.2), on the other hand, shows a jump in the standard deviation when the cell volume

approaches the target despite higher αb, suggesting the behavior of Ω(0.52, 0.2) may be an

isolated case.

1.3.2 Role of the budding neck in bud formation

It has been shown in experiments that chitin and septin ring assemblies are im-

portant in determining budding neck shape and other growth related activities during a cell
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Figure 1.8: Trend of standard deviation of selected Ω(αb, γ̄). The x-axis in each plot
represents the ratio of current cell volume to the target cell volume, 1.5V0. The standard
deviation for buds with the volume close to the target value is increased more when both
αb and γ̄ are small.

cycle [36]. In wild type yeast budding, the bud neck is roughly 1.0µm in diameter [9], while

mutants with impaired chitin and septin ring can exhibit bud necks with approximately

2.68µm in diameter.

It has also been shown that the septin based ring structure acts as a diffusion

barrier to the polarity factors including Cdc42 and cortical proteins, and further affects the

bud shape [84]. Here we investigate the mechanical contribution of the chitin and septin

rings to bud formation, as well as the shape and size of the bud neck.

Different levels of the rigidity of the combined chitin and septin ring, modeled as

an elastic ring with different linear spring coefficients, ks
ring, are tested and the bud neck

diameter is approximated from each simulation (Figure 1.9). Consistent with experiments,
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Figure 1.9: (A) The approximated diameter of the bud neck plotted against stiffness of the
ring krings = 0, 0.25, 0.5, 1, 2.5, 10, 25, 50. A sharp decay is observed when krings is small. (B -
D) Comparison of the bud shape and budding neck with (αs, αb, αa) = (0.5, 0.06, 0.1) fixed
and different rigidities of the chitin and septin ring. (B) krings = 0.0, (C) krings = 0.25, (D)
krings = 1.0. The corresponding approximated standard deviations are 0.1135, 0.0980, 0.1113
respectively, which are close to the standard deviation 0.0930 with krings = 50.0.

a direct effect of the decreased constraint of the chitin and septin ring in the simulations is

the widened budding neck. More precisely, we observe an sharp decay in the approximated

budding neck diameter as ks
ring increases (Figure 1.9A).

Moreover, the standard deviation of the bud radii does not significantly depend

on ks
ring, ranging between 0.093 and 0.114, indicating that the rigidity of the chitin and

septin ring does not impact the bud shape once budding occurs (Figure 1.9 B-D).
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Stiff chitin and septin rings slow down or prevent budding. To demon-

strate the impact of bud neck constraint originated from the chitin and septin ring on bud

emergence, we choose parameter sets where bud emergence takes extraordinarily long time

or is inhibited under strong bud neck constraint. For (αs, αb, αa, γ̄) = (0.5, 0.121, 0.1, 0.05),

buds can be formed with ks
ring = 50.0 and ks

ring = 1.0 but the former takes about

4.12 × 106 iterative steps to reach the bud size which is half of the mother cell, while

the latter takes roughly 1.06 × 106 iterative steps. Furthermore, we let (αs, αb, αa, γ̄) =

(0.5, 0.181, 0.1, 0.05) and test the same ks
ring values, and find bud inhibition in both

ks
ring values. This shows that strong bud neck constraint from the chitin and septin ring

can be challenging for bud emergence if the Föppl-von-Kármán number is not sufficiently

high.

To summarize, in addition to preventing the diffusion of polarity molecules in-

volved in the budding process, the rigid chitin and septin rings impact bud emergence and

determine the neck shape without changing the bud shape. The bud neck width reduces as

the ring stiffness increases and high rigidity may prevent bud formation.

1.3.3 Bud formation under different polarization patterns

Cdc42 orients actin cables to recruit more Cdc42 as well as new cell membrane

and cell wall materials before bud formation. The mechanical properties at the bud site are

regulated while the polarization of Cdc42 is established. Budding can start before Cdc42

obtains sharp polarity. In this section, instead of assuming the mechanical properties are

regulated by Cdc42 with a steep polarized distribution and using the constant weights
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(αs, αb, αa) at the bud site, we allow the mechanical properties to undergo a smooth

monotonic change from the mother cell to the bud region, which are altered most at the

apical tip of the bud site, and study the corresponding conditions for bud emergence and

the effect on bud shape.

In particular, we apply Hill functions to model the changes in mechanical properties

due to the concentrated Cdc42 along the cell membrane near the bud site, as described in

the supplemental information.

We use a Hill function: f(x) = min+ (max−min)/(1 + (K/x)n) where K is the

midpoint between min and max, i.e. f(K) = 0.5(min + max) and x denotes the relative

spatial position determined by the ratio x̄/X. The numerator x̄ is the distance between a

node on the cell surface and a fixed reference point X0 = (x0, y0, z0) where x0 and y0 are

the average of the x− and y−coordinates of all cell surface nodes, respectively, and z0 is the

z−coordinate of the tip of the bud. The denominator X is calculated as ε+ L0, where ε is

the maximal distance between the reference point X0 and the midpoint of each boundary

edge of the budding region, and L0 is the equilibrium edge length. The distance between

the chitin/septin ring and tip of the bud is set to be the midpoint in the Hill function, K,

in order to study the effect of sharpness of the changes in mechanical properties. Moreover,

K is updated as the bud grows, such that the relative location of the midpoint of the

weight function remains the same throughout the simulation. n is the Hill coefficient that

determines the sharpness of the gradient changing from min to max, causing the function

shape to be linear when n = 1 and change to stepwise when increasing n.
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Because of this shape variation, we model Cdc42 distributions at different stages

of polarization using a Hill function with different values of n. We define the weight as a

spatial function of Hill type α(x) = 1/(1 +
(
x
K

)n
) for each mechanical potential coefficient,

such that α(x) is between 0 and 1. The Föppl-von-Kármán number is not altered when

multiplied by weight 1, corresponding to the region of the mother cell, while the it is

maximized when multiplied by weight 0, corresponding to the apical tip of the bud site.

To couple this Hill type weight function in the model, we start by selecting a

reference point X0, which is determined via the average of x- and y-coordinate of all cell

surface nodes, and the z-coordinate of the tip of the budding region. The location of the

chitin and septin rings relative to the average radius of the bud is always set to be the

midpoint in the Hill function, K, in order to study the effect of sharpness of the changes

in mechanical properties. Moreover, K is updated as the bud grows, such that the relative

location of the midpoint of the weight function remains the same throughout the simulation.

All weight functions have maximum value 1.0 in the mother cell, indicating no

change in mechanical properties, and the minimum are set to be 0.5 for αs, 0.052 for αb,

0.1 for αa at the bud tip, and γ̄ = 0.05. Different Hill coefficients n are adopted to model

different polarization patterns. Larger n indicates a more concentrated change, i.e. the

weight functions converge to the constant weights in the previous section as n approaches

to infinity. We test n = 8, 17, 35, 70 to ensure the shapes of the corresponding weight

functions are distinguishable in terms of sharpness (Figure 1.11A).

We found that, for n = 8, the cell cannot bud. For n = 17, a bud successfully

emerges but exhibits a much narrower hourglass-shaped neck with an approximate diameter
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of 0.4 − 0.552 µm (Figure 1.11D). For n = 35, two different types of budding in terms of

the neck shape are observed in simulations: narrower and non-axisymmetric neck (Figure

1.11C1), and similar neck shape as the constant weight cases (Figure 1.11C2). The non-

axisymmetric neck shape occurs more frequently in simulations, and the neck diameter

ranges 0.87 − 1.005 µmapproximately, which is calculated via the average of the max and

min diameters in this case. For n = 70, budding can occur in a similar way as was observed

when the weights were constant (Figure 1.11B), which is expected for large n. Moreover the

resulting neck diameter was approximately 1.087−1.14 µm, which is similar to experimental

observations.

Overall, the simulations suggest that budding emergence depends on the concen-

tration distribution of the mechanical regulating molecules. The change in the mechanical

properties at the bud site controlled by a more polarized signaling molecule is more likely

to generate a bud with more robustness in the bud shape. The bud neck obtained with less

polarized weight functions becomes narrower and non-axisymmetric.

Role of chitin and septin rings by using Hill function to model the

spatially dependent weights. We perform the same model simulations with spatially

dependent weight functions by altering the mechanical properties at the bud site as described

in Section 1.3.1. Simulations performed with the Hill type weight functions are in agreement

with the cases with constant weights. Specifically, the bud neck width reduces rapidly when

ks
ring increases from 0 to 1 and remains more or less the same when ks

ring keeps increasing

to 50.0.
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Figure 1.10: Comparison of the bud shape and budding neck under nonuniform, spatial-
dependent changes in mechanical properties with different rigidities of the chitin and septin
ring. The Hill coefficient is 17 and (A) krings = 0.0, (B) krings = 1.0, (C) krings = 50.0. In all
three cases, the budding is initiated near the center of the budding region away from the
chitin and septin ring location. However, simulations with weaker bud neck constraint lead
to wider budding necks.

1.3.4 Bud formation under dynamic change in mechanical properties

Experiments show that Cdc42 polarizes at the apical tip region before bud for-

mation and this highly concentrated distribution is maintained at the early stage of bud

growth. As formation takes place, Cdc42 aggregates to reach a homogeneous distribution

within the bud site [8]. Before cell division, Cdc42 is redirected from the bud cortex to

the bud neck. This suggests that regulation of the mechanical properties might change

temporally with strongest effect before bud formation or right after the apical protrusion.

Therefore, we test a temporal restoration of altered mechanical properties at the bud site

in our model to see whether the strong mechanical regulation, if only present in a short

period at the beginning of the budding process, is sufficient or not.

Temporal restoration functions. Due to the energy dissipation approach used

for mechanical relaxation in our simulations, the temporal restoration of the bud mechanical
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Figure 1.11: (A) Hill functions with different Hill coefficients used for spatially dependent
changes in mechanical properties at the bud site. The Hill coefficients are chosen to be
n = 8, 17, 35, 70. The weight represents level of the change, with being altered most at
distance 0.0 and unaltered at distance 1.0. (B-D) Sample budding shapes based on different
Hill coefficients. (B) n = 70, (C1, C2) n = 35, (D) n = 17. Two different shapes of the
budding neck are observed for n = 35: non-axisymmetric bud neck (C1) and axisymmetric
bud neck (C2). Between these two modes, the non-axisymmetric bud neck appears more
frequently in simulations.

properties is assumed to be cell volume based, i.e., the evolution in time of the weights in

altering mechanical potentials at the bud site is assumed to be linearly increasing with

respect to the volume:

α(i,V )ki = α(i,0)ki + (α(i,V ′)ki − α(i,V0)ki)(V − V0)/(Vm − V0) (1.9)

i ∈ {s, b, a} (1.10)

Here α(i,V ) represents the weight applied to the linear spring potential (ks), cosine

bending potential (kb), or the area expansion resistance (ka), based on the current volume

V . When the volume reaches the target volume Vm, the mechanical properties of the bud

become identical to those of the mother cell. Here, V0 represents the initial volume of the

cell.

Temporal restoration of bud mechanical properties leads to symmetric

bud shape. To test different restoration speeds from the altered state, we change the value
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of Vm. For example, the mechanical properties at the bud site will be fully restored to the

same level as the mother cell when the cell volume doubles, i.e. Vm = 2V0.

Similarly, setting Vm = 1.5V0 and Vm = 3V0 lead to expedited and delayed

restoration compared to Vm = 2V0, respectively. Based on the results of model calibra-

tion, we test the following parameter set as the altered state: (αs,V0 , αb,V0 , αa,V0 , γ̄) =

(0.5, 0.0151, 0.1, 0.05). In simulations, the weights αs, αb, αa are changed in time follow-

ing Eq.1.9 We found that temporal restoration of the mechanical properties leads to bud

formation with more spherical and symmetric shapes (Figure 1.13). Regardless of different

choices of the restoration speed, improved bud roundness was observed once the bud formed

(Figure 1.12A). Namely, we compared the local standard deviations between buds satisfying

total cell volume lies within 1.39V0 − 1.45V0 . Among these simulations, we choose those

with a parameter set containing γ̄ = 0.05 and αs = 0.5. Aside from the overall standard de-

viation (SD) calculated over the whole bud, the local standard deviation is selected to make

a more detailed comparison. These SDs are quantified by using the upper hemisphere of

the bud, denoted SDu, lower hemisphere of the bud, denoted SDl, and standard deviation

of the bud excluding the budding neck, SDn. SDu is calculated using cell surface nodes

positioned above the center of the bud. SDl is calculated using cell surface nodes positioned

between the bud neck and the center of the bud. SDn is calculated by considering only

nodes whose z-coordinates are in the upper 90% of the height of the bud. The optimal

values, based on SDn, are presented in Table 2.5.

In addition, we observed that the restoration speed had a significant impact on

bud formation, as faster restoration led to bud inhibition, such as Vm = 1.5V0. On the other
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Table 1.5: Optimal standard deviation (SD) of the bud for uniformly altered and restorative
mechanical properties. The SDs here are the lowest value obtainable from simulations. For
rows with αb, the values are extracted from data used earlier in this chapter. Overall,
the local standard deviation of the bud using restorative mechanical properties is lower
compared to the uniformly altered mechanical properties cases.

Overall SD SDu SDl SDn

αb = 0.052 0.0630 0.0490 0.0663 0.0602

αb = 0.06 0.0850 0.0766 0.0824 0.0836

αb = 0.09 0.0707 0.0707 0.0630 0.0671

αb = 0.121 0.0514 0.0409 0.0596 0.0425

Vm = 2.0V0 0.0415 0.0368 0.0455 0.0350

Vm = 3.0V0 0.0568 0.0544 0.0577 0.0552

Vm = 1.75V0 0.0369 0.0282 0.0438 0.0268

hand, when the restoration speed was slower, such as Vm = 3.0V0, the simulation showed

asymmetric growth.

As the growth of the bud always starts with a tubule, the standard deviation

is higher at the early stage. Afterwards, the bud growth becomes more isotropic, and

the standard deviation reduces. After that, asymmetric expansion leads to an increasing

standard deviation at the late stage of the simulation. Therefore, the overall curve of the

standard deviation shows nonlinearity. The speed of restoration also affects the standard

deviation. More specifically, slow restoration results in fast transition from tubule growth

(high standard deviation) to isotropic growth (low standard deviation). In addition, slow

restoration also leads to high standard deviation during the late stage of simulation.

For Vm = 3V0, the bud is initially generated in a spherical shape. Due to the slow

restoration of mechanical properties allowing efficient expansion of the bud, the bud shape

gradually becomes more ellipsoidal, thereby achieving a standard deviation of bud radii

similar to which is observed under time-independent changes in mechanical properties. This

suggests a well-coordinated restoration of the bud mechanical properties may be necessary
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for symmetry maintenance of the bud. For Vm = 2V0, a more symmetric bud shape is

maintained after protrusion in comparison with the time-independent cases presented in

Section 1.3.1 (Figure 1.13).

Here, we compare the bud shapes with the similar volumes under different patterns

of changes in the mechanical properties. According to the standard deviation of bud radii,

bud shape is more spherical with the temporal restoration as described in Section 1.3.1 and

can be observed visually.
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Figure 1.12: (A) Sample simulation of bud formation under temporal restoration of the cell
surface mechanical properties in the budding region. After protrusion occurs, the growth of
the bud starts as a tubule growth (left) then transitions to a more spherical expansion (right)
compared to the simulation with time-independent changes in mechanical properties. In
this example, Vm = 2V0. (B) Standard deviation of bud radii vs. volume ratio V/V0 . The
initially high standard deviation (SD) corresponds to the tubule growth at the earliest stage
of budding. The SD gradually decreases as the bud attains a more spherical shape. Higher
target volume, Vm, implies slower restoration speed. The difference in restoration speed also
affects how fast the bud growth transitions from apical (tubule) growth to isotropic growth,
which later transitions into asymmetric growth as observed in the time-independent change
in mechanical properties cases (i.e. fixed mechanical properties for budding region).
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Figure 1.13: Comparison between bud shapes obtained using static mechanical properties
(Section 1.3.1) and using temporal restorative mechanical properties (Section 3.4). Param-
eter sets used are as follows: (A) (αs, αb, αa, γ̄) = (0.5, 0.09, 0.1, 0.1), (B) (αs, αb, αa, γ̄) =
(0.5, 0.052, 0.1, 0.05), (C) (αs, αb, αa, γ̄) = (0.5, 0.121, 0.1, 0.01), (D) Restorative mechani-
cal properties with initial (αs, αb, αa, γ̄) = (0.5, 0.0151, 0.1, 0.05). The visual comparison is
made at cell volume V ≈ 1.39− 1.45V0.

1.4 Discussion and conclusions

In this chapter, a novel 3D coarse-grained particle-based model of a single cell

is introduced and used to investigate the role of local changes in cell surface mechanical

properties during the early stages of yeast budding. The model combines nonhomogeneous

representation of the cell surface with stiff ring structures to study cell growth and budding.

It is calibrated using experimentally measured Young’s modulus of the budding yeast cell

wall [22]. The novelty of this study lies in testing a novel hypothesized mechanism of cell

budding combining changing mechanical properties of the budding region with the impact

from the constraint of chitin and septin rings.

Role of the change in mechanical properties. Model simulations supported

the hypothesis that the bud cannot emerge unless the mechanical properties are weakened

in the bud region. We also demonstrated that in the case of the bud region being as rigid as,
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or even more rigid than the mother cell at the early stage of budding, budding either fails

to occur or occurs with a highly unbiological shape. By assuming mechanical properties

being weakened uniformly at the bud site by the polarized molecules, bud emergence was

shown to depend on the FvK number (dimensionless ratio between stretching and bending

moduli). Computationally when the velocity of adding new cell wall materials is reduced

by increasing the target strain for area expansion, γ̄ , bud formation requires a higher FvK

number when weakening the cell surface of the bud.

Growth and maintenance of the shape of the bud. For an emerging bud,

symmetrical shape is biologically important because it indicates the balance between the

composition and integrity of the bud surface, which is observed in wild type yeast budding.

The sphericity of the bud shape, described via standard deviation of the bud radii, was

shown to be lower for: (1) comparatively less weakened bud cell surface characterized by

lower FvK numbers or (2) reduced rate of cell surface material insertion characterized by the

increase in critical value of γ. It is known that the chitin and septin rings serve as diffusion

barriers for polarity factors at the early stage of budding. By using a computational model,

we found that the resistance provided by the stiff rings prevents or slows bud growth. We

also showed that neck diameter reduces as the stiffness increases, without affecting the bud

shape. Also, by testing bud mechanical properties being altered by polarizing molecules

with different distributions at the bud site throughout the duration of the budding process,

it was shown that a cell was more likely to generate a bud with a more symmetric shape

under a more polarized distribution. The bud neck obtained with less polarized distributions

was narrower and non-axisymmetric.
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Figure 1.14: (A) Sample simulation snapshot where the budding region is given the identical
mechanical properties as the mother cell. The bud emergence is only possible when the new
cell surface materials are introduced constantly by randomly selecting pairs of adjacent
triangles in the budding region for growth. The resulting shape resembles the yeast mating
process instead of yeast budding. (B) Sample simulation snapshot where α∗ ≥ 1 (see section
3). Bud emergence is possible when FvK > 2, but the resulting bud shape and bud neck
are unbiological.
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Role of the temporal change in bud mechanical properties. By incorpo-

rating a dynamical restoration of weakened bud mechanical properties to the level of the

mother cell at the bud site, the resulting bud shape was shown to be more symmetric and

spherical, as compared with the ones with fixed mechanical properties. Fast restoration

was shown to prevent bud formation and slow restoration to lead to development of an

asymmetric bud.

Computational implementation of the model. In this study, the triangular

mesh was used to directly model mechanical properties of a budding yeast cell. This is

different from another more traditional approach where the triangular mesh is used as the

discretization technique to approximate solutions to partial differential equations. In our

mechanical model, by using parameters scaled with specific mesh size in energy functions,

all the mechanical properties remain the same and the simulation results under different

conditions should not be affected by the mesh size [59]. To verify that simulation outcomes

are independent of the mesh size, we have tested our model on a refined mesh, which

initially consists of 5120 triangles, and obtained the same conclusions as those obtained

on the coarser mesh. In order to achieve both accuracy and efficiency of the numerical

simulations, we used a coarser mesh with 1280 triangles as the initial condition for all

simulations in the paper. Detail of mesh refinement study is presented in Section 1.4.2.

Model calibration. So far the model was calibrated based on the mechanical

properties of the mother cell, final bud neck size and bud shape. We also intend to cali-

brate the time scale in future using more precise and consistent experimental data such as

velocities of emerging buds, when it becomes available. Notice that model simulations show
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that different mechanical properties of the bud region give rise to different velocities of bud

growth. We hope that our model predictions might motivate experimentalists to conduct

measurements of bud mechanical properties, e.g. AFM measurements, during bud initia-

tion. Once the time series of experimental measurements becomes available, our model can

be calibrated to replace relaxation time step by biologically realistic time. An example of

the calibration of the time scale under the assumption that the bud surface area increases

linearly in time as follows:

In order to calibrate the time scale of the model, it is important to obtain the

mechanical properties in the bud region and velocities of emerging buds in experiments,

which are currently still insufficient and not consistently verified in this field [32, 59, 2].

Here we propose a method to calibrate the time scale of our model by assuming that

the bud surface area linearly increases in time. It can be generalized to calibrate the

model if different mechanical properties or different rates of the bud growth are obtained

in experiments. In Klis et al. [59], it is suggested that surface area of the growing buds

increases linearly and the rate of cell surface expansion is approximately 0.67µm2/min.

Based on this data, the time required for a bud to reach 50% of the mother cell volume is

approximately 44 minutes. To model the constant cell surface expansion, we modified the

growth algorithm used in this paper by introducing an upper limit on the amount of cell

surface material that can be introduced during each cell growth cycle. Without introducing

the upper limit, the expansion rate will become unbounded in the simulation.

Let the target area threshold γ̄ = 0.05 and set the upper limit of the number of new

nodes added per growth cycle to be one, then the cell surface expands by approximately
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0.0741µm2 during each growth cycle. Simulations showed that in order to reach a local

minimum of the total energy, it was enough to use relaxation step ∆t = 0.001 and perform

750 relaxation steps during each relaxation cycle. The edge re-connectivity algorithm is

applied once every 50 relaxation steps to improve sphericity and smoothness of the bud

surface. In calibration simulations, it took approximately 520 relaxation and growth cycles

to reach the target volume of the growing bud. Since the bud surface expansion is linear,

each relaxation cycle and growth cycle correspond to the same time period in experiments.

Therefore, each relaxation cycle is equivalent to 44min/520 ≈ 0.0846min and each relax-

ation step is equivalent to 0.0846min/750 = 1.128 × 10−4min ≈ 0.00677seconds in real

time. Therefore, the relaxation step ∆t = 0.001 in the simulation corresponds to 0.00677

seconds in experiments.

Based on this calibration, we found that the growth algorithm gave rise to approxi-

mately 0.58µm2/min expansion rate of the bug surface, which is close to the experimentally

observed value. However, this time calibration is only meaningful if either the bud mechani-

cal properties or the target area threshold are experimentally obtained. The same approach

can be applied for the time scale calibration if different mechanical properties or different

are measured in experiments.

Testable predictions and suggested experiments. Our model simulation

results also predict that budding can occur only if the bud region becomes less rigid and

easier to bend at the early stage, which might be due to the degradation of cell wall com-

ponents. To test this prediction, experiments can be carried out to measure the mechanical

properties of the bud region during the initiation of budding. The underlying mechanism
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can be further investigated by applying cell wall degrading enzymes to a normal yeast cell

and measuring the consequent mechanical change in the cell wall β-glucan network. Bio-

logically a bud should eventually achieve surface elasticity comparable to the mother cell,

otherwise multiple rounds of reproduction will lead to defective cells with a highly weakened

cell surface. To verify that, experimental measurements of the mechanical properties of the

bud region at different stages of budding are needed. Coincidentally, the polarization signal

Cdc42 loses its polarized state after some time during the budding process. A time series of

measurements of the surface elasticity and the Cdc42 distribution could confirm predictions

of the temporal change on the bud mechanical properties obtained by our model.

1.4.1 Future directions

The 3D model described in this chapter, although calibrated by using data for

budding yeast, can be applied to study cell growth and budding in other biological systems.

It allows one to study the effect of local regulation of mechanical properties leading to

global morphological changes. For instance, investigating how adverse effects due to local

perturbations in the mechanical properties can propagate during growth is important for

getting a better understanding of morphogenesis. In future, we plan to include in the

modeling approach dynamic biochemical signaling networks submodel coupled with the

cellular and subcellular mechanical submodels.

Namely, to investigate the regulation of the mechanical properties more precisely, it

is worthwhile to include the model of spatiotemporal dynamics of the signaling molecules.

The triangular mesh used for the mechanical model, with re-meshing techniques imple-

mented to improve the element regularity, would be used to simulate diffusion-reaction
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systems of equations describing biochemical signals. Several studies have already studied

the connection between biochemical signalling and cell mechanics in mating yeast and tubule

formation [5, 18, 108]. However, understanding of the coupling between the biochemical

signaling pathways and cell mechanics for the yeast budding process is still incomplete. A

biologically calibrated mechano-chemical model would be helpful providing predictions to

be tested in future experiments.

The model described in this chapter oversimplifies contributions from cytosol com-

ponents of the cell including nucleus, vacuole and actin-filaments. At the same time, the

actin-filaments play a very significant role in cell surface expansion [76, 3, 114]. The nucleus

also plays an important role especially in G2 and M phases of the cell cycle [52]. Recently

our group developed a more refined 2D mechanical SCE type model with detailed descrip-

tion of the nucleus, actomyosin and cadherin, to study tissue bending mechanisms in a wing

of a Drosophila embryo [79]. We are now working on incorporating these new components

as well as biochemical submodel into our 3D model of an asymmetric cell growth which

can be also used for studying viral budding and other vegetative reproduction processes

performed via budding.

1.4.2 Mesh refinement study

To study the effect of mesh refinement, we refined the mesh initially used (1280

triangles) to a mesh with 5120 triangles. Bud emergence behavior is similar between the

coarser and refined mesh (Figure 1.15).
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Figure 1.15: Bud emergence diagram for simulations on the refined mesh. Refined mesh
initially has 5120 triangles while the coarser mesh used in the main text has an initial mesh
of 1280 triangles. Each data point represents a single trial. The results are similar to the
results obtained on the coarse mesh.

We showed earlier that varying the stiffness of the ring structure affects bud neck

width in simulations on a coarser mesh (Figure 1.9). Simulations on a finer mesh show that

bud neck width undergoes a sharp decay as the stiffness increases. Results are similar to

the ones obtained on the coarser mesh. On both coarser and refined meshes, the cell surface

with the highly negative curvature near the neck region was maintained once a bud formed

(Figure 1.16).

Simulations on both coarse and refined meshes demonstrate that temporal restora-

tion of bud mechanical properties leads to more symmetric bud shape. Faster restoration

to the level of the mother gives rise to more symmetric budding (Table 2.6).
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Figure 1.16: plot of the bud neck width simulated on the refined mesh. A sharp decay is
observed when krings < 5.

Table 1.6: Comparison of the standard deviations (SD) of bud radii between cases of tem-
poral restoration of bud mechanical properties and cases of fixed bud mechanical properties,
with γ̄ = 0.05, on the refined mesh.

FvK 1.0 1.5 2.0 3.5

SD 0.1288 1.1319 0.2031 0.3262

Vm 1.25 1.5 1.75

SD 0.0981 0.1054 0.1217

The comparison is made at V = 1.5V0. The temporal restoration cases were

performed for FvK = 3.5 as initial condition and mechanical properties in the bud region

were allowed to gradually be restored to those of the mother cell at different cell volumes

Vm. While the values of the standard deviation obtained on the refined mesh are slightly

higher than those obtained on the coarser mesh, the qualitative trend remains the same.

The discrepancy in the values obtained in cases of different mesh sizes may be due to the

sample size and the stochastic components of the model. Sample snapshots of the bud
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formation on the refined mesh are provided in Figure 1.17. Shape evolution is similar to

those obtained on the coarser mesh.

Figure 1.17: Sample snapshots of the bud formation simulations on the refined mesh.
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Chapter 2

Cellular Budding at Nanometer

Scale: Nanoparticle Wrapping,

Endocytosis and Viral Budding

2.1 Introduction

2.1.1 Biological background

Cellular trafficking is an important process a living cell relies on to survive and

communicate with other cells in the environment. A widely utilized form of cellular traf-

ficking is cellular budding characterized by the local protrusion on a cell surface that results

in a new vesicle separated from the cell surface it originates from. Many forms of cellular

budding exist, and can work under very different mechanisms. In this chapter we focus on

the nanometer length scale case, such that the cellular budding is not related to cell growth
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but a local protrusion on a cell surface. At this length scale, cellular budding often takes the

form of endocytosis. Endocytosis is a biological process best described as the cellular uptake

of nanoparticles which are the nanometer scale aggregates of biological molecules. Repre-

sentative subtypes of endocytosis include the particle-devouring phagocytosis, the lattice-

building clathrin-mediated endocytosis, the ligand-binding receptor-mediated endocytosis,

and lipid-mediated endocytosis. In addition, new endocytic pathways such as recently dis-

covered fast endocytosis and ultrafast endocytosis [28, 56, 112] also exist. Endocytosis is not

only utilized by cells to acquire nutrients, it is also used for synaptic transmission between

neuron cells to exchange information. Furthermore, studies are being conducted on getting

better understanding of endocytosis to help with designing an efficient method for drug

delivery and shedding light on the biology of malignant cells to improve cancer treatments

[75, 77, 93].

On the other hand, viral infection of a healthy cell is a prime example where

endocytosis is utilized for cellular entry. Some viruses such as the alphavirus utilize the

lipid-mediated endocytosis [28], while HIV-1 utilizes the receptor-mediated endocytosis [90].

After a virus successfuly infects the cell and undergoes viral reproduction, new viruses

need to be released from the host cell to the environment. This is often done via two

distinct methods: burst of the host cell and viral budding. Viral budding is a virus-releasing

process that is comparable to endocytosis. The process initializes from the interior of the

cell and the vesicle produced is released into the exterior environment. Virus can start

as an assembled ”core”, a closed shell containing genetic information, in the cytosol of

the host cell. The viral core travels toward the cell membrane and uses the endocytosis
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process to exit the host cell [81]. Alternatively, virus can be formed from individual proteins

carrying genetic information in the cytosol that travel and aggregate on the cell membrane

to form a protruding vesicle [14, 107]. In fact, both exiting mechanisms are analogous to

the lipid-mediated endocytosis and the clathrin-mediated endocytosis, but with the exterior

environment of the cell as the final destination.

The cell membrane in the form of a double-layered thin sheet, often called the

lipid bilayer, plays an important role in endocytosis. Properties of the cell membrane are

heavily influenced by its biochemical composition; different properties would arise from dif-

ferent concentrations of the intra-membrane molecules. Under the normal circumstance a

cell membrane exists in the so-called liquid-disordered phase that favors membrane-bound

diffusion and membrane fluctuation. The cell membrane can also undergo rapid biochem-

ical change by increasing the concentration of glycoproteins and cholesterols, which leads

to structural change in the packing of intra-membrane molecules. For instance, upon the

increase in the concentration of cholesterol, the ordering of the membrane molecules trans-

forms into a well-ordered state giving rise to the ”membrane raft”, restuling in increased

bending rigidity of the membrane [46, 99, 62].

Aside from the bending rigidity, an equally important property of the cell mem-

brane is the membrane fluidity (viscosity). The concept of membrane fluidity is best under-

stood as the ability to adapt to drastic geometric deformation, allowing a cell to generate

many different shapes. In the next section we will discuss the computational modelling

approaches centered around the general endocytosis and viral budding.
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2.2 Modeling and method

2.2.1 Modeling background

Many researchers have focused on developing accurate and efficient representations

of the cell membrane in different spatial scales. At the all-atomic level, model frameworks

such as CHARMM, AMBER, Slipids, and GROMOS describe the cell membrane with

detailed representation of lipid molecules, intra-membrane proteins, and water molecules

surrounding the membrane, and are sufficiently general for a complex simulation [71]. At

the (supra-) coarse-grained level, Cooke et al. [21] developed a coarse-grained self-assembled

implicit solvent model based on the collective behavior of multiple linked beads as a generic

representation of the lipid-bilayer. In their model, water molecules are no longer explicitly

represented. A similar model independently proposed by Brannigan et al. [11] incorporates

the same particle-based approach with different number of linked particles representing each

individual lipid molecule. In both the all-atomic model and the (supra-) coarse-grained

model described here, the membrane is represented as a two-layered system of linked beads.

The key feature of these membrane models is that the general membrane behavior is deter-

mined via the attractive-repulsive interaction, such as the one described by Morse potential,

between different beads. In [21], albeit within very specific ranges, experimentally relevant

values of bending rigidity of the lipid bilayer are obtained. In their setup, the bending

rigidity is controlled by the maximum range of molecular interactions between tail beads

of the coarse-grained lipid molecules. Adopting the model developed by [21], Ruiz-Herrero

et al. [95] studied the mechanism of budding of nanoscale particles and proposed a min-

imal model producing results in agreement with the elastic theory. Similar studies were
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performed by Gao et al. [33] and Spangler et al. [105], with their own modifications of the

implicit solvent model, to investigate the budding of nanoparticles with different forms of

adhesive interactions and particle sizes.

In addition to the two-layered implicit solvent models, one-layer membrane model

has also been developed and widely utilized. Major setups for the one-layer membrane model

include interacting spheres and are similar to the implicit solvent model described earlier,

and involve triangulated surface type. For interacting spheres type model, Feng et al. [31]

proposed a one-layer model which takes 3D blocks of the model membrane in the all-atomic

model and the implicit solvent model and simplifies these blocks into interacting spheres.

In his work, the nature curvature of the membrane is described via the angle between the

vertical axis of interacting spheres. For triangulated surface type model, Kohyama et al.

proposed a Monte Carlo based simulation with the tether-and-beads triangulated mesh

for crystalline budding process [60] which utilizes bond-flipping algorithm to represent the

fluidity of the membrane. In the triangulated surface model, membrane curvature can be

described in many different methods, and the choice often depends on the exact construction

of the model.

Nanoparticle wrapping process has been studied extensively in 2-dimensional setup.

The elastic theory is a well-studied and extensively developed subject. Researchers includ-

ing Raatz et al. [94] and Yi et al. [115] have all provided comprehensive studies on budding

and endocytosis, with models not restricted to rigid spherical nanoparticles, resulting in

valuable conclusion on conditions affecting the theoretical predictions.

55



2.2.2 Model description

Our choice of coarse-grained particle-based membrane model is based on the dis-

cretized triangulated 2D surface embedded in 3D domain. In our model the particles (nodes)

are connected via linear springs and the bending angle between any two edge-neighboring

triangles is determined by the dihedral angle of the outward normal vectors. Nodes not

connected within mesh also interact with each other through volume exclusion.

The initial configuration is a flat sheet with triangulated hexagonal meshes. The

membrane model aims to capture the basic and yet important elastic characteristic cell

membrane. Membrane mechanics are described by the energy potentials associated with

various membrane properties. For each node in the triangular mesh, to maintain the discrete

size of the triangular mesh, a preferred equilibrium length between the nodes is prescribed.

In this representation, the membrane would respond accordingly to lateral compression or

extension. Because such reaction is linked to the level of lateral deformation, it is described

using the simple linear spring potential which is suitable for small perturbation.

Elin−sp =
ks
2

(R−R0)
2 (2.1)

Like the triangulated mesh proposed by Okuda and Eiraku [85], each individual

triangular element comprises a constant number of membrane molecules. Deformation of

a triangle, in this setup, represents the change in the geometric arrangement of the lipid

molecules. Between any two unlinked nodes, the universal volume exclusion is applied to

prevent self-intersecting. The curvature of the surface can be represented using sin(θ/2) =

(12C2
0/R

2
0 − 3)−1/2, where C0 is the radius of curvature, as introduced in Zandi et al. work

on virus capsid assembly [111]. The bending is chosen to be modeled by the cosine angle
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potential based on the dihedral angle between adjacent triangles.

Ebend = kb(1− cos(θ − θ0)) (2.2)

= kb

(
1− N1 ·N2

|N1||N2|
cos(θ0)−

(N1 ×N2

|N1||N2|
· ûd

)
sin(θ0)

)
(2.3)

The cosine angle potential is rewritten using the cosine identity into the dot prod-

uct and cross product representation. Here ûd is the normalized vector representing the

edge shared by two triangles with specific orientation. This expansion of the cosine angle

potential is important since the derivative of θ would lead to differentiation of arccos(∗)

where the singularity arises when the unit normal vectors of two triangles are parallel.

Due to the incompressibility of the membrane, the surface elastic energy of each

individual triangular facet is described using a harmonic potential. This in conjunction with

the cell volume mentioned earlier controls the in-plane elasticity of the model membrane.

Imposing the incompressibility condition also leads to the conservation of the number of

membrane molecules per triangular element [85].

Earea =
ka(A−A0)

2

2A0
(2.4)

Interaction between the membrane and another object can be described by, if

such interaction involves adhesion-repulsion relationship, the standard 12-6 Lennard Jones

potential. 12-6 Lennard Jones potential is the case of the general 2n-n Lennard Jones

potential with n = 6.

Eadh = ε
((Rmin

Rij

)2n
− 2
(Rmin

Rij

)n)
(2.5)

Since the model is applied to modeling adhesive interactions resulting in the ad-

herence of the model membrane to the target particle, it is possible that different domains
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on the model membrane may come into close contact. To prevent membrane crossing,

self-avoiding property is imposed in the form of Morse potential:

Evex = kvex

(
1− exp(−α(Rij −Rvex

0 ))
)2

(2.6)

Based on the potential energies associated with different membrane characteristics,

we can describe the dynamics of the system by accounting for all energies present in the

system:

Etotal =
∑

Elin−sp +
∑

Ebend +
∑

Earea +
∑

Eadh +
∑

Evex (2.7)

2.2.3 Membrane-particle interaction

As described in the membrane model, the solid (or elastic) particle representing

the viral capsid shell interacts with the membrane through 2n−n Lennard Jones potential.

The viral capsid shell can be represented as a rigid spherical object, an infinitely stiff solid

particle built from aggregated sub-particles, or a soft elastic solid particle.

In the case of an elastic solid particle case, another set of parameters for equi-

librium bond length, preferred bending angle, and area conservation constraint is required

Given different parameter values, the interaction between the cell membrane and the elastic

particle of different rigidity can be simulated.

We investigated the scenario where the budding nanoscale particle is a rigid sphere.

The interaction range is defined to be α+R0 where α is the radius of the particle and R0

is the thickness of the membrane.
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2.2.4 Membrane fluidity (viscoelasticity)

The exact concept of membrane rigidity is a tricky matter. Because plasma mem-

brane is capable of in-plane reorganization of membrane molecule, the effective rigidity can-

not be represented by a simple bending coefficient. It is well established that the plasma

membrane can have different compositions thus the resulting mechanical properties are

different. One particularly well known contribution is the cholesterol, which accounts for

approximately 30% of the plasma membrane, such that its concentration directly influences

the membrane “stiffness” [91]. Several experiments also focused on the effect of depletion

or enrichment of the cholesterol. For instance, noticeable influences were observed on the

interaction between a cholesterol concentration altered plasma with an external components

such as viral proteins and cytoskeleton [106, 43]. Hence, in addition to the standard ap-

proach for establishing a membrane model, a combination of components involving some

forms of bending coefficient, stretching coefficient, and area incompressibility, the fluidic

nature of the membrane must be modeled as an adaptive process reacting to external or

internal stimuli.

There are in general two approaches to model the fluidity (viscoelasticity) of the

membrane. The difference depends on whether the mesh of the membrane maintains initial

connectivity or it is updated dynamically. For the maintenance of the initial connectivity

of the mesh, Maxwell model and Kelvin-Voigt model are often used. The two models can

be described as a sequentially connected or parallelly connected linear spring and damping

(viscosity) spring, respectively. These models ensure that the mesh, or the system it is

trying to mimic, does not respond to stress elastically. The damping (viscosity) term aims
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to increase resistance when the stress is continuously applied and impede relaxation when

the stress is removed.

The Monte Carlo method for the edge re-connectivity is a well-established ap-

proach which has been shown to effectively capture the topological change of the plasma

membrane. The fluidity is represented by a rearrangement of the triangular network through

cutting an existing bond and establishing a new bond between nodes [40, 1]. Using this

approach, the membrane fluidity is therefore characterized by the introduction of non-

hexagonal polygons which have non-trivial curvatures.

We choose the metropolis algorithm for bond-flipping probability computation

due to its simplicity and fulfillment of the detailed balance condition, such that the traverse

between different states of connectivity is reversible. Hence, given a pair of edge-sharing

triangles, ∆j,k,l,i, the probability that edge eik would be cut and re-establish as ejl is

P (ejl|eik) =
{

1, exp
(−(Eejl − Eeik)

ω

)}
(2.8)

where Eeik and Eejl are the local energies in the system pre-bond-flip and post-bond-flip

states, respectively. ω has the unit of energy and determines the acceptance probability.

When ω increases (such as in case of an increase in temperature when ω = kBT ), it leads

to increased fluctuation. Increased acceptance probability leads to the scenario where the

topology of the system is more prone to change. Decreased acceptance probability results

in reduced fluctuation.

This re-meshing approach represents the tendency of lipid molecules to experi-

ence in-plane reorganization. When the acceptance probability is sufficiently low, minimal
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movement of lipid molecules would be observed as if the membrane is similar to a solid

material.

Computational implementation of the edge-reconnectivity algorithm.

The edge-reconnectivity algorithm described earlier can be understood as traversing through

a state space searching for particular edge-connectivity that allows the current system to

better approach the target shape. Consider a triangulated 3D surface with N edges, the

initial edge-connectivity serves as state S0. If we choose one of the edges and switch the

connectivity within the subsystem, a new state is generated. This implies that there exists

S1, S2, · · · , SN states that are connected to S0. For state Si, the same idea can be applied

such that S1,1 = S0, S1,2, · · · , S1,N are the states connected to S1. This process can be

repeated indefinitely since for every edge-reconnectivity applied, new states can be generated

accordingly. Note that in this the detailed balance can be achieved, namely that for any

two states Sa1,a2,··· ,aN and Sb1,b2,··· ,bN , there exists a mutual path, albeit such path is not

unique and multiple paths can exist.

Model representation of membrane fluidity. In the particle-based model, the

viscosity of the membrane is represented by the strength of adhesive interaction between

molecules. Stronger interaction leads to lower fluidity (i.e. higher viscosity) that impedes

the membrane deformation. In the lattice based model without considering bond breakage

(i.e. deletion of an existing edge), the membrane fluidity can be understood as the efficiency

of the current lattice achieving lower energy state through several attempts of re-meshing

algorithm. Hence, one can computationally capture the membrane fluidity by controlling

the frequency or the likelihood of the accepted reconnectivity. In this setup, the lower the
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frequency or likelihood of accepting a proposed reconnectivity, the less likely the current

mesh will evolve to a configuration that gives a lower energy state.

In this chapter, we utilize two different forms of membrane fluidity. We vary

the acceptance probability by either changing the size of sampling for bond reconnectivity

attempts or artificially changing the acceptance probability (resulting in the increased and

decreased fluctuation) while the number of bond flip attempts is fixed. In both cases, the

endocytosis process has been shown to be affected by the membrane fluidity.

2.2.5 Simulation method

The choice of position update scheme of the nodes depends on the type and goal

of the simulation. For a non-equilibrium system evolution, methods such as the explicit

Euler, implicit Euler and velocity Verlet algorithm are good candidates. Methods such as

the Gradient descent and quasi-Newton BFGS update are more suitable for searching of

the equilibrium configuration of the system.

In this thesis, we chose to employ the forward Euler scheme. Motion of each node

is described using the following equation:

cẋi = −∇xiEtotal (2.9)

xi(t+ 1) = xi(t) + ẋi(t)∆t (2.10)

where c is the friction term depicting the viscosity of the system. This method is analogous

to the steepest descent method in optimization theory. Hence, based on energy dissipation,

the system will relax to a locally minimal energy state. The force is computed analytically

to avoid the approximation error risen from numerical differentiation.
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Model simulations are performed as follows:

1. Initialize the mesh of the system, data structures and parameters. Data structures of

the system include the information on:

(a) X-, y-, and z-coordinates of each node in the mesh

(b) Indices of the two nodes of each edge

(c) Indices of the three nodes of each triangle

(d) Indices of the three edges of each triangle

(e) Adjacency of triangles in the mesh

(f) Adjacency of nodes in the mesh

2. Apply forward Euler method to update each node position up to N steps.

3. Randomly sample a pre-determined number of edges to perform Monte Carlo bond

flip algorithm. Update the data structures in step 1 accordingly.

4. Repeat step 2 and 3 until simulation time expires (MD) or convergence is observed

(MC).

The model implementation was initially prototyped using MATLAB and has been

ported to C++. The MATLAB code was parallelized to improve performance, but it became

inefficient when the mesh size exceeds 200 nodes. Furthermore, the edge re-connectivity

algorithm necessary for representing the membrane fluidity proved to be the most time

consuming operation. Hence the MATLAB code is converted into C++ code with imple-

mentation on a GPU (graphic processing unit) computing platform with the help of Samuel
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Britton. GPU implementation was at least 100-fold faster than the MATLAB implemen-

tation. The C++ version of the code can be found on github and the link is provided in

the previous chapter. The code has been modified to incorporate cell growth algorithm but

can be easily changed to disable the growth algorithm for nanoscale budding simulation.

2.3 Model validation

2.3.1 Viscoelastic properties

As described in the earlier section, viscoelasticity is an important property of the

cell membrane. When cell membrane is under non-vanishing stress, its viscoelastic property

allows the membrane to reduce total energy through restructuring molecular ordering.

To demonstrate and verify the membrane viscoelastic properties, we used a mesh

with identical width and length. A pair of parallel boundaries were fixed and a gravitation-

like force in the x-direction F = (g, 0, 0), where g is the constant force acting on each node,

to induce an in-plane flow [83, 96]. When the membrane is given zero bond flip attempt, the

solid-like behavior, characterized by the increase in the total energy of the system due to

induced strain, is immediately observed. Another test is performed where the frequency of

bond-flip is set to three attempts per fifty numerical integration time steps. The membrane

is able relax to a lower energy state with resulting mesh profiles mimicing the 2D Poiseuille

flow (Figure 2.1).

64



Figure 2.1: Influence of membrane fluidity in response to in-plane flow. (A) The steady-
state of the solid-like system under flow. (B) Initial configuration of the fluidic system.
(C) Snapshot of the fluidic system under in-plane flow. Note the change in topology allows
the system to make adjustments. (D) The Poiseuille flow profile after extended simulation
time. The configuration of the system shows the parabolic shape indicating the maximum
velocity occurring along the central line in the x-direction.

2.3.2 Monte Carlo energy minimization

Brief review of the theory of icosahedral symmetry. A typical vesicle

formed during the endocytosis process is spherical. If a triangulated spherical surface is

built by equilateral triangles, the number and arrangement of pentagons and hexagons,

formed using these triangles, are determined by the Euler characteristic. In what follows

we review definitions and formula related to the Euler characteristic (for example see [57]).

Definition 1 A polyhedron is a three-dimensional solid with flat polygonal faces, straight

edges and edge-joining nodes.

Definition 2 Given a surface of polyhedra, the Euler characteristic ξ is defined as ξ =

V − E + F . Here V , E and F are the number of nodes, edges and faces, respectively.
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Theorem 3 (Euler’s polyhedron formula) Let M be a convex polyhedron. The Euler char-

acteristic of M must satisfy the condition V − E + F = 2.

If we assume that such convex polyhedron consists of only regular pentagons and

regular hexagons, the Euler’s polyhedron formula can be rewritten as

V − E + P +H = 2 (2.11)

where P and H are the number of pentagons and the number of hexagons. In addition,

since each pentagon and hexagon have five and six edges respectively, this implies that

2E = 5P + 6H (2.12)

V − 5P + 6H

2
+ P +H = 2 (2.13)

⇒ V − 3P + 4H

2
= 2 (2.14)

Similarly, the number of nodes can also be represented by P and H with the

constraint such that each node can only be shared by three polygons. This means that

3V = 5P + 6H (2.15)

and

5P + 6H

3
− 3P + 4H

2
= 2 (2.16)

⇒ P

6
= 2 (2.17)

⇒ P = 12 (2.18)

Hence, to form an approximation of a spherical vesicle composed of regular pen-

tagons and regular hexagons, Euler’s theorem requires exactly 12 pentagons (also called
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five-fold disclinations). The necessity to have pentagons distributed over the surface is for

accommodations of nontrivial curvatures. Given only regular hexagons, the minimal energy

structure achieved would be a flat surface. Using similar argument presented above one can

easily deduce that if only regular hexagons are allowed, the Euler’s characteristics formula

would give the following result:

V − E + F = 2 (2.19)

⇒ 2H − 3H +H = 2 (2.20)

⇒ 0 = 2 (2.21)

which is a contradiction. This can also be observed by representing regular pentagons and

regular hexagons using equilateral triangles. In this representation, each hexagon must

remain flat such that the interior angle maintains 360 degrees. However in the case of

pentagon, a nontrivial curvature must exists since the interior angle is only 300 degrees.

Model validation using simulated annealing The minimal energy state of

such vesicle also requires a specific positioning of the pentagons. For example, the trun-

cated icosahedron (or the soccer-ball) with 80 equilateral triangles must have specific ar-

rangements as presented in Figure 2.2 and Figure 2.3. This is the icosahedral symmetry

when the spherical shell is constructed purely by pentagons and hexagons.

To ensure that the membrane fluidity in our model is both physically and sta-

tistically plausible, we solved the energy minimization problem for icosahedrons of various

size. We used the phase diagrams introduced by by Wagner et al. and Panahandeh et al.

[111, 88] along the indicated parameters to test whether our formulation can also lead to

the minimal energy structure. An annealing step is applied to ensure that the sequence
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Figure 2.2: Energy minimization of a polyhedron composed of 60 triangles. (A) Initial
configuration. (B) The red dots indicate the positions of each pentagon. (C) Evolution of
the total energy of the system under simulated annealing method.

of generated structures can converge to the minimal structure configuration. The anneal-

ing process involved a monotonically decreasing nonlinear sequence of ω values such that

{ω}j+1 = 0.9 · {ω}j . For each ω value, we performed 1000 bond-flip grand attempts where

each single grand attempt consisted of N single bond-flip attempts.

We simulated all sizes of the icosahedral presented in the [111, 88] to validate fluid

type behavior of the model. Based on the qualitative observations, the obtained results are

in agreement with the results described in previous papers. In addition, from the energy

perspective the system also achieved the minimal energy states.
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Figure 2.3: Energy minimization of a polyhedron composed of 80 triangles. (A) Initial
configuration. (B) Global minimal energy configuration. The red dots indicate the positions
of each pentagon. (C) Evolution of the total energy of the system under simulated annealing
method. Notice that the number of sampling needed is higher than the case with 60 triangles
in Figure 2.2 due to the increased complexity of the configuration.
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2.4 Cell budding and endocytosis

2.4.1 Comparison with existing models and theoretical predictions

According to the elastic theory, the final shape obtained as a result of budding and

endocytosis process depends on the ratio of the bending stiffness to the adhesion strength

between the membrane and the particle. In the context of energy minimization, under the

assumption of ideal membrane fluidity, the degree of wrapping of the particle is determined

directly by the difference in the speed of relaxation of the bending energy and the adhesion

energy. Because the dynamics of each component in the model is based on energy dissi-

pation, naturally it becomes a competition between different components trying to reach

equilibrium.

Many models developed for the budding and endocytosis process give rise to com-

parable results in terms of the degree of wrapping and the neck profile of the budding site.

For instance, Raatz et al. [94] suggested that given a fixed membrane bending stiffness,

different adhesion energies produces different minimum-energy profiles (Figure 2.4). By

choosing a fixed adhesive interaction range ρ, a general pattern of the phase transition can

be identified as a sigmoidal curve. The ratio between the adhesion energy and the degree of

wrapping not only resembles a sigmoidal curve, it also shows a convergence toward sharp

transition between a unbounded nanoparticle and a fully wrapped nanoparticle. Model

described in this Thesis also captures this sigmoidal profile which is qualitatively similar to

the cases with ρ = 0.1R and ρ = 0.01R where R is the radius of the nanoparticle.
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Figure 2.4: Comparison between simulation result of our model and existing theoretical
predictions. (A) Prediction of the nanoparticle wrapping by different values of adhesive
strength and range of interaction [94]. (B) The simulated result of our model for a chosen
set of parameters including the membrane stiffness and adhesive interaction range. The
sigmoidal curve matches qualitatively to the theoretical prediction.

Another comparison we made involves the budding neck profile. In both elastic

theory calculations and the numerical simulations by Ruiz-Herrero et al. [95], it is observed

that for the range of adhesive strength that can induce complete wrapping, the difference in

the magnitude gives rise in the different budding neck profiles. The budding neck magnitude

is higher when the adhesive strength is lower and vice versa. This follows from the fact that

stronger adhesive strength leads to faster relaxation of the adhesive interaction between

the membrane and the particle. We also observed this behavior in our model simulations

(Figure 2.5).

2.4.2 Influence of membrane fluidity on budding and endocytosis

Our model Monte Carlo statistical (simulated) annealing simulation have demon-

strated the ability to produce qualitative, and to a lesser degree quantitative, result com-
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parable with the results obtained using existing models. However, as discussed in earlier

section, that the annealing process is a method designed for the search of global minimal

energy structure but it does not capture the actual evolution of the system. We are partic-

ularly interested in this Thesis in how fluidity of the membrane may influence the outcome

of the nanoparticle wrapping.

As described before, when the system is under increased fluctuation condition, the

probability of bond flip acceptance increases. The simulation results showed that the degree

of wrapping increases with increased acceptance probability as in the case of increased tem-

perature (Figure 2.6). We further investigated the influence of the membrane fluidity (via

increased and decreased fluctuation) on the transitions between unbounded state, partially

wrapped state and completely wrapped state. We hypothesized that membrane fluidity

would have catalyst-like effect that facilitate complete wrapping or at least improve the

degree of wrapping for scenarios with low level of adhesive strength. Our simulation re-

sults suggest that membrane fluidity indeed promotes the transition from partially wrapped

state to completely wrapped state in some cases. In addition, when the adhesive strength

is sufficiently low, the membrane fluidity fails to promote wrapping process (Figure 2.7).

Upon further examination of this phase diagram, it becomes clear that when the membrane

fluidity is sufficiently high, only two states exist: complete wrapping state and minimal (or

unbound) wrapping state, which agrees with the qualitative results of the existing model

[94, 95]. Lastly, when the membrane fluidity is sufficiently low, we anticipated that no com-

plete wrapping can be reached since the cell membrane would exhibit solid-like property
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resisting drastic deformation. Our simulation results also agree with this prediction and we

only observed the transition between minimally wrapped state and partially wrapped state.

2.4.3 Impact of membrane fluidity on particle wrapping efficiency

In this section, we investigate the effect of membrane fluidity on particle wrapping

efficiency during the endocytosis process. Membrane fluidity in this section is determined

by the size of sampling used for the edge reconnectivity [83]. Namely, the membrane fluidity

depends on the number of edge sampled during the edge re-connectivity algorithm while the

acceptance probability remains fixed. In these simulations the total simulation time is set to

be T = 50s while each individual time step is ∆t = 0.0005s. The choice of timescale is based

on the observed time of a typical clathrin-mediated endocytosis event. However, it is worth

noting that the duration of endocytosis varies significantly, from tens of milliseconds to

several minutes for different cell types and the subtypes of endocytosis [100]. To test different

membrane fluidity, we used the following sample sizes: Φ = 0.1%, 0.5%, 1%. The strength of

the membrane-particle adhesion described by the 6-3 Lennard Jones potential (with n = 3

for 2n− n relationship, see Section 2.2.2) was assumed to be 40, 80, 160kBT . Furthermore,

following setup similar to the one in Noguchi et al. [83], the edge re-connectivity algorithm

was triggered every 20 iterative steps, to mimic molecular dynamics simulation. Lastly,

we set the number of simulation per combination of Φ and membrane-particle adhesion

strength to three to achieve increased statistical significance.

Simulation results show that when the mechanical properties of the membrane and

membrane-particle adhesion strength are fixed, the membrane fluidity plays an important
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Figure 2.7: Phase diagram of the final wrapping state for different levels of membrane
fluidity depending on system temperature. Red indicates unbounded or wrapping state with
less than 50% surface coverage. Pink indicates the partially wrapped state with wrapping
level ranging from 50% to 90%. Light green indicates fluctuation between the partially
wrapped state and the completely wrapped state. Dark green indicates the completely
wrapped state. The remaining white region is the untested parameter combinations. Here
ω is in the unit of kBT , and note that the value of ω is purely theoretical and is not
corresponding to real temperature.
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Figure 2.8: Surface coverage of the particle interacting with a cell membrane. The fluidity
of the membrane is based on a sampling size of 0.1% of the number of non-boundary edges
in the model membrane.

role in determining the degree of particle surface wrapping within the designated simula-

tion time. In particular, the higher the membrane fluidity, more coverage of the particle by

surface of the membrane can be achieved. Also, similar to the results presented in earlier

section, increased membrane fluidity represented by more conventional algorithm, can im-

prove the degree of wrapping even when the membrane-particle adhesion is lower. Figure

2.8 and 2.9 provide plots of the degree of wrapping of a particle by membrane quantified

by the percentage of surface coverage of the particle.
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Figure 2.9: Surface coverage of the particle interacting with a cell membrane. The fluidity
of the membrane is based on a sampling size of 1% of the number of non-boundary edges in
the model membrane. Compared to membrane with lower fluidity, the wrapping process is
overall more efficient such that it takes significantly less time to achieve 70% coverage for
cases with adhesion strength of 80 and 160 (Figure 2.8).
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2.4.4 Limitations of the current model

In the work of Raatz et al. [94], the authors investigated the influence of adhe-

sive interaction range and concluded that shorter interaction range leads to sharper phase

transition, i.e. short range of interaction causes a sudden jump from unbounded state

to a complete wrapping state. This observation was also made in Cooke et al. [21] and

Ruiz-Herrero et al [95]. where it was indicated that simulation results converge to either

an unbounded state or completely wrapped state under the assumption that the adhesive

interaction being relative short.

Since our model is based on surface triangulation, there is a lower bound on the

adhesive interaction range that can be prescribed. The lower bound value depends on the

chosen size of the mesh. The minimal range to induce any meaningful interaction must

be roughly
√

3Rmin where Rmin is the equilibrium length of the edge in the system. This

implies that our model is not suitable for studying problems at molecular and sub-molecular

level, instead the model was designed for studying problems at mesoscale level.

2.4.5 Future model development

While the limitation of the current model prevents potential studies involving

range of adhesive interactions between the nanoparticles and the cell membrane, several

important biologically relevant problems can be investigated without explicit specification

of the range of adhesive interactions. The early reproduction of the HIV-1 virus and the

infection process of the alphavirus both require the presence of the membrane raft structure

on the cell membrane, which is known to have increased bending rigidity but retain fludidity
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[46, 99, 62, 86]. Whether the size of the raft structure is predetermined or dynamically

enlarging and how such size may impact the budding process is yet to be determined.

Furthermore, the existence and contribution of the line tension, the tendency of minimizing

the contact length between membrane raft and normal membrane, are still widely debated

among researchers. Our model can describe multiple domains with different mechanical

properties representing membrane rafts and normal membrane. The model can also be

used to study the influence of raft size on the exiting pathway of HIV-1 virus and the entry

pathway of alpha virus.

Because our model uses a 3D coarse-grained triangulated mesh, the simulation

time is shorter compared to the all-atomic models and implicit solvent models. This implies

that we can introduce nanoparticles as aggregates of smaller spherical particles to represent

different shapes. The rigidity of a nanoparticle can then be described via the interaction

between the smaller spherical particles. It is important to study different shapes of the

nanoparticles, particularly in the field of medicine, to better understand a more efficient

drug deliver method. For example, what shape should the nanoparticle take to improve its

entry into the cell? On the other hand, many questions involving shape of a nanoparticle

are important in studying viral infection and reproduction as well. For instance, ebola

virus is known to be a flexible tubule originated from the viral capsid proteins forming from

multiple linked ”cylindrical shells”. It is still not well-understood how orientation of the

tubule ebola virus with respect to the cell membrane can influence its entry into a cell.

Also, it is not clear how virus is assembled, particularly why is there an advantage for the
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cylindrical shells to approach the cell membrane perpendicularly or tangentially, during the

reproduction stage.

2.5 Incorporating cell growth

While we already described cellular budding with cell growth in Chapter 1, in this

section we will discuss this process using a different modeling approach.

At least three possible modeling approaches are suitable for describing localized

cell growth:

1. The first approach is commonly used in the finite element method based models. Once

the threshold value is reached, a new triangle is introduced inside an existing triangle.

The nodes of the the new triangle are placed at the midpoints of the edges of the

triangle it is embedded in. However, this approach is not compatible with the Monte

Carlo re-meshing techniques for which curvature of the system is calculated based on

bending angles between adjacent triangles. To utilize this approach, the model needs

to be modified to eliminate the explicit use of bending energy potential.

2. Another approach is based on the addition of a new membrane node at the centroid

position of the existing triangle. In this setup three new triangles are introduced.

Computationally this is relatively less expensive and data structure manipulation is

also relatively simple. From the topological point of view, this introduces an unfavor-

able configuration (3-fold disclination) which may lead to instability in a mechanical

stress based model.
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3. The last approach is introduced in [85] that the midpoint of a chosen edge is treated as

a new membrane node. The two triangles sharing this edge are involved in calculations

and new connections are established between this new node and the two opposite

nodes that are not already connected with the midpoint. This approach is suitable

for a mechanical stress based model where curvature is calculated using edges and

bending angles are calculated using the unit normal vectors of each triangular facets.

This is the approach adopted in Chapter 1.

The described approaches can be used in deterministic or probabilistic fashion.

When used deterministically, the algorithm depends on factors such as the local area of the

triangle and the applied stress. When used probabilistically, a probability distribution is

calculated and used to determine the likelihood of membrane expansion. The distribution

can be based on net change of energy of the system before and after the growth happens,

or based on the current area of the triangles in the mesh.
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2.6 Appendix

Figure 2.10: The diagram showing simulation process in both molecular dynamics and
simulated annealing of virus budding and endocytosis. The red box indicates the steps that
can be omitted if the simulation is molecular dynamics based.
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computational model of early embryogenesis coupling mechanical behaviour and gene
regulation. Nature communications, 8(1):1–10, 2017.

[26] Hua Deng, Prashanta Dutta, and Jin Liu. Stochastic simulations of nanoparticle
internalization through transferrin receptor dependent clathrin-mediated endocytosis.
Biochim. Biophys. Acta Gen. Subj., 1862(9):2104–2111, September 2018.

[27] D G Drubin. Development of cell polarity in budding yeast. Cell, 65(7):1093–1096,
June 1991.

[28] Helge Ewers and Ari Helenius. Lipid-mediated endocytosis. Cold Spring Harbor
perspectives in biology, 3(8):a004721, 2011.
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[56] Marko Kaksonen and Aurélien Roux. Mechanisms of clathrin-mediated endocytosis.
Nature Reviews Molecular Cell Biology, 19(5):313, 2018.

[57] Sudesh Kalyanswamy. Euler characteristic, 2009.

[58] Frans M Klis, Andre Boorsma, and Piet W J De Groot. Cell wall construction in
saccharomyces cerevisiae. Yeast, 23(3):185–202, February 2006.

[59] Frans M Klis, Chris G de Koster, and Stanley Brul. Cell wall-related bionumbers
and bioestimates of saccharomyces cerevisiae and candida albicans. Eukaryotic cell,
13(1):2–9, 2014.

[60] T Kohyama, D M Kroll, and G Gompper. Budding of crystalline domains in fluid
membranes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 68(6 Pt 1):061905, De-
cember 2003.

[61] Roman Kollár, Bruce B Reinhold, Eva Petráková, Herman J C Yeh, Gilbert Ashwell,
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