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Analogical Reinforcement Learning

James M. Foster & Matt Jones

james.m.foster@colorado.edu, mcj@colorado.edu

University of Colorado, Department of Psychology & Neuroscience
Boulder, CO 80309 USA

Abstract

Research in analogical reasoning suggests that higher-order
cognitive functions such as abstract reasoning, far transfer,
and creativity are founded on recognizing structural similari-
ties among relational systems. Here we integrate theories of
analogy with the computational framework of reinforcement
learning (RL). We propose a computational synergy between
analogy and RL, in which analogical comparison provides the
RL learning algorithm with a measure of relational similar-
ity, and RL provides feedback signals that can drive analogical
learning. Initial simulation results support the power of this
approach.
Keywords: Analogy; Reinforcement Learning; Schema In-
duction; Similarity; Generalization

Introduction

The goal of the present work is to develop a computational
understanding of how people learn abstract concepts. Pre-
vious research in analogical reasoning suggests that higher-
order cognitive functions such as abstract reasoning, far trans-
fer, and creativity are founded on recognizing structural sim-
ilarities among relational systems (Doumas et al., 2008; Gen-
tner, 1983; Hummel & Holyoak, 2003). However, we argue
a critical element is missing from these theories, in that their
operation is essentially unsupervised, merely seeking patterns
that recur in the environment, rather than focusing on the ones
that are predictive of reward or other important outcomes.

Here we integrate theories of analogy with the computa-
tional framework of reinforcement learning (RL). RL offers a
family of learning algorithms that have been highly success-
ful in machine learning applications (e.g., Bagnell & Schnei-
der, 2001; Tesauro, 1995) and that have neurophysiological
support in the brain (e.g., Schultz et al., 1997). A shortcom-
ing of RL is that it only learns efficiently in complex tasks if it
starts with a representation (i.e., a means for encoding stimuli
or states of the environment) that somehow captures the crit-
ical structure inherent in the task. We formalize this notion
below in terms of similarity-based generalization (Shepard,
1987) and kernel methods from statistical machine learning
(Shawe-Taylor & Cristianini, 2004). In other words, RL re-
quires a sophisticated sense of similarity to succeed in real-
istically complex tasks. Psychologically, the question of how
such a similarity function is learned can be cast as a question
of learning sophisticated, abstract representations.

This paper proposes a computational model of analogical
RL, in which analogical comparison provides the RL learning
algorithm with a measure of relational similarity, and RL pro-
vides feedback signals that can drive analogical learning. Re-
lational similarity enables RL to generalize knowledge from
past to current situations more efficiently, leading to faster

learning. Conversely, the prediction-error signals from RL
can be used to guide induction of new higher-order relational
concepts. Thus we propose there exists a computationally
powerful synergy between analogy and RL. The simulation
experiment reported here supports this claim. Because of the
strong empirical evidence for each of these mechanisms taken
separately, we conjecture that the brain exploits this synergy
as well.

Analogy

Research in human conceptual knowledge representation has
shown that concepts are represented not just as distributions
of features (cf. Nosofsky, 1986; Rosch & Mervis, 1975) but as
relational structures. This relational knowledge includes both
internal structure, such as the fact that a robin’s wings allow it
to fly (Sloman et al., 1998), as well as external structure, such
as the fact that a dog likes to chase cats (Jones & Love, 2007).
Theories of analogical reasoning represent relational knowl-
edge of this type in a predicate calculus that binds objects to
the roles of relations, for example CHASE(DOG,CAT). Ac-
cording to these theories, an analogy between two complex
episodes (each a network of relations and objects) amounts
to recognition that they share a common relational structure
(Gentner, 1983; Hummel & Holyoak, 2003).

At a more mechanistic level, the dominant theory of anal-
ogy is structural alignment (Gentner, 1983). This process
involves building a mapping between two episodes, mapping
objects to objects and relations to relations. The best map-
ping is one that maps objects to similar objects, maps rela-
tions to similar relations, and most importantly, satisfies par-
allel connectivity. Parallel connectivity means that, when-
ever two relations are mapped to each other, the objects fill-
ing their respective role-fillers are also mapped together. An
example is shown in Figure 1. Parallel connectivity is sat-
isfied here because, for each mapped pair of ATTACK rela-
tions (red arrows), the objects filling the ATTACKER role are
mapped together (knight is mapped to queen), and the objects
filling the ATTACKED role are also mapped together (rook
to rook and king to king). Thus structural alignment con-
stitutes a (potentially partial or imperfect) isomorphism be-
tween two episodes, which respects the relational structure
that they have in common. Importantly, if the search for a
mapping gives little emphasis to object-level similarity (as
opposed to relation-level similarity and parallel connectivity),
then structural alignment can find abstract commonalities be-
tween episodes having little or no surface similarity (i.e., in
terms of perceptual features).

We propose structural alignment is critical to learning of
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Figure 1: An example of structural alignment between two
chess positions. Both positions contain instances of the ab-
stract concept of a FORK: black’s piece is simultaneously at-
tacking both of white’s pieces. These attacking relations are
represented by the red arrows. Cyan lines indicate the map-
ping between the two episodes. The mapping satisfies paral-
lel connectivity because it respects the bindings between re-
lations and their role-fillers.

abstract concepts for three reasons. First, perceived simi-
larity of relational stimuli depends on structural alignability
(Markman & Gentner, 1993). Second, structural alignment
is important for analogical transfer, which is the ability to
apply knowledge from one situation to another, superficially
different situation (Gick & Holyoak, 1980). For example, a
winning move in one chess position can be used to discover a
winning move in a different (but aligned) position, by trans-
lating that action through the analogical mapping. Third,
a successful analogy can lead to schema induction, which
involves extraction of the shared relational structure iden-
tified by the analogy (Doumas et al., 2008; Gentner, 1983;
Hummel & Holyoak, 2003). In the example of Figure 1, this
schema would be a system of relational knowledge on ab-
stract (token) objects, including ATTACK(PIECE1,PIECE2),
ATTACK(PIECE1,PIECE3), and potentially other shared
information such as NOT ATTACKED(PIECE1) and
KING(PIECE2).

These three observations suggest that analogy plays an im-
portant role in learning and use of abstract relational con-
cepts. The first two observations suggest that analogical
transfer can be cast as a form of similarity-based generaliza-
tion, as we elaborate in the next two sections. In brief, struc-
tural alignment offers a sophisticated form of similarity that
can be used to generalize knowledge between situations that
are superficially very different. The third observation sug-
gests that analogy can discover new relational concepts (e.g.,
the concept of a chess fork, from Figure 1), which can in turn
lead to perception of even more abstract similarities among
future experiences.

One potential shortcoming of the basic theory of analogy
reviewed here is that is it essentially unsupervised. In this
framework, the quality of an analogy depends only on how
well the two systems can be structurally aligned, and not on
how useful or predictive the shared structure might be. For

example, one could list many relational patterns that arise in
chess games but that are not especially useful for choosing a
move or for predicting the course of the game. In previous
work, we have found that implementing structural alignment
and schema induction in a rich and structured artificial en-
vironment results in discovery of many frequent but mostly
useless schemas (Foster et al., 2012). An alternative, poten-
tially more powerful model of analogical learning would in-
volve feedback from the environment, so that the value of
an analogy or schema is judged partially by how well it im-
proves predictions of reward or other important environmen-
tal variables. For example, the concept of a fork in chess
is an important schema not (only) because it is a recurring
pattern in chess environments, but because it carries informa-
tion about significant outcomes (i.e., about sudden changes
in each player’s chances of winning). A natural framework
for introducing this sort of reward sensitivity into theories of
analogy is that of RL, which we review next.

Reinforcement Learning

RL is a mathematical and computational theory of learning
from reward in dynamic environments. An RL task is char-
acterized by an agent embedded in an environment that exists
in some state at any given moment in time. At each time step,
the agent senses the state of its environment, takes an action
that affects what state occurs next, and receives a continuous-
valued reward that depends on the state and its action (Sutton
& Barto, 1998). This framework is very general and can en-
compass nearly any psychological task in which the subject
has full knowledge of the state of the world at all times (i.e.,
there are no relevant hidden variables).

Most RL models work by learning values for different
states or actions, which represent the total future reward that
can be expected from any given starting point (i.e., from any
state or from any action within a state). These values can be
learned incrementally, from temporal-difference (TD) error
signals calculated from the reward and state following each
action (see Model section). There is strong evidence that the
brain computes something close to TD error, and thus that RL
captures a core principle of biological learning (Schultz et al.,
1997).

In principle, this type of simple algorithm could be used to
perfectly learn a complex task such as chess, by experiencing
enough games to learn the true state values (i.e., probability
of winning from every board position) and then playing ac-
cording to those values. However, a serious shortcoming of
this naive approach is that it learns the value of each state in-
dependently, which can be hopelessly inefficient for realistic
tasks that typically have very large state spaces. Instead, some
form of generalization is needed, to allow value estimates for
one state to draw on experience in other, similar states.

Many variants of RL have been proposed for implement-
ing generalization among states (e.g., Albus, 1981; Sutton,
1988). Here we pursue a direct and psychologically moti-
vated form of generalization, based on similarity (Jones &
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Cañas, 2010; Ormoneit & Sen, 2002). We assume the model
has a stored collection of exemplar states, each associated
with a learned value. The value estimate for any state is
obtained by a similarity weighted average over the exem-
plars’ values; that is, knowledge from each exemplar is used
in proportion to how similar it is to the current state. This
approach is closely related to exemplar-generalization mod-
els in more traditional psychological tasks such as category
learning (Nosofsky, 1986). It can also be viewed as a subset
of kernel methods from machine learning (Shawe-Taylor &
Cristianini, 2004), under the identification of the kernel func-
tion with psychological similarity (Jäkel et al., 2008).

A critical consideration for all learning models (includ-
ing RL models) is how well their pattern of generalization
matches the inherent structure of the task. If generalization
is strong only between stimuli or states that have similar val-
ues or outcomes, then learning will be efficient. On the other
hand, if the model generalizes significantly between stimuli
or states with very different outcomes, its estimates or pre-
dictions will be biased and learning and performance will
be poor. The kernel or exemplar-similarity approach makes
this connection explicit, because generalization between two
states is directly determined by their similarity. As we pro-
pose next, analogy and schema induction offer a sophisticated
form of similarity that is potentially quite powerful for learn-
ing complex tasks with structured stimuli.

Analogical RL

The previous two sections suggest a complementary relation-
ship between analogy and RL, which hint at the potential for
a computationally powerful, synergistic interaction between
these two cognitive processes. We outline here a formal the-
ory of this interaction. The next two sections provide a math-
ematical specification of a partial implementation of this the-
ory, and then present simulation results offering a proof-in-
principle of the computational power of this approach.

The first proposed connection between analogy and RL is
that structural alignment yields an abstract form of psycho-
logical similarity that can support sophisticated generaliza-
tion (Gick & Holyoak, 1980; Markman & Gentner, 1993).
Incorporating analogical similarity into the RL framework
could thus lead to rapid learning in complex, structured envi-
ronments. For example, an RL model of chess equipped with
analogical similarity should recognize the similarity between
the two positions in Figure 1 and hence generalize between
them. Consequently the model should learn to create forks
and to avoid forks by the opponent much more rapidly than if
it had to learn about each possible fork instance individually.

The second proposed connection is that the TD error com-
puted by RL models, for updating value estimates, can poten-
tially drive analogical learning by guiding schema induction.
Instead of forming schemas for whatever relational structures
are frequently encountered (or are discovered by analogical
comparison of any two states), an analogical RL model can
be more selective, only inducing schemas from analogies that

significantly improve reward prediction. Such analogies in-
dicate that the structure common to the two analogue states
may have particular predictive value in the current task, and
hence that it might be worth extracting as a standalone con-
cept. For example, if the model found a winning fork move
by analogical comparison to a previously seen state involving
a fork, the large boost in reward could trigger induction of a
schema embodying the abstract concept of a fork.

The proposed model thus works as follows (see the next
section for technical details). The model maintains a set of
exemplars E, each with a learned value, v(E). To estimate
the value of any state s, it compares that state to all exemplars
by structural alignment, which yields a measure of analogi-
cal similarity for each exemplar (Forbus & Gentner, 1989).
The estimated value of the state, Ṽ (s), is then obtained as a
similarity-weighted average of v(E). After any action is taken
and the immediate reward and next state are observed, a TD
error is computed as in standard RL. The exemplar values are
then updated in proportion to the TD error and in proportion
to how much each contributed to the model’s prediction, that
is, in proportion to sim(s,E).

Additionally, whenever the structural alignment between a
state and an exemplar produces a sufficient reduction in pre-
diction error (relative to what would be expected if that ex-
emplar were absent), a schema is induced from that analogy.
The schema is an abstract representation, defined on token
(placeholder) objects, and it contains only the shared infor-
mation that was successfully mapped by the analogy. The
schema is added to the pool of exemplars, where it can ac-
quire value associations directly (just like the exemplars do).
The advantage conferred by the new schema is that it allows
for even faster learning about all states it applies to (i.e., that
contain that substructure). For example, rather than learn-
ing by generalization among different instances of forks, the
model would learn a direct value for the fork concept, which
it could immediately apply to any future instances. A conse-
quence of the schema induction mechanism is that the pool
of concrete exemplars comes to contain more and more ab-
stract schemas. Thus the model’s representation transitions
from initially episodic to more abstract and conceptual.

Analogical RL thus integrates three principles from prior
research: RL, exemplar generalization, and structural align-
ment of relational representations. Because each of these
principles has strong empirical support as a psychological
mechanism, it is plausible that they all interact in a manner
similar to what we propose here. Thus it seems fruitful to
explore computationally what these mechanisms can achieve
when combined.

Model

The simulation study presented below uses a variant of RL
known as afterstate learning, in which the agent learns val-
ues for the possible states it can move into (Sutton & Barto,
1998). This is a reasonable and efficient method for the task
we use here—tic-tac-toe, or noughts & crosses—because the
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agent’s opponent can be treated as part of the environment
and is the only source of randomness. Our main proposal re-
garding the interaction between RL and analogical learning is
not limited to this approach.

The operation of the model is illustrated in Figure 2. On
each time step, the model identifies all possible actions and
their associated afterstates. For each afterstate s, it computes
an analogical similarity, K, to each exemplar, E, by structural
alignment. Each possible mapping M : s ! E is evaluated
according to

F(M) = b ·Â
o2s

sim(o,M(o))

+Â
r2s

sim(r,M(r)) ·
"

1+
nr

Â
i=1

I{M(childi(r))=childi(M(r))}

#
. (1)

This expression takes into account object similarity, by com-
paring each object o in s to its image in E; relational sim-
ilarity, by comparing each relation r in s to its image in E;
and parallel connectivity, by having similarity between mu-
tually mapped relations “trickle down” to add to the similar-
ity of any mutually mapped role-fillers (Forbus & Gentner,
1989). The sim function is a primitive (object- and relation-
level) similarity function, b determines the relative contribu-
tion of object similarity, nr is the number of roles in relation
r, childi(r) is the object filling the ith role of r, and I{P} is
an indicator function equal to 1 when proposition P is true.
Analogical similarity is then defined as the value of the best
mapping (here the q parameter determines specificity of gen-
eralization):

K(s,E) = exp
✓

q ·max
M

F(M)

◆
. (2)

The activation a(E) of each exemplar is determined by nor-
malizing the analogical similarities, and the estimated value
of s, Ṽ (s), is computed as a similarity-weighted average of
the exemplar values v(E) (Figure 2). Thus the estimate is
based on the learned values of the exemplars most similar to
the candidate state.

Once values Ṽ (s) have been estimated for all candidate af-
terstates, the model uses a softmax (Luce-choice or Gibbs-
sampling rule) to select what state to move into (here t is an
exploration parameter):

Pr[st = s] µ eṼ (s)/t. (3)

Learning based on the chosen afterstate st follows the
SARSA rule (Rummery & Niranjan, 1994), after the model
chooses its action on the next time step. This produces a TD
error, which is then used to update the exemplar values by
gradient descent (see Equations for d and Dv(E) in Figure 2).

The model also grows its representation in two ways. First,
it begins with no exemplars, and on each trial adds the state
it moves to as a new exemplar with probability inversely pro-
portional to the number of exemplars already in the model.
This recruitment policy leads the exemplar pool to grow with
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X 
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O 

X 

Figure 2: Model operation. Each candidate afterstate is evalu-
ated by analogical comparison to stored exemplars, followed
by similarity-weighted averaging among the learned exem-
plar values. Learning is by TD error applied to the exemplar
values. On some trials, especially useful analogies produce
new schemas that are added to the exemplar pool. In the
example here, s and E both have guaranteed wins for X by
threatening a win in two ways. The induced schema embodies
this abstract structure. Dots with red arrows indicate ternary
“same-rank” relations. r = reward; g = temporal discount pa-
rameter; a = learning rate; other variables are defined in the
text.

the square root of time, which seems to give good perfor-
mance.

The more important form of representation learning in the
model is schema induction. Schema induction has not been
implemented yet, but Figure 2 shows how it is expected to
work. Following learning after each trial, the model deter-
mines how much each exemplar contributed to reducing pre-
diction error, by comparing d to what it would have been
without that exemplar. If the reduction is above some thresh-
old, the analogical mapping found for that exemplar (lower
right of figure) produces a schema that is added to the exem-
plar pool (far right). The schema is given a value of v initial-
ized at Ṽ (st). This schema value is updated on future trials
just as are the exemplar values. Acquisition of new schemas
in this way is predicted to improve the model’s pattern of gen-
eralization, tuning it to the most useful relational structures in
a task.

Simulation

The model was tested on its ability to learn tic-tac-toe. Each
board position was represented by treating the nine squares
as objects of types 0 (blank), 1 (focal agent’s), and 2 (oppo-
nent’s), and defining 8 ternary “same-rank” relations for the
rows, columns, and diagonals. Thus a player wins by filling
all squares in any one of these relations. Object similarity
was defined as 1 for matching object types and 0 otherwise.
Similarity between relations was always 1 because there was
only one type of relation. Reward was given only at the end
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of a game, as +1 for the winner, -1 for the loser, or 0 for a
draw. After the game ended, it moved to a special terminal
state with fixed value of 0. For simplicity, all free parameters
of the model (b,q,a,g,t) were set to a default value of 1.

Three variations of the model were implemented, differing
in their levels of analogical abstraction. The Featural model
was restricted to literal mappings between states (upper-left
square to upper-left square, etc.). This model still included
generalization, but its similarity was restricted to the concrete
similarity of standard feature-based models. The Relational
model considered all 8 mappings defined by rigid rotation
and reflection of the board. This scheme was used in place
of searching all 9! possible mappings for every comparison,
to reduce computation time. Finally, the Schema model ex-
tended the Relational model by starting with two hand-coded
schemas, 111 and 022. The first of these is a single same-rank
relation bound to three instances of the player’s own token.
Thus moving into a state satisfying this schema produces an
immediate win. Likewise, moving into a state satisfying the
second schema risks an immediate loss. The model was given
no information about these schemas (i.e., v was initialized to
0 for both), but it was capable of learning values for them.
The purpose of this model was to test the utility of having
schemas that capture task-relevant structures. Logically this
question is separate from that of how such schemas are ac-
quired, although we have addressed that question elsewhere
(Foster et al., 2012), and we plan to integrate a solution into
the present model soon.

Each model variant was trained in blocks of 10 games of
self-play followed by a pair of testing games against an ideal
player (playing first in one game and second in the other).
Learning occurred only during training. In testing games, the
model was given one point for each non-losing move it made
(i.e., moves from which it could still guarantee a draw), for a
maximum of 9 points per pair of testing games.

Average learning curves are shown in Figure 3A for 50 in-
dependent copies of each model over 5000 blocks (50,000
training games). Figure 3B shows results for single copies of
the Relational and Featural models over 30,000 blocks. These
results show that the Featural model does eventually learn, but
the Relational model learns an order of magnitude faster, and
the Schema model learns another order of magnitude faster
than the Relational model.

Discussion

The results presented here constitute a proof-of-principle that
analogy and schema induction can be productively integrated
with a learning framework founded on RL and similarity-
based generalization. This integration leads to a model ex-
hibiting sophisticated, abstract generalization derived from
analogical similarity, as well as discovery of new higher-order
relational concepts driven by their ability to predict reward.

The basic modeling framework used here applies not just to
analogical similarity and schema induction, but to other forms
of representational learning as well. Kernel-based RL offers

Figure 3: Learning curves. A: 50 copies of each model. B:
Single copies of the two slower models over extended train-
ing.

a powerful and general theory of representation learning, be-
cause it can be integrated with any form of representation that
yields a pairwise similarity function. Its TD error signal can
drive changes in representation via the objective of improving
generalization. In previous work, we have applied this idea to
learning of selective attention among continuous stimulus di-
mensions (Jones & Cañas, 2010). The current model offers a
richer form of representation learning, in that it acquires new
concepts rather than reweighting existing features.

The analogical RL model also builds on other models of re-
lational learning. Tomlinson & Love (2006) propose a model
of analogical category learning, with essentially the same
similarity and exemplar generalization mechanisms adopted
in the present model. Our model adds to theirs in that it ap-
plies to dynamic tasks and in that it grows its representation
through schema induction. Van Otterlo (2012) has developed
methods for applying RL to relational representations of the
same sort used here, although the approach to learning is quite
different. His models are not psychologically motivated and
hence learn in batches and form massive conjunctive rules,
with elaborate updating schemes to keep track of the possible
combinations of predicates. In contrast, the present approach
learns iteratively, behaves probabilistically, and grows its rep-
resentation more gradually and conservatively. This approach
is likely to provide a better account of human learning, but a
more interesting question may be whether it offers any perfor-
mance advantages from a pure machine-learning perspective.

In the present model, the activation of each exemplar
elicited by a candidate state can be thought of as a feature
of that state. The exemplar effectively has a “receptive field”
within the state space, defined by the similarity function.
This duality between exemplar- and feature-based represen-
tations is founded in the kernel framework (see Shawe-Taylor
& Cristianini, 2004). The present model takes advantage of
this duality, producing a smooth transition from an episodic,
similarity-based representation to a more semantic, feature-
based representation defined by learned schemas.

The model as currently implemented does have several
limitations. Foremost, it does not yet include a mechanism
for inducing new schemas. We and others have shown how
schema induction can be successfully deployed in an open-
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ended model in a complex environment (Doumas et al., 2008;
Foster et al., 2012). We hope that building this type of mecha-
nism into the analogical RL framework will produce a better-
controlled, directed system capable of autonomously discov-
ering genuinely new abstract concepts.

A second limitation of the current model is its slowness
to learn, due to the nature of gradient descent operating in a
large weight space. In contrast, human learning often shows
understanding of new concepts in as little as one trial (Maas &
Kemp, 2009). The theory of analogy via structure mapping
seems like the best candidate for a process-level theory of
such rapid learning, and we predict that the full analogical
RL model with schema induction will show significant steps
in that direction.

The present work is complementary to hierarchical
Bayesian models that discover relational structure through
probabilistic inference (Tenenbaum et al., 2011). Whereas
our model builds up schemas from simpler representations,
the Bayesian approach takes a top-down approach, defining
the complete space of possibilities a priori and then selecting
among them. The top-down approach applies to any learn-
ing model, because any well-defined algorithm can always be
circumscribed in terms of its set of reachable states. This is
a useful exercise for identifying inductive biases and abso-
lute limits of learning, but it offers little insight into the con-
structive processes that actually produce the learning. These
mechanistic questions are critical if the goal is to understand
how the human mind discovers new, abstract concepts.
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