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We develop a high-throughput technique to relate positions of
individual cells to their three-dimensional (3D) imaging features
with single-cell resolution. The technique is particularly suitable for
nonadherent cells where existing spatial biology methodologies
relating cell properties to their positions in a solid tissue do not
apply. Our design consists of two parts, as follows: recording 3D
cell images at high throughput (500 to 1,000 cells/s) using a custom
3D imaging flow cytometer (3D-IFC) and dispensing cells in a first-
in–first-out (FIFO) manner using a robotic cell placement platform
(CPP). To prevent errors due to violations of the FIFO principle, we
invented a method that uses marker beads and DNA sequencing
software to detect errors. Experiments with human cancer cell lines
demonstrate the feasibility of mapping 3D side scattering and fluo-
rescent images, as well as two-dimensional (2D) transmission
images of cells to their locations on the membrane filter for around
100,000 cells in less than 10 min. While the current work uses our
specially designed 3D imaging flow cytometer to produce 3D cell
images, our methodology can support other imaging modalities.
The technology and method form a bridge between single-cell
image analysis and single-cell molecular analysis.

single cell j high throughput j 3D imaging flow cytometer j disease
diagnosis j spatial biology

The isolation and analysis of single cells from a heteroge-
neous cell population have impacted biomedical research

profoundly (1, 2). Single-cell analysis can be broadly divided
into two areas, namely, single-cell genomics and single-cell
high-content microscopy (3–5). The former deciphers the geno-
mic and phenotypical information by detecting gene expres-
sions, mutations, and genetic aberrations in individual cells
(6–9). The latter provides high-resolution spatial and morpho-
logical information and cell-cell interactions (10). While the
toolsets for both approaches have advanced significantly, one
remaining technology gap is the lack of effective tools that can
connect the two types of single-cell information. That is, no
effective tool directly relates the morphological properties to
the genomic properties of the very same cell. The emerging
field of spatial biology aims to solve this issue via DNA barcod-
ing technologies (11–15). However, current methods such as
the 10× Visium platform are unable to resolve single cells (16,
17). Microlaser dissectors coupled with a high-resolution micro-
scope can provide single-cell resolution, but the throughput is
much too slow to be incorporated into the single-cell workflow
in most practical applications (18–20). Above all, all current
spatial biology techniques cannot address the problem for non-
adherent cells such as lymphocytes, for which the connection
between the phenotype and morphology and immune response
of the same Tcell can be particularly insightful.

The recent advances in the image-guided cell sorter or image-
guided fluorescence-activated cell sorting (FACS) system have
made good strides toward this goal (21–24). By isolating cells of
the same image features based on a predefined gating criterion,
one can perform a downstream genomic analysis with cells of

similar imaging characteristics (21, 22, 24, 25). However, today’s
image-guided FACS produces only two-dimensional (2D) images,
lacking the high information contents of three-dimensional (3D)
imaging modalities such as confocal microscopes and light-sheet
microscopes. Few imaging flow cytometers can produce high-
content 3D images of single cells (26–29), and none of them, to
our knowledge, is able to isolate cells based on the 3D image
features due to the technological incompatibility between 3D
imagining optics, cell sorting devices, and the great challenges in
real-time processing of 3D images required for 3D image-guided
cell sorting.

To address the above technology gap, we propose and dem-
onstrate an approach that bypasses the requirements for
real-time 3D image processing and cell sorting. Our approach
combines two key hardware components, namely, a 3D imaging
flow cytometer (3D-IFC) and a cell placement robot.

We introduced suspended cells into a 3D-IFC to record mul-
tiparameter 3D cell images at a throughput as high as 1,000
cells/s. The cells exiting the 3D-IFC system were directed to a
cell dispensing robot that placed the exiting cells onto a trans-
parent filter plate in such manners that the cells placed on
the filter plate follow the same order in which the cells were
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imaged by the 3D-IFC. In other words, there is a one-to-one
correspondence between the recorded 3D cell image by the
3D-IFC and the position of the cell on the filter plate. How-
ever, we need to overcome the follows two obstacles to realize
this concept: 1) matching the sequence of hundreds of thou-
sands of cell images from the 3D-IFC to the sequence of (ide-
ally) the same number of cells deposited on the plate and 2)
detecting any errors between the two long sequences to prevent
error propagation and accumulation.

To address the first challenge, we introduced three types of
marker beads of distinctive features that can be recognized by
an off-the-shelf imager on the cell placement robot to match
their sequence to the readout from the 3D-IFC. By assigning
each marker bead a symbol (A, T, C) used for DNA sequenc-
ing, we were able to use the existing bioinformatics toolbox to
sequence and match the two long sequences from the 3D-IFC
and the cell plate. These marker beads serve analogously to
introns, and the cells of interest between the marker beads can
be regarded as exons. Essentially, we used the marker bead
sequence (i.e., introns) to align the two long sequences and
then interrogate the regions between the marker beads to ana-
lyze the cells based on their 3D images. In this approach, we
can fully leverage the established bioinformatics tools to sup-
port data streams of essentially any length. To address the second
challenge, we have developed a robust and efficient error detec-
tion methodology to identify two major types of errors—deletion
errors and misplacement errors—that can occur in our opera-
tion scenario. The detailed algorithm and its results are pre-
sented in Results.

Overall, we have developed an approach to bridge the tech-
nology gap of relating single-cell molecular analyses to single-
cell imaging of nonadherent cells in which imaged cells are
available for not only genomic analysis but also other applica-
tions as well, including the formation of single cell-derived
microcolonies, drug response studies, and metabolic and cell
secretion analyses. It is worth mentioning that although we
used 3D-IFC as a high-throughput imaging tool to acquire cell
images here, the methodology is general and can be readily
applied to other imaging devices such as 2D imaging cytome-
ters and optical microscopes that can capture images of moving
objects and be interfaced with a dispensing system following
the first-in–first-out (FIFO) rule in general. Compared to
image-guided FACS systems, our design can keep all cells
entering the system on a cell-friendly plate to support various
downstream analyses and cell processing and allow researchers
to retrieve any cells in the system at different times and for dif-
ferent purposes. Finally, we take the approach of cell imaging
before placement instead of cell placement before imaging
because the former is compatible with the high-throughput flow
cytometers as the mainstay of nonadherent single-cell analysis.
Our work demonstrates a workflow and technology that enrich
the field of single-cell research and spatial biology.

Results
Aligning Bead/Cell Sequences to Map Cell Images to Their Positions.
Fig. 1 shows the overall design and workflow of our approach.
The system consists of two interconnected hardware modules,
namely, a 3D-IFC and a robotic cell dispenser. Cells and beads
were premixed and examined using the 3D-IFC system. The 3D
hydrodynamically focused sample flow establishes a single-cell
stream with a sample concentration of ∼500 samples/μL. When a
cell or bead passes through the laser interrogation area, it is illu-
minated by a scanning light-sheet at a 200-kHz scanning rate.
The spatial filter placed at the image plane contains a series of
spatially positioned pinholes aligned with the cell flow direction
by a predetermined separation. The emitted light from a specific
portion of a cell is detected by photomultiplier tubes (PMTs).

The spatial-temporal transformation is applied to reconstruct the
3D tomographic images. The forward spatial filter contains a long
slit aligned with the laser scanning range. The transmitted light is
collected by a PMT, and the signal can produce a 2D transmission
image. In this cameraless design with a scanning light-sheet and
spatial masks, the 3D-IFC system can produce 3D side scattering
(SSC) and fluorescent images plus a 2D transmission image of
traveling cells at a rate of 1,000 cells/s. The details of the 3D-IFC
can be found in our earlier publications (29, 30).

The robotic cell placement platform (CPP) contains a three-
axis motorized stage and a holder. The moving speed of the
motorized stage is programmable to control the cell-to-cell
spacing and can be up to 75 mm/s. The cells exiting the 3D-IFC
reside on a transparent porous film on the sample holder that
has an array of groves connected to a vacuum pump. The liquid
out of the 3D-IFC is immediately absorbed by the porous mem-
brane filter through the capillary effect, and the extra liquid is
drained by vacuuming the groves under the membrane.

The cell sample was premixed with three nonfluorescent
beads of different sizes, as follows: 10-μm beads which we rep-
resented as nucleobase A, 20-μm beads which we represented
as nucleobase T, and 30-μm beads which we represented as
nucleobase C. Hence, the sequence consists of these three types
of marker beads and cells. By matching the marker bead
sequences between the 3D-IFC signals and CPP, we were able
to align the two sequences, which subsequently enabled us to
map the cells between marker beads. To keep the average num-
ber of cells between marker beads to be a relatively small num-
ber (�n ¼ 2) and minimize the chance of error, we kept the ratio
between cells and the total number of marker beads to be 2:1.

When the cells and beads passed the laser interrogation area
of the 3D-IFC and exited the flow cell, they were dispensed in
a FIFO manner on a template consisting of a 12-μm-thick
transparent porous film (Sterlitech, Stock Keeping Unit
1300026) on a holder with an array of groves. The liquid out of
the 3D-IFC (at around 300 μL/min) was immediately absorbed
by the porous membrane filter through the capillary effect and
drained by vacuuming the groves under the membrane. Only
the beads and cells were left on the wetted porous membrane.
The moving speed of the template was programmed according
to the cell density in the sample to achieve an average cell-to-
cell spacing of 250 μm along the line of travel and a spacing of
500 μm between two adjacent lines of cells. In this design, a fil-
ter plate of the same size as a 384-well plate can house around
6 × 104 cells. For a 30-min run of the 3D-IFC at a throughput
of 300 cells/s, we can record around 500,000 3D images of sin-
gle cells deposited on 10 cell plates with full knowledge of the
position of every single cell and its 3D image.

We used the bioinformatics toolbox to match the bead
sequences of the 3D-IFC readout and the cell plate, which is
equivalent to comparing two DNA sequences. We first matched
the marker beads between the two sequences and then matched
the cell numbers between marker beads. An example of the
matched result of the marker beads is shown in Fig. 2A. The
consensus map in Fig. 2 shows that errors can be detected and
located. Errors can be caused by bead/cell trapping within the
system (equivalent to deletion error) or misplacement (i.e., vio-
lating the FIFO rule). In this example, we found one deletion
error (in the 5th position) and one misplacement error (in the
34th position) in Fig. 2A.

If errors are found in the marker bead sequences, we will
skip the cells following the erroneous marker beads. If errors
occur to the cells between two marker beads, we will disregard
the cells between the marker beads to assure high accuracy. In
this approach, we minimize the probability of assigning wrong
images to the cells. In a typical run, we were able to relate cell
images to >80% of the cells with high confidence, dropping
about 15 to 20% of cells due to deletion or misplacement
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errors. Next, we present simulation results of how the bioinfor-
matics software can detect deletion and misplacement errors
and how the error detection capability changes with the fre-
quency of these errors.

Fig. 2 B, i and ii show Monte Carlo simulations of the depen-
dence of error detection capability on the error occurring fre-
quency for both deletion errors and misplacement errors. In
the simulations, we assumed the first DNA sequence contained
three types of nucleotides for a total length of 10,000 nucleoti-
des. The second DNA sequence was generated using the first
one as the template, but some nucleotides were deleted or mis-
placed at given error rates (e.g., randomly deleted 100 from
10,000 nucleotides for a 1% deletion rate). Two sequences of
DNAs were then matched using the bioinformatics toolbox.
The simulations showed that for a 5% probability of deletion
error, 99% of the errors were successfully located. For a 5%
probability of misplacement error, 92% of the errors were suc-
cessfully located. If the probability of both types of errors was
within 1% (i.e., less than 100 deletion or misplacement errors
in a sequence of 10,000 nucleotides), all errors were detected.
For those regions of high deletion and misplacement errors
that led to lower than a threshold confidence level, all cells and
their images in those regions would be disregarded.

Experiment with a Mixture of Marker Beads and Fluorescent Signal
Beads. For an initial feasibility study of matching images with
their positions, we mixed two types of fluorescent polystyrene
beads (10-μm Dragon Green and 10-μm Envy Green from
Bangs Laboratories) with the marker beads in a 2:1 ratio. After
extracting the two sequences from the 3D-IFC readout and the
CPP readout, we used the bioinformatics toolbox in MATLAB
to match the two sequences. A section of the matched sequen-
ces is shown in Fig. 3A. In this section, we found one misplace-
ment error (in the 5th position) and one deletion error (in the
12th position) in Fig. 3A.

Fig. 3B lists the number of fluorescent beads between each
pair of marker beads, and Fig. 3C shows the actual readouts of
the fluorescent beads to be Envy Green (Y) or Dragon Green
(G). In practical operations, we needed to introduce another
symbol “O” for those objects for which the images were out of
focus. Due to an imperfect flow confinement in our 3D-IFC
system, occasionally some objects were deviated from the cen-
ter of the cuvette to produce out-of-focus images. Combining
all these factors, including deletion and misplacement of
marker beads and fluorescent beads and out-of-focus images,
we were able to accurately locate 80% of the cells with their 3D
images.

Fig. 1. Single-cell analysis and isolation workflow based on 3D-IFC and robotic cell dispensing and pickup. The workflow is as follows. (i) Three types of
marker beads are mixed with a cell mixture to help map cell images from the image stream to cell locations. The sample is run through a 3D-IFC that can
capture 3D fluorescent and SSC images as well as 2D cell transmission images. (ii) After cells exit the 3D-IFC, they are dispensed by a robotic dispenser in a
FIFO manner on a template. (iii) Marker beads sequences from the 3D-IFC signal and the CPP are extracted using developed sequence extraction pipelines
described in SI Appendix, Figs. S1 and S2. (iv) Two sequences are compared and matched using a sequencing bioinformatics tool. (v) Marker beads
sequence errors (including deletion and misplacement errors) are detected, and for the correctly registered marker beads, the number of cells between
two marker beads is identified. In this manner, one can relate hundreds of thousands of individual cells to their respective 3D fluorescent and scattering
images in high accuracy. If certain cells with specific image features are of interest, one can locate and pick up those cells individually for downstream
analyses. AOD, acousto-optic deflector; CL, cylindrical lens; IO, 20×/0.42 illumination objective; SDO, 10×/0.28 side detection objective; SSP, side spatial fil-
ter; DMs, dichroic mirrors; FDO, forward detection objective; FSP, forward spatial filter; DIG,125 MSs�1 digitizer; PMT, photomultiplier tube; P-1, P-2, P-3,
P-N, pinhole positions; SE1, sequence extraction from 3D-IFC, SE2, sequence extraction from CPP.
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Tracking 3D Cell Images and Their Positions. Next, we demonstrate
the ability to map 3D images of labeled and unlabeled cells to their
positions. The test sample contained a mixture of human embry-
onic kidney 293 (HEK-293), Michigan Cancer Foundation-7
(MCF-7), and cervical cancer (HeLa) cells in an ∼1:1:1 ratio.
MCF-7 cells and HeLa cells were fluorescently stained with the
carboxyfluorescein succinimidyl ester (CFSE) (excitation/emis-
sion [Ex/Em] wavelengths: 492/517 nm, Thermo Fisher) and the
CellTrace yellow proliferation kit (Ex/Em 546/579 nm, Thermo
Fisher), respectively. The HEK-293 cells were unstained.

Flowing the 3D-IFC system for high-throughput imaging,
cells were dispensed onto the membrane filter by the robotic

system in a FIFO manner. We first checked the sequence of
marker beads using the bioinformatics toolbox to identify all
matched pairs and excluded those mismatched marker beads
due to deletion or misplacement errors. Next, between two
adjacent marker beads, we compared the number of cells from
the 3D-IFC images and the cell plate and marked those sec-
tions where the two cell numbers are matched, dropping the
sections where the cell numbers are not matched. Fig. 4A shows
the number of cells between two adjacent marker beads, and
Fig. 4B locates the cells on the plate and their 3D SSC fluores-
cent images and 2D transmission images. The built-in camera
in the robotic cell placement module has a large field of view

Fig. 2. (A) Example sequence matching results of the marker bead readout by the 3D-IFC and the CPP using the bioinformatics toolbox in MATLAB. (B)
Monte Carlo–simulated error detection probability versus error rate due to (i) deletion (a marker bead is missing) and (ii) misplacement (a marker bead is
misplaced). Here, 10-μm marker beads are represented by A, 20-μm marker beads by T, and 30-μm marker beads by C.

Fig. 3. Proof-of-concept experiment with fluorescent beads (Y, Envy Green; G, Dragon Green) mixed with marker beads (A, T, C). (A) Matching results of
the marker bead sequences from the 3D-IFC readout and CPP readout using the bioinformatics toolbox in MATLAB. (B) Map including the number of
fluorescent beads between correctly identified marker beads. (C) Detailed readout of the fluorescent beads (Y, G) between marker beads (A, T, C). In C,
besides the Y and G, “O” represents beads of which the 3D-IFC images are out of focus. In other words, even if the bead can be identified, its image is
too blurred to extract useful information. (i), (ii), and (iii) indicate sections in B that are expanded in C.
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but low resolution, as its purpose is to simply identify the posi-
tions of marker beads and cells. Aided by image processing
algorithms, the low-resolution camera images could distinguish
marker beads by their size and registered cells and their
location coordinates, which were later used for targeted cell
pickups. The image processing algorithm was also able to dis-
tinguish beads and cells from the background patterns of the
pores on the filter surface.

With the cell mapping capabilities, we can record the 3D
image of each cell and locate it on the cell placement platform
with its position coordinates for retrieval and molecular analysis
or cell-based assay. Notably, in Fig. 4, cell 2 appears to be a
doublet, as shown from its SSC and CFSE fluorescent images
as well as 2D transmission images. However, cell 11 shows a
doublet in its SSC and yellow fluorescent images but not in its
2D transmission image from the perspective. This example
shows that 2D images could run into the issues of occlusion
and perspective compared with 3D tomography.

Separating Breast Cancer Cells from Normal Cells. Here, we iden-
tify and locate human breast cancer cells (MCF-7) from human
breast epithelial cells (MCF-10A) by mapping cell locations to
their images. The MCF-7 cells were fluorescently stained with
the CFSE cell proliferation kit, and MCF-10A cells were not
stained. We fluorescently labeled MCF-7 cells to establish the
ground truth for verification. After capturing the 3D image of
each cell by the 3D-IFC at a rate of 300 cells/s, cells were dis-
pensed on the membrane in a FIFO manner. Fig. 5A shows the
sequence of marker beads and the cell numbers between two
marker beads. Good matches between the 3D-IFC and the cell
plate were obtained in most regions except a single misplace-
ment of the marker bead C. The cells on the membrane and
their corresponding 3D images in the matched regions are
shown in Fig. 5B. Note that the 3D-IFC images are also able to

detect cell doublets (e.g., cell images 7 and 13 in Fig. 5). This
can find important applications in identifying a T cell/cancer
cell complex for T cell receptor and neoantigen detection, a key
step for Chimeric antigen receptor (CAR)T immunotherapy.

Liver Disease Detection. Liver disease is a global healthcare bur-
den, causing millions of deaths per year worldwide. The pro-
gression of liver disease could be divided into several stages
(31). The hepatitis stellate cells (SCs) from patients with early-
stage liver disease would be a mixture of normal liver cells and
cells in different stages of liver disease (32). Early-stage liver
disease analysis and isolation are not only important in manag-
ing the disease but also beneficial in liver drug discovery and
personalized medicine. Our technique offers the capability of
imaging and isolating individual cells, which enable disease
diagnosis and applications in drug discovery.

In a proof-of-concept experiment, the biopsy-proven nonal-
coholic steatohepatitis (NASH) SC derived from a patient with
early fibrosis stage 1/2 and SC from a healthy control were
studied. We first ran both NASH SC and control SC separately
to collect cell images. A total of 11 morphological features
from both 2D transmission images and 3D SSC images were
extracted from these cell images by offline analysis. We applied
the unsupervised k-means clustering algorithm using the fea-
tures from NASH SC to separate normal liver cells from cells
with liver disease. Then, the features from control SC were
used to examine the model clustering performance.

We demonstrated the system capability to identify and locate
each cell after capturing the 2D and 3D cell images by the
3D-IFC at a rate of 300 cells/s. The NASH SC sample was
mixed with marker beads, and cells were dispensed on the
membrane in a FIFO manner. Fig. 6A shows the sequence of
marker beads and the cell numbers between two marker beads.
The cells on the membrane and their corresponding 3D images

Fig. 4. Human cancer cell experiment. MCF-7 and HeLa cells were stained with CFSE and CellTrace yellow, respectively, and HEK-293 were unstained. (A) Rep-
resentative section of the matched sequences from the IFC and CPP readouts. The number between the adjacent marker beads shows the number of cells in
between. When the number of cells in two sequences matches, we can unambiguously match the cell with its 3D images. [* indicates section that is expanded
in B (i) and (ii)]. (B) A representative section (in the box in A) of cells (i) on the CPP membrane and (ii) having their 3D SSC images and fluorescent images (in
yellow and green from CellTrace Yellow and CFSE, respectively) as well as 2D transmission images. Notice that cell 2 appears to be a doublet. Cell 11 shows a
doublet in the scattering and fluorescent images, but the 2D transmission image can resolve the doublet from the perspective. CFSE, Cell Proliferation Kit
(Ex/Em, 488/517); yellow, CellTrace yellow proliferation kit (Ex/Em, 546/579); SSC, side scattering (90 degrees); Tm, transmission image. (Scale bar, 10 μm.)
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in the matched regions are shown in Fig. 6B. Note that cell 11
is a doublet. Fig. 7 shows the clustering results and the corre-
sponding t-SNE visualizations for NASH SC and control SC.

To pick up any selected cells based on their image features,
we need to locate the cell positions, which are random on the
porous membrane due to several factors, including the Poisson

statistics of the time when cells exit the 3D-IFC system, the
finite size of the dispensing tip, and the relatively large amount
of sheath flow that carries the cells. The ability of an automatic
generation of cell position coordinates makes selective cell
pickup fast and easy. To measure the location of the marker
beads and cells on the membrane, we have developed image

Fig. 5. Breast cancer cell experiment. (A) Representative section of the matched sequences from the IFC and CPP readouts. The number between adja-
cent marker beads shows the number of cells in between. When the number of cells in two sequences matches, we can unambiguously match the cell
with its 3D images. (B) Details of marker bead and cell images within the highlighted box in A. (i) Low-resolution camera images for marker beads and
cells on the membrane filter of CPP. (ii) High-resolution 3D SSC and fluorescent images and 2D transmission images of MCF-7 (CFSE stained) and MCF-10A
(unstained) cells from the 3D-IFC. The 3D-IFC images can detect cell doublets (cell 7 and cell 13). For cell 5, the doublet consists of an MCF-7 (fluorescent)
and an MCF-10A (nonfluorescent) cell. For cell 13, the doublet consists of two MCF-7 (fluorescent) cells. (Scale bar, 10 μm.)

Fig. 6. Liver cell experiment. (A) Representative section of the matched sequences from the IFC and CPP readouts. The number between adjacent marker
beads shows the number of cells in between. When the number of cells in two sequences matches, we can unambiguously match the cell with its 3D
images. (B) Details of marker bead and cell images within the highlighted box in A. (i) Low-resolution camera images for marker beads and cells on the
membrane filter of CPP. The image resolution is sufficient for the identification of the marker beads and the coordinates of the cells as indicated in Table
1. (ii) High-resolution 3D SSC and 2D transmission images of liver cells from the 3D-IFC. The images can detect cell doublets (cell 11). (Scale bar, 10 μm.)
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processing algorithms to identify the marker beads by size and
record the coordinates of each marker bead and cells. The soft-
ware is capable of distinguishing beads and cells from back-
ground features of the porous membrane. SI Appendix shows

how those background patterns of the porous membrane can
be removed to produce images in Figs. 4B, 5B, and 6B.

As an example of using the low-resolution, wide field-of-view
imager in the CPP to register the position of the marker beads
and cells, Table 1 lists the coordinates of the marker beads and
cells on the membrane filter in Fig. 6B. The imager has suffi-
cient resolution to resolve the marker beads and the presence
of cells between the marker beads and to register their posi-
tions with an accuracy of ±10 μm, which is sufficient for the cell
pickup tools. Table 1 also lists the extracted features and the
clustering result. One can pick up any chosen cells, for example,
cells belong to cluster 2 on the membrane according to their
coordinates, and transfer them to a common platform such as a
384-well plate for downstream analyses. There are many auto-
mated cell pickup heads to pick up single cells by aspiration
with a high rate and efficiency (33, 34). One can also introduce
different treatments to certain cells based on their image analy-
sis results and locations, which would be beneficial in the drug
discovery area.

Discussion
This technique relates 3D imaging features of individual nonad-
herent cells at high throughput to their spatial coordinates on a
plate. Our design consists of two parts, as follows: recording 3D
cell images at high throughput (up to 1,000 cells/s) using a
3D-IFC and dispensing cells in a FIFO manner using a robotic
CPP. When hundreds of thousands of cells pass the system in
continuous operation for 10 min, errors due to violations of the
FIFO principle are inevitable due to occasional cell trapping
inside the system or cell order scrambling due to disruption of
the laminar flow. To prevent the incorrect mapping of cell
images to their positions on the cell placement membrane, we

Cluster 1 (%) Cluster 2 (%)

NASH SC 65.7 34.3

Control SC 94.9 5.1

A

B C

Fig. 7. Liver cell clustering from healthy and early-stage NASH samples.
(A) Cluster distribution of the NASH SC and the control SC. The clustering
model was fitted using the dataset from the NASH HC. Then, the model was
used to predict the dataset from the control SC. (B) t-SNE visualization of
the clustering result of the NASH SC dataset. (C) t-SNE visualization of the
clustering result of the control SC dataset. Both datasets contain ∼15,000 3D
cell images. HC, healthy control; SC, stellate cell; t-SNE, t-distributed stochas-
tic neighbor embedding.

Table 1. Registration of marker beads and cells in the liver cell experiment (Fig. 5) by their position coordinate on the membrane
filter and their corresponding feature extraction and clustering results

Cell or marker bead
Position
(x, y), μm

Transmission image (2D), μm SSC image (3D)
Clustering

resultSurface area Major axis Minor axis Perimeter Volume, μm3 Surface area, μm2

Marker bead #1 (T) (0, 0) — — — — — —

Marker bead #2 (C) (299, 98) — — — — — —

Marker bead #3 (C) (307, 130) — — — — — —

Marker bead #4 (T) (334, 135) — — — — — —

Marker bead #5 (C) (541, 143) — — — — — —

Cell #1 (887, 155) 464.5 26.4 22.7 76.9 6,495 1,604 1
Cell #2 (1,031, 149) 648.5 33.2 24.9 92.3 10,367 4,532 1
Marker bead #6 (C) (1,480, 120) — — — — — —

Marker bead #7 (C) (1,576, 160) — — — — — —

Marker bead #8 (T) (1,593, 172) — — — — — —

Cell #3 (1,920, 130) 1,125.3 39.2 36.8 122.1 23,150 7,705 2
Cell #4 (2,026, 100) 506.0 26.8 24.3 80.0 7,160 2,359 1
Cell #5 (2,313, 163) 909.7 34.4 34.2 109.3 19,712 4,842 1
Cell #6 (2,379, 118) 645.8 31.9 26.0 90.6 10,422 3,994 1
Marker bead #9 (T) (2,543, 83) — — — — — —

Marker bead #10 (T) (2,666, 37) — — — — — —

Cell #7 (2,804, 91) 394.0 23.8 21.7 74.8 5,327 2,471 1
Cell #8 (2,890, 206) 586.5 32.2 23.4 90.5 8,442 3,907 1
Cell #9 (2,937, 217) 814.5 35.0 29.8 103.7 15,181 3,705 1
Cell #10 (3,368, 232) 683.5 30.9 28.7 96.6 12,398 3,876 1
Cell #11 (3,390, 190) — — — — — — —

Cell #12 (3,475, 194) 596.8 31.8 24.0 87.9 8,791 3,075 1
Cell #13 (3,753, 177) 506.0 28.0 23.2 81.1 7,210 2,396 1
Marker bead #1 (C) (4,402, 187) — — — — — —

Marker bead #1 (C) (4,431, 187) — — — — — —

Marker bead #1 (C) (4,459, 178) — — — — — —

—, not of interest.
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invented a method that used marker beads and DNA sequenc-
ing software to detect errors and discard any portions with high
error probabilities. Using this method, one can detect any
errors and isolate the erroneous regions to prevent error propa-
gation and accumulation. Proof-of-concept experiments with
human cancer cell lines and healthy/diseased liver cells were
performed to demonstrate the feasibility of the approach. Over
100,000 cells placed on the cell plates can be located based on
their 3D SSC and fluorescent images, as well as 2D transmission
images. Since the position coordinate of every single cell on the
cell placement membrane is recorded, our technique also allows
users to pick up cells of specific phenotypes for cell-based assays,
culturing, and downstream molecular analyses such as RNA
sequencing, proteomic, and metabolic analyses. Given that sev-
eral commercial devices are already available for efficient cell
pickup and dispensing into 384-well plates, our paper does not
cover any specific cell pickup methods but shows the highly effi-
cient approach to generate cell position coordinates. In our
design, cells are placed on a porous membrane to keep cells wet-
ted by the culture medium and easily aspirated without rupturing
the cell membrane or excessive stress. Finally, while the current
work uses our in-house-designed 3D-IFC to produce the cell
image data, our methodology is general enough to support other
imaging modalities such as the commercial 2D imaging flow
cytometer (e.g., Amnis ImageStream system).

Materials and Methods
Human Cancer Cell Line Preparation. The HEK-293, MCF-7, and HeLa cells
were used in human cancer cell line classification. Cell lines were cultured with
growth media (Dulbecco’s modified Eagle’s medium [DMEM], 10% fetal
bovine serum, 1% penicillin streptomycin) in a 10-cm Petri dish to 90% conflu-
ency before harvesting. After culturing, cell lines were harvested and resus-
pended to a concentration of ∼1 × 106 cells/mL in 1× phosphate-buffered
saline (PBS). The CFSE cell proliferation kit (Ex/Em 492/517 nm, Cat. 34554,
Thermo Fisher) was added to the cell suspension at a working concentration

of 20 μM. For the CellTrace yellow proliferation kit (Ex/Em 546/579 nm, Cat.
34567, Thermo Fisher), we prepared the CellTrace stock solution immediately
prior to use by adding the appropriate volume of dimethyl sulfoxide (compo-
nent B) to one vial of CellTrace reagent (component A) and then added the
solution to the cell suspension at a working concentration of 5 μM. After
incubating the cells at 37 °C for 30 min, fresh DMEM was used to quench the
staining process, and the cells were washed with 1× PBS and fixed by a 4%
paraformaldehyde solution. The fixed cells were washed and resuspended in
1× PBS before imaging.

Human Breast Epithelial Cell Preparation. The human breast epithelial cells
(MCF-10A) were cultured with culture media (DMEM/F12 Ham’s mixture sup-
plemented with 5% equine serum [Gemini Bio], 20 ng/mL epidermal growth
factor [Sigma], 10 μg/mL insulin [Sigma], 0.5 mg/mL hydrocortisone [Sigma],
100 ng/mL cholera toxin [Sigma], 100 units/mL penicillin, and 100 μg/mL strep-
tomycin) in a 15-cm Petri dish to 90% confluency before harvesting. After cul-
turing, cells were harvested and resuspended to a concentration of ∼1 × 106

cells/mL in 1× PBS. The cells were then fixed by a 4% paraformaldehyde solu-
tion. The fixed cells werewashed and resuspended in 1× PBS before imaging.

Stellate Cell Sample Preparation. Frozen vials of SCs were first thawed in a
37 °C water bath and then transferred to 5 mL media (DMEM, 10% fetal
bovine serum). Cells were then spun at 200 g for 5 min. The supernatant was
removed, and the cells are resuspended in 1 mL of the medium. They were
then transferred to 2mL ofWilliams EMedium.

Experimental Sample Preparation. The cell sample was premixed with three
nonfluorescent beads of different sizes, as follows: 10-μmbeads which we rep-
resented as nucleobase A, 20-μm beads which we represented as nucleobase
T, and 30-μm beads which we represented as nucleobase C. To keep the aver-
age number of cells between marker beads to be a relatively small number
(�n ¼ 2) andminimize the chance of error, the ratio between cells and the total
number of marker beads was 2:1.

Data Availability. The data and Python implementation of unsupervised k-
means clustering code are publicly available on GitHub (https://github.com/
ZunmingZhang/A-High-Throughput-Technique-to-Map-Cell-Images-to-Cell-
Positions-Using-3D-Imaging-Flow-Cytometer).
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