UCLA
Recent Work

Title
On Robust Tests for Heteroskedasticity in the Market Model

Permalink
https://escholarship.org/uc/item/3xs0c46X

Authors

Lehmann, Bruce
Warga, Arthur

Publication Date
1984-04-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3xs0c46x
https://escholarship.org
http://www.cdlib.org/

#9-84

ON ROBUST TESTS FOR HETEROSKEDASTICITY
IN THE MARKET MODEL

April 1984

Bruce Lehmann
and
Arthur Warga

Graduate School of Management, Univ.of Calif.LA
and Columbia University
Graduate School of Management, Univ.of Calif.LA
and Claremont Graduate School



ON ROBUST TESTS FOR HETEROSKEDASTICITY
IN THE MARKET MODEL

Bruce Lehmann
Columbia University and UCLA

Arthur Warga
Claremont Graduate School and UCLA



In a recent article in this Journal, Giaccotto and Ali (5 ) addressed several
potential deficiencies in prior studies which investigated heteroskedasticity in the
single index market model. Much of the previous work employed standard parametric
tests for heteroskedasticity, such as the Goldfeld-Quandt, Bartlett or Glejser tests,
which lean heavily on the assumed normality of the disturbances, a potentially
untenable assumption in Tight of the apparent leptokurtotic nature of returns. More-
over, some authors have employed alternative tests, such as the Goldfeld-Quandt peak
test, on the ordinary least squares (OLS) residuals from market model regressions
under the assumption of the independence of the OLS residuals when, in fact, these
residuals are correlated by construction. Finally, the previous literature investi-
gated only a small number of specific forms of heteroskedasticity whereas Giaccotto
and Ali (5 ) suggested the virtues of tests which have power against a variety of
alternatives.

These considerations led Giaccotto and Ali to consider alternative rank and
robust tests which have good power characteristics. Since these test statistics
require the use of independent observations, Giaccotto and Ali observed that OLS
residuals should not be used in such tests since they are correlated and, hence,
dependent. The authors instead employed recursive residuals which were introduced by
Brown and Durbin (1 ) and since have been studied extensively in Hedayat and Robson
(9 ), Harvey and Phillips (8 ), Harvey and Collier (7 ), Godolphin and DeTullio (6 ),
Dufour (2 ), and Garbade (4 ). These recursive residuals are standardized one step
ahead prediction errors which by construction are mutually uncorrelated. Giaccotto
and A1i concluded that this orthogonality property makes recursive residuals appropriate
for the construction of the aforementioned test statistics.

Unfortunately, this unwarranted conclusion involves an elementary flaw in sta-

tistical reasoning since uncorrelated random variables are not independent unless

their joint distribution is normal. This simple observation renders their claims
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involving the distribution-free nature of their tests incorrect. In fact, as we
shall indicate below, it is not clear whether any of their test statistics possess
well-defined distributions in large samples when based on recursive residuals.

In what follows we document the dependence of recursive residuals and examine
some of the corresponding implications for the test statistics employed by Giaccotto
and Ali. In the next section, we discuss the small and large sample behavior of OLS
and recursive residuals and indicate some of the implications of this analysis for
various tests for heteroskedasticity. We conclude with a discussion of some of the
substantive conclusions reached by Giaccotto and Ali. Detailed analysis of the

behavior of OLS and recursive residuals is relegated to an Appendix.

IT. The Behavior of OLS and Recursive Residuals

OLS residuals are not well-suited for hypothesis testing in small samples. These
residuals are correlated and, hence, cannot be employed in test statistics which
require independence of the basic observations. Moreover, this dependence extends to
higher order moments. For example, it is well-known that, even under normality, the
average absolute residual tends to be smaller than would be expected from a population
of independently distributed variates.

In contradistinction, recursive residuals behave well in finite samples. By
construction, they are mutually uncorrelated when the underlying disturbances of the
regression model are independent. Note, however, that they are not independent unless
the disturbances are normally distributed as well. For example, as shown in the
Appendix, if the disturbances are leptokurtotic (or fat-tailed), then squared re-
cursive residuals are positively correlated so that there would tend to be more
extremely large or extremely small residuals than would be expected under independence.
In consequence, test statistics based on recursive residuals have unknown properties
in finite samples when the underlying disturbances are non-normal and it is likely
that such questions could only be addressed through Monte-Carlo simulations. It is

for this reason that prior work employing recursive residuals for hypothesis testing
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including for example, the work of Hedayat and Pobson (9 ) which deve]dped the peak
test employed by the authors, emphasized the crucial nature of the normality assump-
tion.

Paradoxically, the comparative merits of OLS and recursive residuals are reversed
in Targe samples. The OLS residuals converge to the true disturbances in large sam-
ples. On the other hand, recursive residuals exhibit no such genera]Itendency. The
reason for the convergence of the OLS residuals is simple---each new observation tends
to improve the estimate of the slope coefficient and, in consequence, moves each esti-
mated disturbance closer to its true value. . By contrast, recursive residuals do not
change when new observations are added since the jzh'recursive residual is'a fixed
linear combination of the first j observations. Consequently, the dependénce among
the first several recursive residuals does not vanish and, in fact, does not change as
the number of observations grows large. Of course, the dependence of the last several
recursive residuals does vanish in large samples and, hence, these residuals may be
employed without remorse in large sample tests which require independence. Unfortun-
ately, there is no theoretical guide as to hdw many residuals constitute "the last
several" ones and it is likely that this question can only be answered by Monte Carlo
simulations in particular applications.

These simple observations render all of the claims made by Giaccotto and Ali con-
cerning the large sample properties of their test statistics false. The large sample
normality of the peak test, Kendall's rank correlation test, Bickel's robust tests,
and the rank tests considered by Giaccotto and Ali require the use of independent
residuals. Perhaps the large sample properties of these tests are not terribly sensi-
tive to the dependence of the recursive residuals when the underlying disturbances are
non-normal but this is surely a matter which should be investigated directly.

It is likely, in fact, that the test statistics in question are somewhat sensitive

to this dependence in the market model regressions. On the evidence of Fama (3 ) and
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many others, stock returns follow distributions which are leptokurtotic relative to
the normal. In consequence, there will tend to be more extremely large and extremely
small residuals than would be expected under normality and, hence, the recursive
residuals would tend to suggest the presence of heteroskedasticity when, in fact, the
disturbances were homoskedastic. Since the explicit motivation for the authors' study
was that "the incidence of heteroscedasticity detected by these [parametric] tests
[empToyed in previous studies] may be overstated" (p. 1248) due to the fat-tailed
nature of returns, it is certainly disturbing that the same type of bias carries

over to the allegedly distribution-free tests employed by the authors.

IIT. Conclusion

In this paper, we have discussed a number of statistics based on recursive
residuals employed by Giaccotto and Ali (5 ) to test for heteroskedasticity
in the market modeT. They motivated their use of recursive residuals by suggesting
that the orthogonality of recursive residuals make them appropriate for testing for
heteroskedasticity when the disturbances are not normally distributed. Unfortunately,
the authors failed to note that for non-normal error terms the uncorrelated nature of
recursive residuals does not imply their independence. In fact, for the case of lep-
tokurtotic (relative to the normal) disturbances, our analysis indicates a positive
correlation between squared recursive residuals, which might cause the test statistics
to falsely indicate the presence of heteroskedasticity.

In consequence, it is unclear whether recursive residuals are superior to OLS
residuals for the present purposes or whether either set of residuals leads to biased
tests in the market model application. The only evidence provided in the paper con-
cerning the relative merits of OLS and recursive residuals is that both sets of resid-
uals yield similar rejection rates of the hypothesis of homoskedasticity with the

Kendall rank and Goldfeld-Quandt peak tests, with those based on recursive residuals



rejecting only slightly more often. While this suggests that the greater dependence
of OLS residuals is perhaps unimportant in testing for heteroskedasticity in the
market model, it leaves open the basic question as to whether either set of residuals
leads to tests which correctly indicate the presence of heteroskedasticity.

This uncertainty clouds the interpretation of the conclusions reached in the
paper. All of the non-normal error distributions considered by Giaccotto and Ali
are more leptokurtotic than the normal distribution and, hence, would lead to the
problems discussed above. Parenthetically, it is somewhat odd for the authors to
speak of heteroskedastic Cauchy disturbances when the Cauchy distribution does not
possess finite moments of any order! Moreover, the rank tests which suggest that
heteroskedasticity in the market model is related to the squared return on the market
suffers from similar difficulties. Our analysis indicates that the degree of depen-
dence among the squared recursive residuals depends on the magnitude of squared vari-
ation in the independent variables. Again it is uncertain whether these rank tests
are providing us with useful information concerning the stochastic properties of
market model regressions or of the sampling properties of residuals.

We do not mean to suggest that heteroskedasticity is not present in the market
model or that it is unrelated to the squared return on the market. We are puzzled
however, by the lack of concern the authors have for providing an economically moti-
vated rationale to guide this investigation. For example, the analysis in the paper
was conducted using data for individual firms over a twelve year sample period. Hence,
it is likely that the beta coefficients for many of the firms fluctuated over the
sample period. A naive model for individual betas as being the sum of a constant mean
plus a random error term would lead to heteroskedasticity being proportional to the
squared return on the market. Rather than calling for an ad hoc GLS adjustment, such
dependence should suggest the appropriateness of shorter sampling intervals and/or

more explicit attention to the economic determinants of fluctuations in beta. If
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the authors are truly concerned about testing a variety of alternatives to the usual
homoskedastic market model, it behooves them to search for economically motivated
departures from this formulation and not to restrict their attention to purely statis-

tical alternatives.



APPENDIX

OLS Residuals
Consider the usual linear regression model:

Y = Xgte (M
where y is a Tx1 vector of observations on a dependent variable, X is a TXk
matrix of observations on k independent variables, g is a kX1 vector of
unknown coefficients and ¢ is a Tx1 vector of independent and identically
distributed unobservable disturbance terms with zero mean vector and scalar
covariance matrix, i.e.:

Ele] =0

Efee’ J=0°1

EE T (2)

where IT is an identity matrix of order T.
The OLS residual vector e is defined by:

y-X 8 (3)

€
where:

(X% x'y (4)

8

As is well-known, algebraic manipulation of (3) and (4) yields:

e=Me (5)
where:
M= T-X(X'X)7 X
MX = 0 (6)
MM = W = M

Hence the first and second moments of the OLS residuals are given by:
Efe] =0
Efe e'] = oM (7)

In other words, the OLS residuals are correlated and, hence, ought not be
treated as independent for the purpose of hypothesis testing.

The Targe sample analysis of OLS residuals is straightforward. Under
weak assumptions, such as:



1i .
. JT-x X = Q <o (8)

where Q is a positive definite symmetric matrix, the OLS estimator is
consistent:

Tim é‘= B

Ts (9)

and, hence, the OLS residual vector converges to the true underlying
disturbances:

1im e = ¢

T ' (]O)
In consequence, if the underlying disturbances are independently
distributed over observations, then in large samples the OLS residuals
will be independently distributed as well.

Recursive Residuals

Let the column vector Xt denote the tth row of the Txk matrix X and let the
matrix Xt be the first t rows of X. The tth recursive residual is given by:
= v - i ' -1 ']/2

W DX B T (XG4 X g) %]
where:

- t-1

B = (X, X )_] T X.Y

=t-1 t-17¢-1 3=1 =373 (12)

is the OLS estimator based on the first t-1 observations. In terms of
the underlying disturbances, the recursive residual is:

Wy = [ep-xo (X! <X, )] i T+ x (X, X 1) 'x,]71/2
L AT ARA s L o €5 X\ e 1M-1) £t (13)

It is well-known that the vector of recursive residuals can be written

W= H

Il
< |m

(14)

=H ¢

where the (T-k)xT matrix H is obviously formed from the terms involving
Xt and Xt-] in (13) and which satisfies: -



HX = 0

HH = Lo,

I

HMH' = 1o

H'H = M

where M was defined in (6) above. From these considerations, it follows
that:

Efw] = 0
: 2 (16)
ww']l=g¢ IT—k

If, in addition, the disturbances are normally distributed then the
recursive residuals are independently distributed as well.

On the other hand, Giaccotto and Ali are expressly concerned about the
possibility that the disturbances follow a non-normal leptokurtotic
distribution. Hence, Giaccotto and Ali would necessarily presume that

the recursive residuals were uncorrelated but not independent. In

order to illustrate some of the effects of non-normality, we compute

one of the higher order moments---the covariance between squared recursive
residuals. Additional higher order moment calculations are available

from the authors on request.

Since:

-2 = !

W, e

hihi'e v , (17)

where h. is a Tx1 vector consisting of the it row of H, then:

2 2 I 1 1 ]
E[wj Wy 1= E[e'h;hiee _h_jﬁjé]

E[trace(hjbéééfbjbjEEf)]

vec(hih;.)'E[gg'@gg_']vec(ﬁjﬁj) (]8)

where vac( ) denotes the vectorization of a matrix obtained by stacking
the matrix column by column and & denotes the usual Kronecker product.
By inspection:

Elecgee'] = (u4-364) U+ Vv (19)
where V denotes the expected value of the left-hand side of (19) if ¢ were
normally distributed, U 1stﬁ diagonal matrix consisting of all zeros except
for ones in the [T(j-1)+j] " diagonal pozition forj=1, ..., T, u
is the fourth central moment of ¢ and 30 is the fourth central momént
of the normal distribution. Hence:



2 2
E[Wiwj

4 0 '
(U4"30 )[Vec(hiﬂi ) u Vec(ﬂj_h,j )]
tvec(h;h.") V vec(h:h.")

= (u4-304)[vec(b4h4') U vec(b_jb_j')]m4
T

= 4 2.2 4

= (ng-30") i=1h1khjk+o

since, under normality, w% and W? are independent. In consequence, if
the distribution of the underlying disturbances is leptokurtotic, the
covariance between w? and W? is positive, so that we would expect more
extremely large values of w and extremely small values of w then would
occur if the recursive residuals were actually independent.

The large sample analysis of recursive residuals is even more complicated.
This is the obvious result of the fact the the th recursive residual is

a fixed Tinear combination of the first j observations which does not
change as the number of observations grows. In contradistinction, the jEﬂ
OLS residual changes as the number of observations increases which accounts
for their convergence to the true disturbances documented in (10). Hence,

the dependence of the first T recursive residuals does not vanish for any
finite T, although the dependence of the 1ED and j—1£b recursive residuals
does tend to diminish for values of i and j near T as T grows large. The
following proposition establishes sufficient conditions for a subset of

the recursive residuals to be independent in large samples.

~

Proposition: Suppose that (8) holds so that the OLS estimator g8 is
consistent. Then, if the underlying disturbances ¢ are independently
distributed, the last L recursive residuals will be independently distri-
buted in large samples if:

L/T> 0 as T» =

Proof: The result follows directly from the consistency of the OLS
estimator (a) and the fact that the last (countably infinite) L recursive
residuals will be arbitrarily close to the OLS residuals and, hence, to
the true disturbances. Q.E.D.

Note that this, in turn, requires that the first T-L recursive residuals

be ignored as T gets large in order to ensure that the remaining L recursive
residuals are independent for the purposes of test statistic construction.
Again, the magnitude of T-L might be small relative to T in many situations
but this question should be addressed directly on a case by case basis.
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