
UCLA
Department of Statistics Papers

Title
Half-prophets and Robbins' Problem of Minimizing the Expected Rank

Permalink
https://escholarship.org/uc/item/3xs3592j

Authors
Thomas S. Ferguson
F. Thomas Bruss

Publication Date
2011-10-25

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xs3592j
https://escholarship.org
http://www.cdlib.org/


Half-Prophets and Robbins’ Problem
of Minimizing the Expected Rank

F. THOMAS BRUSS∗ , Université Libre de Bruxelles
THOMAS S. FERGUSON∗∗ , University of California, Los Angeles

Summary: Let X1,X2, . . . ,Xn be i.i.d. random variables with a

known continuous distribution function. Robbins’ problem is to find a se-

quential stopping rule without recall which minimizes the expected rank of

the selected observation. An upper bound (obtained by memoryless threshold

rules) and a procedure to obtain lower bounds of the value are known, but

the essence of the problem is still unsolved. The difficulty is that the optimal

strategy depends for all n > 2 in an intractable way on the whole history

of preceding observations. The goal of this article is to understand better

the structure of both optimal memoryless threshold rules and the (overall)

optimal rule. We prove that the optimal rule is a “stepwise” monotone in-

creasing threshold-function rule and then study its property of, what we call,

full history-dependence. For each n , we describe a tractable statistic of pre-

ceding observations which is sufficient for optimal decisions of decision makers

with half-prophetical abilities who can do generally better than we. It is shown

that their advice can always be used to improve strictly on memoryless rules,

and we determine such an improved rule for all n . The essence of Robbins’

problem would be to prove or disprove the existence of asymptotically (as

n→ ∞) relevant improvements.

Keywords: Sequential selection - Full information - Memoryless threshold

rules - “Stepwise” monotonicity - prophets - Order statistics.

AMS 1991 Subject Classification: Primary 60G40, Secondary 62L15.

§1. Introduction.

1.1 The Problem. Let X1,X2, . . . ,Xn be i.i.d. r.v.’s with c.d.f. F . We assume

F to be continuous so that the Xk ’s are uniquely rankable (a.s.). Since the payoffs we
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consider depend only on the ranks of the Xi , we may and do assume, w.l.o.g., that F is

uniform on [0, 1] . The relative rank of observation Xk is defined as

rk =
k∑

j=1

I(Xj ≤ Xk), 1 ≤ k ≤ n, (1.1)

where I(A) denotes the indicator of the event A . Note that we define the smaller obser-

vations to be the better ones, which proves here to be more convenient. Let

R∗
k = rk +

n∑
j=k+1

I(Xj ≤ Xk) (1.2)

denote the absolute rank of Xk , and let T denote the set of all stopping rules,

T = {τ : {τ = k} ∈ Fk, ∀k = 1, 2, . . . , n}, (1.3)

where Fk denotes the σ -field generated by X1,X2, . . . ,Xk . R∗
k is not Fk -measurable, and

so we replace it by its conditional expectation given Fk , Rk = E(R∗
k|Fk) = rk +(n−k)Xk

(see also Assaf & Samuel-Cahn (A&S-C, 1992)). Robbins’ problem is then to find

V (n) = inf
τ∈T

E(Rτ ) (1.4)

and the stopping rule τ which attains this value. This is the full-information version of

the problem studied by Chow et al. (1964).

1.2 Motivation. The motivation to study Robbins’ problem goes beyond the ambi-

tion to solve the 4th secretary problem (see Bruss and Ferguson (B&F),1993). Once we

think about it, we see that this problem stands indeed for a whole class of problems, about

which little is known. The central question is what to do if the optimal rule is seemingly

dependent on the whole history (in a sense which we will make precise) and if we do not

have an idea about the value. Replacing at each stage the history by some adequately

looking summary of the available information, on which we would base the decisions, is

of little help, because if we cannot assess the error, how can we evaluate the trial? In

Robbins’ problem, it turns out, that we have reasonable bounds to the value, and with a

lower bound of 1.908 and an upper bound of 2.3232, we have indeed little to worry about.

But what to do if the bounds are not close at all? - The problem would stay the same,

and any improvement would be desirable.
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1.3 Organization of the Paper. The paper is organized as follows: In Section 2

we review memoryless threshold rules, prove the uniqueness of the optimal rule in this

class and briefly discuss computational methods. Section 3, which prepares the study of

the overall optimal rule, introduces the notion of a half-prophet. This is a decision maker

who turns into a prophet provided he decides not to choose the present observation and to

go on. Thus a half-prophet has more power than we have, and it will be shown that he

needs all preceding information to realize the optimal value. Section 4 contains the main

results of the paper. We show in Lemma 4.1 that the overall optimal rule is a “stepwise”

monotone threshold function rule which contrasts the lack of monotonicity with respect to

preceding observations. We then discuss the notion of full history-dependence of a stopping

rule and show that the overall optimal rule for Robbins’ problem has this property. In

Section 5 we describe a rule which strictly improves on the optimal memoryless rule for

finite n .

§2. Memoryless Threshold Strategies.

By a threshold strategy or rule we mean a stopping rule, where the decision whether

or not to select the observation Xk (i.e. stop at k ) depends only on whether or not Xk is

smaller (respectively larger, depending on the problem) than some real (threshold) value

pk . The pk ’s are often thought of as being constants (see also Kennedy & Kertz (1990)).

We must classify here threshold rules more precisely and prefer to call these memoryless

(in short m0 -) threshold rules to distinguish them from those threshold rules where each

pk may itself be a function of some or all preceding observations. Thus a m0 -threshold

rule is defined by

N(p) = inf{k ≥ 1 : Xk ≤ pk}, (2.1)

where p is a pre-determined sequence (p1, p2, . . . , pn) with 0 ≤ pk ≤ 1 , k = 1, 2, . . . , n− 1

and pn = 1. In the case of Robbins’ problem we know (see also A&S-C, (1992)) that if we

use m0 -threshold rules we can confine our interest to the class of monotone rules N(p),

with p satisfying

p1 ≤ p2 ≤ . . . ≤ pn = 1. (2.2)

The expected rank obtained by the N(p)-rule is given by formula (2.1) of B&F (1993).

The optimal pk ’s , denoted by p∗1 , p
∗
2 ,. . . , p

∗
n−1 depend themselves on n , but we use

the additional indexation by n only where necessary to prevent confusion. For small n
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the optimal p∗k ’s can be obtained from by solving the corresponding system of partial

derivatives equations. We have

Lemma 2.1: The system of partial differential equations

{∂(E(RN(p)))
∂pk

= 0
}
, k = 1, 2, . . . , n − 1, (2.3)

has, for all n ≥ 2, a unique solution p∗ = (p∗1, p
∗
2, . . . , p

∗
n−1, 1) minimizing E(RN(p)).

Proof: Since E(RN(p)) is a continuous function of the pk ’s, it must take its minimum

somewhere on [0, 1]n−1 . Let V m0
(n) denote this minimum value and let

p∗ = (p∗1(n), p
∗
2(n), · · · , p∗n−1(n), 1) (2.4)

be a sequence of m0 -thresholds which achieves it. Note that we do not imply so far

uniqueness of these thresholds. Clearly

∀n = 2, 3, · · · : V m0
(n) > 1, (2.5)

because, for n > 1, no sequential rule selects rank 1 with probability one.

We first show that p∗1(n) must be greater than 0 for all n . This is intuitively clear,

since we feel it cannot be optimal to refuse almost surely any first observation. Formally:

The statement is true for n = 1, since p∗1(1) = 1. Suppose now that p∗1(n + 1) = 0 for

some n ≥ 1. Then the observation X1 will be almost surely refused, so that memoryless

optimal play on the X2, ...,Xn+1 yields an expected total loss

en+1(0) = V m0

p1(n+1)=0(n+ 1) =Wm0
(n) + P (Xτn ≥ X1), (2.6)

where τn denotes the stopping time induced by (p∗2(n+1), p∗3(n+1), · · · , p∗n(n+1), 1) and

Wm0
(n) the corresponding expected loss for the remaining n observations only, i.e. disre-

garding the contribution of X1 . Clearly Wm0
(n) ≥ V m0

(n) > 1. Now, if we use instead

of 0 the threshold p1 , say, with 1 > p1 > 0, then we obtain similarly by conditioning on

X1

en+1(p1) = p1(1 + np1/2) + (1− p1)[Wm0
(n) + P (Xτn ≥ X1|X1 > p1)]. (2.7)
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Clearly, the conditional probability term in (2.7) is non-increasing in p1 on [0, 1] so that

using (2.6) in (2.7) implies

en+1(p1) ≤ p1(1 + np1/2) + (1− p1)en+1(0). (2.8)

Note that the last RHS of (2.8) can be made smaller than en+1(0) by choosing for p1 any

value such that 1 < 1+ np1/2 < en+1(0) or equivalently 0 < p1 < 2(en+1(0)− 1)/n . This

is possible as en+1(0) ≥ Wm0
> 1 for all n > 1. Thus the choice p∗1(n+ 1) = 0 would be

suboptimal for any n ≥ 1, i.e. p∗1(n+ 1) > 0 for all n ≥ 1.

Secondly, since p∗n(n) ≡ 1, it is easy to see that we must have p∗n−1(n) < 1. Indeed,

if we used the threshold value pn−1 = 1, then we would select min{Xn−1,Xn} with

probability 1/2. Any threshold value pn−1 with 0 < pn−1 < 1 however would do this

with a higher probability and therefore yield a smaller rank, because this probability

qn−1(pn−1), say, equals

qn−1(pn−1) =
∫ 1

0

{(1 − x)I(x ≤ pn−1) + xI(x > pn−1)} dx

= 1/2 + pn−1(1− pn−1) > 1/2.
(2.9)

Thus, in particular, p∗n−1(n) < 1. By the monotonicity of the optimal p∗k ’s with 1 ≤ k ≤
n − 1 we can thus assure that no local or global minimum of E(RN(p)) can lie on the

boundary of the set [0, 1]n−1 . Since all partial derivatives of E(RN(p)) exist on (0, 1)n−1

and the minimum (or minima) must lie in this open set (0, 1)n−1 , (2.3) must have at least

one solution.

Finally, looking at the version (3.1) of B&F (1993) of the formula for E(RN(p)) we

see that it is a multiquadratic function of the pk ’s, i.e. it is quadratic in each pk (with

positive sign) by holding the other pj ’s constant. Each partial differential equation of the

system (2.3) has thus at most one solution. Therefore the system (2.3) itself can have at

most one solution. Since it has at least one, it must have a unique solution, which must

be, accordingly, the minimum.

Remark 2.2. It is tempting to maximize qn−1 in (2.9) with respect to pn−1 , i.e. to

choose pn−1 = 1/2 with qn−1(1/2) = 3/4, but this does not give the optimal threshold

p∗n−1(n) (see for instance Table 1), because this simple probability argument neglects

relative ranks and the fact that, given Xn−2 has been passed over, X1,X2, ...,Xn−2 are
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no longer i.i.d U[0,1] random variables. We shall see however later that p∗n−1(n) → 1/2 as

n→ ∞ .

Computational aspects. Due to the mentioned multiquadratic property, the com-

putation of the p∗k ’s is numerically (componentwise iteration) still tractable for larger n .

Table 1a displays the sequences of thresholds for n = 1, 2, . . . , 12, which we will use for

examples in Section 5. The corresponding values are denoted by V m0

n and displayed in

Table 1b.
n p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

1 1

2 .5 1

3 .3603 .5285 1

4 .2858 .3825 .5351 1

5 .2385 .3021 .3918 .5359 1

6 .2052 .2509 .3110 .3954 .5349 1

7 .1809 .2148 .2582 .3156 .3977 .5333 1

8 .1619 .1881 .2211 .2628 .3183 .3983 .5315 1

9 .1465 .1679 .1936 .2254 .2659 .3200 .3982 .5298 1

10 .1341 .1516 .1724 .1974 .2284 .2679 .3208 .3978 .5283 1

11 .1244 .1383 .1547 .1758 .2002 .2304 .2691 .3213 .3973 .5 265 1

12 .1125 .1288 .1423 .1582 .1779 .2040 .2322 .2702 .3142 .3 967 .5256

Table 1a

m0 -threshold values

n 1 2 3 4 5 6

V m0

n 1 1.25 1.4009 1.5606 1.5861 1.6490

n 7 8 9 10 11 12

V m0

n 1.7002 1.7430 1.7794 1.8109 1.8384 1.8627

Table 1b

Expected loss for the m0 -rules

The following lemma shows that “most” of the p∗j (n)’s tend to 0 as n → ∞ . This

will prove to be an essential tool in Section 5.
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Lemma 2.3: Let p∗(n) = (p∗1(n), p∗2(n), . . . , p∗n−1(n), 1) be the sequence of mo -

optimal thresholds for Robbins’ problem with n observations. Further let α be a constant

with 0 < α < 1 and αn = [αn] , where [x] denotes the floor of x . Then, as n→ ∞ ,

∀0 < α < 1 ,∀k = k(n) ≤ αn : pk(n)(n) → 0.

Proof: Suppose the contrary, i.e. there exists ε > 0 such that for all n and some

0 < α < 1 there would exist an integer k = k(n) < αn with p∗k(n) > ε . Since p∗k(n) is

m0 -optimal this would then imply that the observation Xk = ε , say, must be accepted.

However, we shall see that we can construct another m0 -rule yielding a strictly smaller

expected loss. We first note that,

E(Rk|X1,X2, · · · ,Xk−1,Xk = ε) = rk(ε) + (n− k)ε, (2.10)

where rk(ε) denotes the relative rank of Xk for Xk = ε . Let δ be fixed but arbitrarily

chosen with 0 < δ < ε , and let τδ be the stopping time defined by

τδ = min{n , inf{j > k : Xj < δ}}. (2.11)

Then

E(Rτδ |X1,X2, · · · ,Xk−1,Xk = ε) (2.12)

= E(rτδ |X1,X2, · · · ,Xk−1,Xk = ε) + E((n− τδ)Xτδ |X1,X2, · · · ,Xk−1,Xk = ε)

< E(rτδ |X1,X2, · · · ,Xk−1,Xk = ε) + (n− k)E(Xτδ |X1,X2, · · · ,Xk−1,Xk = ε).

Conditioning on the outcome of Xτδ we obtain

E(Rτδ |X1,X2, · · · ,Xk−1,Xk = ε) (2.13)

= E[E(Rτδ |X1,X2, · · · ,Xk−1,Xk = ε,Xτδ )|X1,X2, · · · ,Xk−1,Xk = ε]

< (1− (1− δ)n−k−1)E(Rτδ |X1,X2, · · · ,Xk−1,Xk = ε,Xτδ < δ) + n(1 − δ)n−k−1,

where we used for τδ = n the worst-case bound n as an upper bound for Rn ≤ n .

As n → ∞ , the first factor of the first term in the last line of (2.13) clearly tends to

1. The second summand in this line tends to 0 since n − k − 1 ≥ n− αk − 1 → ∞ more

quickly than some (1 − α)n . Therefore, the RHS of (2.13) is close to E(Rτδ |Xτδ < δ) as

n → ∞ . Since E(Rτδ |Xτδ < δ) is clearly a strictly increasing function of δ on (0, ε] , the

inequality

E(Rτδ |Xk = ε) < E(Rτε |Xτε < ε) a.s.
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must hold for all n sufficiently large. Now, since E(Rτε |Xτε < ε) < E(Rk|Xk = ε) a.s. it

follows in particular that, for all n sufficiently large,

E(Rτδ |Xk = ε) < E(Rk|Xk = ε) a.s.

This means that, for all n sufficiently large, the rule τδ defined by (2.11) yields a smaller

expected loss than accepting some Xk ≥ ε . However, this contradicts the hypothesis of

p∗k(n) > ε for all n , and thus proves the lemma.

Now let V (n) denote the overall optimal value of Robbins’ problem for n variables.

Clearly V (n) ≤ V m0
(n) for all n so that

V = lim
n→∞

V (n) ≤ lim
n→∞

V m0
(n) = V m0

. (2.14)

We know (see B&F (1993)) that V m0
= 2.326.... and that V > 1.908, where the latter

lower bound was obtained by computing the optimal strategy for a truncated modification

of the expected loss. We could also show that this procedure would converge to the correct

limiting value V , but the computation times increase exponentially. The optimal strategy

is very “sensitive” to the past, and no statistic is known, which summarizes enough of

the information of the past to allow for a ε-optimal strategy while still being sufficiently

tractable. We will introduce the notion of full history dependence to describe the mentioned

sensitivity.

Apart from the above bounds we know little about V . We even do not know yet

whether V > 2, although one may, in principle, be able to settle this question numerically

by the truncation method proposed in B&F (1993). Gnedin (1995, INFORM Conference

on Applied Probability) reported that the strict inequality, V < V m0
, can be obtained by

an adequate embedding of the n = ∞ case into a Poisson process. We focus on finite n .

The V (n) are only known for n up to 5, and computation times are prohibitive to try to

do much better. This raises the question how to find tractable improvements on optimal

threshold strategies, with which we deal in Section 5 and where half-prophets prove their

usefulness again.

§3. Half-prophets.

The motivation to introduce the notion of a half-prophet (h-prophet) is to overcome

one side of the deadlock resulting from the apparent history dependence, namely the
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future side. An h-prophet, called in at time k say, can (as we can) see the observations

X1,X2, . . . ,Xk and nothing else. However, given that he decides not to select Xk and to

go on, then he foresees at time k + 1 the whole future Xk+1,Xk+2, . . . ,Xn (whereas we

see of course only Xk+1 ). The value of the game for an h-prophet depends, apart from

n clearly also on k , and as we shall see, on the whole past X1,X2, . . . ,Xk . We have to

define more precisely:

Definition 3.1: An h(k )-prophet for a (discrete) sequential decision problem is a

decision maker who is able to foresee the complete future if and only if he decides to enter

stage k + 1.

An h-prophet is a decision maker, which can be elected to be an h(k )-prophet for

exactly one k ≥ 1.

Note that an h-prophet in Robbins’ problem faces a much simpler decision problem. He

must only decide whether to select the present observation, or alternatively, to wait for the

best later on. This “binary” feature implies that his value at time k , denoted by h(k, n),

say, can be computed in a straightforward manner.

Lemma 3.2: The value of an h(k )-prophet in Robbins’ problem with n observations

conditional on X1, . . . ,Xk is equal to

h(k, n) = min
{
rk + (n− k)Xk, 1 +

k∑
j=1

(1−Xj)n−k
}

for all k = 1, 2, . . . , n .

Proof: We first note that if the h(k )-prophet selects Xk then his expected loss

(denoted by Lk ) is equal to

Lk = E(Rk|X1,X2, . . . ,Xk) = rk + E
( n∑

j=k+1

I(Xj ≤ Xk |X1,X2, . . . ,Xk)
)
. (3.1)

By independence of Xj with j > k of the past, the second term simplifies to (n − k)Xk

so that

Lk = rk + (n− k)Xk. (3.2)

Suppose now that the h(k )-prophet refuses Xk . Then he enters time k + 1 and optimal

behavior forces him to select ι(k) := infk<j≤n{Xj} . The expected absolute rank of ι(k)
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given X1,X2, . . . ,Xk depends on X1,X2, . . . ,Xk , but the distribution function Fι(k)(·) of

ι(k) itself is simply the distribution function of the smallest order statistic of (n− k) i.i.d.

uniform r.v.’s on [0, 1] , independent of X1,X2, . . . ,Xk . Denoting the absolute rank of ι(k)

by Rι(k) we obtain by conditioning on the value of ι(k) and by using its independence of

X1,X2, . . . ,Xk ,

L
(+)
k := E(Rι(k) |X1,X2, . . . ,Xk) = E

(
E(Rι(k) |X1,X2, . . . ,Xk; ι(k))

)
.

Now note that ι(k) can (by definition) only be preceded by the X1,X2, . . . ,Xk , and by

none of the future values. If ι(k) is smaller than all X1,X2, . . . ,Xk , then its rank equals

1, and it moves up by 1 with each Xj it surpasses. Therefore L(+)
k can be written as

L
(+)
k =

∫ 1

0

(1 +
k∑

m=1

I(Xm ≤ s))dFι(k)(s) (3.3)

where

dFι(k)(s) = d(1 − (1 − s)n−k) = (n − k)(1 − s)n−k−1ds.

Interchanging the order of integration and summation and then adjusting the boundaries

of integration according to the indicators yields by straightforward calculation

L
(+)
k = 1 +

k∑
j=1

(1−Xj)n−k, k = 1, 2, . . . , n. (3.4)

By the optimality principle,

h(k, n) = min{Lk, L
(+)
k }, (3.5)

and thus the statement of the Lemma is proved.

Remark 3.3: The most powerful h-prophet — apart from the h(0)-prophet, who

is equivalent to a prophet — is, by definition, the h(1)-prophet. He can simply ignore

the decision problem any later h-prophet will face. Since his probability to select rank 1

tends to one as n → ∞ one feels that he is “asymptotically” as good as a prophet, and

that indeed the same should be true for any h(k )-prophet for fixed k . This is true for the

expected rank, but a worst case analysis shows, that all h-prophets are distinctly inferior to
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a prophet in the sense that supx infτ E(Rτ |X1 = x) > 1. To see this, note that according

to (3.2), (3.4) and (3.5)

suph(1, n) := sup
x
h(1, n)|X1=x = 1 + sup

x
{min((n − 1)x, (1 − x)n−1)} = 1 + cn, (3.6)

say. Since (n − 1)x is increasing and (1 − x)n−1 decreasing on [0, 1] , and both intersect

there, cn must be the unique solution of (n− 1)x = (1−x)n−1 . Putting x = ξ/(n− 1) in

(3.6) yields the limiting equation ξ = e−ξ with solution ξ = limn→∞ cn = .5671 · · · . Thus,

∀1 ≤ k ≤ n : suph(k, n) ≥ suph(1, n) → 1.5671 · · · as n → ∞, (3.7)

whereas a prophet can always achieve the value 1.

§4. Properties of the optimal rule.

We turn now to the main results of this paper. The first is Lemma (4.1) which shows

a monotonic feature which contrasts many non-monotonic features of Robbins’ Problem.

This will then be used to show that the optimal rule depends in a certain sense on the full

history of the process.

4.1 Stepwise Monotonicity of the Optimal Threshold Functions. We denote

by τ ∗ = τ ∗(n) the (overall) optimal rule for Robbins’ problem. An observation Xk , which

can be selected (respectively, must be refused) under the rule τ ∗(n)) will be called shortly

acceptable, (respectively, unacceptable).

Lemma 4.1: τ ∗ = τ ∗(n) is a stepwise monotone increasing threshold function rule

for all n , i.e. it is of the form

τ ∗(n) = inf{1 ≤ k ≤ n : Xk ≤ pk(X1,X2, . . . ,Xk−1)}, (i)

where the functions pk(...) satisfy

pk(X1,X2, . . . ,Xk−1) ≤ pk+1(X1,X2, . . . ,Xk−1,Xk) a.s. (ii)

and

pn−1(X1,X2, · · · ,Xn−2) < 1 a.s. (iii)

Proof: (i) We show first, that τ ∗(n) is of the described form. For this we have to

show that, at any stage k , the following is true: Whenever it is optimal to stop at Xk it
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would be optimal to stop for any X ′
k ≤ Xk , and whenever it is optimal to refuse Xk it is

optimal to refuse any X ′
k ≥ Xk .

To see this let Lk(x) be defined as in (3.2) with Xk being replaced by x . Thus

Lk(x) =
k−1∑
j=1

I(Xj < x) + 1 + (n − k)x (4.1)

describes our expected loss by accepting x at stage k . Clearly, Lk(x) is strictly increasing

in x for all 1 ≤ k < n .

On the other hand, the expected loss by refusing x at stage k and continuing optimally

thereafter equals

L∗
k(x) = ess infτ>kE(Rτ |X1,X2, . . . ,Xk−1,Xk = x), (4.2)

where it is understood that n is arbitrarily chosen but fixed, and 1 ≤ k < n .

Let τ ∗x now be that rule which achieves L∗
k(x) given in (4.2). The latter can then be

written in the form

L∗
k(x) =

k−1∑
j=1

P (Xτ∗
x
> Xj) + 1 + P (Xτ∗

x
≥ x) + E

( n∑
j=k+1,j 	=τ∗

x

I(Xj ≤ Xτ∗
x
)
)
. (4.3)

Further, let L̃k(x, y) be that modification of (4.3) which replaces x (only) by y without

replacing τ ∗x by τ ∗y , i.e. formally

L̃k(x, y) = L∗
k(x)− P (Xτ∗

x
≥ x) + P (Xτ∗

x
≥ y). (4.4)

L̃k(x, y) is then the conditional expected loss, given X1,X2, . . . ,Xk−1,Xk = y , of the

value obtained by the suboptimal continuation τ ∗x (which is optimal for x = y ). Since

P (Xτ∗
x
≥ y) is non-increasing in y , it follows that L̃k(x, y) is non-increasing in y . Thus

∀y ∈ [x, 1] : L̃k(x, y) ≤ L̃k(x, x) = L∗
k(x) a.s. (4.5)

On the other hand, suboptimality of τ ∗x for the history X1,X2, . . . Xk−1,Xk = y implies

L̃k(x, y) ≥ L̃k(y, y) = L∗
k(y) a.s.. (4.6)
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Combining inequalities (4.5) and (4.6) yields

∀0 ≤ x ≤ y ≤ 1 : L∗
k(x) ≥ L∗

k(y), a.s. (4.7)

i.e., L∗
k(x) is a.s non-increasing in x .

An increasing Lk(x) faces therefore a non-increasing L∗
k(x) as a function of x . (4.1)

tells us further that for all k = 1, 2, . . . , n , Lk(0) = 1 and Lk(1) = n a.s., so that L∗
k(x)

defined in (4.2) must lie in this range for any x ∈ [0, 1] . This proves for each stage k and

1 ≤ j ≤ k the existence of optimal thresholds pj(· · ·) such that any Xj > pj(· · ·) must be

refused whereas the first Xk ≤ pk(· · ·) must be accepted.

(ii) The proof of the second part (optimal thresholds are monotone increasing) be-

comes shorter when we note that, by definition, the pk(...)’s need only be defined for those

X1,X2 . . . ,Xk−1 which are unacceptable. Therefore it suffices to show that if we replace

an acceptable Xk = x by an unacceptable X ′
k > x then any Xk+1 ≤ x is again acceptable.

Let Xk = x ≤ pk(...). This Xk is thus , by definition, acceptable. Now, if Xk is

replaced by an unacceptable X ′
k then, by definition, X ′

k > x . It follows then from (4.1)

that for a fixed history X1,X2, ...,Xk−1 we have Lk+1(x) = Lk(x) − x , because X ′
k > x

leaves the relative rank of x at stage k + 1 unchanged. Therefore Lk+1(x) < Lk(x) a.s.

It suffices now to show that L∗
k(x) (see (4.2)) is non-decreasing in k , because then we

have

∀k = 1, . . . , n− 1 : Lk(x) ≤ L∗
k(x) a.s. ⇒ Lk+1(x) ≤ L∗

k+1(x) a.s, (4.8)

i.e. Xk+1 = x is then acceptable, so that pk+1(...) ≥ pk(...) a.s. for any k and any history

X1,X2, · · · ,Xk−1.

To see that L∗
k(x) is non-decreasing in k a.s., we first note that L∗

k(x) is invariant a.s.

with respect to any permutation of the history. Indeed, if the stopping rule τ ∗x achieves

L∗
k(x) in (4.3) then τ ∗x achieves the same value for the history (Xi1 ,Xi2 , · · · ,Xik−1 ,Xik =

x), because such a permutation only changes the order of summation of the first k terms

on the RHS and since (Xk+1, · · · ,Xn) is independent of the past. Now

L∗
k+1(x) = ess inf{k+1<τ≤n}E(Rτ |X1, . . . ,Xk−1,Xk,Xk+1 = x)

= ess inf{k+1<τ≤n} E(Rτ |X1, x2, . . . ,Xk−1,Xk = x,Xk+1) =: L̃∗
k+1(x,Xk+1), (4.9)
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say, since L∗
k+1(x) has the above described invariance property, and since Xk and Xk+1

are (unconditioned) i.i.d. r.v.’s. But then

L∗
k+1(x,Xk+1) ≥ ess inf{k<τ≤n} E(Rτ |X1, · · · ,Xk−1,Xk = x), (4.10)

because optimal behavior on the set {k < τ ≤ n} allows for stopping at stage k+1, or to

continue optimally otherwise. Thus, from (4.9) and (4.10), L∗
k(x) ≤ L∗

k+1(x) a.s. so that

(ii) is proved.

(iii) Finally, the proof of pn−1(X1,X2, · · · ,Xn−2) < 1 a.s. follows immediately from

pn(X1,X2, · · · ,Xn−1) ≡ 1 and the argument we used in (2.9), because otherwise any

memoryless threshold value pn−1 would do strictly better in expectation.

4.2 Full History Dependence of the Optimal Rule. In this section we will

see that the optimal rule has the property of being fully history dependent, that is at no

time may one discard past information. At each stage k ≤ n − 1, the exact values of all

past observations may play a role in future optimal decisions. Clearly Xk could not be

accepted if Xj for some 1 ≤ j < k would have been accepted so that the events {τ = k}
and {τ > k} always depend on all preceding observations in this sense. However, this does

not imply that all preceding observations are relevant for future optimal decisions. A fully

history dependent rule allows for no fading of memory at all. Varying some Xj (in certain

cases even any Xj ) by an arbitrary little amount may keep Xj , . . . ,Xk−1 unacceptable

but be decisive for Xk to be acceptable or not.

To see that τ ∗ is fully history-dependent, we show that for each stage s ≤ n− 1, τ ∗

leads with positive probability to a situation where all preceding information X1,X2, · · · ,
Xs−1 is needed to decide whether to stop and accept or, alternatively, to go on. Note that

no information at all is needed at stage s = n , since pn(X1,X2, · · · ,Xn−1) ≡ 1. Therefore

we first look at s = n− 1. The probability to reach stage n− 1 equals

P (τ ∗ > n− 2) = E(
n−2∏
j=1

(1− pj(X1,X2, · · · ,Xj−1)) a.s., (4.11)

where we used the definition of optimal threshold functions as given in Lemma 4.1 and the

definition (convention) p1(·) := p1 . According to Lemma 4.1 we have pj(X1,X2, · · · ,Xj−1)

≤ pj+1(X1,X2, · · · ,Xj) < 1 a.s. for all 1 ≤ j ≤ n−2, so that P (τ ∗ > n−2) > 0. Similarly

we obtain P (τ ∗ > n− 2|τ ∗ ≥ k) > 0 for all 1 ≤ k ≤ n− 2.
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Suppose now that τ ∗I(τ ∗ > n − 2) depends on all preceding information, i.e. that

τ ∗ is fully history-dependent on the set {τ ∗ > n − 2} . At stage k , the decision to go

on depends by the principle of optimality on the optimal (future) expected loss. This

expected loss involves, with P (τ ∗ > n−2|τ ∗ ≥ k) being a.s. strictly positive, by definition

the expected loss on the set {τ ∗ > n− 2} . In return, the latter depends according to our

hypothesis on X1,X2, · · · ,Xn−2 , i.e. in particular on X1,X2, · · · ,Xk−1 .

Therefore, if all preceding information is needed at stage s = n−1, then all preceding

information is needed at each stage 2 ≤ k ≤ n− 2, and thus it suffices to show that τ ∗ is

fully history-dependent on {τ ∗ > n− 2} .

To see the latter we recall first that, at stage s = n − 1, we have the same capacity

as a half-prophet. According to Lemma 3.2 we therefore accept Xn−1 if

rn−1 +Xn−1 ≤ n−
n−1∑
j=1

Xj (4.12)

and accept Xn otherwise. If we write rn−1(x) for the rank of Xn−1 given Xn−1 = x ,

then the decision criterion becomes

rn−1(x) + 2x ≤ n−
n−2∑
j=1

Xj , (4.13)

where the RHS does not depend on x . We shall now distinguish between two cases.

Case 1: Suppose first that there exists x∗ , say, such that in (4.13) equality holds for

both sides. Then, by definition, Xn−1 = x∗ is acceptable. But since all X1,X2, · · · ,Xn−2

are a.s. different, their nearest neighbor distance ε , say, is a.s. positive.

Now move an arbitrarily chosen Xj on the RHS to Xj + ε/2, say. This leaves by

construction the relative ranks of X1,X2, · · · ,Xn−2 unchanged and the chosen j th obser-

vation stays unacceptable (becomes less desirable) by Lemma 4.1. Now X1,X2, · · ·Xj−1

clearly stay unacceptable because they precede Xj chronologically. On the other hand

Xj+1,Xj+2, · · · ,Xn−2 are unacceptable as well, because they were unacceptable before

the change and face with the change from Xj to Xj + ε/2 a reduced optimal expected loss

by being passed over. Therefore the modified history X1,X2, · · · ,Xj−1 ,Xj+ε/2,Xj+1, . . . ,

Xn−2 stays within the set {τ ∗ > n−2} . However, the RHS of the criterion (4.13) decreases

by ε/2, so that now Xn−1 = x∗ is unacceptable.
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Case 2: Suppose now that (for a given history) there is no x∗ to yield equality of

both sides of (4.13). Then the critical value must coincide with one of X1,X2, · · · ,Xn−2 .

Suppose it coincides with Xk . For ε > 0 chosen as the distance to the nearest neighbor

let Xn−1 := x ∈ (Xk,Xk + ε/2). Then Xn−1 lies to the right of the critical value and is

therefore unacceptable. But now move Xk into the interval (x, x + δ) with 0 < δ < ε/2.

This leaves the relative ranks of the new Xk and all other Xj ’s with 1 ≤ j ≤ n − 2

unchanged whereas the relative rank of Xn−1 drops by one. The LHS of the criterion is

therefore reduced by 1− 2δ , whereas the RHS decreases by δ . But since rn−1(Xk) differs

from n− (X1 +X2,+ · · ·+Xn−2) by less than one, there must exist a sufficiently small δ

such that this move renders Xn−1 = x acceptable.

However, as in case 1, for such a δ the observations Xk + δ,Xk+1, · · · ,Xn−2 stay

unacceptable. This means that the modified history stays also within the set {τ ∗ > n−2} ,
and that Xk determines whether τ ∗ = n− 1, or, alternatively τ ∗ = n .

Remark 4.3: Note that in case 2 (when a jump of the LHS occurs in Xk ) the

influence of Xk on the decision to accept or to refuse happens to be particularly strong,

but that the inequalities in the criterion may be reversible by keeping Xk and Xn−1 fixed

and only varying the other preceding observations.

§5. Improving on Optimal Memoryless Rules.

In this section we shall describe a strategy which is superior to the optimal m0 -rule

and (still) tractable. The construction depends on the following property of m0 -optimal

thresholds p∗n−1(n) (see Section 2):

Lemma 5.1: The m0 -optimal threshold value p∗n−1(n) satisfies: p∗n−1(n) → 1/2 as

n→ ∞ .

Proof: Suppose we have observed X1, . . . ,Xn−1 and are wondering whether to stop

with Xn−1 = x . The memoryless rule may not use any of the past information involving

X1, . . . ,Xn−2 , except that we know Xj > pj(n) for j = 1, . . . , n − 2. If we stop with

Xn−1 = x we expect to pay

E
( n−2∑

j=1

I(Xj < x)|X1 > p1(n), . . . ,Xn−2 > pn−2(n)
)
+ 1 + x

= 1 + x+
n−2∑
j=1

(x− pj(n))+

1− pj(n)
.

(5.1)
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If we continue with Xn−1 = x , we must stop at the next observation and so expect to pay

E
( n−2∑

j=1

I(Xj < Xn)|X1 > p1(n), . . . ,Xn−2 > pn−2(n)
)
+ (1− x) + 1

= 2− x+
n−2∑
j=1

(1− pj(n))2

2
,

(5.2)

since under the conditioning, X1, . . . ,Xn−2,Xn are independent with Xj uniform on

(pj(n), 1) for j = 1, . . . , n − 2 and Xn uniform on (0, 1). Therefore the critical value for

Xn−1 is that value of x = pn−1(n) at which (5.1) is equal to (5.2), namely,

2pn−1(n) +
n−2∑
j=1

(pn−1(n)− pj(n))+

1− pj(n)
= 1 +

n−2∑
j=1

(1− pj(n))2

2
. (5.3)

Recall now Lemma 2.3 which states that for every α ∈ (0, 1) and every sequence

k(n) ≤ nα , we have pk(n)(n) → 0 as n→ ∞ . This implies that the average of the pj(n)’s

must converge to zero, because

1
n− 2

n−2∑
j=1

pj(n) ≤
1

n− 2

[nα]∑
j=1

pj(n) + 1− α

≤ 1
n− 2

p[nα](n) + 1− α→ 1− α.

(5.4)

Since this is true for all α < 1, we have
∑n−2

j=1 pj(n)/(n − 2) → 0. This implies that the

right side of (5.3), when divided by n− 2, converges to 1/2.

A similar argument shows that the left side of (5.3), when divided by n − 2, must

eventually for large n be within a preassigned ε > 0 of pn−1(n). We may conclude that

pn−1(n) → 1/2 as n→ ∞ .

Combining m0 -rules with half-prophet rules. Let τ (n) be the optimal m0 -rule

defined by p∗1(n), p∗2(n), . . . , p∗n−1(n), 1, i.e.

τ (n) = inf{1 ≤ k ≤ n : Xk ≤ p∗k(n)}. (5.5)

Remember that it is unique. Further let

τh(n) := min{1 ≤ k ≤ n : Lk = h(k, n)}, (5.6)
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i.e. τh(n) denotes the earliest time k , at which a h(k )-prophet would stop. Finally, let

σ∗(n) := min{τ (n), τh(n)}. (5.7)

Theorem 5.2 For all sufficiently large n ,

E(Rσ∗(n)) < E(Rτ(n)).

Proof: We first note that τh(n) ≤ n since h(n, n) ≤ n . Also, if we stop at stage k

with τh(n) = k , whereas τ (n) > k , then we act optimally since, according to (3.3), (3.4)

and (3.5),

L
(+)
k = inf

τ>k
(
∫ 1

0

(1 +
n∑

m=1

I(Xm ≤ x))dFτ (x)) ≤ L∗
k, (5.8)

and therefore Lk ≤ L∗
k . Thus E(Rσ∗(n)) ≤ E(Rτ(n)|τ (n) > th(n)) for all n . Moreover,

the preceding inequality becomes strict for n > 2, because if there are at least two more ob-

servations to come, any strategy will miss the smallest of these with a positive probability.

It is therefore sufficient to show that for all sufficiently large n ,

P (σ∗(n) < τ (n)) = P (τh(n) < τ (n)) > 0. (5.9)

Now let an = p∗n−1(n), bn = (1 + an)/2 and An = {xk ∈ (an, bn), 1 ≤ k ≤ n} . Since

an < bn < 1 for all n ≥ 2 we have P (An) > 0 for all n ≥ 2. Moreover, since on

An no Xk with 1 ≤ k ≤ n − 1 is acceptable under the optimal m0 -rule, we obtain

P (τ (n) = n) ≥ P (An) > 0. Now

P (τh(n) < τ (n)) ≥ P (τh(n) ≤ n− 1|An)P (An)

so that it suffices to show that P (τh(n) ≤ n− 1|An) > 0. Note that

P (τh(n) ≤ n− 1|An) ≥ P (τh(n) ≤ n− 1|An, rn−1 = 1)P (rn−1 = 1|An).

By Renyi’s record value theorem (Renyi (1962)) for i.i.d. r.v’s we have P (rn−1 = 1|An) =

1/(n − 1) > 0, so that it suffices again to show that P (τh(n) ≤ n − 1|An, rn−1 = 1) > 0,

for all n sufficiently large. This latter term equals indeed one for almost all n , since

P (τh(n) ≤ n− 1|An, rn−1 = 1) = P (Ln−1 ≤ L
(+)
n−1|An, rn−1 = 1)
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= P (1 +Xn−1 ≤ 1 +
n−1∑
j=1

(1−Xj)|An) ≥ P (2Xn−1 ≤ 1 + (n − 2)(1− bn)),

where we used X1,X2, · · · ,Xn−2 < bn on An in the inequality. Using it again for Xn−1

yields

P (2Xn−1 ≤ 1 + (n− 2)(1 − bn)) ≥ P (0 ≤ n− 1− nbn) = 1 for almost all n,

because, by Lemma 5.1, bn → 3/4 as n→ ∞ , and this completes the proof.

Remark 5.3: Table 1a of Section 2 strongly suggests that pn−1(n) increases for

n = 2 up to n = 5 with value .5359 · · · and decreases thereafter, converging (as we know)

to 1/2, but the proof of this does not seem to be straightforward. One can easily verify

that it would imply strict improvement of the rule σ∗(n) for all n ≥ 3.

More important than this observation however is the fact (see e.g. Example 5.4) that

the strict improvement is not only due to what the proof is based on, namely to detecting

late record values.

Example 5.4: Let n = 12 and X1 = 0.12,X2 = 0.13. Further let X3,X4, · · · ,X10

all be approximately .6, and finally let X11 = 0.55. Then all Xk for 1 ≤ k ≤ 11 are

unacceptable under the optimal m0 -rule (see Table 1a), but (5.10) and Lemma 3.2 show

that σ∗(12) = τh(12) = 11 and stops with a 3-record only. Nevertheless,the expected loss

by stopping at stage 11 equals 3.55, whereas stopping at stage 12 yields a much higher

expected loss of 12−0.12−0.13−0.55−(X3+ · · ·+X10) ≈ 6.4, so that even for non-record

values the difference can be quite large. Clearly it would go up, if we moved X1 and/or

X2 to the right of 0.6.

We could also give examples to show that the improvement can become effective earlier

than at stage n− 1. σ∗(n) is so far the “uniformly” best strategy we know.

The half-prophet rule τh(n) alone would not do well for larger n ; it succeeds more

often than the optimal m0 -rule to select the smallest or second smallest observation but

allows for worse outliers than the optimal m0 -rule. Lemma 3.2 shows the influence of the

powers n− k , which let L(+)
k grow only slowly as k increases.
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