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E P I D E M I O L O G Y

Early detection of highly transmissible viral variants 
using phylogenomics
Michael R. May* and Bruce Rannala

As demonstrated by the SARS-CoV-2 pandemic, the emergence of novel viral strains with increased transmission 
rates poses a serious threat to global health. Statistical models of genome sequence evolution may provide a 
critical tool for early detection of these strains. Using a novel stochastic model that links transmission rates to the 
entire viral genome sequence, we study the utility of phylogenetic methods that use a phylogenetic tree relating 
viral samples versus count-based methods that use case counts of variants over time exclusively to detect in-
creased transmission rates and identify candidate causative mutations. We find that phylogenies in particular can 
detect novel transmission-enhancing variants very soon after their origin and may facilitate the development of 
early detection systems for outbreak surveillance.

INTRODUCTION
The continuous emergence of novel genomic variants with the po-
tential for increased transmissibility, virulence, and other traits is a 
universal feature of viral pandemic and endemic diseases (1). The 
primary measure of transmissibility, R0, the basic reproductive rate, 
may be altered by many intrinsic and extrinsic factors (2). For ex-
ample, D614G spike mutations in severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) appear to enhance viral replication by 
increasing infectivity and stability of virions (3), epitope mutations 
may lead to immune escape increasing the population of suscepti-
bles (4), and mutations may cause increased viral loads in individu-
als due to enhanced replication increasing infectivity (5) or may 
cause a longer period of host infectivity (6). The theoretical models 
we explore in this study do not specify a mechanism for enhancing 
R0 but instead consider the most general case by assuming only that 
a change in R0 arises from a change in genome sequence.

Evidence for a causal role of one or more specific mutations in 
increasing the R0 of a strain (cluster of mutations) may come from a 
variety of sources, for example, epidemiological studies of case 
counts over time of individuals infected with particular strains (7); 
experimental studies of the transmissibility of different strains in an 
animal model system (8, 9); biophysical predictions—for example, 
predictions of binding affinities of mutant SARS-CoV-2 receptor 
binding domain (RBD) sequences to the ACE2 receptor based on 
molecular modeling (10); phylogenetic analysis of the expansions of 
particular strains through time (11, 12); etc. Although demonstrat-
ing enhanced transmission in an experimental animal system is of-
ten taken as the gold standard, no one source of evidence is definitive. 
Large differences in transmissibility may exist between human and 
model animal populations, casting doubt on the relevance of evi-
dence from the model. On the other hand, epidemiological studies 
can directly infer enhanced transmission in human populations, but 
often sufficient data are available only after a variant has already be-
come widespread (13).

The availability of genome sequences for infectious disease or-
ganisms, such as SARS-CoV-2, allows emerging mutations to be 
identified and monitored to assess their potential impacts (14, 15). 
Phylogenetic information defining evolutionary relationships among 

strains is also available from genome sequences, and such data have 
been used with influenza, SARS-CoV-2, and other pathogens to pre-
dict the likely dominant variants (strains) of future pandemics (16, 17). 
Such methods implicitly assume that phylogenetic information pro-
vides additional predictive power beyond that available from simply 
monitoring changing frequencies of variants among infected indi-
viduals. However, surprisingly little is known about the relative power 
of phylogenies versus frequencies for identifying variants destined to 
become widespread.

Most genomic variants do not influence transmissibility, and 
methods are urgently needed to identify (from among the hundreds 
or thousands of variants that do not influence transmissibility) the 
small subset of variants that do. Phylogenetic information from ge-
nome sequences could potentially be used for de novo identification 
of sites in viral genomes influencing transmissibility, but theoretical 
studies are needed to understand the potential of such approaches. 
The statistical problem of identifying transmission-enhancing sites is 
very similar to the challenging problem of identifying so-called “driver” 
mutations in genomes of cancer cells (18), although the smaller ge-
nomes of viruses greatly reduce the number of candidate mutations. 
Theoretical studies are needed both to demonstrate that such infer-
ences are possible and to determine their prospective power.

Here, we explore the information available from viral genomic 
datasets for early detection of transmission-enhancing mutations 
(TEMs) that increase R0, as well as for identification of the specific 
sites with TEMs in genomes. We focus on two types of data: (i) 
counts of viral variants sampled over time and (ii) molecular phylog-
enies relating viral samples. To study information content, we devel-
op an explicit statistical model of how mutation events influence 
transmissibility. Critically, this model allows us to derive tractable 
probability distributions for both count and phylogenetic datasets.

By simulating datasets based on realistic epidemiological and 
mutation parameters for SARS-CoV-2, we find that phylogenetic 
data provide strong evidence supporting TEM status of variants 
days or weeks before case counts alone. This suggests that phyloge-
netic methods can identify emerging variants of concern (VOCs) 
sooner than methods using case counts. If epidemiological ap-
proaches for identifying VOCs based on case counts provide a lag-
ging, or post hoc, indicator for the emergence of a new more 
transmissible variant, it is possible that phylogenetic analyses might 
allow candidate TEMs to be identified before they are widespread 
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enough for traditional epidemiological methods to estimate R0, thus 
providing a much-needed leading indicator for an emerging variant 
of interest.

RESULTS
In the simulations that follow, we use a novel statistical framework 
(see Methods) to address two related statistical questions: (i) how 
early can a novel TEM be detected using either phylogenetic or 
count data, and (ii) how much information is there in phylogenetic 
data to identify particular TEM sites and nucleotides.

Phylogenetic data improve early detection of TEMs
Early detection of variants with increased transmission rates is criti-
cal for mitigating outbreaks before they can become established. We 
used simulation to compare the ability of methods using either phy-
logenies or genotype counts to detect mutations that confer in-
creased transmission in the early phase of an outbreak, assuming the 
TEM site was known a priori.

We simulated the first few weeks of outbreaks of pathogen vari-
ants bearing a single mutation that increased the transmission rate 
by a factor δ (the “effect size”). We varied the effect size over a range 
of plausible values of R0, from a 25% increase up to a doubling of R0 
(see section S4). We then computed the posterior probability of a 
neutral model (where we assume that there was no TEM site) and 
each possible TEM model (corresponding to different TEM nucleo-
tides at the known TEM site).

While both methods perform well for large effect sizes (Fig. 1, 
bottom row/left column, “both”), the tree method performs much 
better when the effect size is more modest (Fig. 1, left column, “tree 
only”); notably, the count method never succeeds when the tree 
method fails (Fig. 1, left column, “count only”). In cases when both 
methods succeed, the tree method detects increased R0 several days 
earlier than the count method (2.09 to 3.38 days on average for dif-
ferent effect sizes, δ), with detection using phylogenies occurring at 
least 9 days earlier in 5% of cases (with only a 25% increase of R0) 
(Fig. 1, middle column). The absolute time to detection depends on 
the effect size (Fig. 1, right column), ranging from over 2 weeks for 
modest effect sizes to about 1 week for the more extreme ones; as 
before, the tree method (orange lines) detects increased R0 earlier 
than the count method (blue lines). (We provide more details and 
results for this simulation in section S4.)

De novo identification of TEMs
In addition to quantitatively outperforming the count method when 
the TEM variant is hypothesized a priori, the tree method also pro-
vides a practical approach for identifying which specific sites in the 
genome confer increased transmission rates (i.e., when TEM sites 
are not know a priori). The ability to scan a sample of sequenced 
viral genomes for evidence of variants with increased R0 is perhaps 
critical in identifying VOCs before other information about possible 
effects of variants (experimental studies, etc.) are available.

We performed a simulation to characterize the ability of the 
tree method to correctly reject a neutral model (where no site in 
the genome confers increased transmission) and to identify the 
true site—and the specific nucleotide state that confers enhanced 
transmission—from among the entire genome. We simulated out-
breaks with a single TEM site over a range of effect sizes (as 
described previously) and with sample sizes ranging from 100 to 

1600 viral samples. For each of these datasets, we also simulated the 
evolution of the neutral genome, comprising 29,999 sites (a genome 
size similar to SARS-CoV-2), using plausible values of the per-site 
mutation rate for SARS-CoV-2 (17, 19). We then computed the 
posterior probability of the neutral model and each single-site TEM 
model (where a given TEM model corresponds to a particular TEM 
site/nucleotide combination).

Overall, the ability to decisively reject the neutral model increases 
as the effect size increases (Fig. 2, columns, blue lines) and as the 
number of samples increases (Fig. 2, c, x axis). Beyond the ability to 
reject the neutral model, the tree method demonstrates generally 
good power to identify the true model. The frequency with which the 
true site/nucleotide combination has the highest support increases as 
a function of effect size, δ, and sample size, c (Fig. 2, orange lines), 
exceeding 95% for TEMs of large effect and large sample sizes; in 
many of these cases, the true model is decisively supported (i.e., it 
has a posterior probability greater than 95%; Fig. 2, red lines). (We 
provide more details and results for this simulation in section S4.)

DISCUSSION
We have developed a novel modeling framework to understand the 
theoretical behavior of methods for inferring changes in viral trans-
mission rates caused by mutation events. The model incorporates 
several simplifying assumptions to make this study analytically and 
computationally tractable. For example, we have assumed that changes 
in transmission rates are driven by a single point mutation event; of 
course, multiple sites in the genome may confer increased transmis-
sion rates, and some transmission-enhancing variants may involve 
epistatic interactions among multiple sites, or recombination (20, 21). 
We have also assumed that patients do not recover (at least before 
the end of the monitoring date) and that viral sampling is stochastic 
and uniform; in reality, patients will recover over the course of days 
or weeks, and sampling effort naturally varies over time and space. 
While these assumptions may seem quite unrealistic, they may ap-
proximate the true process over short temporal and spatial scales, 
when multiple mutation and recombination events are unlikely, pa-
tient recovery is long relative to the monitoring period, and sampling 
effort is relatively homogeneous. In particular, these assumptions 
may be quite reasonable during the early stage of an epidemic or 
outbreak (22), which is the focus of our study. Nonetheless, state-
dependent diversification models (23) could be developed, which 
would provide the necessary mathematical and computational basis 
for incorporating more realistic models of mutation, recovery, and 
sampling; our theoretical exploration suggests that such efforts are 
worthwhile, as viral genomes appear to contain substantial informa-
tion about TEM events. Our results also assume that the true phy-
logeny is known, and therefore represent a best-case scenario for the 
advantages of phylogenetic methods over count methods; however, 
the count model corresponds to maximal phylogenetic uncertainty, 
so unbiased phylogenetic estimates should always increase power to 
identify TEMs. Nonetheless, biased phylogenetic estimates may lead 
to biased inferences about TEMs (24).

Our study demonstrates the theoretical and practical utility of 
phylogeny-based approaches for identifying emerging transmission-
enhancing variants, which is a critical component of combating vi-
ral outbreaks. While experimental methods are currently the gold 
standard for identifying the mechanisms underlying changes in R0 
caused by mutations (9), these approaches are expensive and time 
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consuming, and are difficult (if not impossible) to apply continu-
ously and on short timescales. By contrast, mechanism-agnostic 
approaches—based on the frequency of genomic variants over time, 
or the phylogenetic relationship among variants—may provide ear-
lier detection of variants with increased transmission rates before 
they become outbreaks. They may also identify specific variants that 
can then become targets of future experimental work.

We have demonstrated that, in theory, phylogeny-based ap-
proaches outperform frequency-based ones not only quantitively—
they can detect an increased transmission rate for a given variant up 
to a week earlier, given realistic parameters for the SARS-CoV-2 
pandemic—but also qualitatively: In contrast to frequency-based 
approaches, phylogenies allow us to detect increasing transmission 
rates when the variant is unknown a priori, even with relatively 
small sample sizes (on the order of hundreds or thousands of sam-
ples). These results support strategies for continuous sampling and 

genome sequencing of endemic viruses to monitor for emerging 
VOCs (25). While the model we have presented here is relatively 
simple and analytically tractable, more realistic models including 
host recovery, density dependence, and temporal and geographic 
variation in transmission-enhancing effects will undoubtedly entail 
computationally expensive numerical approximations (26, 27). None-
theless, we are optimistic that theoretical and computational ad-
vances in phylogenetic approaches can lead to the development of 
early detection systems for monitoring and predicting epidemics 
that will be of substantial value to the epidemiological community, 
and the world at large.

Methods
We developed a novel birth-death process to explore the informa-
tion content available in genomic sequence datasets for answering 
key epidemiological questions. Birth-death processes have been 
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Fig. 1. Phylogenies outperform counts at early detection. We simulated pathogen outbreaks where a single-nucleotide change increased the transmission rate by a 
factor δ compared to the ancestral variant. We simulated each outbreak for a fixed number of days and collected both phylogenetic and count datasets at daily increments 
since the origin of the variant (10 to 19 days, depending on δ). We then compared the fit of a neutral model (the novel variant has the same transmission rate as the an-
cestral variant) against the true model (the mutation confers an increased transmission rate) for each pair of datasets. We measured the frequency with which the phylo-
genetic and count methods detected increased transmission (i.e., the true model had a posterior probability ≥95%) on at least 1 day of the outbreak (left column) as a 
function of the effect size (δ, rows). The count method never succeeds unless the tree method does as well (left column, second bar), while the tree method often succeeds 
where the count method fails (left column, third bar). If both methods succeeded, we computed (i) the distribution (dots/lines) and mean (dashed lines) of the number of 
days earlier the tree method succeeded than the count method (center column), and (ii) and the distribution/mean for the day on which each method succeeded (right 
column). Overall, the phylogenetic method detects increased transmission several days earlier than the count method.
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widely used as models of pathogen transmission for serially sampled 
data (28) to understand geographic variation in the transmission rates 
(27), density dependence (29), and variation in host susceptibility 
(30), among other important phenomena. Here, we extend the lin-
ear birth-death process of epidemic transmission dynamics to allow 
mutation events to change the transmission rate (see section S1). 
Under this process, individual viral infections with genome se-
quence x infect new hosts (“transmit”) at rate λ(x), mutate to a new 
sequence at rate ν per site, and are sampled (and removed from cir-
culation) at rate ϕ. Viral lineages without any TEMs have a base 
transmission rate of λ0; each TEM multiplicatively increases the 
transmission rate by a factor δ. The TEM model M specifies which 
base positions and nucleotides are TEMs.

This transmission-mutation process begins with a single viral 
lineage with some ancestral genome sequence and evolves forward 
in time, transmitting, mutating, and producing samples according 
to the dynamics described above, until the end of a predefined mon-
itoring period. The outcome of this process is a set of sampled viral 
sequences, denoted X, the times associated with those samples, 
denoted T, and the phylogenetic tree relating those sequences, 
denoted Ψ. While the phylogeny is typically unobserved, we assume 
that researchers can reliably estimate it from the available genomic 
sequences. We refer to the dataset composed of the sequences and 
times as the “count dataset” (the number of each genomic variant 
over time), and the dataset composed of the sequences, times, and 
phylogeny as the “phylogenetic dataset.”

Our model unifies the analysis of count datasets and phyloge-
netic datasets in a common statistical framework. Specifically, we 
can compute the likelihood of both a phylogenetic dataset, given a 

TEM model, f(X, T, Ψ ∣ M, ν, λ0, δ, ϕ), and a count dataset, f(X, T ∣ M, 
ν, λ0, δ, ϕ). The count likelihood can be viewed as the phylogenetic 
likelihood, averaged over all possible phylogenies

This relationship suggests that phylogenetic datasets should con-
tain more information about the TEM model than count datasets, 
because the likelihood is not averaged across all possible phyloge-
nies. Intuitively, the phylogeny provides more information about the 
age of mutations and transmission events than is available from 
count data alone; both of these pieces of information should im-
prove our ability to estimate transmission rates of lineages with and 
without potential TEMs.

In practice, the TEM model M is unknown and of critical interest 
to the researcher. Under this model, the posterior probability of the 
model M for phylogenetic data is

The quantity f(M) is the probability that M is the true model be-
fore collecting phylogenetic and sequence data, while f(M ∣ X, X, T, 
Ψ, ν, λ0, ϕ) is the probability that M is the true model, given the 
phylogenetic and sequence data. The posterior probability of the 
model therefore provides a basis for deciding which (if any) muta-
tions are TEMs. In this equation, we assume the base transmission 
rate, mutation rate, and sampling rate are fixed to plausible values 
based on previous studies, while the TEM effect size, δ, is unknown; 
in practice, we average over all possible effect sizes in proportion 
to their posterior probability using numerical integration. The full 
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Fig. 2. De novo identification of TEMs. We simulated pathogen outbreaks in which a single-nucleotide change increased the transmission rate by a factor δ. We 
then computed the support for a neutral model (where all variants have the same transmission rate) and all possible transmission-enhancing models (each corre-
sponding to a particular genomic site/nucleotide combination). A model is supported if it has a posterior probability of at least 5%, strongly supported if it has a 
posterior probability higher than any other model, and decisively supported if it has a posterior probability greater than 95%. Across simulated datasets, the fre-
quency with which the neutral model is supported (blue) decreases as a function of both the effect size (δ, columns) and the number of samples (c, x axis). Con-
versely, the frequencies with which the true model is supported (green), strongly supported (yellow), or decisively supported increase as a function of the effect size 
and number of samples.
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details underlying this equation can be found in section S2; the cor-
responding equation for count datasets can be found in section S3.

Supplementary Materials
This PDF file includes:
Sections S1 to S4
Figs. S1 to S7
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