
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Randomized methods and statistical inference

Permalink
https://escholarship.org/uc/item/3xt3q3wf

Author
Liang, Feynman

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xt3q3wf
https://escholarship.org
http://www.cdlib.org/

Randomized methods and statistical inference

by

Feynman Liang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Alan Hammond, Co-chair
Associate Adjunct Professor Michael Mahoney, Co-chair

Professor Fraydoun Rezakhanlou

Fall 2022

Randomized methods and statistical inference

Copyright 2022
by

Feynman Liang

1

Abstract

Randomized methods and statistical inference

by

Feynman Liang

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Alan Hammond, Co-chair

Associate Adjunct Professor Michael Mahoney, Co-chair

When faced with difficult problems, randomized approximations are a tool commonly employed
by quantitative scientists which can offer alternative algorithms and analyses. In this
dissertation, we consider a range of problems at the intersection of randomized methods and
statistics. Throughout our work, randomized methods are a unifying theme used in the first
section to construct tractable approximations and later as tools for automating computational
Bayesian statistics.

Initially in the first three chapters, we develop novel analyses to recent problems in ex-
perimental design, double descent, and random projections by using determinantal point
processes (DPP). We first consider approximately optimal Bayesian experimental design
using an adaptive row sampling algorithm based on DPPs. In the subsequent chapters, we
generalize the proof techniques to study double-descent in over-parameterized least squares
linear regression and establish expectation formulae for sub-Gaussian matrix sketching.

In the later chapters we focus on probabilistic programming and developing theory and
tools to automate statistical inference using randomized algorithms based on Monte Carlo
Markov chain (MCMC) and variational inference (VI). We first consider lightweight inference
compilation (LIC) whichcombines deep learning with MCMC through parameterizing pro-
posers q(x) by graph neural networks which condition each node on its Markov blanket. The
next chapter considers tail anisotropy in multivariate heavy tailed target densities p(x) and
proposes fat-tailed variational inferene (FTVI) to approximate them. Our work concludes on
the generalized Gamma algebra (GGA), where we address the analysis of fat tails during
static analysis of a probabilistic program’s source code. This enables a priori computation
of tail parameters, which we show improves the stability and convergence of a number of
inference tasks.

i

Thanks to my advisor Michael Mahoney, to whom I owe the past half decade of mentorship
and research opportunities. In addition, I am grateful for my colleagues and mentors who
have supported me along the way. In no particular order: Liam Hodgkinson, Zhenyu Liao,
Michał Dereziński, Nimar Arora, Michael Tingley, Xiaoyang Wang, Erik Meijer, Preben

Thorø, Alexy Khrabrov, Reilly Bodycomb, Ryan Moody, Cassidee Moyer, Armin Eghdami,
Slayden Gruneberg, Xiangrui Meng, Joseph Bradley, Ameet Talwalkar, Ion Stoica, Daniel

Rivera-Lanas, James Koo, Ben Searchinger, Debo Olaosebikan, Roger Dickey, Dennis Jiang,
Emin Arakelian, Andrew Tsai, Young Beum Cho, Daniel Rasmuson. And last but not least,
thanks to my family and especially my loving wife. You all helped push this over the finish

line.

ii

Contents

Contents ii

1 Introduction 1

2 Bayesian experimental design with regularized determinantal point pro-
cesses 3
2.1 Introduction . 3
2.2 Related work . 8
2.3 A new regularized determinantal point process 10
2.4 Guarantees for Bayesian experimental design 14
2.5 Experiments . 18
2.6 Conclusions . 21

3 Exact expressions for double descent in determinantal random designs 23
3.1 Introduction . 24
3.2 Related work . 28
3.3 Surrogate random designs . 30
3.4 Determinant preserving random matrices . 33
3.5 Proof of Theorem 3.1 . 37
3.6 Proof of Theorem 3.2 . 39
3.7 Proof of Theorem 3.3 . 41
3.8 Empirical evaluation of asymptotic consistency 45
3.9 Conclusions . 48

4 Exact expectation expressions for sub-Gaussian random projections 49
4.1 Introduction . 49
4.2 Convergence analysis of randomized iterative methods 55
4.3 Precise analysis of the residual projection . 58
4.4 Proof of Theorem 4.2 . 61
4.5 Explicit formulas under known spectral decay 67
4.6 Empirical results . 69
4.7 Conclusions . 73

iii

5 Accelerating Metropolis-Hastings with lightweight inference compilation 74
5.1 Background . 74
5.2 Lightweight Inference Compilation . 78
5.3 Experiments . 80
5.4 Conclusion . 87

6 Fat-tailed variational inference 88
6.1 Introduction . 88
6.2 Flow-Based Methods for Fat-Tailed Variational Inference 91
6.3 Tail Behavior of Lipschitz Flows . 93
6.4 Experiments . 100
6.5 Conclusion . 106

7 The generalized gamma tail algebra 107
7.1 Introduction . 107
7.2 Related Work . 108
7.3 The Generalized Gamma Algebra . 110
7.4 Implementation . 122
7.5 Experiments . 125
7.6 Conclusion . 129

Bibliography 131

iv

Acknowledgments

Feynman Liang was supported by a PhD fellowship from the Graduate Fellowship for STEM
Diversity (GFSD).

1

Chapter 1

Introduction

When faced with difficult problems, randomized approximations are a tool commonly employed
by quantitative scientists which can offer alternative algorithms and analyses. In this
dissertation, we consider a range of problems at the intersection of randomized methods and
statistics. Throughout our work, randomized methods are a unifying theme used in the first
section to construct tractable approximations and later as tools for automating computational
Bayesian statistics.

Initially in the first three chapters, we develop novel analyses to recent problems in
experimental design, double descent, and random projections by using determinantal point
processes (DPP). In Chapter 2, we consider approximately optimal Bayesian experimental
design using an adaptive row sampling algorithm based on DPPs and show that it provides
good approximations. Through generalizing the previous chapter’s proof techniques, in
Chapter 3 an extension of the DPP-based design is analyzed in closed-form for the over-
parameterized n < d regime and predicts a double-descent phenomenon in linear regression
which closely matches empirical experiments. In Chapter 4 we isolate the part of the proof
involving concentration of bilinear forms of matrix resolvents away from the DPP-based
design in order to obtain bounds on expected projections X†

SXS when XS = SX is obtained
by sub-Gaussian sketching matrix S. These chapters correspond to the following publications:

• Michał Dereziński, Feynman Liang, and Michael Mahoney. “Bayesian experimental
design using regularized determinantal point processes”. In: International Conference
on Artificial Intelligence and Statistics. 2020, pp. 3197–3207

• Michał Dereziński, Feynman Liang, and Michael W Mahoney. “Exact expressions for
double descent and implicit regularization via surrogate random design”. In: Advances
in Neural Information Processing Systems. Vol. 33. 2020, pp. 5152–5164

• Michał Dereziński, Feynman Liang, Zhenyu Liao, and Michael W Mahoney. “Precise
expressions for random projections: Low-rank approximation and randomized Newton”.
In: Advances in Neural Information Processing Systems. Vol. 33. 2020, pp. 18272–18283

CHAPTER 1. INTRODUCTION 2

In the later chapters we focus on probabilistic programming and developing theory
and tools to automate statistical inference using randomized algorithms based on Monte
Carlo Markov chain (MCMC) and variational inference (VI). In Chapter 5, we consider
parameterizing q(x) by graph neural networks which condition each node on its Markov
blanket. This reduces the conditioning sets for a node, resulting in improvements over
[LBW17] and run-times which depend on sparsity in the graphical model rather than the
length of execution traces. When the target p(x) is both multivariate and heavy tailed,
Chapter 6 considers the problem of tail anisotropy through both a theoretical and practical
perspective. We establish that prior fat-tailed estimators [Jai+20] are tail isotropic, propose
an anisotropic approximation (fat-tailed variational inference, FTVI) where an anisotropic
product base measures is pushed forwards through a bijective neural network, and confirm
that in practice FTVI improves both density estimation as well as variational inference.
However, we find in practice FTVI and other tail-adaptive approximations often have trouble
optimizing the tail parameter. In Chapter 7, we consider addressing this issue during
static analysis of a probabilistic program’s source code. We define generalized Gamma tail
asymptotics for a number of elementary distributions and establish how the tail asymptotics
are transformed under algebraic transformations such as sums and products. This enables a
priori computation of tail parameters, which we show improves the stability and convergence
of a number of inference tasks. These chapters correspond to the following publications:

• Feynman Liang, Nimar Arora, Nazanin Tehrani, Yucen Li, Michael Tingley, and Erik
Meijer. “Accelerating Metropolis-Hastings with Lightweight Inference Compilation”.
In: International Conference on Artificial Intelligence and Statistics. PMLR. 2021,
pp. 181–189

• Feynman Liang, Liam Hodgkinson, and Michael Mahoney. “Fat–Tailed Variational In-
ference with Anisotropic Tail Adaptive Flows”. In: Proceedings of the 39th International
Conference on Machine Learning. Vol. 162. 2022, p. 132

• Feynman Liang, Liam Hodgkinson, and Michael Mahoney. “Static Analysis of Tail
Behaviour with a Generalized Gamma Algebra”. In: Submitted to AISTATS 2023
(2023)

3

Chapter 2

Bayesian experimental design with
regularized determinantal point
processes

In this chapter, we establish a fundamental connection between Bayesian experimental
design and determinantal point processes (DPPs). Experimental design is a classical task in
combinatorial optimization, where we wish to select a small subset of d-dimensional vectors
to minimize a statistical optimality criterion. We show that a new regularized variant of
DPPs can be used to design efficient algorithms for finding (1 + ε)-approximate solutions
to experimental design under four commonly used optimality criteria: A-, C-, D- and V-
optimality. A key novelty is that we offer improved guarantees under the Bayesian framework.
Our algorithm returns a (1+ ε)-approximate solution when the subset size k is Ω(dA

ε
+ log 1/ε

ε2
),

where dA � d is an effective dimension determined by prior knowledge (via a precision
matrix A). This is the first approximation guarantee where the dependence on d is replaced
by an effective dimension. Moreover, the time complexity of our algorithm significantly
improves on existing approaches with comparable guarantees. Some of the results here were
initially published in Michał Dereziński, Feynman Liang, and Michael Mahoney. “Bayesian
experimental design using regularized determinantal point processes”. In: International
Conference on Artificial Intelligence and Statistics. 2020, pp. 3197–3207.

2.1 Introduction
Consider a collection of n experiments parameterized by d-dimensional vectors x1, . . . , xn,
and let X denote the n × d matrix with rows x>

i . The outcome of the ith experiment is a
random variable yi = x>

i w + ξi, where w is the parameter vector of a linear model with prior
distribution N (0, σ2A−1), and ξi ∼ N (0, σ2) is independent noise. In experimental design,
we have access to the vectors x>

i , for i ∈ {1, . . . , n} = [n], but we are allowed to observe
only a small number of outcomes yi for experiments we choose. Suppose that we observe

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 4

the outcomes from a subset S ⊆ [n] of |S| = k experiments. The posterior distribution of w
given yS (the vector of outcomes in S) is:

w | yS ∼ N (µ,Σ),

where µ = (X>
SXS + A)−1X>

SyS,
Σ = σ2(X>

SXS + A)−1.

Here, XS is the k × d matrix with rows x>
i for i ∈ S.

In Bayesian experimental design [CV95], the prior precision matrix A is used to encode
prior knowledge and our goal is to choose S so as to minimize a function (a.k.a. an optimality
criterion) measuring the “size” of the posterior covariance matrix Σw|yS = σ2(X>

SXS + A)−1.
Note that Σw|yS is well defined even if A is not invertible (i.e., an “improper prior”). In
particular, it includes classical experimental design as the special case A = 0, as well as the
ridge-regularized case for A = λI. Denoting Σ as the subset covariance X>

SXS, we will use
fA(Σ) to represent the following standard Bayesian optimality criteria [CV95; Puk06]:

1. A-optimality: fA(Σ) = tr
(
(Σ+ A)−1

)
;

2. C-optimality: fA(Σ) = c>(Σ+ A)−1c for c ∈ Rd;

3. D-optimality: fA(Σ) = det(Σ+ A)−1/d;

4. V-optimality: fA(Σ) = 1
n
tr
(
X(Σ+ A)−1X>

)
.

Applications including clinical trials [RDP15; DRM08; Spi+04; Ber+02; SB98; Flo93], medical
imaging [Owe+16], materials science [FW16; Uen+16; TUM12], and biological process models
[RDP+16] all use these optimality criteria and thus stand to benefit from our contributions.

The general task we consider is the following combinatorial optimization problem, where
[n] denotes {1, ..., n}:

Bayesian experimental design. Given an n×d matrix X, a criterion fA(·) and k ∈ [n],
efficiently compute or approximate

argmin
S⊆[n]

fA(X>
SXS) subject to |S| = k.

We denote the value at the optimal solution as OPTk. The prior work around this problem
can be grouped into two research questions. The first question asks when does there exist
a polynomial time algorithm for finding a (1 + ε)-approximation for OPTk. The second
question asks what we can infer about OPTk just from the spectral information about the
problem, which is contained in the data covariance matrix ΣX = X>X.

Question 2.1 Given X, fA and k, can we efficiently find a (1+ ε)-approximation for OPTk?

Question 2.2 Given only ΣX, fA and k, what is the upper bound on OPTk?

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 5

A key aspect of both of these questions is how large the subset size k has to be for us
to provide useful answers. As a baseline, we should expect meaningful results when k is at
least Ω(d) [see discussion in All+17], and in fact, for classical experimental design (i.e., when
A = 0), the problem becomes ill-defined when k < d. In the Bayesian setting we should
be able to exploit the additional prior knowledge to achieve strong results even for k � d.
Intuitively, the larger the prior precision matrix A, the fewer degrees of freedom we have in
the problem. To measure this, we use the statistical notion of effective dimension [AM15].

Definition 2.1 For d× d positive semi-definite (psd) matrices A and Σ, let the A-effective
dimension of Σ be defined as dA(Σ) = tr

(
Σ(Σ+ A)−1

)
≤ d. We will use the shorthand dA

when referring to dA(ΣX).

[GK17] showed that dA can be orders of magnitude smaller than the actual dimension d
when the eigenvalues of ΣX exhibit fast decay, which is often the case in real datasets
[GM16]. Recently, [DW18b] obtained bounds on Bayesian A/V-optimality criteria for k ≥ dA,
suggesting that dA is the right notion of degrees of freedom for this problem.

Main results
Our main results provide new answers to Questions 1 and 2 by proposing a novel algorithm
for Bayesian experimental design with strong theoretical guarantees.

Answer to Question 2.1 We propose an efficient (1 + ε)-approximation algorithm for
A/C/D/V-optimal Bayesian experimental design:

Theorem 2.1 Let fA be A/C/D/V-optimality and X be n × d. If k = Ω
(
dA
ε
+ log 1/ε

ε2

)
for

some ε ∈ (0, 1), then we can find in polynomial time a subset S of size k s.t.

fA
(
X>
SXS

)
≤ (1 + ε) ·OPTk.

Remark 2.1 The algorithm referred to in Theorem 2.1 first solves a convex relaxation of the
task via a semi-definite program (SDP) to find a weight vector p ∈ [0, 1]n, then uses our new
randomized algorithm to round the weights to {0, 1}, obtaining the subset S. The expected
cost after SDP is O(ndk + k2d2).

A number of recent works studied (1 + ε)-approximate SDP-based algorithms for classical
and Bayesian experimental design (see Table 2.1 and Section 2.2 for a comparison). Unlike
all prior work on this topic, we are able to eliminate the dependence of the subset size k on
the dimension d, replacing it with the potentially much smaller effective dimension dA. Our
result also improves over the existing approaches in terms of the computational cost of the
rounding procedure that is performed after solving the SDP. A number of different methods
can be used to solve the SDP relaxation (see Section 2.5). For example, [All+17] suggest
using an iterative optimizer called entropic mirror descent, which is known to exhibit fast
convergence and can run in O(nd2T) time, where T is the number of iterations.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 6

Criteria Bayesian k Cost after SDP
[WYS17] A,V x d2/ε n2 · d
[All+17] A,C,D,E,G,V d/ε2 n · kd2
[NST19] A,D x d/ε n4 · k2d

this paper A,C,D,V dA/ε n · kd+ k2d2

Table 2.1: Comparison of SDP-based (1 + ε)-approximation algorithms for classical and
Bayesian experimental design (X-mark means that only the classical setting applies). In the
cost analysis, n could be replaced by the number of non-zero weights in the SDP solution.
For simplicity we omit the log terms and assume that ε = Ω(1

dA
). Our approach beats other

methods both in terms of the runtime and the dependence of k on d (when dA = o(d)).

Answer to Question 2.2 By performing a careful theoretical analysis of the performance
of our algorithm, we are able to give an improved upper bound on OPTk. In the below
result, we use a more refined notion of effective dimensionality for Bayesian experimental
design, dn

k
A (where the precision matrix A is scaled by factor n

k
), which is smaller than dA

and therefore leads to a tighter bound.

Theorem 2.2 Let fA be A/C/D/V-optimality and X be n×d. For any k such that k ≥ 4dn
k
A,

OPTk ≤
(

1 + 8
dn

k
A

k
+ 8

√∣∣∣ln(k/dn
k

A)

k

)
· fA
(
k
n
ΣX
)
.

Remark 2.2 We give a (randomized) algorithm which (with probability 1) finds the subset S
that certifies this bound and has expected time complexity O(ndk + k2d2).

In particular, this means that if k ≥ 4dn
k
A then there is S of size k which satisfies fA(X>

SXS) =

O(1) · fA(
k
n
ΣX). This not only improves on [DW18b] in terms of the supported range of sizes

k, but also in terms of the obtained bound (see Section 2.2 for a comparison). In Section
2.5, we we provide numerical evidence suggesting that for many real datasets the quantity
fA(

k
n
ΣX) provides a good estimate for OPTk to within a factor of 2.

Comparison of different effective dimensions
Theorem 2.2 suggests that the right notion of degrees of freedom for Bayesian experimental
design can in fact be smaller than dA. Intuitively, since dA is computed using the full data
covariance ΣX, it is not in the same scale as the smaller covariance X>

SXS based on the subset
S of size k � n. In our result this is corrected by increasing the regularization on ΣX from
A to n

k
A and using dn

k
A = dn

k
A(ΣX) as the degrees of freedom. Note that dn

k
A ≤ dA and this

gap can be very large for some problems.
Consider the two definitions we are comparing:

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 7

Full effective dimension dA = tr
(
ΣX(A +ΣX)

−1
)
,

Scaled effective dimension dn
k
A = tr

(
ΣX(

n
k
A +ΣX)

−1
)
.

Here, we demonstrate that these two effective dimensions can be very different for some
matrices and quite similar on others. For simplicity, we consider two diagonal data covariance
matrices as our examples: identity covariance, Σ1 = I, and an approximately low-rank
covariance, Σ2 = (1− ε)d

s
IS + εI, where IS is the diagonal matrix with ones on the entries

indexed by subset S ⊆ [d] of size s < d and zeros everywhere else. The second matrix is
scaled in such way so that tr(Σ1) = tr(Σ2). We use d = 100, s = 10 and ε = 10−2. The
prior precision matrix is A = 10−2 I. Figure 2.1 plots the scaled effective dimension dn

k
A

as a function of k, against the full effective dimension for both examples. Unsurprisingly,
for the identity covariance the full effective dimension is almost d, and the scaled effective
dimension goes up very quickly to match it. On the other hand, for the approximately
low-rank covariance, dA ≈ 55 is considerably less then d = 100. Interestingly, the gap between
the dn

k
A and dA for moderately small values of k is even bigger. Our theory suggests that

dn
k
A is a valid indicator of Bayesian degrees of freedom when k ≥ C · dn

k
A for some small

constant C (Theorem 2.2 has C = 4, but we believe this can be improved to 1). While
for the identity covariance the condition k ≥ dn

k
A is almost equivalent to k ≥ dA, in the

approximately low-rank case, k ≥ dn
k
A holds for k as small as 20, much less than dA.

50 100 150

Subset size k

50

100

150

E
ff
e
c
ti
v
e
 d

im
e
n
s
io

n

identity covariance

Subset size k

Scaled effective dimension: d
(n/k)A

Full effective dimension: d
A

20 40 60 80 100

Subset size k

20

40

60

80

100

E
ff
e
c
ti
v
e
 d

im
e
n
s
io

n

approximately low-rank covariance

Subset size k

Scaled effective dimension: d
(n/k)A

Full effective dimension: d
A

Figure 2.1: Scaled effective dimension compared to the full effective dimension for two
diagonal data covariance matrices, with A = 10−2 I.

Technical contributions
To establish Theorems 2.1 and 2.2, we develop a theoretical framework for a new sampling
distribution which can be seen as a regularized variant of a determinantal point process (DPP).
DPPs are a well-studied family of distributions with numerous applications in sampling diverse
subsets of negatively correlated elements [see KT12].

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 8

Given a psd matrix A and a weight vector p = (p1, ..., pn) ∈ [0, 1]n, we define DPPp
reg(X,A)

as a distribution over subsets S ⊆ [n] (of all sizes) such that (see Definition 2.2):

Pr(S) ∝ det(X>
SXS + A) ·

∏
i∈S

pi ·
∏
i 6∈S

(1− pi).

A number of regularized DPPs have been proposed recently [Der19; DW18b], mostly within
the context of Randomized Numerical Linear Algebra (RandNLA) [Mic11; DM16; DM17].
To our knowledge, ours is the first such definition that strictly falls under the umbrella of
traditional DPPs [KT12]. We show this in Section 2.3, where we also prove that regularized
DPPs can be decomposed into a low-rank DPP plus i.i.d. Bernoulli sampling (Theorem
2.3). This decomposition reduces the sampling cost from O(n3) to O(nd2), and involves a
more general result about DPPs defined via a correlation kernel (Lemma 2.3), which is of
independent interest.

In Section 2.4 we demonstrate a fundamental connection between an A-regularized DPP
and Bayesian experimental design with precision matrix A. For simplicity of exposition, let
the weight vector p be uniformly equal (k

n
, ..., k

n
). If S ∼ DPPp

reg(X,A) and fA is any one of
the A/C/D/V-optimality criteria, then:

E
[
fA(X>

SXS)
]
≤ fA

(
k
n
ΣX
)

and E
[
|S|
]
≤ dn

k
A + k.

The proof of Theorem 2.2 relies on these two inequalities and a concentration bound for the
subset size |S|, whereas to obtain Theorem 2.1 we additionally use the SDP relaxation to
find the optimal weight vector p. When A = 0, then DPPp

reg(X,A) bears a lot of similarity to
proportional volume sampling which is an (unregularized) determinantal distribution proposed
by [NST19]. Our algorithm not only extends it to the Bayesian setting but also offers a
drastic time complexity improvement from the O(n4dk2 log k) required by [NST19] down to
the O(nd2) required for sampling from DPPp

reg(X,A), and recent advances in RandNLA for
DPP sampling [DWH18; DWH19a; Der19] suggest that O(nd logn + poly(d)) time is also
possible.

2.2 Related work
A number of works proposed (1 + ε)-approximation algorithms for experimental design which
start with solving a convex relaxation of the problem, and then use some rounding strategy to
obtain a discrete solution (see Table 2.1 for comparison). In this line of work we wish to find
the smallest k for which a polynomial time approximation algorithm is possible. For example,
[WYS17] gave an approximation algorithm for classical A/V-optimality with k = Ω(d

2

ε
),

where the rounding is done in a greedy fashion, and some randomized rounding strategies are
also discussed. [NST19] suggested proportional volume sampling for the rounding step and
obtained approximation algorithms for classical A/D-optimality with k = Ω(d

ε
+ log 1/ε

ε2
). Their

approach is particularly similar to ours (when A = 0). However, as discussed earlier, while

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 9

their algorithms run in polynomial time, they scale very poorly with the number of experiments
n (see Table 2.1). [All+17] proposed an efficient algorithm with a (1 + ε)-approximation
guarantee for a wide range of optimality criteria, including A/C/D/E/V/G-optimality, both
classical and Bayesian, when k = Ω(d

ε2
). Our results (in Theorem 2.1) improve on this work

in two important ways:

• In terms of the dependence on ε for A/C/D/V-optimality,

• In terms of the dependence on the dimension (by replacing d with dA) in the Bayesian
setting.

A lower bound shown by [NST19] implies that our Theorem 2.1 cannot be directly extended
to E-optimality, but a similar lower bound does not exist for G-optimality. We remark that
the approximation approaches relying on a convex relaxation can generally be converted to
an upper bound on OPTk akin to our Theorem 2.2, however, unlike our bound, none of
them apply to the regime of k ≤ d.

Non-trivial bounds for the classical A-optimality criterion (i.e., OPTk with A = 0) were
first given by [AB13], where they show that for any k ≥ d, OPTk ≤ (1 + d−1

k−d+1
) · f0(

k
n
ΣX)

and the subset S attaining the bound can be found in polynomial time. The result was later
extended [DW17; DW18b; DW18a] to the case where A = λI, proving that for any k ≥ dλI,
we have OPTk ≤ (1 + dλI−1

k−dλI+1
) · f k

n
λI(

k
n
ΣX), and also a faster O(nd2) time algorithm was

provided. In comparison, our results (in Theorem 2.2) offer the following improvements for
upper bounding OPTk:

• We cover a wider range of subset sizes, because dn
k
λI ≤ dλI,

• Our upper bound can be much tighter because fλI(
k
n
ΣX) ≤ f k

n
λI(

k
n
ΣX).

Additionally, [Der+19] propose a new notion of minimax experimental design, which is related
to A/V-optimality. They also use a determinantal distribution for subset selection, however,
due to different assumptions, their bounds are incomparable.

Purely greedy approximation algorithms have been shown to provide guarantees in a
number of special cases for experimental design. One example is classical D-optimality
criterion, which can be converted to a submodular function [BGS10]. Also, greedy algorithms
for Bayesian A/V-optimality criteria have been considered by [Bia+17] and [CR18]. These
methods can only provide a constant factor approximation guarantee (as opposed to 1 + ε),
and the factor is generally problem dependent (which means it could be arbitrarily large).
Finally, a number of heuristics with good empirical performance have been proposed, such as
Fedorov’s exchange method [CN80]. However, in this work we focus on methods that provide
theoretical approximation guarantees.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 10

2.3 A new regularized determinantal point process
In this section we develop the theory for a novel regularized extension of determinantal
point processes (DPP) which we use as the sampling distribution for obtaining guarantees in
Bayesian experimental design. DPPs form a family of distributions which are used to model
repulsion between elements in a random set, with many applications in machine learning
[KT12]. Here, we focus on the setting where we are sampling out of all 2n subsets S ⊆ [n].
Traditionally, a DPP is defined by a correlation kernel, which is an n× n psd matrix K with
eigenvalues between 0 and 1, i.e., such that 0 � K � I. Given a correlation kernel K, the
corresponding DPP is defined as

S ∼ DPPcor(K) iff Pr(T ⊆ S) = det(KT,T) ∀T∈[n],

where KT,T is the submatrix of K with rows and columns indexed by T . Another way of
defining a DPP, popular in the machine learning community, is via an ensemble kernel L.
Any psd matrix L is an ensemble kernel of a DPP defined as:

S ∼ DPPens(L) iff Pr(S) ∝ det(LS,S).

Crucially, every DPPens is also a DPPcor, but not the other way around. Specifically,
DPPens(L) = DPPcor(K) when:

(a) L = K(I−K)−1, (b) K = I− (I + L)−1,

but (a) requires that I − K be invertible which is not true for some DPPs. (This will be
important in our analysis.) The classical algorithm for sampling from a DPP requires the
eigendecomposition of either matrix K or L, which in general costs O(n3), followed by a
sampling procedure which costs O(n |S|2) [Hou+06; KT12].

We now define our regularized DPP and describe its connection with correlation and
ensemble DPPs.

Definition 2.2 Given matrix X ∈ Rn×d, a sequence p = (p1, . . . , pn) ∈ [0, 1]n and a psd
matrix A ∈ Rd×d such that

∑
i pixix>

i + A is full rank, let DPPp
reg(X,A) be a distribution over

S ⊆ [n]:

Pr(S) = det(X>
SXS + A)

det
(∑

i pixix>
i + A

) ·∏
i∈S

pi ·
∏
i 6∈S

(1−pi). (2.1)

The fact that this is a proper distribution (i.e., that it sums to one) can be restated as a
determinantal expectation formula: if bi ∼ Bernoulli(pi) are independent Bernoulli random
variables, then ∑

S⊆[n]

det(X>
SXS + A)

∏
i∈S

pi
∏
i 6∈S

(1− pi)

= E
[
det
(∑

i

bixix>
i + A

)]
(∗)
= det

(∑
i

E[bi]xix>
i + A

)
,

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 11

where (∗) follows from Lemma 7 of Dereziński et al. [DM19].
The main theoretical contribution in this section is the following efficient algorithm

for DPPp
reg(X,A) which reduces it to sampling from a correlation DPP and unioning with

i.i.d. Bernoulli samples:

Theorem 2.3 For any X ∈ Rn×d, p ∈ [0, 1]n and a psd matrix A s.t.
∑

i pixix>
i + A is full

rank, let

T ∼ DPPcor
(
D1/2
p X(A + X>DpX)−1X>D1/2

p

)
,

where Dp = diag(p).

If bi ∼ Bernoulli(pi) are independent random variables, then T ∪ {i : bi=1} ∼ DPPp
reg(X,A).

Remark 2.3 Figure 2.2 illustrates how to exploit this result to build an efficient sampling
algorithm. Since the correlation kernel matrix has rank at most d, the preprocessing cost of
eigendecomposition is O(nd2). Then, each sample costs only O(n |T |2).

We prove the theorem in three steps. First, we express DPPp
reg(X,A) as an ensemble DPP,

which requires some additional assumptions on A and p to be possible. Then, we convert the
ensemble to a correlation kernel (eliminating the extra assumptions), and finally show that
this kernel can be decomposed into a rank d kernel plus Bernoulli sampling. In the process,
we establish several novel theoretical properties regarding the representation, decomposition,
and closure properties of regularized DPPs which may be of independent interest.

Sampling S ∼ DPPpreg(X,A)

Input: X∈Rn×d, psd A∈Rd×d, p∈ [0, 1]n

Compute Z← A + X>DpX
Compute SVD of B = D1/2

p XZ−1/2

Sample T ∼ DPPcor(BB>) [Hou+06]
Sample bi ∼ Bernoulli(pi) for i ∈ [n]

return S = T ∪ {i : bi = 1}

Figure 2.2: Algorithm which exploits Theorem 2.3 to sample S ∼ DPPp
reg(X,A) in O(nd2)

time.

Lemma 2.1 Given X, A and Dp as in Theorem 2.3, assume that A and I−Dp are invertible.
Then,

DPPp
reg(X,A) = DPPens

(
D̃ + D̃1/2XA−1X>D̃1/2

)
,

where D̃ = Dp(I−Dp)
−1.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 12

Proof Let S ∼ DPPp
reg(X,A). By Definition 2.2 and the fact that det(AB+I) = det(BA+I),

Pr(S) ∝ det(X>
SXS + A) ·

∏
i∈S

pi ·
∏
i 6∈S

(1− pi)

= det(X>
SXS + A) ·

∏
i∈S

pi
1− pi

·
n∏
i=1

(1− pi)

∝ det
(
A(A−1X>

SXS + I)
)

det(D̃S,S)

= det(A) det(A−1X>
SXS + I) det(D̃S,S)

∝ det(XSA−1X>
S + I) det(D̃S,S)

= det
([

D̃1/2XA−1X>D̃1/2 + D̃
]
S,S

)
,

which matches the definition of the L-ensemble DPP.
At this point, to sample from DPPp

reg(X,A), we could simply invoke any algorithm for
sampling from an ensemble DPP. However, this would only work for invertible A, which
in particular excludes the important case of A = 0 corresponding to classical experimental
design. Moreover, the standard algorithm would require computing the eigendecomposition of
the ensemble kernel, which (at least if done naïvely) costs O(n3). Even after this is done, the
sampling cost would still be O(n |S|2) which can be considerably more than O(nd2). We first
address the issue of invertibility of matrix A by expressing our distribution via a correlation
DPP.

Lemma 2.2 Given X, A, and Dp as in Theorem 2.3 (without any additional assumptions),
we have

DPPp
reg(X,A) = DPPcor

(
Dp+

(I−Dp)
1/2 D1/2

p X(A+X>DpX)−1X>D1/2
p (I−Dp)

1/2
)
.

When A and I−Dp are invertible, then the proof is a straightforward calculation. Then, we
use a limit argument with pε = (1− ε)p and Aε = A + εI, where ε→ 0.
Proof First, we show this under the invertibility assumptions of Lemma 2.1, i.e., given that
A and I−Dp are invertible. In this case DPPp

reg(X,A) = DPPens(L), where

L = D̃ + D̃1/2XA−1X>D̃1/2 and D̃ = Dp(I−Dp)
−1. (2.2)

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 13

Converting this to a correlation kernel K and denoting X̃ = D1/2
p X, we obtain

K = I− (I + L)−1

= I−
(
I + (I−Dp)

−1Dp + (I−Dp)
−1/2X̃A−1X̃>(I−Dp)

−1/2
)−1

= I−
(
(I−Dp)

−1 + (I−Dp)
−1/2X̃A−1X̃>(I−Dp)

−1/2
)−1

= I− (I−Dp)
1/2(I + X̃A−1X̃>)−1(I−Dp)

1/2

(∗)
= I− (I−Dp)

1/2
(
I− X̃A−1/2(I + A−1/2X̃>X̃A−1/2)−1A−1/2X̃>

)
(I−Dp)

1/2

= I− (I−Dp) + (I−Dp)
1/2X̃(A + X̃>X̃)−1X̃>(I−Dp)

1/2

= Dp + (I−Dp)
1/2X̃(A + X̃>X̃)−1X̃>(I−Dp)

1/2,

where (∗) follows from Fact 2.16.19 in [Ber11]. Note that converting from L to K got rid of
the inverses A−1 and (I−Dp)

−1 appearing in (2.2). The intuition is that when A or I−Dp

is non-invertible, then DPPp
reg(X,A) is not an L-ensemble but it is still a correlation DPP. To

show this, we use a limit argument. For ε ∈ [0, 1], let pε = (1− ε)p and Aε = A+ εI. Observe
that if ε > 0 then Aε and I−Dpε are always invertible even if A and I−Dp are not. Denote
Kε as the above correlation kernel with p replaced by pε and A replaced by Aε. Note that all
matrix operations defining kernel Kε are continuous w.r.t. ε ∈ [0, 1], including the inverse,
since A + X̃>X̃ is assumed to be invertible. Therefore, the following equalities hold (with
limits taken point-wise and ε > 0):

DPPp
reg(X,A) = lim

ε→0
DPPpε

reg(X,Aε) = lim
ε→0

DPPcor(Kε) = DPPcor(K),

where we did not have to assume invertibility of A or I−Dp.

Finally, we show that the correlation DPP arrived at in Lemma 2.2 can be decomposed
into a smaller DPP plus Bernoulli sampling. In fact, in the following lemma we obtain
a more general recipe for combining DPPs with Bernoulli sampling, which may be of
independent interest. Note that if bi ∼ Bernoulli(pi) are independent random variables then
{i : bi= 1} ∼ DPPcor(Dp).

Lemma 2.3 Let K and D be n × n psd matrices with eigenvalues between 0 and 1, and
assume that D is diagonal. If T ∼ DPPcor(K) and R ∼ DPPcor(D), then

T ∪R ∼ DPPcor
(
D + (I−D)

1/2K(I−D)
1/2
)
.

Proof For this proof we will use the shorthand KA for KA,A. If D has no zeros on the

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 14

diagonal then det(DA) > 0 for all A ⊆ [n] and

Pr(A ⊂ T ∪R) =
∑
B⊂A

Pr(R ∩ A = A \B) Pr(B ⊆ T)

=
∑
B⊂A

det(DA\B) det
(
[I−D]B

)
det(KB)

=
∑
B⊂A

det(DA\B) det
([

(I−D)
1/2K(I−D)

1/2
]
B

)
= det(DA)

∑
B⊂A

det
([

D−1/2(I−D)
1/2K(I−D)

1/2D−1/2
]
B

)
(∗)
= det(DA) det

(
I +

[
D−1/2(I−D)

1/2K(I−D)
1/2D−1/2

]
A

)
= det

([
D + (I−D)

1/2K(I−D)
1/2
]
A

)
,

where (∗) follows from a standard determinantal identity used to compute the L-ensemble
partition function [KT12, Theorem 2.1]. If D has zeros on the diagonal, a similar limit
argument as in Lemma 2.2 with Dε = D + ε I holds.

Theorem 2.3 now follows by combining Lemmas 2.2 and 2.3.

2.4 Guarantees for Bayesian experimental design
In this section we prove our main results regarding Bayesian experimental design (Theorems
2.1 and 2.2). First, we establish certain properties of the regularized DPP distribution that
make it effective in this setting. Even though the size of the sampled subset S ∼ DPPp

reg(X,A)
is random and can be as large as n, it is also highly concentrated around its expectation,
which can be bounded in terms of the A-effective dimension. This is crucial, since both of
our main results require a subset of deterministically bounded size. Recall that the effective
dimension is defined as a function dA(Σ) = tr

(
Σ(A +Σ)−1

)
.

Lemma 2.4 Given any X ∈ Rn×d, p ∈ [0, 1]n and a psd matrix A s.t.
∑

i pixix>
i + A is full

rank, let S = T ∪ {i : bi = 1} ∼ DPPp
reg(X,A) be defined as in Theorem 2.3. Then

E
[
|S|
]
≤ E

[
|T |
]
+ E

[∑
i

bi

]
= dA

(∑
i

pixix>
i

)
+
∑
i

pi.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 15

Proof For correlation kernels it is known that the expected size of DPPcor(K) is tr(K). Thus,
using Dp = diag(p), we can invoke Lemma 2.2 to obtain

E
[
|S|
]
= tr

(
Dp + (I−Dp)

1/2 D1/2
p X(A + X>DpX)−1X>D1/2

p (I−Dp)
1/2
)

≤ tr(Dp) + tr
(
D1/2
p X(A + X>DpX)−1X>D1/2

p

)
= tr(Dp) + tr

(
X>DpX(A + X>DpX)−1

)
= tr(Dp) + dA(X>DpX),

from which the claim follows.

Next, we show two expectation inequalities for the matrix inverse and matrix determinant,
which hold for the regularized DPP. We use them to bound the Bayesian optimality criteria
in expectation.

Lemma 2.5 Whenever S ∼ DPPp
reg(X,A) is a well-defined distribution it holds that

E
[(

X>
SXS + A

)−1
]
�
(∑

i

pixix>
i + A

)−1

, (2.3)

E
[
det
(
X>
SXS + A

)−1
]
≤ det

(∑
i

pixix>
i + A

)−1

. (2.4)

Proof For a square matrix M, define its adjugate, denoted adj(M), as a matrix whose
i, j-th entry is (−1)i+j det(M−j,−i), where M−j,−i is the matrix M without jth row and ith
column. If M is invertible, then adj(M) = det(M)M−1. Now, let bi ∼ Bernoulli(pi) be
independent random variables. As seen in previous section, the identity E[det(

∑
i bixix>

i +
A)] = det(

∑
i pixix>

i + A) gives us the normalization constant for DPPp
reg(X,A). Moreover,

as noted in a different context by [DM19], when applied entrywise to the adjugate matrix,
this identity implies that E[adj(

∑
i bixix>

i + A)] = adj(
∑

i pixix>
i + A). Let I denote the set

of all subsets S ⊆ [n] such that X>
SXS + A is invertible. We have

E
[(

X>
SXS + A

)−1
]
=
∑
S∈I

(
X>
SXS + A

)−1 det(X>
SXS + A)

det(
∑

i pixix>
i + A)

∏
i∈S

pi
∏
i 6∈S

(1− pi)

=
∑
S∈I

adj(X>
SXS + A

)
det(

∑
i pixix>

i + A)

∏
i∈S

pi
∏
i 6∈S

(1− pi)

�
∑
S⊆[n]

adj(X>
SXS + A

)
det(

∑
i pixix>

i + A)

∏
i∈S

pi
∏
i 6∈S

(1− pi)

=
E
[
adj(

∑
i bixix>

i + A)
]

det(
∑

i pixix>
i + A)

=
adj(

∑
i pixix>

i + A)

det(
∑

i pixix>
i + A)

=
(∑

i

pixix>
i + A

)−1

.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 16

Note that if I contains all subsets of [n], for example when A � 0, then the inequality turns
into equality. Thus, we showed (2.3), and (2.4) follows even more easily:

E
[
det
(
X>
SXS + A

)−1
]
=
∑
S∈I

1

det(
∑

i pixix>
i + A)

∏
i∈S

pi
∏
i 6∈S

(1− pi) ≤ det
(∑

i

pixix>
i

)−1

,

where the equality holds if I consists of all subsets of [n].

Corollary 2.1 Let fA be A/C/D/V-optimality. Whenever S ∼ DPPp
reg(X,A) is well-defined,

E
[
fA(X>

SXS)
]
≤ fA

(∑
i

pixix>
i

)
.

Proof In the case of A-, C-, and V-optimality, the function fA is a linear transformation of
the matrix (X>

SXS + A)−1 so the bound follows from (2.3). For D-optimality, we apply (2.4)
as follows:

E
[
fA(X>

SXS)
]
= E

[
det
(
X>
SXS + A

)−1/d
]

≤ E
[(

det
(
X>
SXS + A

)−1/d
)d]1/d

= E
[
det
(
X>
SXS + A

)−1
]1/d

≤ det
(∑

i

pixix>
i

)−1/d

,

which completes the proof.
Finally, we present the key lemma that puts everything together. This result is essentially a
generalization of Theorem 2.2 from which also follows Theorem 2.1.

Lemma 2.6 Let fA be A/C/D/V-optimality and X be n× d. For some w = (w1, . . . , wn) ∈
[0, 1]n, let Σw =

∑
iwixix>

i and assume that
∑

iwi = k ∈ [n]. If k ≥ 4 dA(Σw), then a subset
S ⊆ [n] of size k can be found in O(ndk + k2d2) time that satisfies

fA
(
X>
SXS

)
≤
(

1 + 8
dA(Σw)

k
+ 8

√∣∣∣ln(k/dA(Σw))

k

)
· fA
(
Σw

)
.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 17

Proof Let p = (p1, . . . , pn) be defined so that pi = wi

1+ε
, and suppose that S ∼ DPPp

reg(X,A).
Then, using Corollary 2.1, we have

Pr
(
|S| ≤ k

)
E
[
fA(X>

SXS) | |S| ≤ k
]

≤ E
[
fA(X>

SXS)
]

≤ fA

(∑
i

pixix>
i

)
≤ (1 + ε) · fA

(∑
i

wixix>
i

)
.

Using Lemma 2.4 we can bound the expected size of S as follows:

E
[
|S|
]
≤ dA(Σw) +

∑
i

pi

= dA(Σw) +
k

1 + ε

= k ·
(
1 +

dA(Σw)

k
− ε

1 + ε

)
.

Let dw = dA(Σw) and α = 1 + dw
k
− ε

1+ε
. If 1 ≥ ε ≥ 4dw

k
, then α ≤ 1 + ε

4
− ε

2
= 1 − ε

4
.

Since DPPp
reg(X,A) is a determinantal point process, |S| is a Poisson binomial r.v. so for

ε ≥ 6
√

ln(k/dw)
k

,

Pr(|S| > k) ≤ e−
(k−αk)2

2k = e−
k
2
(1−α)2 ≤ e−

kε2

32 ≤ dw
k
.

For any ε ≥ 4 dw
k
+ 6
√

ln(k/dw)
k

, we have

E
[
fA(X>

SXS) | |S| ≤ k
]

≤ 1 + ε

1− dw
k

· fA(Σw)

≤
(
1 +

ε+ dw
k

1− dw
k

)
· fA(Σw)

≤
(
1 + 7

dw
k

+ 8

√∣∣∣ln(k/dw)
k

)
· fA(Σw).

Denoting E
[
fA(X>

SXS) | |S| ≤ k
]

as Fk, Markov’s inequality implies that

Pr
(
fA(X>

SXS) ≥ (1 + δ)Fk | |S| ≤ k
)
≤ 1

1 + δ
.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 18

Also, we showed that Pr(|S| ≤ k) ≥ 1− dw
k
≥ 3

4
. Setting δ = dw

Ck
for sufficiently large C we

obtain that with probability Ω(dw
k
), the random set S has size at most k and

fA(X>
SXS)

≤
(
1 +

dw
Ck

)
·
(
1 + 7

dw
k

+ 8

√∣∣∣ln(k/dw)
k

)
·fA(Σw)

≤
(
1 + 8

dw
k

+ 8

√∣∣∣ln(k/dw)
k

)
· fA(Σw).

We can sample from DPPp
reg(X,A) conditioned on |S| ≤ k and fA(X>

SXS) bounded as above
by rejection sampling. When |S| < k, the set is completed to k with arbitrary indices.
On average, O(k

dw
) samples from DPPp

reg(X,A) are needed, so the cost is O(nd2) for the
eigendecomposition, O(k

dw
· nd2w) = O(ndwk) for sampling and O(k

dw
· kd2) for recomputing

fA(X>
SXS).

To prove the main results, we use Lemma 2.6 with appropriately chosen weights w.
Proof of Theorem 2.1 As discussed by [All+17] and [BV04], the following convex relaxation
of experimental design can be written as a semi-definite program and solved using standard
SDP solvers:

w∗ = argmin
w

fA

(n∑
i=1

wixix>
i

)
, (2.5)

subject to ∀i 0 ≤ wi ≤ 1,
∑
i

wi = k. (2.6)

The solution w∗ satisfies fA
(
Σw∗

)
≤ OPTk. If we use w∗ in Lemma 2.6, then observing that

dA(Σw∗) ≤ dA, and setting k ≥ C(dA
ε
+ log 1/ε

ε2
) for sufficiently large C, the algorithm in the

lemma finds subset S such that

fA(X>
SXS) ≤ (1 + ε) · fA(Σw∗) ≤ (1 + ε) ·OPTk.

Note that we did not need to solve the SDP exactly, so approximate solvers could be used
instead.
Proof of Theorem 2.2 Let w = (k

n
, ..., k

n
) in Lemma 2.6. Then, we have Σw = k

n
ΣX and

also dA(Σw) = dn
k
A. Since for any set S of size k, we have OPTk ≤ fA(X>

SXS), the result
follows.

2.5 Experiments
We confirm our theoreticala results with experiments on real world data from libsvm datasets
[CL11] (more details in Appendix 4.6). For all our experiments, the prior precision matrix is

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 19

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Subset size (multiple of d)

2

4

6

8

10

A
-o

pt
im

al
ity

 v
al

ue

dataset = mg_scale

method
Our method (with SDP)
Our method (without SDP)
Greedy bottom up
Uniform
Predictive Length

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Subset size (multiple of d)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

f A
(X

SX
S)

/f A
(k n

X
)

dataset = mg_scale

method
Our method (with SDP)
Our method (without SDP)

Figure 2.3: (left) A-optimality value obtained by the various methods on the mg_scale
dataset [CL11] with prior precision A = 10−5 I, (right) A-optimality value for our method
(with and without SDP) divided by fA(

k
n
ΣX), the baseline estimate suggested by Theorem

2.2.

set to A = n−1I and we consider sample sizes k ∈ [d, 5d]. Each experiment is averaged over
25 trials and bootstrap 95% confidence intervals are shown. The quality of our method, as
measured by the A-optimality criterion,

fA(X>
SXS) = tr

(
(X>

SXS + A)−1
)
,

is compared against several baselines and recently proposed methods for A-optimal design that
have been shown to perform well in practice. Note that none of these algorithms come with
theoretical guarantees as strong as those offered by our approach. The list of implemented
methods is as follows:

Our method (with SDP) uses the efficient algorithms developed in proving Theorem 2.1
to sample DPPp

reg(X,A) constrained to subset size k with p = w∗, see (2.6), obtained
using a recently developed first order convex cone solver called Splitting Conical Solver
[SCS, see ODo+16]. We chose SCS because it can handle the SDP constraints in (2.6)
and has provable termination guarantees, while also finding solutions faster [ODo+16]
than alternative off-the-shelf optimization software libraries such as SDPT3 and Sedumi.

Our method (without SDP) samples DPPp
reg(X,A) with uniform probabilities p ≡ k

n
.

Greedy bottom-up adds an index i ∈ [n] to the sample S maximizing the increase in
A-optimality criterion [Bia+17; CR17].

Uniform samples every size k subset S ⊆ [n] with equal probability.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 20

Predictive length sampling [Zhu+15] samples each row xi of X with probability ∝ ‖xi‖.

Figure 2.3 reveals that our method (without SDP) is superior to both uniform and
predictive length sampling, producing designs which achieve lower A-optimality criteria
values for all sample sizes. As Theorem 2.3 shows that our method (without SDP) only
differs from uniform sampling by an additional DPP sample with controlled expected size
(see Lemma 2.4), we may conclude that adding even a small DPP sample can improve a
uniformly sampled design.

Consistent with prior observations [WYS17; CR17], the greedy bottom up method achieves
surprisingly good performance, despite the limited theoretical guarantees it offers. However,
if our method is used in conjunction with an SDP solution, then we are able to match and
even slightly exceed the performance of the greedy bottom up method. Furthermore, the
overall run-time costs (see Appendix 4.6) between the two are comparable. As the majority
of the runtime of our method (with SDP) is occupied by solving the SDP, an interesting
future direction is to investigate alternative solvers such as interior point methods as well as
terminating the solvers early once an approximate solution is reached.

Figure 2.3 (right) numerically evaluates the tightness of the bound obtained in Theorem
2.2 by plotting the ratio:

fA(X>
SXS)

fA(
k
n
ΣX)

for subsets returned by our method (with and without SDP). Note that the line for our
method with SDP on Figure 2.3 (right) shows that the ratio never goes below 0.5, and we
saw similar behavior across all examined datasets (see Appendix 4.6). This evidence suggests
that for many real datasets OPTk is within only a small constant factor away from fA(

k
n
ΣX),

matching the upper bound of Theorem 2.2.
In addition to the mg_scale dataset presented in Section 4.6, we also benchmarked on

three other data sets described in Table 2.2.

Table 2.2: Datasets used in the experiments [CL11].

mg_scale bodyfat_scale mpg_scale housing_scale

n 1385 252 392 506
d 6 14 7 13

The A-optimality values obtained are illustrated in Figure 2.4. The general trend observed
in Section 4.6 of our method (without SDP) outperforming independent sampling methods
(uniform and predictive length) and our method (with SDP) matching the performance of
the greedy bottom up method continues to hold across the additional datasets considered.

The relative ranking and overall order of magnitude differences between runtimes (Fig-
ure 2.5) are also similar across the various datasets. An exception to the rule is on mg_scale,

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 21

0

5

10

15

20

A
-o

pt
im

al
ity

 v
al

ue

dataset = mg_scale

0

10

20

30
dataset = mpg_scale

2 3 4
Subset size (multiple of d)

0

20

40

60

80

A
-o

pt
im

al
ity

 v
al

ue

dataset = bodyfat_scale

2 3 4
Subset size (multiple of d)

0

10

20

30

40

50
dataset = housing_scale

method
Our method (with SDP)
Our method (without SDP)
Greedy bottom up
Uniform
Predictive Length

Figure 2.4: A-optimality values achieved by the methods compared. In all cases considered,
we found our method (without SDP) to be superior to independent sampling methods like
uniform and predictive length sampling. After paying the price to solve an SDP, our method
(with SDP) is able to consistently match the performance of a greedy method which has been
noted [CR17] to work well empirically.

where we see that our method (without SDP) costs more than the greedy method (whereas
everywhere else it costs less).

The claim that fA(
k
n
ΣX) is an appropriate quantity to summarize the contribution of

problem-dependent factors on the performance of Bayesian A-optimal designs is further
evidenced in Figure 2.6. Here, we see that after normalizing the A-optimality values by this
quantity, the remaining quantities are all on the same scale and close to 1.

2.6 Conclusions
We proposed a new algorithm for finding (1 + ε)-approximate Bayesian experimental designs
by leveraging a fundamental connection with determinantal point processes. Compared to
the state-of-the-art approaches, our method provides stronger theoretical guarantees in terms
of the allowed range of subset sizes, as well as offering significantly better time complexity
guarantees. At the same time, our experiments show that on the task of A-optimal design
the proposed algorithm performs as well as or better than several methods that are used in
practice.

CHAPTER 2. BAYESIAN EXPERIMENTAL DESIGN WITH REGULARIZED
DETERMINANTAL POINT PROCESSES 22

10
2

10
0

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

dataset = mg_scale

10
3

10
2

10
1

10
0

dataset = mpg_scale

2 3 4
Subset size (multiple of d)

10
3

10
1

10
1

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

dataset = bodyfat_scale

2 3 4
Subset size (multiple of d)

10
3

10
1

10
1

dataset = housing_scale

method
Our method (with SDP)
Our method (without SDP)
Greedy bottom up
Uniform
Predictive Length

Figure 2.5: Runtimes of the methods compared. Our method (without SDP) is within an
order of magnitude of greedy bottom up and faster in 3 out of 4 cases. The gap between our
method with and without SDP is attributable to the SDP solver, making investigation of
more efficient solvers and approximate solutions an interesting direction for future work.

0.0

0.5

1.0

1.5

2.0

f A
(X

SX
S)

/f A
(k n

X
)

dataset = mg_scale

0.0

0.5

1.0

1.5

2.0
dataset = mpg_scale

2 3 4
Subset size (multiple of d)

0.0

0.5

1.0

1.5

2.0

f A
(X

SX
S)

/f A
(k n

X
)

dataset = bodyfat_scale

2 3 4
Subset size (multiple of d)

0.0

0.5

1.0

1.5

2.0
dataset = housing_scale

method
Our method (with SDP)
Our method (without SDP)

Figure 2.6: The ratio controlled by Lemma 2.6. This ratio converges to 1 as k → n and is
close to 1 across all real world datasets, suggesting that fA(

k
n
ΣX) is an appropriate problem-

dependent scale for Bayesian A-optimal experimental design.

23

Chapter 3

Exact expressions for double descent
in determinantal random designs

Building on the theory established in Chapter 2, in this chapter we analyze a determinantal
“surrogate” random design to develop new non-asymptotic theory on double descent in
overparameterized linear models. Double descent refers to the phase transition that is
exhibited by the generalization error of unregularized learning models when varying the ratio
between the number of parameters and the number of training samples. The recent success
of highly over-parameterized machine learning models such as deep neural networks has
motivated a theoretical analysis of the double descent phenomenon in classical models such as
linear regression which can also generalize well in the over-parameterized regime. We provide
the first exact non-asymptotic expressions for double descent of the minimum norm linear
estimator. Our approach involves constructing a special determinantal point process which
we call surrogate random design, to replace the standard i.i.d. design of the training sample.
This surrogate design admits exact expressions for the mean squared error of the estimator
while preserving the key properties of the standard design. We also establish an exact implicit
regularization result for over-parameterized training samples. In particular, we show that,
for the surrogate design, the implicit bias of the unregularized minimum norm estimator
precisely corresponds to solving a ridge-regularized least squares problem on the population
distribution. In our analysis we introduce a new mathematical tool of independent interest:
the class of random matrices for which determinant commutes with expectation. Some of the
results presented in this chapter were first published in Michał Dereziński, Feynman Liang,
and Michael W Mahoney. “Exact expressions for double descent and implicit regularization
via surrogate random design”. In: Advances in Neural Information Processing Systems.
Vol. 33. 2020, pp. 5152–5164.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 24

3.1 Introduction
Classical statistical learning theory asserts that to achieve generalization one must use training
sample size that sufficiently exceeds the complexity of the learning model, where the latter is
typically represented by the number of parameters [or some related structural parameter; see
FHT01]. In particular, this seems to suggest the conventional wisdom that one should not use
models that fit the training data exactly. However, modern machine learning practice often
seems to go against this intuition, using models with so many parameters that the training
data can be perfectly interpolated, in which case the training error vanishes. It has been shown
that models such as deep neural networks, as well as certain so-called interpolating kernels
and decision trees, can generalize well in this regime. In particular, [Bel+19] empirically
demonstrated a phase transition in generalization performance of learning models which
occurs at an interpolation threshold, i.e., a point where training error goes to zero (as one
varies the ratio between the model complexity and the sample size). Moving away from this
threshold in either direction tends to reduce the generalization error, leading to the so-called
double descent curve.

To understand this surprising phenomenon, in perhaps the simplest possible setting, we
study it in the context of linear or least squares regression. Consider a full rank n× d data
matrix X and a vector y of responses corresponding to each of the n data points (the rows of
X), where we wish to find the best linear model Xw ≈ y, parameterized by a d-dimensional
vector w. The simplest example of an estimator that has been shown to exhibit the double
descent phenomenon [BHX19] is the Moore-Penrose estimator, ŵ = X†y: in the so-called
over-determined regime, i.e., when n > d, it corresponds to the least squares solution, i.e.,
argminw ‖Xw− y‖2; and in the under-determined regime (also known as over-parameterized
or interpolating), i.e., when n < d, it corresponds to the minimum norm solution to the linear
system Xw = y. Given the ubiquity of linear regression and the Moore-Penrose solution,
e.g., in kernel-based machine learning, studying the performance of this estimator can shed
some light on the effects of over-parameterization/interpolation in machine learning more
generally. Of particular interest are results that are exact (i.e., not upper/lower bounds) and
non-asymptotic (i.e., for large but still finite n and d).

We build on methods from Randomized Numerical Linear Algebra (RandNLA) in order
to obtain exact non-asymptotic expressions for the mean squared error (MSE) of the Moore-
Penrose estimator (see Theorem 3.1). This provides a precise characterization of the double
descent phenomenon for the linear regression problem. In obtaining these results, we are
able to provide precise formulas for the implicit regularization induced by minimum norm
solutions of under-determined training samples, relating it to classical ridge regularization
(see Theorem 3.2). To obtain our precise results, we use a somewhat non-standard random
design, based on a specially chosen determinantal point process (DPP), which we term
surrogate random design. DPPs are a family of non-i.i.d. sampling distributions which are
typically used to induce diversity in the produced samples [KT12]. Our aim in using a
DPP as a surrogate design is very different: namely, to make certain quantities (such as
the MSE) analytically tractable, while accurately preserving the underlying properties of

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 25

the original data distribution. This strategy might seem counter-intuitive since DPPs are
typically found most useful when they differ from the data distribution. However, we show
both theoretically (Theorem 3.3) and empirically (Section 3.8), that for many commonly
studied data distributions, such as multivariate Gaussians, our DPP-based surrogate design
accurately preserves the key properties of the standard i.i.d. design (such as the MSE),
and even matches it exactly in the high-dimensional asymptotic limit. In our analysis of
the surrogate design, we introduce the concept of determinant preserving random matrices
(Section 3.4), a class of random matrices for which determinant commutes with expectation,
which should be of independent interest.

Main results: double descent and implicit regularization
As the performance metric in our analysis, we use the mean squared error (MSE), defined as
MSE[ŵ] = E

[
‖ŵ− w∗‖2

]
, where w∗ is a fixed underlying linear model of the responses. In

analyzing the MSE, we make the following standard assumption that the response noise is
homoscedastic.

Assumption 3.1 (Homoscedastic noise) The noise ξ = y(x) − x>w∗ has mean 0 and
variance σ2.

Our main result provides an exact expression for the MSE of the Moore-Penrose estimator
under our surrogate design denoted X̄ ∼ Snµ , where µ is the d-variate distribution of the row
vector x> and n is the sample size. This surrogate is used in place of the standard n × d
random design X ∼ µn, where n data points (the rows of X) are sampled independently
from µ. We form the surrogate by constructing a determinantal point process with µ as the
background measure, so that Snµ(X) ∝ pdet(XX>)µ(X), where pdet(·) denotes the pseudo-
determinant (details in Section 3.3). Unlike for the standard design, our MSE formula is fully
expressible as a function of the covariance matrix Σµ = Eµ[xx>]. To state our main result,
we need an additional minor assumption on µ which is satisfied by most standard continuous
distributions (e.g., multivariate Gaussians).

Assumption 3.2 (General position) For 1 ≤ n ≤ d, if X ∼ µn, then rank(X) = n almost
surely.

Under Assumptions 3.1 and 3.2, we can establish our first main result, stated as the following
theorem, where we use X† to denote the Moore-Penrose inverse of X.

Theorem 3.1 (Exact non-asymptotic MSE) If the response noise is homoscedastic (As-
sumption 3.1) and µ is in general position (Assumption 3.2), then for any w ∈ Rd, X̄ ∼ Snµ
(Definition 3.3), and ȳi = y(x̄i),

MSE
[
X̄†ȳ

]
=


σ2 tr

(
(Σµ + λnI)−1

)
· 1−αn

d−n + w∗>(Σµ+λnI)−1w∗

tr((Σµ+λnI)−1)
· (d− n), for n < d,

σ2 tr(Σ−1
µ), for n = d,

σ2 tr(Σ−1
µ) · 1−βn

n−d , for n > d,

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 26

(a) Surrogate MSE expressions (Theorem 3.1)
closely match numerical estimates even for non-
isotropic features. Eigenvalue decay leads to a
steeper descent curve in the under-determined
regime (n < d).

0 50 100 150 200

n

1

2

3

4

5

6

M
S

E

isotropic theory

isotropic empirical

 = 1e2 theory

 = 1e2 empirical

 = 1e5 theory

 = 1e5 empirical

(b) The mean of the estimator X†y exhibits shrink-
age which closely matches the shrinkage of a
ridge-regularized least squares optimum (theory
lines), as characterized by Theorem 3.2.

50 100 150 200

n

0

0.2

0.4

0.6

0.8

1

N
o
rm

 |
|E

[X
+
y
]|
|

isotropic theory

isotropic empirical

 = 1e2 theory

 = 1e2 empirical

 = 1e5 theory

 = 1e5 empirical

Figure 3.1: Illustration of the main results for d = 100 and µ = N (0,Σ) where Σ is diagonal
with eigenvalues decaying exponentially and scaled so that tr(Σ−1) = d. We use our surrogate
formulas to plot (a) the MSE (Theorem 3.1) and (b) the norm of the expectation (Theorem
3.2) of the Moore-Penrose estimator (theory lines), accompanied by the empirical estimates
based on the standard i.i.d. design (error bars are three times the standard error of the mean).
We consider three different condition numbers κ of Σ, with isotropic corresponding to κ = 1,
i.e., Σ = I. We use σ2 = 1 and w∗ = 1√

d
1.

with λn ≥ 0 defined by n = tr(Σµ(Σµ + λnI)−1), αn = det(Σµ(Σµ + λnI)−1) and βn = ed−n.

Definition 3.1 We will use M = M(Σµ,w∗, σ2, n) to denote the above expressions for
MSE

[
X̄†ȳ

]
.

Proof of Theorem 3.1 is given in Section 3.5. For illustration, we plot the MSE expressions
in Figure 3.1a, comparing them with empirical estimates of the true MSE under the i.i.d. design
for a multivariate Gaussian distribution µ = N (0,Σ) with several different covariance matrices
Σ. We keep the number of features d fixed to 100 and vary the number of samples n, observing
a double descent peak at n = d. We observe that our theory aligns well with the empirical
estimates, whereas previously, no such theory was available except for special cases such as
Σ = I (more details in Theorem 3.3 and Section 3.8). The plots show that varying the spectral
decay of Σ has a significant effect on the shape of the curve in the under-determined regime.
We use the horizontal line to denote the MSE of the null estimator MSE[0] = ‖w∗‖2 = 1.
When the eigenvalues of Σ decay rapidly, then the Moore-Penrose estimator suffers less error
than the null estimator for some values of n < d, and the curve exhibits a local optimum in
this regime.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 27

One important aspect of Theorem 3.1 comes from the relationship between n and the
parameter λn, which together satisfy n = tr(Σµ(Σµ + λnI)−1). This expression is precisely
the classical notion of effective dimension for ridge regression regularized with λn [AM15],
and it arises here even though there is no explicit ridge regularization in the problem being
considered in Theorem 3.1. The global solution to the ridge regression task (i.e., `2-regularized
least squares) with parameter λ is defined as:

argmin
w

{
Eµ,y

[(
x>w− y(x)

)2]
+ λ‖w‖2

}
= (Σµ + λI)−1vµ,y, where vµ,y = Eµ,y[y(x) x].

When Assumption 3.1 holds, then vµ,y = Σµw∗, however ridge-regularized least squares
is well-defined for much more general response models. Our second result makes a direct
connection between the (expectation of the) unregularized minimum norm solution on the
sample and the global ridge-regularized solution. While the under-determined regime (i.e.,
n < d) is of primary interest to us, for completeness we state this result for arbitrary values of
n and d. Note that, just like the definition of regularized least squares, this theorem applies
more generally than Theorem 3.1, in that it does not require the responses to follow any
linear model as in Assumption 3.1 (proof in Section 3.6).

Theorem 3.2 (Implicit regularization of Moore-Penrose estimator) For µ satisfy-
ing Assumption 3.2 and y(·) s.t. vµ,y = Eµ,y[y(x) x] is well-defined, X̄ ∼ Snµ (Definition 3.3)
and ȳi = y(x̄i),

E
[
X̄†ȳ

]
=

{
(Σµ + λnI)−1vµ,y for n < d,

Σ−1
µ vµ,y for n ≥ d,

where, as in Theorem 3.1, λn is such that the effective dimension tr(Σµ(Σµ + λnI)−1) equals
n.

That is, when n < d, the Moore-Penrose estimator (which itself is not regularized), computed
on the random training sample, in expectation equals the global ridge-regularized least squares
solution of the underlying regression problem. Moreover, λn, i.e., the amount of implicit
`2-regularization, is controlled by the degree of over-parameterization in such a way as to
ensure that n becomes the ridge effective dimension (a.k.a. the effective degrees of freedom).

We illustrate this result in Figure 3.1b, plotting the norm of the expectation of the
Moore-Penrose estimator. As for the MSE, our surrogate theory aligns well with the empirical
estimates for i.i.d. Gaussian designs, showing that the shrinkage of the unregularized estimator
in the under-determined regime matches the implicit ridge-regularization characterized by
Theorem 3.2. While the shrinkage is a linear function of the sample size n for isotropic
features (i.e., Σ = I), it exhibits a non-linear behavior for other spectral decays. Such
implicit regularization has been studied previously [see, e.g., ML11; M W12]; it has been
observed empirically for RandNLA sampling algorithms [PMB15]; and it has also received
attention more generally within the context of neural networks [Ney17]. While our implicit

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 28

regularization result is limited to the Moore-Penrose estimator, this new connection (and
others, described below) between the minimum norm solution of an unregularized under-
determined system and a ridge-regularized least squares solution offers a simple interpretation
for the implicit regularization observed in modern machine learning architectures.

Our exact non-asymptotic expressions in Theorem 3.1 and our exact implicit regularization
results in Theorem 3.2 are derived for the surrogate design, which is a non-i.i.d. distribution
based on a determinantal point process. However, Figure 3.1 suggests that those expressions
accurately describe the MSE (up to lower order terms) also under the standard i.i.d. design
X ∼ µn when µ is a multivariate Gaussian. As a third result, we verify that the surrogate
expressions for the MSE are asymptotically consistent with the MSE of an i.i.d. design, for a
wide class of distributions which include multivariate Gaussians.

Theorem 3.3 (Asymptotic consistency of surrogate design) Let X ∈ Rn×d have i.i.d. rows
x>
i = z>

i Σ
1
2 where zi has independent zero mean and unit variance sub-Gaussian entries, and

suppose that Assumptions 3.1 and 3.2 are satisfied. Furthermore, suppose that there exist
c, C, C∗ ∈ R>0 such that CI � Σ � cI � 0 and ‖w∗‖ ≤ C∗. Then

MSE
[
X†y

]
−M(Σ,w∗, σ2, n)→ 0

with probability one as d, n→∞ with n/d→ c̄ ∈ (0,∞) \ {1}.

The above result is particularly remarkable since our surrogate design is a determinantal
point process. DPPs are commonly used in ML to ensure that the data points in a sample are
well spread-out. However, if the data distribution is sufficiently regular (e.g., a multivariate
Gaussian), then the i.i.d. samples are already spread-out reasonably well, so rescaling the dis-
tribution by a determinant has a negligible effect that vanishes in the high-dimensional regime.
Furthermore, our empirical estimates (Figure 3.1) suggest that the surrogate expressions are
accurate not only in the asymptotic limit, but even for moderately large dimensions. Based
on a detailed empirical analysis described in Section 3.8, we conjecture that the convergence
described in Theorem 3.3 has the rate of O(1/d).

3.2 Related work
There is a large body of related work, which for simplicity we cluster into three groups.

Double descent. The double descent phenomenon has been observed empirically in
a number of learning models, including neural networks [Bel+19; Gei+19], kernel methods
[BMM18; BRT19], nearest neighbor models [BHM18], and decision trees [Bel+19]. The
theoretical analysis of double descent, and more broadly the generalization properties of
interpolating estimators, have primarily focused on various forms of linear regression [Bar+19;
LR19; Has+19; Mut+19]. Note that while we analyze the classical mean squared error, many
works focus on the squared prediction error. Also, unlike in our work, some of the literature
on double descent deals with linear regression in the so-called misspecified setting, where the

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 29

set of observed features does not match the feature space in which the response model is
linear [BHX19; Has+19; Mit19; MM19b], e.g., when the learner observes a random subset of
d features from a larger population.

10
-1

10
0

10
1

d/n

0.5

1

1.5
M

S
E

isotropic

 = 1e2

 = 1e5

Figure 3.2: Surrogate MSE as a function of d/n, with n fixed to 100 and varying dimension
d and condition number κ, for signal-to-noise ratio SNR = 1.

The most directly comparable to our setting is the recent work of [Has+19]. They study
how varying the feature dimension affects the (asymptotic) generalization error for linear
regression, however their analysis is limited to certain special settings such as an isotropic
data distribution. As an additional point of comparison, in Figure 3.2 we plot the MSE
expressions of Theorem 3.1 when varying the feature dimension d (the setup is the same
as in Figure 3.1). Our plots follow the trends outlined by [Has+19] for the isotropic case
(see their Figure 2), but the spectral decay of the covariance (captured by our new MSE
expressions) has a significant effect on the descent curve. This leads to generalization in the
under-determined regime even when the signal-to-noise ratio (SNR = ‖w∗‖2/σ2) is 1, unlike
suggested by [Has+19].

RandNLA and DPPs. Randomized Numerical Linear Algebra [DM16; DM17] has
traditionally focused on obtaining purely algorithmic improvements for tasks such as least
squares regression, but there has been growing interest in understanding the statistical
properties of these randomized methods [PMB15; RM16] and a beyond worst-case analysis
[Der+20b]. Determinantal point processes [DM21; KT12] have been recently shown to
combine strong worst-case regression guarantees with elegant statistical properties [DW17].
However, these results are limited to the over-determined setting [DWH18; DWH19a; Der+19]
and ridge regression [DW18b; DLM20a]. Our results are also related to recent work on
using DPPs to analyze the expectation of the inverse [DM19; Der+20a] and generalized
inverse [MDK20; DKM20] of a subsampled matrix.

Implicit regularization. The term implicit regularization typically refers to the notion
that approximate computation can implicitly lead to statistical regularization. See [ML11;
PM11; DM14] and references therein for early work on the topic; and see [M W12] for
an overview. More recently, often motivated by neural networks, there has been work on

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 30

implicit regularization that typically considered SGD-based optimization algorithms. See,
e.g., theoretical results [NTS14; Ney17; Sou+18; Gun+17; Aro+19; Kub+19] as well as
extensive empirical studies [MM18; MM19a]. The implicit regularization observed by us is
different in that it is not caused by an inexact approximation algorithm (such as SGD) but
rather by the selection of one out of many exact solutions (e.g., the minimum norm solution).
In this context, most relevant are the asymptotic results of [KLS18] and [LJB19].

3.3 Surrogate random designs
In this section, we provide the definition of our surrogate random design Snµ , where µ is a
d-variate probability measure and n is the sample size. This distribution is used in place of
the standard random design µn consisting of n row vectors drawn independently from µ.

Preliminaries. For an n×n matrix A, we use pdet(A) to denote the pseudo-determinant
of A, which is the product of non-zero eigenvalues (repeated eigenvalues are taken to the
power of their algebraic multiplicity). For index subsets I and J , we use AI,J to denote the
submatrix of A with rows indexed by I and columns indexed by J . We may write AI,∗ to
indicate that we take a subset of rows. We let X ∼ µk denote a k × d random matrix with
rows drawn i.i.d. according to µ, and the ith row is denoted as x>

i . We also let Σµ = Eµ[xx>],
where Eµ refers to the expectation with respect to x>∼ µ, assuming throughout that Σµ is
well-defined and positive definite. We use Poisson(γ)≤a as the Poisson distribution restricted
to [0, a], whereas Poisson(γ)≥a is restricted to [a,∞). We also let #(X) denote the number
of rows of X.

Definition 3.2 Let µ satisfy Assumption 3.2 and let K be a random variable over Z≥0. A
determinantal design X̄ ∼ Det(µ,K) is a distribution with the same domain as X ∼ µK such
that for any event E measurable w.r.t. X, we have

Pr
{

X̄ ∈ E
}

=
E[pdet(XX>)1[X∈E]]

E[pdet(XX>)]
.

The above definition can be interpreted as rescaling the density function of µK by the
pseudo-determinant, and then renormalizing it. We now construct our surrogate design Snµ by
appropriately selecting the random variable K. The obvious choice of K = n does not result
in simple closed form expressions for the MSE in the under-determined regime (i.e., n < d),
which is the regime of primary interest to us. Instead, we derive our random variables K
from the Poisson distribution.

Definition 3.3 For µ satisfying Assumption 3.2, define surrogate design Snµ as Det(µ,K)
where:

1. if n < d, then K ∼ Poisson(γn)≤d with γn as the solution of n = tr(Σµ(Σµ +
1
γn

I)−1),
2. if n = d, then we simply let K = d,
3. if n > d, then K ∼ Poisson(γn)≥d with γn = n− d.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 31

Note that the under-determined case, i.e., n < d, is restricted to K ≤ d so that, under
Assumption 3.2, pdet(XX>) = det(XX>) with probability 1. On the other hand in the
over-determined case, i.e., n > d, we have K ≥ d so that pdet(XX>) = det(X>X). In the
special case of n = d = K both of these equations are satisfied: pdet(XX>) = det(X>X) =
det(XX>) = det(X)2.

We first record an important property of the design Sdµ which can be used to construct an
over-determined design for any n > d. A similar version of this result was also previously
shown by [DWH19b] for a different determinantal design.

Lemma 3.1 Let X̄ ∼ Sdµ and X ∼ µK, where K ∼ Poisson(γ). Then the matrix composed
of a random permutation of the rows from X̄ and X is distributed according to Sd+γµ .

Proof Let X̃ denote the matrix constructed from the permuted rows of X̄ and X. Letting
Z ∼ µK+d, we derive the probability Pr

{
X̃∈E

}
by summing over the possible index subsets

S ⊆ [K + d] that correspond to the rows coming from X̄:

Pr
{

X̃ ∈ E
}
= E

[
1(

K+d
d

) ∑
S: |S|=d

E[det(ZS,∗)21[Z∈E] | K]

d! det(Σµ)

]

=
∞∑
k=0

γke−γ

k!

γdk!

(k + d)!

E
[∑

S: |S|=d det(ZS,∗)21[Z∈E] | K = k
]

det(γΣµ)

(∗)
=

∞∑
k=0

γk+de−γ

(k + d)!

E[det(Z>Z)1[Z∈E] | K = k]

det(γΣµ)
,

where (∗) uses the Cauchy-Binet formula to sum over all subsets S of size d. Finally, since the
sum shifts from k to k+d, the last expression can be rewritten as E[det(X>X)1[X∈E]]/ det(γΣµ),
where recall that X ∼ µK and K ∼ Poisson(γ), matching the definition of Sd+γµ .

Another non-trivial property of the surrogate design Snµ is that the expected sample size
is in fact always equal to n.

Lemma 3.2 Let X̄ ∼ Snµ for any n > 0. Then, we have E[#(X̄)] = n.

Proof of Lemma 3.2 The result is obvious when n = d, whereas for n > d it is an
immediate consequence of Lemma 3.1. Finally, for n < d the expected sample size follows as
a corollary of Lemma 3.3, which states that

(Lemma 3.3) E
[
I− X̄†X̄

]
= (γnΣµ + I)−1,

where X̄†X̄ is the orthogonal projection onto the subspace spanned by the rows of X̄. Since
the rank of this subspace is equal to the number of the rows, we have #(X̄) = tr(X̄†X̄), so

E
[
#(X̄)

]
= d− tr

(
(γnΣµ + I)−1

)
= tr

(
γnΣµ(γnΣµ + I)−1

)
= n,

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 32

which completes the proof.
Our general template for computing expectations under a surrogate design X̄ ∼ Snµ is to

use the following expressions based on the i.i.d. random design X ∼ µK :

E[F (X̄)] =


E[det(XX>)F (X)]

E[det(XX>)]
K ∼ Poisson(γn) for n < d,

E[det(X)2F (X)]
E[det(X)2]

K = d for n = d,

E[det(X>X)F (X)]
E[det(X>X)]

K ∼ Poisson(γn) for n > d.

(3.1)

These formulas follow from Definitions 3.2 and 3.3 because the determinants det(XX>) and
det(X>X) are non-zero precisely in the regimes n ≤ d and n ≥ d, respectively, which is
why we can drop the restrictions on the range of the Poisson distribution. We compute
the normalization constants by introducing the concept of determinant preserving random
matrices, discussed in Section 3.4.

Proof sketch of Theorem 3.1 We focus here on the under-determined regime (i.e., n < d),
highlighting the key new expectation formulas we develop to derive the MSE expressions for
surrogate designs. A standard decomposition of the MSE yields:

MSE
[
X̄†ȳ

]
= E

[
‖X̄†(X̄w∗ + ξ)− w∗‖2

]
= σ2E

[
tr
(
(X̄>X̄)†

)]
+ w∗>E

[
I− X̄†X̄

]
w∗. (3.2)

Thus, our task is to find closed form expressions for the two expectations above. The latter,
which is the expected projection onto the complement of the row-span of X̄, is proven in
Section 3.6.

Lemma 3.3 If X̄ ∼ Snµ and n < d, then we have: E
[
I− X̄†X̄

]
= (γnΣµ + I)−1.

No such expectation formula is known for i.i.d. designs, except when µ is an isotropic Gaussian.
In Section 3.6, we also prove a generalization of Lemma 3.3 which is then used to establish
our implicit regularization result (Theorem 3.2). We next give an expectation formula for
the trace of the Moore-Penrose inverse of the covariance matrix for a surrogate design (proof
in Section 3.5).

Lemma 3.4 If X̄ ∼ Snµ and n < d, then: E
[
tr
(
(X̄>X̄)†

)]
= γn

(
1− det

(
(1
γn

I +Σµ)
−1Σµ

))
.

Note the implicit regularization term which appears in both formulas, given by λn = 1
γn

. Since
n = tr(Σµ(Σµ+λnI)−1) = d−λntr((Σµ+λnI)−1), it follows that λn = (d−n)/tr((Σµ+λnI)−1).
Combining this with Lemmas 3.3 and 3.4, we recover the surrogate MSE expression in
Theorem 3.1.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 33

3.4 Determinant preserving random matrices
In this section, we introduce the key tool for computing expectation formulas of matrix
determinants. It is used in our analysis of the surrogate design, and it should be of independent
interest.

The key question motivating the following definition is: When does taking expectation
commute with computing a determinant for a square random matrix?

Definition 3.4 A random d× d matrix A is called determinant preserving (d.p.), if

E
[
det(AI,J)

]
= det

(
E[AI,J]

)
for all I,J ⊆ [d] s.t. |I| = |J |.

We next give a few simple examples to provide some intuition. First, note that every 1× 1
random matrix is determinant preserving simply because taking a determinant is an identity
transformation in one dimension. Similarly, every fixed matrix is determinant preserving
because in this case taking the expectation is an identity transformation. In all other cases,
however, Definition 3.4 has to be verified more carefully. Further examples (positive and
negative) follow.

Example 3.1 If A has i.i.d. Gaussian entries aij ∼ N (0, 1), then A is d.p. because
E[det(A)] = 0.

In fact, it can be shown that all random matrices with independent entries are determinant
preserving. However, this is not a necessary condition.

Example 3.2 Let A = sZ, where Z is fixed with rank(Z) = r, and s is a scalar random
variable. Then for |I| = |J | = r we have

E
[

det(sZI,J)
]
= E[sr] det(ZI,J) = det

((
E[sr]

) 1
r ZI,J

)
,

so if r = 1 then A is determinant preserving, whereas if r > 1 and Var[s] > 0 then it is not.

We use adj(A) to denote the adjugate of A, defined as follows: the (i, j)th entry of adj(A)
is (−1)i+j det(A[n]\{j},[n]\{i}). We will use two useful identities related to the adjugate: (1)
adj(A) = det(A)A−1 for invertible A, and (2) det(A + uv>) = det(A) + v>adj(A)u [see Fact
2.14.2 in Ber11]. Note that from the definition of an adjugate matrix it immediately follows
that if A is determinant preserving then adjugate commutes with expectation for this matrix:

E
[(

adj(A)
)
i,j

]
= E

[
(−1)i+j det(A[d]\{j},[d]\{i})

]
= (−1)i+j det

(
E[A[d]\{j},[d]\{i}]

)
(3.3)

=
(
adj(E[A])

)
i,j
. (3.4)

The adjugate is useful in our analysis because it connects the determinant and the inverse
via the formula adj(A) = det(A)A−1, which holds for any invertible A.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 34

To construct more complex examples, we show that determinant preserving random
matrices are closed under addition and multiplication. The proof of this result is an extension
of an existing argument, given by [DM19] in the proof of Lemma 7, for computing the
expected determinant of the sum of rank-1 random matrices.

Lemma 3.5 (Closure properties) If A and B are independent and determinant preserving,
then:

1. A + B is determinant preserving,
2. AB is determinant preserving.

Proof of Lemma 3.5 First, we show that A+uv> is d.p. for any fixed u, v ∈ Rd. Below, we
use the identity for a rank one update of a determinant: det(A+ uv>) = det(A) + v>adj(A)u.
It follows that for any I and J of the same size,

E
[
det(AI,J + uIv>

J)
]
= E

[
det(AI,J) + v>

J adj(AI,J)uI
]

(∗)
= det

(
E[AI,J]

)
+ v>

J adj
(
E[AI,J]

)
uI

= det
(
E[AI,J + uIv>

J]
)
,

where (∗) used (3.4), i.e., the fact that for d.p. matrices, adjugate commutes with expectation.
Crucially, through the definition of an adjugate this step implicitly relies on the assumption
that all the square submatrices of AI,J are also determinant preserving. Iterating this, we
get that A + Z is d.p. for any fixed Z. We now show the same for A + B:

E
[
det(AI,J + BI,J)

]
= E

[
E
[
det(AI,J + BI,J) | B

]]
(∗)
= E

[
det
(
E[AI,J]+ BI,J

)]
= det

(
E[AI,J + BI,J]

)
,

where (∗) uses the fact that after conditioning on B we can treat it as a fixed matrix. Next,
we show that AB is determinant preserving via the Cauchy-Binet formula:

E
[
det
(
(AB)I,J

)]
= E

[
det(AI,∗B∗,J)

]
= E

[∑
S: |S|=|I|

det
(
AI,S

)
det
(
BS,J

)]
=
∑

S: |S|=|I|

det
(
E[A]I,S

)
det
(
E[B]S,J

)
= det

(
E[A]I,∗ E[B]∗,J

)
= det

(
E[AB]I,J

)
,

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 35

where recall that AI,∗ denotes the submatrix of A consisting of its (entire) rows indexed by
I.

Next, we introduce another important class of d.p. matrices: a sum of i.i.d. rank-1 random
matrices with the number of i.i.d. samples being a Poisson random variable. Our use of the
Poisson distribution is crucial for the below result to hold. It is an extension of an expectation
formula given by [Der19] for sampling from discrete distributions.

Lemma 3.6 If K is a Poisson random variable and A,B are random K × d matrices whose
rows are sampled as an i.i.d. sequence of joint pairs of random vectors, then A>B is d.p., and
so:

E
[

det(A>B)
]
= det

(
E[A>B]

)
.

To prove Lemma 3.6, we will use the following lemma, many variants of which appeared
in the literature [e.g., Vaa65]. We use the one given by [DWH19a].

Lemma 3.7 ([DWH19a]) If the rows of random k × d matrices A,B are sampled as an
i.i.d. sequence of k ≥ d pairs of joint random vectors, then

kd E
[

det(A>B)
]
= kd det

(
E[A>B]

)
. (3.5)

Here, we use the following standard shorthand: kd = k!
(k−d)! = k (k − 1) · · · (k − d+ 1). Note

that the above result almost looks like we are claiming that the matrix A>B is d.p., but in
fact it is not because kd 6= kd. The difference in those factors is precisely what we are going
to correct with the Poisson random variable. We now present the proof of Lemma 3.6.
Proof of Lemma 3.6 Without loss of generality, it suffices to check Definition 3.4 with
both I and J equal [d]. We first expand the expectation by conditioning on the value of K
and letting γ = E[K]:

E
[
det(A>B)

]
=

∞∑
k=0

E
[

det(A>B) | K=k
]

Pr(K=k)

(Lemma 3.7) =
∞∑
k=d

k!k−d

(k − d)!
det
(
E[A>B | K=k]

)γke−γ
k!

=
∞∑
k=d

(γ
k

)d
det
(
E[A>B | K=k]

)γk−de−γ
(k − d)!

.

Note that γ
k
E[A>B | K=k] = E[A>B], which is independent of k. Thus we can rewrite the

above expression as:

det
(
E[A>B]

) ∞∑
k=d

γk−de−γ

(k − d)!
= det

(
E[A>B]

) ∞∑
k=0

γke−γ

k!
= det

(
E[A>B]

)
,

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 36

which concludes the proof.
Finally, we show the expectation formula needed for obtaining the normalization constant

of the under-determined surrogate design, given in (3.1). The below result is more general
than the normalization constant requires, because it allows the matrices A and B to be
different (the constant is obtained by setting A = B = X ∼ µK). In fact, we use this more
general statement to show Theorems 3.1 and 3.2. The proof uses Lemmas 3.5 and 3.6.

Lemma 3.8 If K is a Poisson random variable and A, B are random K × d matrices whose
rows are sampled as an i.i.d. sequence of joint pairs of random vectors, then

E
[

det(AB>)
]
= e−E[K] det

(
I + E[B>A]

)
.

To prove Lemma 3.8, we use the following standard determinantal formula which is used
to derive the normalization constant of a discrete determinantal point process.

Lemma 3.9 ([KT12]) For any k × d matrices A,B we have

det(I + AB>) =
∑
S⊆[k]

det(AS,∗B>
S,∗).

Proof of Lemma 3.8 By Lemma 3.6, the matrix B>A is determinant preserving. Applying
Lemma 3.5 we conclude that I + B>A is also d.p., so

det
(
I + E[B>A]

)
= E

[
det(I + B>A)

]
= E

[
det(I + AB>)

]
,

where the second equality is known as Sylvester’s Theorem. We rewrite the expectation of
det(I + AB>) by applying Lemma 3.9. Letting γ = E[K], we obtain:

E
[

det(I + AB>)
]
= E

[∑
S⊆[K]

E
[

det(AS,∗B>
S,∗) | K

]]
(∗)
=

∞∑
k=0

γke−γ

k!

k∑
i=0

(
k

i

)
E
[

det(AB>) | K = i
]

=
∞∑
i=0

E
[

det(AB>) | K = i
] ∞∑
k≥i

(
k

i

)
γke−γ

k!

=
∞∑
i=0

γie−γ

i!
E
[

det(AB>) | K = i
] ∞∑
k≥i

γk−i

(k − i)!
= E

[
det(AB>)

]
· eγ,

where (∗) follows from the exchangeability of the rows of A and B, which implies that the
distribution of AS,∗B>

S,∗ is the same for all subsets S of a fixed size k.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 37

3.5 Proof of Theorem 3.1
In this section we use Zn

µ to denote the normalization constant that appears in (3.1) when
computing an expectation for surrogate design Snµ . We first prove Lemma 3.4.

Lemma 3.10 (restated Lemma 3.4) If X̄ ∼ Snµ for n < d, then we have

E
[
tr
(
(X̄>X̄)†

)]
= γn

(
1− det

(
(1
γn

I +Σµ)
−1Σµ

))
.

Proof Let X ∼ µK for K ∼ Poisson(γn). Note that if det(XX>) > 0 then using the fact
that det(A)A−1 = adj(A) for any invertible matrix A, we can write:

det(XX>)tr
(
(X>X)†

)
= det(XX>)tr

(
(XX>)−1

)
= tr(adj(XX>))

=
K∑
i=1

det(X−iX>
−i),

where X−i is a shorthand for X[K]\{i},∗. Assumption 3.2 ensures that Pr
{

det(XX>) > 0
}
= 1,

which allows us to write:

Zn
µ · E

[
tr
(
(X̄>X̄)†

)]
= E

[K∑
i=1

det(X−iX>
−i)
∣∣ det(XX>) > 0

]
·

1︷ ︸︸ ︷
Pr
{

det(XX>) > 0
}

=
d∑

k=0

γkne−γn
k!

E
[k∑
i=1

det(X−iX>
−i)
∣∣ K = k

]
=

d∑
k=0

γkne−γn
k!

k E
[

det(XX>) | K = k − 1
]

= γn

d−1∑
k=0

γkne−γn
k!

E
[

det(XX>) | K = k
]

= γn

(
E
[

det(XX>)
]
− γdne−γn

d!
E
[

det(X)2 | K = d
])

(∗)
= γn

(
e−γn det(I + γnΣµ)− e−γn det(γnΣµ)

)
,

where (∗) uses Lemma 3.8 for the first term and Lemma 3.7 for the second term. We obtain
the desired result by dividing both sides by Zn

µ = e−γn det(I + γnΣµ).
In the over-determined regime, a more general matrix expectation formula can be shown
(omitting the trace). The following result is related to an expectation formula derived by
[DWH19b], however they use a slightly different determinantal design so the results are
incomparable.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 38

Lemma 3.11 If X̄ ∼ Snµ and n > d, then we have

E
[
(X̄>X̄)†

]
= Σ−1

µ ·
1− e−γn

γn
.

Proof Let X ∼ µK for K ∼ Poisson(γn). Assumption 3.2 implies that for K 6= d − 1 we
have

det(X>X)(X>X)† = adj(X>X), (3.6)

however when k = d− 1 then (3.6) does not hold because det(X>X) = 0 while adj(X>X) may
be non-zero. It follows that:

Zn
µ · E

[
(X̄>X̄)†

]
= E

[
det(X>X)(X>X)†

]
= E

[
adj(X>X)

]
− γd−1

n e−γn
(d− 1)!

E
[

adj(X>X) | K = d− 1
]

(∗)
= adj

(
E[X>X]

)
− γd−1

n e−γn
(d− 1)d−1

adj
(
E[X>X | K = d− 1]

)
= adj(γnΣµ)− e−γn adj(γnΣµ)

= det(γnΣµ) (γnΣµ)
−1(1− e−γn)

= det(γnΣµ)Σ
−1
µ ·

1− e−γn
γn

,

where the first term in (∗) follows from Lemma 3.8 and (3.4), whereas the second term comes
from Lemma 2.3 of [DWH19b]. Dividing both sides by Zn

µ = det(γnΣµ) completes the proof.

Applying the closed form expressions from Lemmas 3.3, 3.4 and 3.11, we derive the
formula for the MSE and prove Theorem 3.1 (we defer the proof of Lemma 3.3 to Section 3.6).
Proof of Theorem 3.1 First, assume that n < d, in which case we have γn = 1

λn
and

moreover

n = tr
(
Σµ(Σµ + λnI)−1

)
= tr

(
(Σµ + λnI− λnI)(Σµ + λnI)−1

)
= d− λntr

(
(Σµ + λnI)−1

)
,

so we can write λn as (d − n)/tr((Σµ + λnI)−1). From this and Lemmas 3.3 and 3.10, we
obtain the desired expression, where recall that αn = det

(
Σµ(Σµ +

1
γn
)−1
)
:

MSE
[
X̄†ȳ

]
= σ2 γn(1− αn) +

1
γn

w∗>(Σµ +
1
γn

I)−1w∗

(a)
= σ2 1− αn

λn
+ λn w∗>(Σµ + λnI)−1w∗

(b)
= σ2tr

(
(Σµ + λnI)−1

)1− αn
d− n

+ (d− n)
w∗>(Σµ + λnI)−1w∗

tr
(
(Σµ + λnI)−1

) .

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 39

While the expression given after (a) is simpler than the one after (b), the latter better
illustrates how the MSE depends on the sample size n and the dimension d. Now, assume
that n > d. In this case, we have γn = n− d and apply Lemma 3.11:

MSE
[
X̄†ȳ

]
= σ2 tr(Σ−1

µ)
1− e−γn

γn
= σ2 tr(Σ−1

µ)
1− βn
n− d

.

The case of n = d was shown in Theorem 2.12 of [DWH19b]. This concludes the proof.

3.6 Proof of Theorem 3.2
As in the previous section, we use Zn

µ to denote the normalization constant that appears
in (3.1) when computing an expectation for surrogate design Snµ . Recall that our goal is to
compute the expected value of X̄†ȳ under the surrogate design Snµ . Similarly as for Theorem
3.1, the case of n = d was shown in Theorem 2.10 of [DWH19b]. We break the rest down
into the under-determined case (n < d) and the over-determined case (n > d), starting with
the former. Recall that we do not require any modeling assumptions on the responses.

Lemma 3.12 If X̄ ∼ Snµ and n < d, then for any y(·) such that Eµ,y[y(x) x] is well-defined,
denoting ȳi as y(x̄i), we have

E
[
X̄†ȳ

]
=
(
Σµ +

1
γn

I
)−1Eµ,y[y(x) x].

Proof Let X ∼ µK for K ∼ Poisson(γn) and denote y(xi) as yi. Note that when det(XX>) >
0, then the jth entry of X†y equals f>j (XX>)−1y, where fj is the jth column of X, so:

det(XX>) (X†y)j = det(XX>) f>j (XX>)−1y
= det(XX> + yf>j)− det(XX>).

If det(XX>) = 0, then also det(XX> + yf>j) = 0, so we can write:

Zn
µ · E

[
(X̄†ȳ)j

]
= E

[
det(XX>)(X†y)j

]
= E

[
det(XX> + yf>j)− det(XX>)

]
= E

[
det
(
[X, y][X, fj]>

)]
− E

[
det(XX>)

]
(a)
= e−γn det

(
I + γn Eµ,y

[(
xx> x y(x)
xj x> xj y(x)

)])
− e−γn det(I + γnΣµ)

(b)
= e−γn det(I + γnΣµ)

×
(
Eµ,y

[
γnxj y(x)

]
− Eµ

[
γnxj x>

]
(I + γnΣµ)

−1Eµ,y
[
γnx y(x)

])
,

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 40

where (a) uses Lemma 3.8 twice, with the first application involving two different matrices
A = [X, y] and B = [X, fj], whereas (b) is a standard determinantal identity [see Fact 2.14.2
in Ber11]. Dividing both sides by Zn

µ and letting vµ,y = Eµ,y[y(x) x], we obtain that:

E
[
X̄†ȳ

]
= γnvµ,y − γ2

nΣµ(I + γnΣµ)
−1vµ,y

= γn
(
I− γnΣµ(I + γnΣµ)

−1
)
vµ,y = γn(I + γnΣµ)

−1vµ,y,

which completes the proof.
We return to Lemma 3.3, regarding the expected orthogonal projection onto the complement
of the row-span of X̄, i.e., E[I− X̄†X̄], which follows as a corollary of Lemma 3.12.
Proof of Lemma 3.3 We let y(x) = xj where j ∈ [d] and apply Lemma 3.12 for each j,
obtaining:

I− E
[
X̄†X̄] = I− (Σµ +

1
γn

I)−1Σµ,

from which the result follows by simple algebraic manipulation.
We move on to the over-determined case, where the ridge regularization of adding the

identity to Σµ vanishes. Recall that we assume throughout the paper that Σµ is invertible.

Lemma 3.13 If X̄ ∼ Snµ and n > d, then for any real-valued random function y(·) such that
Eµ,y[y(x) x] is well-defined, denoting ȳi as y(x̄i), we have

E
[
X̄†ȳ

]
= Σ−1

µ Eµ,y
[
y(x) x

]
.

Proof Let X ∼ µK for K ∼ Poisson(γn) and denote yi = y(xi). Similarly as in the
proof of Lemma 3.12, we note that when det(X>X) > 0, then the jth entry of X†y equals
e>
j (X>X)−1X>y, where ej is the jth standard basis vector, so:

det(X>X) (X†y)j = det(X>X) e>
j (X>X)−1X>y = det(X>X + X>ye>

j)− det(X>X).

If det(X>X) = 0, then also det(X>X + X>ye>
j) = 0. We proceed to compute the expectation:

Zn
µ · E

[
(X̄†ȳ)j

]
= E

[
det(X>X)(X†y)j

]
= E

[
det(X>X + X>ye>

j)− det(X>X)
]

= E
[

det
(
X>(X + ye>

j)
)]
− E

[
det(X>X)

]
(∗)
= det

(
γn Eµ,y

[
x(x + y(x)ej)>

])
− det(γnΣµ)

= det
(
γnΣµ + γnEµ,y[x y(x)]e>

j

)
− det(γnΣµ)

= det(γnΣµ) · γne>
j (γnΣµ)

−1Eµ,y
[
y(x) x

]
,

where (∗) uses Lemma 3.6 twice (the first time, with A = X and B = X + ye>
j). Dividing

both sides by Zn
µ = det(γnΣµ) concludes the proof.

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 41

We combine Lemmas 3.12 and 3.13 to obtain the proof of Theorem 3.2.
Proof of Theorem 3.2 The case of n = d follows directly from Theorem 2.10 of [DWH19a].
Assume that n < d. Then we have γn = 1

λn
, so the result follows from Lemma 3.12. If n > d,

then the result follows from Lemma 3.13.

3.7 Proof of Theorem 3.3
The proof of Theorem 3.3 follows the standard decomposition of MSE in Equation 3.2, and
in the process, establishes consistency of the variance and bias terms independently. To this
end, we introduce the following two useful lemmas that capture the limiting behavior of the
variance and bias terms, respectively.

Lemma 3.14 Under the setting of Theorem 3.3, we have, as n, d → ∞ with n/d → c̄ ∈
(0,∞) \ {1} that {

E
[
tr((X>X)†)

]
− (1− αn)λ

−1
n → 0, for c̄ < 1,

E
[
tr((X>X)†)

]
− 1−βn

n−d · trΣ
−1 → 0, for c̄ > 1

(3.7)

where λn ≥ 0 is the unique solution to n = tr(Σ(Σ+ λnI)−1), αn = det(Σ(Σ+ λnI)−1), and
βn = ed−n.

The second term in the MSE derivation (3.2), E[I−X†X], involves the expectation of a
projection onto the orthogonal complement of a sub-Gaussian general position sample X. This
term is zero when n > d, and for n < d we prove in section 3.7 that the surrogate design’s
bias B(Σ, n) provides an asymptotically consistent approximation to all of the eigenvectors
and eigenvalues:

Lemma 3.15 Under the setting of Theorem 3.3, for w ∈ Rd of bounded Euclidean norm
(i.e., ‖w‖ ≤ C ′ for all d), we have, as n, d→∞ with n/d→ c̄ ∈ (0, 1) that

w>E[I−X†X]w− λnw>(Σ+ λnI)−1w→ 0 (3.8)

while I−X†X = 0 for c̄ > 1.

Proof of lemma 3.14
The c̄ ∈ (0, 1) case

For n < d, we first establish (1) lim infn λn > 0 and (2) αn → 0. To prove (1), by hypothesis
Σ � cI for all d. Since n

d
< 1, we have (by definition of λn) for some δ > 0

1− δ >
n

d
=

1

d
tr(Σ(Σ+ λnI)−1) >

c

c+ λn

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 42

Rearranging, we have λn > δc
1−δ > 0. For (2), let (τi)i∈[d] denote the eigenvalues of Σ. Since

1− x ≤ e−x and CI � Σ � cI for all d,

αn =
d∏
i=1

τi
τi + λn

≤
(

C

C + λn

)d
=

(
1− λn

C + λn

)d
≤ exp

(
−d λn

C + λn

)
and since λn > 0 eventually as d→∞ we have αn → 0 so that (1− αn)λ

−1
n − λ−1

n → 0.
As a consequence of (2) and Slutsky’s theorem, it suffices to show tr(X>X)† − λ−1

n
d→ 0

as n, d → ∞. To do this, we consider the limiting behavior of tr(X>X)†/n = tr(XX>)†/n

as n/d → c̄ ∈ (0, 1), for X = ZΣ
1
2 with Z ∈ Rn×d having i.i.d. zero mean, unit variance

sub-Gaussian entries, i.e., the behavior of

lim
n,d→∞

lim
z→0+

1

n
tr
(
1

n
XX> + zIn

)−1

(3.9)

by definition of the pseudo-inverse.
The proof comes in three steps: (i) for fixed z > 0, consider the limiting behavior of

δ(z) ≡ tr(XX>/n+ zIn)−1/n as n, d→∞ and state

lim
n,d→∞

δ(z)−m(z)→ 0 (3.10)

almost surely for some m(z) to be defined; (ii) show that both δ(z) and its derivative δ′(z)
are uniformly bounded (by some quantity independent of z > 0) so that by Arzela-Ascoli
theorem, δ(z) converges uniformly to its limit and we are allowed to take z → 0+ in (3.10)
and state

lim
z→0+

lim
n,d→∞

δ(z)− lim
z→0+

m(z)→ 0 (3.11)

almost surely, given that the limit limz→0+ m(z) ≡ m(0) exists and eventually (iii) exchange
the two limits in (3.11) with Moore-Osgood theorem, to reach

lim
n,d→∞

lim
z→0+

1

n
tr
(
1

n
XX> + zIn

)−1

−m(0)→ 0.

Step (i) follows from [SB95] that, we have, for z > 0 that

δ(z) ≡ 1

n
tr
(
1

n
XX> + zIn

)−1

−m(z)→ 0

almost surely as n, d→∞, for m(z) the unique positive solution to

m(z) =

(
z +

1

n
trΣ(I +m(z)Σ)−1

)−1

. (3.12)

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 43

For the above step (ii), we use the assumption Σ � cI � 0 for all d large, so that with
X = ZΣ

1
2 , we have for large enough n, d that

λmin(XX>/n) ≥ λmin(ZZ>/n)λmin(Σ) ≥ c

2
(
√
c̄− 1)2

almost surely, where we used Bai-Yin theorem [BY+93], which states that the minimum
eigenvalue of ZZ>/n is almost surely larger than (

√
c̄ − 1)2/2 for n < d sufficiently large.

Note that here the case c̄ = 1 is excluded.
Observe that

|δ(z)| =

∣∣∣∣∣ 1ntr
(
1

n
XX> + zIn

)−1
∣∣∣∣∣ ≤ 1

λmin(XX>/n)

and similarly for its derivative, so that we are allowed to take the z → 0+ limit. Note that
the existence of the limz→0+ m(z) for m(z) defined in (3.12) is well known, see for example
[LP11]. Then, by Moore-Osgood theorem we finish step (iii) and by concluding that

tr(X>X)† −m(0)→ 0

for m(0) = λ−1
n the unique solution to λ−1

n =
(
1
n
trΣ(I + λ−1

n Σ)−1
)−1, or equivalently, to

n = trΣ(Σ+ λnI)−1

as desired.

The c̄ ∈ (1,∞) case

First note that as n, d→∞ with n > d, we have βn = ed−n → 0 and it it suffices to show

tr(X>X)† − 1

n− d
trΣ−1 → 0

almost surely to conclude the proof.
In the c̄ ∈ (1,∞) case, it is more convenient to work on the following co-resolvent

lim
n,d→∞

lim
z→0+

1

n
tr
(
1

n
X>X + zId

)−1

where we recall X>X = Σ
1
2 Z>ZΣ

1
2 ∈ Rd×d and following the same three-step procedure as

in the c̄ < 1 case above. The only difference is in step (i) we need to assess the asymptotic
behavior of δ ≡ tr(X>X/n+ zId)−1/n. This was established in [BS+98] where it was shown
that, for z > 0 we have

1

n
tr(X>X/n+ zId)−1 − d

n
m(z)→ 0

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 44

almost surely as n, d→∞, for m(z) the unique solution to

m(z) =
1

d
tr
((

1− d

n
− d

n
zm(z)

)
Σ− zId

)−1

so that for d < n by taking z = 0 we have

m(0) =
n

d

1

n− d
trΣ−1.

The steps (ii) and (iii) follow exactly the same line of arguments as the c̄ < 1 case and are
thus omitted.

Proof of lemma 3.15
Since X†X = X>(XX>)†X, to prove lemma 3.15, we are interested in the limiting behavior of
the following quadratic form

lim
n,d→∞

lim
z→0+

1

n
w>X>

(
1

n
XX> + zIn

)−1

Xw

for deterministic w ∈ Rd of bounded Euclidean norm (i.e., ‖w‖ ≤ C ′ as n, d → ∞), as
n, d→∞ with n/d→ c̄ ∈ (0, 1). The limiting behavior of the above quadratic form, or more
generally, bilinear form of the type 1

n
w>

1 X>
(
1
n
XX> + zIn

)−1 Xw2 for w1,w2 ∈ Rd of bounded
Euclidean norm are widely studied in random matrix literature, see for example [Hac+13].

For the proof of Lemma 3.15 we follow the same protocol as that of Lemma 3.14, namely:
(i) we consider, for fixed z > 0, the limiting behavior of 1

n
w>X>

(
1
n
XX> + zIn

)−1 Xw. Note
that

δ(z) ≡ 1

n
w>X>

(
1

n
XX> + zIn

)−1

Xw = w>

(
1

n
X>X + zId

)−1
1

n
X>Xw

= ‖w‖2 − zw>

(
1

n
X>X + zId

)−1

w

and it remains to work on the second zw>
(
1
n
X>X + zId

)−1 w term. It follows from [Hac+13]
that

zw>

(
1

n
X>X + zId

)−1

w− w>(Id +m(z)Σ)−1w> → 0

almost surely as n, d→∞, where we recall m(z) is the unique solution to (3.12).
We move on to step (ii), under the assumption that c ≤ λmin(Σ) ≤ λmax(Σ) ≤ C and

‖w‖ ≤ C ′, we have

λmax

(
1

n
X>

(
1

n
XX> + zIn

)−1

X
)
≤ λmax(XX>/n)

λmin(XX>/n) + z
≤ λmax(ZZ>/n)λmax(Σ)

λmin(ZZ>/n)λmin(Σ)

≤ 4
(
√
c̄+ 1)2C

(
√
c̄− 1)2c

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 45

0 50 100
i

0.00

0.25

0.50

0.75

1.00

ei
gv

al

cov_type = diag_exp

0 50 100
i

cov_type = diag_linear

0 50 100
i

cov_type = diag_poly

0 50 100
i

cov_type = diag_poly_2

Figure 3.3: Scree-plots of Σ for the eigenvalue decays examined in our empirical valuations.

so that δ(z) remains bounded and similarly for its derivative δ′(z), which, by Arzela-Ascoli
theorem, yields uniform convergence and we are allowed to take the z → 0+ limit. Ultimately,
in step (iii) we exchange the two limits with Moore-Osgood theorem, concluding the proof.

Finishing the proof of Theorem 3.3
To finish the proof of Theorem 3.3, it remains to write

MSE
[
X†y

]
= σ2E

[
tr
(
(X>X)†

)]
+ w∗>E

[
I−X†X

]
w∗

Since λn = d−n
tr(Σ+λnI)−1 , by Lemma 3.14 and Lemma 3.15 we have MSE

[
X†y

]
−M(Σ,w∗, σ2, n)→

0 as n, d→∞ with n/d→ c̄ ∈ (0,∞) \ {1}, which concludes the proof of Theorem 3.3.

3.8 Empirical evaluation of asymptotic consistency
In this section, we empirically quantify the convergence rates for the asymptotic result of
Theorem 3.3. We focus on the under-determined regime (i.e., n < d) and separate the
evaluation into the bias and variance terms, following the MSE decomposition given in (3.2).
Consider X = ZΣ1/2, where the entries of Z are i.i.d. standard Gaussian, and define:

1. Variance discrepancy:
∣∣E[tr((X>X)†)]

V(Σ,n) − 1
∣∣ where V(Σ, n) = 1−αn

λn
.

2. Bias discrepancy: supw∈Rd\{0}
∣∣w>E[I−X†X]w

w>B(Σ,n)w − 1
∣∣ where B(Σ, n) = λn(Σ+ λnI)−1.

Recall that λn = d−n
tr((Σ+λnI)−1)

, so our surrogate MSE can be written as M = σ2V(Σ, n) +

w∗>B(Σ, n)w∗, and when both discrepancies are bounded by ε, then (1−2ε)M≤ MSE
[
X†y

]
≤

(1 + 2ε)M. In our experiments, we consider four standard eigenvalue decay profiles for Σ,
including polynomial and exponential decay (see Figure 3.3 and Section 3.8).

Figure 3.4 (top) plots the variance discrepancy (with E[tr((X>X)†)] estimated via Monte
Carlo sampling and bootstrapped confidence intervals) as d increases from 10 to 1000, across
a range of aspect ratios n/d. In all cases, we observe that the discrepancy decays to zero at a

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 46

10
1

10
2

10
3

d

10
2

10
1

10
0

w
is

ha
rt_

va
r

cov_type = diag_exp

10
1

10
2

10
3

d

cov_type = diag_linear

10
1

10
2

10
3

d

cov_type = diag_poly

10
1

10
2

10
3

d

cov_type = diag_poly_2

n/d
0.4
0.6
0.8

10
1

10
2

d

10
2

10
1

pr
oj

_b
ia

s

cov_type = diag_exp

10
1

10
2

d

cov_type = diag_linear

10
1

10
2

d

cov_type = diag_poly

10
1

10
2

d

cov_type = diag_poly_2

n/d
0.4
0.6
0.8

Figure 3.4: Empirical verification of the asymptotic consistency of surrogate MSE. We show
the discrepancies for the variance (top) and bias (bottom), with bootstrapped 95% confidence
intervals, as d increases and n/d is fixed. We observe O(1/d) decay (linear with slope −1 on
a log-log plot).

rate of O(1/d). Figure 3.4 (bottom) plots the bias discrepancy, with the same rate of decay
observed throughout. Note that the range of d is smaller than in Figure 3.4 (top) because
the large number of Monte Carlo samples (up to two million) required for this experiment
made the computations much more expensive (more details in Section 3.8). Based on the
above empirical results, we conclude with a conjecture.

Conjecture 3.1 When µ is a centered multivariate Gaussian and its covariance has a
constant condition number, then, for n/d fixed, the surrogate MSE satisfies:

∣∣MSE[X†y]
M − 1

∣∣ =
O(1/d).

Additional details for empirical evaluation
Our empirical investigation of the rate of asymptotic convergence in Theorem 3.3 (and, more
specifically, the variance and bias discrepancies defined in Section 3.8), in the context of
Gaussian random matrices, is related to open problems which have been extensively studied
in the literature. Note that when X = ZΣ1/2 were Z has i.i.d. Gaussian entries (as in Section
3.8), then W = X>X is known as the pseudo-Wishart distribution (also called the singular
Wishart), denoted as W ∼ PW(Σ, n), and the variance term from the MSE can be written
as σ2E[tr(W†)]. [Sri03] first derived the probability density function of the pseudo-Wishart
distribution, and [CF11] computed the first and second moments of generalized inverses.
However, for the Moore-Penrose inverse and arbitrary covariance Σ, [CF11] claims that the

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 47

quantities required to express the mean “do not have tractable closed-form representation.”
The bias term, w∗>E[I−X†X]w∗, has connections to directional statistics. Using the SVD,
we have the equivalent representation X†X = VV> where V is an element of the Stiefel
manifold Vn,d (i.e., orthonormal n-frames in Rd). The distribution of V is known as the matrix
angular central Gaussian (MACG) distribution [Chi90]. While prior work has considered
high dimensional limit theorems [Chi91] as well as density estimation and hypothesis testing
[Chi98] on Vn,d, they only analyzed the invariant measure (which corresponds in our setting
to Σ = I), and to our knowledge a closed form expression of E[VV>] where V is distributed
according to MACG with arbitrary Σ remains an open question.

For analyzing the rate of decay of variance and bias discrepancies (as defined in Section
3.8), it suffices to only consider diagonal covariance matrices Σ. This is because if Σ = QDQ>

is its eigendecomposition and X ∼ Nn,d(0, In ⊗ QDQ>), then we have for W ∼ PW(Σ, n)

that W d
= X>X and hence, defining X̃ ∼ Nn,d(0, In ⊗D), by linearity and unitary invariance

of trace,

E[tr(W†)] = tr
(
E[(X>X)†]

)
= tr

(
QE
[
(X̃>X̃)†

]
Q>
)
= tr

(
E
[
(X̃>X̃)†

])
= E

[
tr
(
(X̃>X̃)†

)]
.

Similarly, we have that E[X†X] = QE
[
X̃†X̃

]
Q>, and a simple calculation shows that the bias

discrepancy is also independent of the choice of matrix Q.
In our experiments, we increase d while keeping the aspect ratio n/d fixed and examining

the rate of decay of the discrepancies. We estimate E
[
tr(W†)

]
(for the variance) and E[I−X†X]

(for the bias) through Monte Carlo sampling. Confidence intervals are constructed using
ordinary bootstrapping for the variance. We rewrite the supremum over w in bias discrepancy
as a spectral norm: ∥∥B(Σ, n)−

1
2E[I−X†X]B(Σ, n)−

1
2 − I

∥∥,
and apply existing methods for constructing bootstrapped operator norm confidence intervals
described in [LEM19]. To ensure that estimation noise is sufficiently small, we continually
increase the number of Monte Carlo samples until the bootstrap confidence intervals are
within ±12.5% of the measured discrepancies. We found that while variance discrepancy
required a relatively small number of trials (up to one thousand), estimation noise was much
larger for the bias discrepancy, and it necessitated over two million trials to obtain good
estimates near d = 100.

Eigenvalue decay profiles
Letting λi(Σ) be the ith largest eigenvalue of Σ, we consider the following eigenvalue profiles
(visualized in Figure 3.3):

• diag_linear: linear decay, λi(Σ) = b− ai;

• diag_exp: exponential decay, λi(Σ) = b 10−ai;

CHAPTER 3. EXACT EXPRESSIONS FOR DOUBLE DESCENT IN
DETERMINANTAL RANDOM DESIGNS 48

• diag_poly: fixed-degree polynomial decay, λi(Σ) = (b− ai)2;

• diag_poly_2: variable-degree polynomial decay, λi(Σ) = bi−a.

The constants a and b are chosen to ensure λmax(Σ) = 1 and λmin(Σ) = 10−4 (i.e., the
condition number κ(Σ) = 104 remains constant).

3.9 Conclusions
We derived exact non-asymptotic expressions for the MSE of the Moore-Penrose estimator in
the linear regression task, reproducing the double descent phenomenon as the sample size
crosses between the under- and over-determined regime. To achieve this, we modified the
standard i.i.d. random design distribution using a determinantal point process to obtain a
surrogate design which admits exact MSE expressions, while capturing the key properties of
the i.i.d. design. We also provided a result that relates the expected value of the Moore-Penrose
estimator of a training sample in the under-determined regime (i.e., the minimum norm
solution) to the ridge-regularized least squares solution for the population distribution, thereby
providing an interpretation for the implicit regularization resulting from over-parameterization.

49

Chapter 4

Exact expectation expressions for
sub-Gaussian random projections

It is often desirable to reduce the dimensionality of a large dataset by projecting it onto
a low-dimensional subspace. Matrix sketching has emerged as a powerful technique for
performing such dimensionality reduction very efficiently. Even though there is an extensive
literature on the worst-case performance of sketching, existing guarantees are typically very
different from what is observed in practice. Building on the Stieltjes transform methods
employed in section 3.7 while establishing asymptotic consistency of surrogate design’s MSE,
this chapter develops novel techniques that provide provably accurate expressions for the
expected value of random projection matrices obtained via sketching. These expressions
can be used to characterize the performance of dimensionality reduction in a variety of
common machine learning tasks, ranging from low-rank approximation to iterative stochastic
optimization. Our results apply to several popular sketching methods, including Gaussian
and Rademacher sketches, and they enable precise analysis of these methods in terms of
spectral properties of the data. Empirical results show that the expressions we derive reflect
the practical performance of these sketching methods, down to lower-order effects and even
constant factors. Some of the results here were originally published in Michał Dereziński,
Feynman Liang, Zhenyu Liao, and Michael W Mahoney. “Precise expressions for random
projections: Low-rank approximation and randomized Newton”. In: Advances in Neural
Information Processing Systems. Vol. 33. 2020, pp. 18272–18283.

4.1 Introduction
Many settings in modern machine learning, optimization and scientific computing require
us to work with data matrices that are so large that some form of dimensionality reduction
is a necessary component of the process. One of the most popular families of methods
for dimensionality reduction, coming from the literature on Randomized Numerical Linear
Algebra (RandNLA), consists of data-oblivious sketches [Mic11; HMT11; Woo14]. Consider

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 50

a large m × n matrix A. A data-oblivious sketch of size k is the matrix SA, where S is a
k×m random matrix such that E[1

k
S>S] = I, whose distribution does not depend on A. This

sketch reduces the first dimension of A from m to a much smaller k (we assume without loss
of generality that k � n ≤ m), and an analogous procedure can be defined for reducing the
second dimension as well. This approximate representation of A is central to many algorithms
in areas such as linear regression, low-rank approximation, kernel methods, and iterative
second-order optimization. While there is a long line of research aimed at bounding the
worst-case approximation error of such representations, these bounds are often too loose to
reflect accurately the practical performance of these methods. In this paper, we develop new
theory which enables more precise analysis of the accuracy of sketched data representations.

A common way to measure the accuracy of the sketch SA is by considering the k-
dimensional subspace spanned by its rows. The goal of the sketch is to choose a subspace
that best aligns with the distribution of all of the m rows of A in Rn. Intuitively, our goal is
to minimize the (norm of the) residual when projecting a vector a ∈ Rn onto that subspace,
i.e., a − Pa = (I − P)a, where P = (SA)†SA is the orthogonal projection matrix onto the
subspace spanned by the rows of SA (and (·)† denotes the Moore-Penrose pseudoinverse). For
this reason, the quantity that has appeared ubiquitously in the error analysis of RandNLA
sketching is what we call the residual projection matrix:

(residual projection matrix) P⊥ := I− P = I− (SA)†SA.

Since P⊥ is random, the average performance of the sketch can often be characterized by
its expectation, E[P⊥]. For example, the low-rank approximation error of the sketch can
be expressed as E[‖A − AP‖2F] = tr A>AE[P⊥], where ‖ · ‖F denotes the Frobenius norm.
A similar formula follows for the trace norm error of a sketched Nyström approximation
[WS01; GM16]. Among others, this approximation error appears in the analysis of sketched
kernel ridge regression [FSS20] and Gaussian process regression [BRV19]. Furthermore,
a variety of iterative algorithms, such as randomized second-order methods for convex
optimization [Qu+16; QR16; Gow+19; GRB20] and linear system solvers based on the
generalized Kaczmarz method [GR15], have convergence guarantees which depend on the
extreme eigenvalues of E[P⊥]. Finally, a generalized form of the expected residual projection
has been recently used to model the implicit regularization of the interpolating solutions in
over-parameterized linear models [DLM20b; Bar+19].

Main result
Despite its prevalence in the literature, the expected residual projection is not well understood,
even in such simple cases as when S is a Gaussian sketch (i.e., with i.i.d. standard normal
entries). We address this by providing a surrogate expression, i.e., a simple analytically
tractable approximation, for this matrix quantity:

E[P⊥]
ε' P̄⊥ := (γA>A + I)−1, with γ > 0 s.t. tr P̄⊥ = n− k. (4.1)

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 51

Here, ε' means that while the surrogate expression is not exact, it approximates the true
quantity up to some ε accuracy. Our main result provides a rigorous approximation guarantee
for this surrogate expression with respect to a range of sketching matrices S, including
the standard Gaussian and Rademacher sketches. We state the result using the positive
semi-definite ordering denoted by �.

Theorem 4.1 Let S be a sketch of size k with i.i.d. mean-zero sub-gaussian entries and let
r = ‖A‖2F/‖A‖2 be the stable rank of A. If we let ρ = r/k be a fixed constant larger than 1,
then

(1− ε) P̄⊥ � E[P⊥] � (1 + ε) P̄⊥ for ε = O(1√
r
).

In other words, when the sketch size k is smaller than the stable rank r of A, then the
discrepancy between our surrogate expression P̄⊥ and E[P⊥] is of the order 1/

√
r, where the

big-O notation hides only the dependence on ρ and on the sub-gaussian constant (see Theorem
4.2 for more details). Our proof of Theorem 4.1 is inspired by the techniques from random
matrix theory which have been used to analyze the asymptotic spectral distribution of large
random matrices by focusing on the associated matrix resolvents and Stieltjes transforms
[HLN+07; BS10]. However, our analysis is novel in several respects:

1. The residual projection matrix can be obtained from the appropriately scaled resolvent
matrix z(A>S>SA + zI)−1 by taking z → 0. Prior work (e.g., [Has+19]) combined
this with an exchange-of-limits argument to analyze the asymptotic behavior of the
residual projection. This approach, however, does not allow for a precise control in
finite-dimensional problems. We are able to provide a more fine-grained, non-asymptotic
analysis by working directly with the residual projection itself, instead of the resolvent.

2. We require no assumptions on the largest and smallest singular value of A. Instead,
we derive our bounds in terms of the stable rank of A (as opposed to its actual rank),
which implicitly compensates for ill-conditioned data matrices.

3. We obtain upper/lower bounds for E[P⊥] in terms of the positive semi-definite ordering�,
which can be directly converted to guarantees for the precise expressions of expected
low-rank approximation error derived in the following section.

It is worth mentioning that the proposed analysis is significantly different from the sketch-
ing literature based on subspace embeddings (e.g., [Sar06; CW17; NN13; Coh+15; CNW16]),
in the sense that here our object of interest is not to obtain a worst-case approximation
with high probability, but rather, our analysis provides precise characterization on the ex-
pected residual projection matrix that goes beyond worst-case bounds. From an application
perspective, the subspace embedding property is neither sufficient nor necessary for many
numerical implementations of sketching [AMT10; MSM14], or statistical results [RM16; DL19;
Yan+20], as well as in the context of iterative optimization and implicit regularization (see
Sections 4.1 and 4.1 below), which are discussed in detail as concrete applications of the
proposed analysis.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 52

Low-rank approximation
We next provide some immediate corollaries of Theorem 4.1, where we use x

ε' y to denote a
multiplicative approximation |x− y| ≤ εy. Note that our analysis is new even for the classical
Gaussian sketch where the entries of S are i.i.d. standard normal. However the results apply
more broadly, including a standard class of data-base friendly Rademacher sketches where
each entry sij is a ±1 Rademacher random variable [Ach03]. We start by analyzing the
Frobenius norm error ‖A−AP‖2F = tr A>A P⊥ of sketched low-rank approximations. Note
that by the definition of γ in (4.1), we have k = tr (I− P̄⊥) = tr γA>A(γA>A + I)−1, so the
surrogate expression we obtain for the expected error is remarkably simple.

Corollary 4.1 Let σi be the singular values of A. Under the assumptions of Theorem 4.1,
we have:

E
[
‖A−AP‖2F

] ε' k/γ for γ > 0 s.t.
∑
i

γσ2
i

γσ2
i + 1

= k.

Remark 4.1 The parameter γ = γ(k) increases at least linearly as a function of k, which is
why the expected error will always decrease with increasing k. For example, when the singular
values of A exhibit exponential decay, i.e., σ2

i = C · αi−1 for α ∈ (0, 1), then the error also
decreases exponentially, at the rate of k/(α−k − 1). We discuss this further in Section 4.5,
giving explicit formulas for the error as a function of k under both exponential and polynomial
spectral decay profiles.

The above result is important for many RandNLA methods, and it is also relevant in the
context of kernel methods, where the data is represented via a positive semi-definite m×m
kernel matrix K which corresponds to the matrix of dot-products of the data vectors in some
reproducible kernel Hilbert space. In this context, sketching can be applied directly to the
matrix K via an extended variant of the Nyström method [GM16]. A Nyström approximation
constructed from a sketching matrix S is defined as K̃ = C>W†C, where C = SK and
W = SKS>, and it is applicable to a variety of settings, including Gaussian Process regression,
kernel machines and Independent Component Analysis [BRV19; WS01; BJ03]. By setting
A = K 1

2 , it is easy to see [DKM20] that the trace norm error ‖K− K̃‖∗ is identical to the
squared Frobenius norm error of the low-rank sketch SA, so Corollary 4.1 implies that

E
[
‖K− K̃‖∗

] ε' k/γ for γ > 0 s.t.
∑
i

γλi
γλi + 1

= k, (4.2)

with any sub-gaussian sketch, where λi denote the eigenvalues of K. Our error analysis
given in Section 4.5 is particularly relevant here, since commonly used kernels such as the
Radial Basis Function (RBF) or the Matérn kernel induce a well-understood eigenvalue decay
[San+97; RW06].

Metrics other than the aforementioned Frobenius norm error, such as the spectral norm
error [HMT11], are also of significant interest in the low-rank approximation literature. We
leave these directions for future investigation.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 53

Randomized iterative optimization
We next turn to a class of iterative methods which take advantage of sketching to reduce
the per iteration cost of optimization. These methods have been developed in a variety of
settings, from solving linear systems to convex optimization and empirical risk minimization,
and in many cases the residual projection matrix appears as a black box quantity whose
spectral properties determine the convergence behavior of the algorithms [GR15]. With our
new results, we can precisely characterize not only the rate of convergence, but also, in some
cases, the complete evolution of the parameter vector, for the following algorithms:

1. Generalized Kaczmarz method [GR15] for approximately solving a linear system Ax = b;

2. Randomized Subspace Newton [Gow+19], a second order method, where we sketch the
Hessian matrix.

3. Jacobian Sketching [GRB20], a class of first order methods which use additional
information via a weight matrix W that is sketched at every iteration.

We believe that extensions of our techniques will apply to other algorithms, such as that of
[LPP19].

We next give a result in the context of linear systems for the generalized Kaczmarz method
[GR15], but a similar convergence analysis is given for the methods of [Gow+19; GRB20] in
Section 4.2.

Corollary 4.2 Let x∗ be the unique solution of Ax∗ = b and consider the iterative algorithm:

xt+1 = argmin
x
‖x− xt‖2 subject to SAx = Sb.

Under the assumptions of Theorem 4.1, with γ defined in (4.1) and r = ‖A‖2F/‖A||2, we have:

E
[
xt+1 − x∗] ε' (γA>A + I)−1 E

[
xt − x∗] for ε = O(1√

r
).

The corollary follows from Theorem 4.1 combined with Theorem 4.1 in [GR15]. Note that
when A>A is positive definite then (γA>A + I)−1 ≺ I, so the algorithm will converge from
any starting point, and the worst-case convergence rate of the above method can be obtained
by evaluating the largest eigenvalue of (γA>A + I)−1. However the result itself is much
stronger, in that it can be used to describe the (expected) trajectory of the iterates for any
starting point x0. Moreover, when the spectral decay profile of A is known, then the explicit
expressions for γ as a function of k derived in Section 4.5 can be used to characterize the
convergence properties of generalized Kaczmarz as well as other methods discussed above.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 54

Implicit regularization
Setting xt = 0, we can view one step of the iterative method in Corollary 4.2 as finding a
minimum norm interpolating solution of an under-determined linear system (SA, Sb). Recent
interest in the generalization capacity of over-parameterized machine learning models has
motivated extensive research on the statistical properties of such interpolating solutions [e.g.,
Bar+19; Has+19; DLM20b]. In this context, Theorem 4.1 provides new evidence for the
implicit regularization conjecture posed by [DLM20b] (see their Theorem 2 and associated
discussion), with the amount of regularization equal 1

γ
, where γ is implicitly defined in (4.1):

E
[

argmin
x
‖x‖2 s.t. SAx = Sb

]
− x∗︸ ︷︷ ︸

Bias of sketched minimum norm solution

ε' argmin
x

{
‖Ax− b‖2 + 1

γ
‖x‖2

}
− x∗︸ ︷︷ ︸

Bias of l2-regularized solution

.

While implicit regularization has received attention recently in the context of SGD algorithms
for overparameterized machine learning models, it was originally discussed in the context
of approximation algorithms more generally [M W12]. Recent work has made precise this
notion in the context of RandNLA [DLM20b], and our results here can be viewed in terms of
implicit regularization of scalable RandNLA methods.

Related work
A significant body of research has been dedicated to understanding the guarantees for low-rank
approximation via sketching, particularly in the context of RandNLA [DM16; DM18]. This
line of work includes i.i.d. row sampling methods [BMD08; AM15] which preserve the structure
of the data, and data-oblivious methods such as Gaussian and Rademacher sketches [Mic11;
HMT11; Woo14]. However, all of these results focus on worst-case upper bounds on the
approximation error. One exception is a recent line of works on non-i.i.d. row sampling with
Determinantal Point Processes (DPP, [DM21]). In this case, exact analysis of the low-rank
approximation error [DKM20], as well as precise convergence analysis of stochastic second
order methods [MDK20], have been obtained. Remarkably, the expressions they obtain are
analogous to (4.1), despite using completely different techniques. However, their analysis
is limited only to DPP-based sketches, which are considerably more expensive to construct
and thus much less widely used. The connection between DPPs and Gaussian sketches
was recently explored by [DLM20b] in the context of analyzing the implicit regularization
effect of choosing a minimum norm solution in under-determined linear regression. They
conjectured that the expectation formulas obtained for DPPs are a good proxy for the
corresponding quantities obtained under a Gaussian distribution. Similar observations were
made by [Der+20a] in the context of sketching for regularized least squares and second order
optimization. While both of these works only provide empirical evidence for this particular
claim, our Theorem 4.1 can be viewed as the first theoretical non-asymptotic justification of
that conjecture.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 55

The effectiveness of sketching has also been extensively studied in the context of second
order optimization. These methods differ depending on how the sketch is applied to the
Hessian matrix, and whether or not it is applied to the gradient as well. The class of methods
discussed in Section 4.1, including Randomized Subspace Newton and the Generalized
Kaczmarz method, relies on projecting the Hessian down to a low-dimensional subspace,
which makes our results directly applicable. A related family of methods uses the so-called
Iterative Hessian Sketch (IHS) approach [PW16b; LP19]. The similarities between IHS
and the Subspace Newton-type methods (see [Qu+16] for a comparison) suggest that our
techniques could be extended to provide precise convergence guarantees also to the IHS.
Finally, yet another family of Hessian sketching methods has been studied by [RM19; WGM17;
XRM17; Yao+18b; Roo+18; Wan+17a; DM19]. These methods preserve the rank of the
Hessian, and so their convergence guarantees do not rely on the residual projection.

4.2 Convergence analysis of randomized iterative
methods

Here, we discuss how our surrogate expressions for the expected residual projection can be
used to perform convergence analysis for several randomized iterative optimization methods
discussed in Section 4.1.

Generalized Kaczmarz method
Generalized Kaczmarz [GR15] is an iterative method for solving an m × n linear system
Ax = b, which uses a k ×m sketching matrix St to reduce the linear system and update an
iterate xt as follows:

xt+1 = argmin
x
‖x− xt‖2 subject to StAx = Stb.

Assume that x∗ is the unique solution to the linear system Ax = b. In Theorems 4.1 and
4.6, [GR15] show that the expected trajectory of the generalized Kaczmarz iterates, as they
converge to x∗, is controlled by the projection matrix P = (StA)†StA as follows:

([GR15], Theorem 4.1) E[xt+1 − x∗] =
(
I− E[P]

)
E[xt − x∗],

([GR15], Theorem 4.6) E
[
‖xt+1 − x∗‖2

]
≤ (1− κ)E

[
‖xt − x∗‖2

]
, where κ = λmin

(
E[P]

)
.

Both of these results depend on the expected projection E[P]. The first one describes the
expected trajectory of the iterate, whereas the second one gives the worst-case convergence
rate in terms of the so-called stochastic condition number κ. We next demonstrate how
Theorem 4.1 can be used in combination with the above results to obtain convergence analysis
for generalized Kaczmarz which is formulated in terms of the spectral properties of A. This
includes precise expressions for both the expected trajectory and κ. The following result is a
more detailed version of Corollary 4.2 from Section 4.1.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 56

Corollary 4.3 Let σi denote the singular values of A, and let k denote the size of sketch St.
Define:

∆t = xt − x∗ and ∆̄t+1 = (γA>A + I)−1E[∆t] s.t.
∑
i

γσ2
i

γσ2
i + 1

= k.

Suppose that St has i.i.d. mean-zero sub-gaussian entries and let r = ‖A‖2F/‖A‖2 be the stable
rank of A. Assume that ρ = r/k is a constant larger than 1. Then, the expected trajectory
satisfies: ∥∥E[∆t+1]− ∆̄t+1

∥∥ ≤ ε · ‖∆̄t+1‖, for ε = O
(

1√
r

)
. (4.3)

Moreover, we obtain the following worst-case convergence guarantee:

E
[
‖∆t+1‖2

]
≤
(
1− (κ̄− ε)

)
E
[
‖∆t‖2

]
, where κ̄ =

σ2
min

σ2
min + 1/γ

. (4.4)

Remark 4.2 Our worst-case convergence guarantee (4.4) requires the matrix A to be suffi-
ciently well-conditioned so that κ̄− ε > 0. However, we believe that our surrogate expression
κ̄ for the stochastic condition number is far more accurate than suggested by the current
analysis.

Proof of Corollary 4.3 Using Theorem 4.1, for P̄⊥ as defined in (4.1), we have

(1− ε)P̄⊥ � I− E[P] = E[P⊥] � (1 + ε)P̄⊥, where ε = O
(

1√
r

)
.

In particular, this implies that ‖P̄− 1
2

⊥ (E[P⊥] − P̄⊥)P̄
− 1

2
⊥ ‖ ≤ ε. Moreover, in the proof of

Theorem 4.2 we showed that ρ−1
ρ

I � P̄⊥ � I, see (4.6), so it follows that:

P̄−1
⊥ (E[P⊥]− P̄⊥)

2P̄−1
⊥ �

ρ

ρ− 1

(
P̄− 1

2
⊥ (E[P⊥]− P̄⊥)P̄

− 1
2

⊥
)2 � ρ

ρ− 1
ε2 · I,

where note that ρ
ρ−1

ε2 = O(1/r), since ρ is treated as a constant. Thus we conclude that:

‖E[∆t+1]− ∆̄t+1‖2 = E[∆t]
>(E[P⊥]− P̄⊥)

2E[∆t]

≤ O(1/r) · E[∆t]
>P̄2

⊥E[∆t] = O(1/r) · ‖∆̄t+1‖2,

which completes the proof of (4.3). To show (4.4), it suffices to observe that

λmin(E[P]) = 1− λmax(E[P⊥]) ≥ 1− (1 + ε)λmax(P̄⊥) ≥ λmin(I− P̄⊥)− ε,

which completes the proof since I− P̄⊥ = γA>A(γA>A + I)−1. Corollaries 4.4 and 4.5
follow analogously from Theorem 4.1.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 57

Randomized Subspace Newton
Randomized Subspace Newton (RSN, [Gow+19]) is a randomized Newton-type method for
minimizing a smooth, convex and twice differentiable function f : Rd × R. The iterative
update for this algorithm is defined as follows:

xt+1 = xt − 1

L
S>
t (StH(xt)S>

t)
†Stg(xt),

where H(xt) and g(xt) are the Hessian and gradient of f at xt, respectively, whereas St is a
k × d sketching matrix (with k � d) which is refreshed at every iteration. Here, L denotes
the relative smoothness constant defined by [Gow+19] in Assumption 1, which also defines
relative strong convexity, denoted by µ. In Theorem 2, they prove the following convergence
guarantee for RSN:

E[f(xt)]− f(x∗) ≤
(
1− κ

µ

L

)t
(f(x0)− f(x∗)),

where κ = minx κ(x) and κ(x) = λ+
min(E[P(x)]) is the smallest positive eigenvalue of the

expectation of the projection matrix P(x) = H 1
2 (x)S>

t (StH(x)S>
t)

†StH
1
2 (x). Our results lead to

the following surrogate expression for this expected projection when the sketch is sub-gaussian:

E[P(x)] ' H(x)
(
H(x) + 1

γ(x)I
)−1 for γ(x) > 0 s.t. tr H(x)

(
H(x) + 1

γ(x)I
)−1

= k.

Thus, the condition number κ of RSN can be estimated using the following surrogate
expression:

κ ' κ̄ := min
x

λ+
min(H(x))

λ+
min(H(x)) + 1/γ(x)

.

Just as in Corollary 4.3, an approximation of the form |κ̄−κ| ≤ ε can be shown from Theorem
4.1.

Corollary 4.4 Suppose that sketch St has size k and i.i.d. mean-zero sub-gaussian entries.
Let r = minx tr H(x)/‖H(x)‖ be the (minimum) stable rank of the (square root) Hessian and
assume that ρ = r/k is a constant larger than 1. Then,

|κ− κ̄| ≤ O
(

1√
r

)
.

Jacobian Sketching
Jacobian Sketching (JacSketch, [GRB20]) defines an n×n positive semi-definite weight matrix
W, and combines it with an k× n sketching matrix S (which is refreshed at every iteration of
the algorithm), to implicitly construct the following projection matrix:

ΠS = S>(SWS>)†SW,

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 58

which is used to sketch the Jacobian at the current iterate (for the complete method, we
refer to their Algorithm 1). The convergence rate guarantee given in their Theorem 3.6 for
JacSketch is given in terms of the Lyapunov function:

Ψt = ‖xt − x∗‖2 + α

2L2

‖Jt −∇F (x∗)‖2W−1 ,

where α is the step size used by the algorithm. Under appropriate choice of the step-size,
Theorem 3.6 states that:

E[Ψt] ≤
(
1− µ min

{ 1

4L1

,
κ

4L2ρ/n2 + µ

})t
·Ψ0,

where κ = λmin(E[ΠS]) is the stochastic condition number analogous to the one defined for
the Generalized Kaczmarz method, n is the data size and parameters ρ, L1, L2 and µ are
problem dependent constants defined in Theorem 3.6. Similarly as before, we can use our
surrogate expressions for the expected residual projection to obtain a precise estimate for the
stochastic condition number κ under sub-gaussian sketching:

κ ' κ̄ :=
λmin(W)

λmin(W) + 1/γ
for γ > 0 s.t. tr W(W + 1

γ
I)−1 = k.

Corollary 4.5 Suppose St has size k and i.i.d. mean-zero sub-gaussian entries. Let r =
tr W/‖W‖ be the stable rank of W 1

2 and assume that ρ = r/k is a constant larger than 1.
Then,

|κ− κ̄| ≤ O
(

1√
r

)
.

4.3 Precise analysis of the residual projection
In this section, we give a detailed statement of our main technical result, along with a sketch
of the proof. First, recall the definition of sub-gaussian random variables and vectors.

Definition 4.1 We say that x is a K-sub-gaussian random variable if its sub-gaussian Orlicz
norm ‖x‖ψ2 ≤ K, where ‖x‖ψ2 := inf{t > 0 : E[exp(x2/t2)] ≤ 2}. Similarly, we say that a
random vector x is K-sub-gaussian if for all ‖a‖ ≤ 1 we have ‖x>a‖ψ2 ≤ K.

For convenience, we state the main result in a slightly different form than Theorem 4.1.
Namely, we replace the m × n matrix A with a positive semi-definite n × n matrix Σ

1
2 .

Furthermore, instead of a sketch S with i.i.d. sub-gaussian entries, we use a random matrix Z
with i.i.d. sub-gaussian rows, which is a strictly weaker condition because it allows for the
entries of each row to be correlated. Since the rows of Z are also assumed to have mean zero
and identity covariance, each row of ZΣ

1
2 has covariance Σ. In Section 4.3 we show how to

convert this statement back to the form of Theorem 4.1.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 59

Theorem 4.2 Let P⊥ = I−X†X for X = ZΣ
1
2 , where Z ∈ Rk×n has i.i.d. K-sub-gaussian

rows with zero mean and identity covariance, and Σ is an n× n positive semi-definite matrix.
Define:

P̄⊥ = (γΣ+ I)−1, such that tr P̄⊥ = n− k.

Let r = tr(Σ)/‖Σ‖ be the stable rank of Σ
1
2 and fix ρ = r/k > 1. There exists a constant

Cρ > 0, depending only on ρ and K, such that if r ≥ Cρ, then(
1− Cρ√

r

)
· P̄⊥ � E[P⊥] �

(
1 +

Cρ√
r

)
· P̄⊥. (4.5)

We first provide the following informal derivation of the expression for P̄⊥ given in
Theorem 4.2. Let us use P to denote the matrix X†X = I− P⊥. Using a rank-one update
formula for the Moore-Penrose pseudoinverse (see Lemma 4.1 in the appendix) we have

I− E[P⊥] = E[P] = E
[
(X>X)†X>X

]
=

k∑
i=1

E[(X>X)†xix>
i] = k E

[
(I− P−k)xkx>

k

x>
k (I− P−k)xk

]
,

where we use x>
i to denote the i-th row of X, and P−k = X†

−kX−k, where X−i is the
matrix X without its i-th row. Due to the sub-gaussianity of xk, the quadratic form
x>
k (I− P−k)xk in the denominator concentrates around its expectation (with respect to xk),

i.e., trΣ(I− P−k), where we use E[xkx>
k] = Σ. Further note that, with P−k ' P for large k

and 1
k
trΣ(I− P−k) ' 1

k
trΣE[P⊥] from a concentration argument, we conclude that

I− E[P⊥] '
kE[P⊥]Σ

trΣE[P⊥]
=⇒ E[P⊥] '

(kΣ

trΣE[P⊥]
+ I
)−1

,

and thus E[P⊥] ' P̄⊥ for P̄⊥ = (γΣ+ I)−1 and γ−1 = 1
k
trΣP̄⊥. This leads to the (implicit)

expression for P̄⊥ and γ given in Theorem 4.2.

Proof sketch of Theorem 4.2
To make the above intuition rigorous, we next present a proof sketch for Theorem 4.2, with
the detailed proof deferred to Appendix 4.4. The proof can be divided into the following
three steps.

Step 1. First note that, to obtain the lower and upper bound for E[P⊥] in the sense of
symmetric matrix as in Theorem 4.2, it suffices to bound the spectral norm ‖I−E[P⊥]P̄−1

⊥ ‖ ≤
Cρ√
r
, so that, with ρ−1

ρ
I � P̄⊥ � I for ρ = r/k > 1 from the definition of P̄⊥, we have

‖I− P̄− 1
2

⊥ E[P⊥]P̄
− 1

2
⊥ ‖ = ‖P̄

− 1
2

⊥ (I− E[P⊥]P̄−1)P̄
1
2
⊥‖ ≤

Cρ√
r

√
ρ

ρ− 1
=: ε.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 60

This means that all eigenvalues of the p.s.d. matrix P̄− 1
2

⊥ E[P⊥]P̄
− 1

2
⊥ lie in the interval [1−ε, 1+ε],

so (1 − ε)I � P̄− 1
2

⊥ E[P⊥]P̄
− 1

2
⊥ � (1 + ε)I. Multiplying by P̄

1
2
⊥ from both sides, we obtain the

desired bound.

Step 2. Then, we carefully design an event E that (i) is provable to occur with high
probability and (ii) ensures that the denominators in the following decomposition are bounded
away from zero:

I− E[P⊥]P̄−1
⊥ = E[P]− γE[P⊥]Σ = E[P · 1E] + E[P · 1¬E]− γE[P⊥]Σ

= γ E
[
(s̄− ŝ) · (I− P−k)xkx>

k

x>
k (I− P−k)xk

· 1E
]

︸ ︷︷ ︸
T1

−γ E[(I− P−k)xkx>
k · 1¬E]︸ ︷︷ ︸

T2

+ γ E[P− P−k]Σ︸ ︷︷ ︸
T3

+E[P · 1¬E]︸ ︷︷ ︸
T4

,

where we let ŝ = x>
k (I− P−k)xk and s̄ = k/γ.

Step 3. It then remains to bound the spectral norms of T1,T2,T3,T4 respectively to reach
the conclusion. More precisely, the terms ‖T2‖ and ‖T4‖ are proportional to Pr(¬E), while
the term ‖T3‖ can be bounded using the rank-one update formula for the pseudoinverse
(Lemma 4.1 in the appendix). The remaining term ‖T1‖ is more subtle and can be bounded
with a careful application of the Hanson-Wright type [RV13] sub-gaussian concentration
inequalities (Lemmas 4.2 and 4.3 in the appendix). This allows for a bound on the operator
norm ‖I− E[P⊥]P̄−1

⊥ ‖ and hence the conclusion.

Proof of Theorem 4.1
We now discuss how Theorem 4.1 can be obtained from Theorem 4.2. The crucial difference
between the statements is that in Theorem 4.1 we let A be an arbitrary rectangular matrix,
whereas in Theorem 4.2 we instead use a square, symmetric and positive semi-definite matrix
Σ. To convert between the two notations, consider the SVD decomposition A = UDV> of
A ∈ Rm×n (recall that we assume m ≥ n), where U ∈ Rm×n and V ∈ Rn×n have orthonormal
columns and D is a diagonal matrix. Now, let Z = SU, Σ = D2 and X = ZΣ

1
2 = SUD. Using

the fact that V>V = VV> = I, it follows that:

I− (SA)†SA = V(I−X†X)V> and (γA>A + I)−1 = V(γΣ+ I)−1V>.

Note that since ‖Uv‖ = ‖v‖, the rows of Z are sub-gaussian with the same constant as the
rows of S. Moreover, using the fact that B � C implies VBV> � VCV> for any p.s.d. matrices
B and C, Theorem 4.1 follows as a corollary of Theorem 4.2.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 61

4.4 Proof of Theorem 4.2
We first introduce the following technical lemmas.

Lemma 4.1 For X ∈ Rk×n with k < n, denote P = X†X and P−k = X†
−kX−k, with

X−i ∈ R(k−1)×n the matrix X without its i-th row xi ∈ Rn. Then, conditioned on the event
Ek :

{∣∣∣ trΣ(I−P−k)

x>k (I−P−k)xk
− 1
∣∣∣ ≤ 1

2

}
:

(X>X)†xk =
(I− P−k)xk

x>
k (I− P−k)xk

, P− P−k =
(I− P−k)xkx>

k (I− P−k)

x>
k (I− P−k)xk

.

Proof Since conditioned on Ek we have x>
k (I− P−k)xk 6= 0, from [Mey73, Theorem 1] we

deduce

(X>X)† = (A + xkx>
k)

† = A† − A†xkx>
k (I− P−k)

x>
k (I− P−k)xk

− (I− P−k)xkx>
kA†

x>
k (I− P−k)xk

+ (1 + x>
kA†xk)

(I− P−k)xkx>
k (I− P−k)

(x>
k (I− P−k)xk)2

for A = X>
−kX−k so that I − P−k = I − A†A, where we used the fact that I − P−k is a

projection matrix so that (I− P−k)
2 = I− P−k. As a consequence, multiplying by xk and

simplifying we get

(X>X)†xk =
(I− P−k)xk

x>
k (I− P−k)xk

.

By definition of the pseudoinverse, P = X†X = (X>X)†X>X so that

P− P−k = X†X−X†
−kX−k =

(I− P−k)xkx>
k (I− P−k)

x>
k (I− P−k)xk

where we used A(I− P−k) = A−AA†A = 0 and thus the conclusion.

Lemma 4.2 For a K-sub-gaussian random vector x ∈ Rn with E[x] = 0, E[xx>] = In and
positive semi-definite matrix A ∈ Rn×n, we have

Pr
[
|x>Ax− trA| ≥ 1

3
trA
]
≤ 2 exp

(
−min

{
rA

9C2K4
,

√
rA

3CK2

})
with rA = trA/‖A‖ the stable rank of A, and

E
[
(x>Ax− trA)2

]
≤ c K4 trA2

for some C, c > 0 independent of K.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 62

Proof This follows from a Hanson-Wright type [RV13] sub-gaussian concentration inequality.
More precisely, from [Zaj18, Corollary 2.9] we have, for K-sub-gaussian x ∈ Rn with E[x] = 0,
E[xx>] = In and symmetric positive semi-definite A ∈ Rn×n that

Pr {|x>Ax− trA| ≥ t} ≤ 2 exp
(
−min

{
t2

C2K4trA2
,

t

CK2
√

trA2

})
for some universal constant C > 0. Taking t = 1

3
trA we have

t2

C2K4trA2
=

(trA)2

9C2K4trA2
≥ trA

9C2K4‖A‖ =
rA

9C2K4
,

t

CK2
√

trA2
≥
√
rA

3CK2

where we use the fact that trA2 ≤ ‖A‖trA.
Integrating this bound yields:

E
[
(x>Ax− trA)2

]
≤ c K4 trA2

and thus the conclusion.

Lemma 4.3 With the notations of Lemma 4.1, for X = trΣ(P−k − E[P−k]) and ‖Σ‖ = 1,
we have

E[X2] ≤ Ck and Pr{|X| ≥ t} ≤ 2e−
t2

ck .

for some universal constant C, c > 0.

Proof To simplify notations, we work on P instead of P−k, the same line of argument applies
to P−k by changing the sample size k to k − 1.

First note that

X = trΣ(P− EP) = Ek[trΣP]− E0[trΣP]

=
k∑
i=1

(Ei[trΣP]− Ei−1[trΣP]) =
k∑
i=1

(Ei − Ei−1)trΣ(P− P−i)

where we used the fact that Ei[trΣP−i] = Ei−1[trΣP−i], for Ei[·] the conditional expectation
with respect to Fi the σ-field generating the rows x1 . . . , xi of X. This forms a martingale
difference sequence (it is a difference sequence of the Doob martingale for trΣ(P− P−i) with
respect to filtration Fi) hence it falls within the scope of the Burkholder inequality [Bur73],
recalled as follows.

Lemma 4.4 For {xi}ki=1 a real martingale difference sequence with respect to the increasing
σ field Fi, we have, for L > 1, there exists CL > 0 such that

E
[∣∣∣ k∑

i=1

xi

∣∣∣L] ≤ CLE
[(k∑

i=1

|xi|2
)L/2]

.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 63

From Lemma 4.1, P− P−i =
(I−P−i)xix>i (I−P−i)

x>i (I−P−i)xi
is positive semi-definite, we have trΣ(P−

P−i) ≤ ‖Σ‖ = 1 so that with Lemma 4.4 we obtain with xi = (Ei − Ei−1)trΣ(P− P−i) that,
for L > 1

E|X|L ≤ CLk
L/2.

In particular, for L = 2, we obtain E|X|2 ≤ Ck.
For the second result, since we have almost surely bounded martingale differences (|xi| ≤ 2),

by the Azuma-Hoeffding inequality

Pr{|X| ≥ t} ≤ 2e
−t2

8k

as desired.

Complete proof of Theorem 4.2
Equipped with the lemmas above, we are ready to prove Theorem 4.2. First note that:

1. Since X†X d
= (αX)†(αX) for any α ∈ R \ {0}, we can assume without loss of generality

(after rescaling P̄⊥ correspondingly) that ‖Σ‖ = 1.

2. According to the definition of P̄⊥ and γ, the following bounds hold

1

γ + 1
I � P̄⊥ � I, γ ≤ k

r − k
=

1

ρ− 1
(4.6)

for r ≡ trΣ
‖Σ‖ = trΣ and ρ ≡ r

k
> 1, where we used the fact that

k = n− tr P̄⊥ = tr P̄⊥(γΣ+ I)− tr P̄⊥ = γtr P̄⊥Σ ≥
γ

γ + 1
trΣ,

so that r = trΣ ≤ k · γ+1
γ

.

3. As already discussed in Section 4.3, to obtain the lower and upper bound for E[P⊥] in the
sense of symmetric matrix as in Theorem 4.2, it suffices to bound the following spectral
norm

‖I− E[P⊥]P̄−1
⊥ ‖ ≤

Cρ√
r
, (4.7)

so that, with ρ−1
ρ

I � P̄⊥ � I from (4.6), we have

‖I− P̄− 1
2

⊥ E[P⊥]P̄
− 1

2
⊥ ‖ = ‖P̄

− 1
2

⊥ (I− E[P⊥]P̄−1
⊥)P̄

1
2
⊥‖ ≤

Cρ√
r

√
ρ

ρ− 1
.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 64

Defining ε = Cρ√
r

√
ρ
ρ−1

, this means that all eigenvalues of the p.s.d. matrix P̄− 1
2

⊥ E[P⊥]P̄
− 1

2
⊥

lie in the interval [1− ε, 1 + ε], and

(1− ε)I � P̄− 1
2

⊥ E[P⊥]P̄
− 1

2
⊥ � (1 + ε)I.

so that by multiplying P̄
1
2
⊥ on both sides, we obtain the desired bound.

As a consequence of the above observations, we only need to prove (4.7) under the setting
‖Σ‖ = 1. The proof comes in the following two steps:

1. For P−i = X†
−iX−i, with X−i ∈ R(k−1)×n the matrix X without its i-th row, we define, for

i ∈ {1, . . . , k}, the following events

Ei :

{∣∣∣∣ tr(I− P−i)Σ

x>
i (I− P−i)xi

− 1

∣∣∣∣ ≤ 1

2

}
, (4.8)

where we recall xi ∈ Rn is the i-th row of X so that E[xi] = 0 and E[xix>
i] = Σ. With

Lemma 4.2, we can bound the probability of ¬Ei, and consequently that of ¬E for
E =

∧k
i=1Ei;

2. We then bound, conditioned on E and ¬E respectively, the spectral norm ‖I−E[P⊥]P̄−1
⊥ ‖.

More precisely, since

I− E[P⊥]P̄−1
⊥ = E[P]− γE[P⊥]Σ

= E[P · 1E] + E[P · 1¬E]− γE[P⊥]Σ

= k E
[
(I− P−k)xkx>

k

x>
k (I− P−k)xk

· 1E
]
− γE[P⊥]Σ + E[P · 1¬E]

= γ E
[
(s̄− ŝ) · (I− P−k)xkx>

k

x>
k (I− P−k)xk

· 1E
]

︸ ︷︷ ︸
T1

−γ E[(I− P−k)xkx>
k · 1¬E]︸ ︷︷ ︸

T2

+ γ E[P− P−k]Σ︸ ︷︷ ︸
T3

+E[P · 1¬E]︸ ︷︷ ︸
T4

,

where we used Lemma 4.1 for the third equality and denote ŝ = x>
k (I− P−k)xk as well as

s̄ = trP̄⊥Σ = k/γ. It then remains to bound the spectral norms of T1,T2,T3,T4 to reach
the conclusion.

Another important relation that will be constantly used throughout the proof is

tr(I− P−k)Σ = trΣ
1
2 (I− P−k)

2Σ
1
2 = ‖Σ

1
2 −Σ

1
2 X†

−kX−k‖2F ≥
∑
i≥k

λi(Σ) ≥ r − k (4.9)

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 65

where we used the fact that rank(X†
−kX−k) ≤ rank(X−k) ≤ k−1 and arranged the eigenvalues

1 = λ1(Σ) ≥ . . . ≥ λn(Σ) in a non-increasing order. As a consequence, we also have

tr(I− P−k)Σ

‖(I− P−k)Σ‖
≥ tr(I− P−k)Σ ≥ r − k. (4.10)

For the first step, we have, with Lemma 4.2 and (4.10) that

Pr(¬Ei) ≤ Pr
{
|x>
i (I− P−i)xi − trΣ(I− P−i)| ≥

1

3
trΣ(I− P−i)

}
≤ 2e−min

{
r−k

9C2K4 ,
√
r−k

3CK2

}
.

so that with the union bound we obtain

Pr(¬E) ≤ 2ke−min
{

r−k

9C2K4 ,
√
r−k

3CK2

}
≤ k

(r − k)2
· 2(r − k)2e−min

{
r−k

9C2K4 ,
√
r−k

3CK2

}
≤ Cρ

r − k
(4.11)

where we used the fact that, for α > 0, x2e−αx ≤ 4e−2

α2 and x4e−αx ≤ 256e−4

α4 on x > 0. Also,
denote cρ =

r−k
r

= ρ−1
ρ

> 0, we have

Pr(¬E) ≤ Cρ
r − k

=
Cρ
cρr

=
C ′
ρ

r
(4.12)

for some C ′
ρ > 0 that depends on ρ = r/k > 1 and the sub-gaussian norm K.

At this point, note that, conditioned on the event E, we have for i ∈ {1, . . . , k}

1

2

1

tr(I− P−i)Σ
≤ 1

x>
i (I− P−i)xi

≤ 3

2

1

tr(I− P−i)Σ
, (4.13)

Also, with (4.12) and the fact that ‖P‖ ≤ 1, we have ‖T4‖ ≤ Cρ

r
for some Cρ > 0 that

depends on ρ and K. To handle non-symmetric matrix T2, note that T2 + T>
2 is symmetric

and

−E[(I−P−k) ·1¬E]−E[(x>
kxk)xkx>

k ·1¬E] � T2+T>
2 � E[(I−P−k) ·1¬E]+E[(x>

kxk)xkx>
k ·1¬E]
(4.14)

with −(AA> + BB>) � AB> + BA> � AA> + BB>. To obtain an upper bound for operator
norm of E[(x>

kxk)xkx>
k · 1¬E], note that

‖E[(x>
kxk)xkx>

k · 1¬E]‖ ≤ E[(x>
kxk)2 · 1¬E] =

∫ ∞

0

Pr(x>x · 1¬E ≥
√
t)dt

≤
∫ X

0

Pr(x>x · 1¬E ≥
√
t)dt+

∫ ∞

X

Pr(x>x ≥
√
t)dt

≤ X · Pr(¬E) +

∫ ∞

X

e−min
{

t
C2K4r

,
√
t

CK2√r

}
dt ≤ cρ

r

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 66

where we recall E[x>x] = trΣ = r and take X ≥ C2K4r, the third line follows from the
proof of Lemma 4.2 and the forth line from the same argument as in (4.11). Moreover, since
‖T2‖ ≤ ‖T2 + T>

2 ‖ (see for example [Ser10, Proposition 5.11]), we conclude that ‖T2‖ ≤ Cρ

r
.

And it thus remains to handle the terms T1 and T3 to obtain a bound on ‖I−E[P⊥]P̄−1
⊥ ‖.

To bound T3, with P− P−k =
(I−P−k)xkx>k (I−P−k)

x>k (I−P−k)xk
in Lemma 4.1, we have

‖T3‖ ≤
∥∥∥∥E[(I− P−k)xkx>

k (I− P−k)

x>
k (I− P−k)xk

· 1E
]∥∥∥∥+ ‖E[(P− P−k) · 1¬E]‖

≤ 3

2
E
[

1

tr(I− P−k)Σ

]
+

cρ
r − k

≤ Cρ
r − k

=
C ′
ρ

r

where we used the fact that tr (I− P−k)Σ ≥ r − k from (4.9) and recall ρ ≡ r/k > 1.
For T1 we write

‖T1‖ ≤ E
[
‖I− P−k‖ ·

∥∥∥E[|s̄− ŝ| · xkx>
k

x>
k (I− P−k)xk

· 1E | P−k

]∥∥∥]
≤ 3

2

1

r − k
· E
[

sup
‖v‖=1

E
[
|s̄− ŝ| · v>xkx>

kv · 1E | P−k

]]
≤ Cρ

r
· E
[√

E
[
(s̄− ŝ)2 · 1E | P−k

]︸ ︷︷ ︸
T1,1

· sup
‖v‖=1

√
E
[
(v>xk)4

]
︸ ︷︷ ︸

T1,2

]

where we used Jensen’s inequality for the first inequality, the relation in (4.9) for the second
inequality, and Cauchy–Schwarz for the third inequality.

We first bound T1,2 by definition of sub-gaussian random vectors. We have for xk a
K-sub-gaussian and ‖v‖ = 1 that, v>xk is a sub-gaussian random variable with ‖v>a‖ψ2 ≤ K.
As such, T1,2 ≤ CK2 for some absolute constant C > 0, see for example [Ver18, Section 2.5.2].

For T1,1 we have√
E[(s̄− ŝ)2 · 1E | P−k] =

√
(s̄− s)2 + E[(s− ŝ)2 · 1E]

where we denote s = E[ŝ] = trE[I− P−k]Σ. Note that

E
[
(s− ŝ)2

]
= E

[(
trΣ(P−k − E[P−k])

)2]
+ E

[
(tr (I− P−k)Σ− x>

k (I− P−k)xk)2
]

≤ C1k + C2E
[
tr (Σ− P−kΣ)2

]
≤ C(k + s) ≤ C

(
k + s̄+ |s− s̄|

)
where we used Lemma 4.3 and Lemma 4.2. Recall that s̄ = trP̄⊥Σ ≤ trΣ = r and k < r, we
have

T1,1 ≤
√

(s̄− s)2 + C(|s̄− s|+ 2r) (4.15)

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 67

It remains to bound |s̄− s|. Note that P = (X>X)†X>X = X>X(X>X)† and is symmetric,
so

I− E[P⊥]P̄−1
⊥ + I− P̄−1

⊥ E[P⊥] = 2E[P]− E[γP⊥Σ]− E[γΣP⊥]

=
k∑
i=1

E
[
(X>X)†xix>

i + xix>
i (X>X)†

]
− γ(E[P⊥]Σ+ΣE[P⊥])

= γ E
[
s̄ · (I− P−k)xkx>

k + xkx>
k (I− P−k)

x>
k (I− P−k)xk

]
− γ E

[
ŝ · (I− P−k)xkx>

k + xkx>
k (I− P−k)

x>
k (I− P−k)xk

]
+ γ (E[(I− P−k)Σ] + E[Σ(I− P−k)])− γ(E[P⊥]Σ+ΣE[P⊥])

= γ E
[
(s̄− ŝ) · (I− P−k)xkx>

k + xkx>
k (I− P−k)

x>
k (I− P−k)xk

]
+ γ(E[P− P−k]Σ+ΣE[P− P−k]).

Moreover, using the fact that P̄⊥Σ � 1
γ+1

I and P̄⊥Σ = ΣP̄⊥, we obtain that

|s̄− s| = |tr(P̄⊥ − E[I− P−k])Σ| ≤ |tr(P̄⊥ − E[P⊥])Σ|+ |trE[P− P−k]Σ|

=
1

2

∣∣tr (I− E[P⊥]P̄−1
⊥)P̄⊥Σ+ tr P̄⊥(I− P̄−1

⊥ E[P⊥])Σ
∣∣+ trE

[
(I− P−k)xkx>

k (I− P−k)

x>
k (I− P−k)xk

]
Σ

≤ 1

2

∣∣tr (I− E[P⊥]P̄−1
⊥ + I− P̄−1

⊥ E[P⊥])P̄⊥Σ
∣∣+ 1

≤ γ

2
E
[
|s̄− ŝ| · tr ((I− P−k)xkx>

k + xkx>
k (I− P−k))P̄⊥Σ

tr (I− P−k)xkx>
k

]
+ γ E

[
tr (I− P−k)xkx>

k (I− P−k)P̄⊥Σ

tr (I− P−k)xkx>
k

]
+ 1

≤ γ

γ + 1

(
E
[
|s̄− ŝ| · x>

k (I− P−k)xk
x>
k (I− P−k)xk

]
+ 1

)
+ 1 ≤ γ

γ + 1

(
|s̄− s|+ E

[
|s− ŝ|

]
+ 1
)
+ 1

≤ γ

γ + 1

(
|s̄− s|+ C

√
|s̄− s|+ C

√
2r + 1

)
+ 1.

Solving for |s̄− s|, we deduce that

|s̄− s| ≤ C1

√
r + C2,

so plugging back to (4.15) we get T1,1 ≤ C
√
r and ‖T1‖ ≤ Cρ√

r
, thus completing the proof.

4.5 Explicit formulas under known spectral decay
The expression we give for the expected residual projection, E[P⊥] ' (γA>A+I)−1, is implicit
in that it depends on the parameter γ which is the solution of the following equation:∑

i≥1

γσ2
i

γσ2
i + 1

= k, where σi are the singular values of A. (4.16)

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 68

(a) Singular values are given by σ2
i = C · αi−1.

5 10 15 20 25

Sketch size k

0

0.2

0.4

0.6

0.8

E
rr

o
r

Exponential decay

Empirical (=0.9)

Theory (=0.9)
Empirical (=0.8)

Theory (=0.8)
Empirical (=0.6)

Theory (=0.6)

(b) Singular values are given by σ2
i = C · i−β.

5 10 15 20 25

Sketch size k

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r

Polynomial decay

Empirical (=2.0)

Theory (=2.0)
Empirical (=2.5)

Theory (=2.5)
Empirical (=3.0)

Theory (=3.0)

Figure 4.1: Theoretical predictions of low-rank approximation error of a Gaussian sketch
under known spectral decays, compared to the empirical results. The constant C is scaled
so that ‖A‖2F = 1 and we let n = m = 1000. For the theory, we plot the explicit formulas
(4.17) and (4.18) (dashed lines), as well as the implicit expression from Corollary 4.1 (thin
solid lines) obtained by numerically solving (4.16). Observe that the explicit and implicit
predictions are nearly (but not exactly) identical.

In general, it is impossible to solve this equation analytically, i.e., to write γ as an explicit
formula of n, k and the singular values of A. However, we show that when the singular
values exhibit a known rate of decay, then it is possible to obtain explicit formulas for γ. In
particular, this allows us to provide precise and easily interpretable rates of decay for the
low-rank approximation error of a sub-gaussian sketch.

Matrices that have known spectral decay, most commonly with either exponential or
polynomial rate, arise in many machine learning problems [MDK20]. Such behavior can be
naturally occurring in data, or it can be induced by feature expansion using, say, the RBF
kernel (for exponential decay) or Matérn (for polynomial decay) kernels [San+97; RW06].
Understanding these two classes of decay plays an important role in distinguishing the
properties of light-tailed and heavy-tailed data distributions. Note that in the kernel setting
we may often represent our data via the m×m kernel matrix K, instead of the m× n data
matrix A, and study the sketched Nyström method [GM16] for low-rank approximation. To
handle the kernel setting in our analysis, it suffices to replace the squared singular values σ2

i

of A with the eigenvalues of K.

Exponential spectral decay
Suppose that the squared singular values of A exhibit exponential decay, i.e. σ2

i = C · αi−1,
where C is a constant and α ∈ (0, 1). For simplicity of presentation, we will let m,n →
∞. Under this spectral decay, we can approximate the sum in (4.16) by the analytically
computable integral

∫∞
y

1
1+(Cγ)−1α−xdx, obtaining γ ≈ (α−k − 1)

√
α/C. Applying this to the

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 69

formula from Corollary 4.1, we can express the low-rank approximation error for a sketch of
size k as follows:

E
[
‖A−AP‖2F

]
≈ C√

α
· k

α−k − 1
, when σ2

i = C · αi−1 for all i. (4.17)

In Figure 4.1a, we plot the above formula against the numerically obtained implicit expression
from Corollary 4.1, as well as empirical results for a Gaussian sketch. First, we observe
that the theoretical predictions closely align with empirical values even after the sketch size
crosses the stable rank r ≈ 1

1−α , suggesting that Theorem 4.1 can be extended to this regime.
Second, while it is not surprising that the error decays at a similar rate as the singular values,
our predictions offer a much more precise description, down to lower order effects and even
constant factors. For instance, we observe that the error (normalized by ‖A‖2F , as in the
figure) only starts decaying exponentially after k crosses the stable rank, and until that point
it decreases at a linear rate with slope − 1−α

2
√
α
.

Polynomial spectral decay
We now turn to polynomial spectral decay, which is a natural model for analyzing heavy-tailed
data distributions. Let A have squared singular values σ2

i = C · i−β for some β ≥ 2, and
let m,n→∞. As in the case of exponential decay, we use the integral

∫∞
y

1
1+(Cγ)−1x−β dx to

approximate the sum in (4.16), and solve for γ, obtaining γ ≈
(
(k+ 1

2
)β
π

sin(π
β
)
)β. Combining

this with Corollary 4.1 we get:

E
[
‖A−AP‖2F

]
≈ C · k

(k + 1
2
)β

(
π/β

sin(π/β)

)β
, when σ2

i = C · i−β for all i. (4.18)

Figure 4.1b compares our predictions to the empirical results for several values of β. In
all of these cases, the stable rank is close to 1, and yet the theoretical predictions align very
well with the empirical results. Overall, the asymptotic rate of decay of the error is k1−β.
However it is easy to verify that the lower order effect of (k + 1

2
)β appearing instead of kβ in

(4.18) significantly changes the trajectory for small values of k. Also, note that as β grows
large, the constant

(
π/β

sin(π/β)

)β goes to 1, but it plays a significant role for β = 2 or 3 (roughly,
scaling the expression by a factor of 2). Finally, we remark that for β ∈ (1, 2), our integral
approximation of (4.16) becomes less accurate. We expect that a corrected expression is
possible, but likely more complicated and less interpretable.

4.6 Empirical results
In this section, we numerically verify the accuracy of our theoretical predictions for the
low-rank approximation error of sketching on benchmark datasets from the libsvm repository

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 70

10 20 30 40

Sketch size k

0

0.2

0.4

0.6

0.8

1

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Empirical =0.1

Theory =0.1
Empirical =0.2

Theory =0.2
Empirical =0.5

Theory =0.5

10 20 30 40

Index

10
2

E
ig

e
n

v
a

lu
e =0.1: tr(K)/|K| = 14.3

=0.2: tr(K)/|K| = 7.6

=0.5: tr(K)/|K| = 4.1

10 20 30 40

Sketch size k

0

0.2

0.4

0.6

0.8

1
Empirical =0.1

Theory =0.1
Empirical =0.2

Theory =0.2
Empirical =0.5

Theory =0.5

10 20 30 40

Index

10
0

10
2

=0.1: tr(K)/|K| = 36.6

=0.2: tr(K)/|K| = 14.8

=0.5: tr(K)/|K| = 6.7

Figure 4.2: Theoretical predictions versus approximation error for the sketched Nyström with
the RBF kernel (spectral decay shown at the bottom).

[CL11] (further numerical results are in Appendix 4.6). We repeated every experiment 10
times, and plot both the average and standard deviation of the results. We use the following
k ×m sketching matrices S:

1. Gaussian sketch: with i.i.d. standard normal entries;

2. Rademacher sketch: with i.i.d. entries equal 1 with probability 0.5 and −1 otherwise.

Varying spectral decay. To demonstrate the role of spectral decay and the stable rank on
the approximation error, we performed feature expansion using the radial basis function (RBF)
kernel k(ai, aj) = exp(−‖ai − aj‖2/(2σ2)), obtaining an m ×m kernel matrix K. We used
the sketched Nyström method to construct a low-rank approximation K̃ = KS>(SKS>)†SK,
and computed the normalized trace norm error ‖K− K̃‖∗/‖K‖∗. The theoretical predictions
are coming from (4.2), which in turn uses Theorem 4.1. Following [GM16], we use the RBF
kernel because varying the scale parameter σ allows us to observe the approximation error
under qualitatively different spectral decay profiles of the kernel. In Figure 4.2, we present
the results for the Gaussian sketch on two datasets, with three values of σ, and in all cases our
theory aligns with the empirical results. Furthermore, as smaller σ leads to slower spectral
decay and larger stable rank, it also makes the approximation error decay more linearly for

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 71

10 20 30 40

Sketch size k

0

0.1

0.2

0.3

0.4

0.5

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Gaussian sketch

Rademacher sketch

Theory

10 20 30 40

Index

10
2

10
3

10
4

E
ig

e
n

v
a

lu
e

10 20 30 40

Sketch size k

0.05

0.1

0.15

0.2

0.25
Gaussian sketch

Rademacher sketch

Theory

10 20 30 40

Index

1000

1200

1400

1600

1800

Figure 4.3: Theoretical predictions versus approximation error for the Gaussian and
Rademacher sketches (spectral decay shown at the bottom).

small sketch sizes. This behavior is predicted by our explicit expressions (4.17) for the error
under exponential spectral decay from Section 4.5. Once the sketch sizes are sufficiently
larger than the stable rank of K 1

2 , the error starts decaying at an exponential rate. Note that
Theorem 4.1 only guarantees accuracy of our expressions for sketch sizes below the stable
rank, however the predictions are accurate regardless of this constraint.

Varying sketch type. In the next set of empirical results, we compare the performance
of Gaussian and Rademacher sketches, and also verify the theory when sketching the data
matrix A without kernel expansion, plotting ‖A − A(SA)†SA‖2F/‖A‖2F . Since both of the
sketching methods have sub-gaussian entries, Corollary 4.1 predicts that they should have
comparable performance in this task and match our expressions. This is exactly what we
observe in Figure 4.3 for two datasets and a range of sketching sizes, as well as in other
empirical results shown in Section 4.6.

Additional empirical results on libsvm datasets
We complement the results of Section 4.6 with empirical results on four additional libsvm
datasets [CL11] (bringing the total number of benchmark datasets to eight), which further
establish the accuracy of our surrogate expressions for the low-rank approximation error.

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 72

5 10 15 20 25 30 35 40

Sketch size k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Gaussian =5.0
Rademacher =5.0

Theory =5.0
Gaussian =10.0

Rademacher =10.0
Theory =10.0

Gaussian =20.0
Rademacher =20.0

Theory =20.0

5 10 15 20 25 30 35 40

Index

100E
ig

e
n

v
a

lu
e

=5.0: tr(K)/|K| = 56.3

=10.0: tr(K)/|K| = 11.4

=20.0: tr(K)/|K| = 3.4

5 10 15 20 25 30 35 40

Sketch size k

0.5

0.6

0.7

0.8

0.9

1

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Gaussian =5.0
Rademacher =5.0

Theory =5.0
Gaussian =10.0

Rademacher =10.0
Theory =10.0

Gaussian =20.0
Rademacher =20.0

Theory =20.0

5 10 15 20 25 30 35 40

Index

5

10

15

E
ig

e
n

v
a

lu
e

=5.0: tr(K)/|K| = 61.1

=10.0: tr(K)/|K| = 25.4

=20.0: tr(K)/|K| = 12.7

5 10 15 20 25 30 35 40

Sketch size k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Gaussian =0.2
Rademacher =0.2

Theory =0.2
Gaussian =0.4

Rademacher =0.4
Theory =0.4

Gaussian =0.8
Rademacher =0.8

Theory =0.8

5 10 15 20 25 30 35 40

Index

10-2

100

102

E
ig

e
n

v
a

lu
e

=0.2: tr(K)/|K| = 15.5

=0.4: tr(K)/|K| = 3.7

=0.8: tr(K)/|K| = 1.5

5 10 15 20 25 30 35 40

Sketch size k

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

Gaussian =0.2
Rademacher =0.2

Theory =0.2
Gaussian =0.4

Rademacher =0.4
Theory =0.4

Gaussian =0.8
Rademacher =0.8

Theory =0.8

5 10 15 20 25 30 35 40

Index

100

E
ig

e
n

v
a

lu
e

=0.2: tr(K)/|K| = 39.7

=0.4: tr(K)/|K| = 17.2

=0.8: tr(K)/|K| = 6.4

Figure 4.4: Theoretical predictions versus approximation error for the sketched Nyström
with the RBF kernel, using Gaussian and Rademacher sketches (spectral decay shown at the
bottom).

CHAPTER 4. EXACT EXPECTATION EXPRESSIONS FOR SUB-GAUSSIAN
RANDOM PROJECTIONS 73

Similarly as in Figure 4.2, we use the sketched Nyström method [GM16] with the RBF kernel
k(ai, aj) = exp(−‖ai − aj‖2/(2σ2)), for several values of the parameter σ. The values of σ
were chosen so as to demonstrate the effectiveness of our theoretical predictions both when
the stable rank is moderately large and when it is very small.

In Figure 4.4 we show the results for both Gaussian and Rademacher sketches. These
results reinforce the conclusions we made in Section 4.6: our theoretical estimates are very
accurate in all cases, for both sketching methods, and even when the stable rank is close to 1
(a regime that is not supported by the current theory).

4.7 Conclusions
We derived the first theoretically supported precise expressions for the expected residual
projection matrix, which is a central component in the analysis of RandNLA dimensionality
reduction via sketching. Our analysis provides a new understanding of low-rank approximation,
the Nyström method, and the convergence properties of many randomized iterative algorithms.
As a direction for future work, we conjecture that our main result can be extended to sketch
sizes larger than the stable rank of the data matrix.

74

Chapter 5

Accelerating Metropolis-Hastings with
lightweight inference compilation

While the subsequent chapters depart from a previously common theme of DPPs, they
continue our study of statistical applications of randomized methods. In this chapter, we are
concerned with the problem of sampling intractable posteriors of Bayesian graphical models.
In order to construct accurate proposers for Metropolis-Hastings Markov Chain Monte Carlo,
we integrate ideas from probabilistic graphical models and neural networks in a framework we
call Lightweight Inference Compilation (LIC). LIC implements amortized inference within an
open-universe declarative probabilistic programming language (PPL). Graph neural networks
are used to parameterize proposal distributions as functions of Markov blankets, which during
“compilation” are optimized to approximate single-site Gibbs sampling distributions. Unlike
prior work in inference compilation (IC), LIC forgoes importance sampling of linear execution
traces in favor of operating directly on Bayesian networks. Through using a declarative
PPL, the Markov blankets of nodes (which may be non-static) are queried at inference-time
to produce proposers. Experimental results show LIC can produce proposers which have
less parameters, greater robustness to nuisance random variables, and improved posterior
sampling in a Bayesian logistic regression and n-schools inference application. Parts of this
chapter were originally published in Feynman Liang, Nimar Arora, Nazanin Tehrani, Yucen
Li, Michael Tingley, and Erik Meijer. “Accelerating Metropolis-Hastings with Lightweight
Inference Compilation”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2021, pp. 181–189.

5.1 Background
Deriving and implementing samplers has traditionally been a high-effort and application-
specific endeavour [Por+08; MAM10], motivating the development of general-purpose proba-
bilistic programming languages (PPLs) where a non-expert can specify a generative model (i.e.
joint distribution) p(x,y) and the software automatically performs inference to sample latent

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 75

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

x

−4

−2

0

2

4

y

Generative model p(x,y)

−5.0 −2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

x

0.00

0.02

0.04

0.06

0.08

0.10

P
D

F

Posterior density given y=0.25

p(x|y = 0.25)

x ∼ p(x | y = 0.25)

q(x;φ(y = 0.25),K = 1)

q(x;φ(y = 0.25),K = 2)

Figure 5.1: Intuition for Lightweight Inference Compilation (LIC). LIC uses samples (xi, yi)
iid∼

p (blue “x” in left) drawn from the joint density p(x, y) to approximate the expected inclusive
KL-divergence Ep(y)DKL(p(x | y) ‖ q(x;φ(y))) between the posterior p(x | y) and the LIC
proposal distribution q(x;φ(y)). For an observation y = 0.25 (dashed red line in left), the
posterior p(x | y = 0.25) (dashed red line in right) is “approximated” by samples “close” to
y (blue “x” in right) to form an empirical inclusive KL-divergence minimized by LIC. As
inclusive KL-divergence encourages a mass-covering / mean-seeking fit, the resulting proposal
distribution q(x;φ(y = 0.25), K = 1) (green dotted line in right) when using a single (K = 1)
Gaussian proposal density covers both modes and can successfully propose moves which
cross between the two mixture components. Using a 2-component (K = 2) GMM proposal
density results in q(x;φ(y = 0.25), K = 2) (purple solid line in right) which captures both
the bi-modality of the posterior as well as the low probability region between the two modes.
As a result of sampling the generative model, LIC can discover both posterior modes and
their appropriate mixture weights (whereas other state of the art MCMC samplers fail, see
fig. 5.3).

variables x from the posterior p(x | y) conditioned on observations y. While exceptions exist,
modern general-purpose PPLs typically implement variational inference [Bin+19], importance
sampling [WMM14; LBW17], or Monte Carlo Markov Chain (MCMC, [WSG11; Teh+20b]).

Our work focuses on MCMC. More specifically, we target lightweight Metropolis-Hastings
(LMH, [WSG11]) within a recently developed declarative PPL called beanmachine [Teh+20b].
The performance of Metropolis-Hastings critically depends on the quality of the proposal
distribution used, which is the primary goal of LIC. Broadly speaking, LIC amortizes MCMC
by constructing function approximators (parameterized by graph neural networks) from
Markov blankets to proposal distribution parameters which are learned via forward simulation
and training to match the full conditionals (equivalently, to minimize the inclusive KL
divergence). In doing so, LIC makes the following contributions:

1. We present a novel implementation of inference compilation (IC) within an open-universe
declarative PPL which combines Markov blanket structure with graph neural network

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 76

architectures. Our primary innovation is the use of a graph neural network to aggregate
Markov blankets, which enables proposers to ignore irrelevant variables by construction.

2. We demonstrate LIC’s ability to escape local modes, improved robustness to nuisance
random variables, and improvements over state-of-the-art methods across a number of
metrics in two industry-relevant applications.

Declarative Probabilistic Programming
To make Bayesian inference accessible to non-experts, PPLs provide user-friendly primitives
in high-level programming languages for abstraction and composition in model representation
[Goo13; Gha15]. Existing PPLs can be broadly classified based on the representation inference
is performed over, with declarative PPLs [Lun+00; Plu+03; Mil+07; Teh+20b] performing
inference over Bayesian graphical networks and imperative PPLs conducting importance
sampling [WMM14] or MCMC [WSG11] on linearized execution traces. Because an execution
trace is a topological sort of an instantiated Bayesian network, declarative PPLs naturally
preserve additional model structure such as Markov blanket relationships while imperative
PPLs require additional dependency tracking instrumentation [MSP14] or analysis tooling
[Gor+20; Cus+19] to achieve similar functionality.

Definition 5.1 The Markov Blanket MB(xi) of a node xi is the minimal set of random
variables such that

p(xi | x−i,y) = p(xi | MB(xi)) (5.1)

In a Bayesian network, MB(xi) consists of the parents, children, and children’s parents of xi
[Pea87].

Inference Compilation
Amortized inference [GG14] refers to the re-use of initial up-front learning to improve future
queries. In context of Bayesian inference [MYM18; Zha+18] and IC [PW16a; Wei+19;
Har+19], this means using acceleration performing multiple inferences over different observa-
tions y to amortize a one-time “compilation time.” While compilation in both trace-based IC
[PW16a; LBW17; Har+19] and LIC consists of drawing forward samples from the generative
model p(x,y) and training neural networks to minimize inclusive KL-divergence, trace-based
IC uses the resulting neural network artifacts to parameterize proposal distributions for
importance sampling while LIC uses them for MCMC proposers.

Lightweight Metropolis Hastings
Lightweight Metropolis Hastings (LMH, [WSG11; RSG16]) is a simple but general method
of implementing a PPL. In LMH, random variables are assigned string identifiers and their

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 77

σ

xi yi

i∈[n]

Bayesian network for current world LIC network for x1 proposer

MB=

σ

σ embedding net

y1

y1 embedding net

node= x1

x1 embedding net

∑

∑

GCN @ x1

Figure 5.2: The Markov blankets in the Bayesian network for eq. (5.3) (left, expressed in
plate notation) are available in a declarative PPL, and are used as inputs to LIC. The LIC
proposer for node x1 (right) is obtained by first performing neural network embedding of x1

and every node in its Markov blanket, followed by a graph convolutional network aggregation
over the Markov blanket of x1. The resulting vectors are then combined to yield a parameter
vector φ(x1) for a proposal distribution q(·;φ(x1)) which is then sampled for proposing an
update within Metropolis-Hastings.

values and likelihoods are stored in a database (World in our implementation). MCMC
is performed in a Metropolis-within-Gibbs manner where: (1) a single random variable
is modified according to a proposal distribution while all others remain fixed, (2) the
computations dependant upon the modified random variable (e.g. the continuation in a
continuation-passing-style implementation) is re-executed to generate the remaining trace
(re-using the database values for all other random variables) and the new trace’s likelihood,
and finally (3) a Metropolis-Hastings accept/reject correction is performed.

While a number of choices for proposal distribution exist, the single-site Gibbs sampler
which proposes from eq. (5.1) enjoys a 100% acceptance probability [Pea87] and provides
a good choice when available [Lun+00; Plu+03]. Unfortunately, outside of discrete models
they are oftentimes intractable to directly sample so another proposal distribution must be
used. LIC seeks to approximate these single-site Gibbs distributions using tractable neural
network approximations.

Related Works
Prior work on IC in imperative PPLs can be broadly classified based on the order in which
nodes are sampled. “Backwards” methods approximate an inverse factorization, starting at
observations and using IC artifacts to propose propose parent random variables. Along these
lines, [PW16a] use neural autoregressive density estimators but heuristically invert the model
by expanding parent sets. [Web+18] proposes a more principled approach utilizing minimal

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 78

I-maps and demonstrate that minimality of inputs to IC neural networks can be beneficial;
an insight also exploited through LIC’s usage of Markov blankets. Unfortunately, model
inversion is not possible in universal PPLs [LBW17].

The other group of “forwards” methods operate in the same direction as the probabilistic
model’s dependency graph. Starting at root nodes, these methods produce inference compila-
tion artifacts which map an execution trace’s prefix to a proposal distribution. In [RHG16],
a user-specified model-specific guide program parameterizes the proposer’s architecture and
results in more interpretable IC artifacts at the expense of increased user effort. [LBW17]
automates this by using a recurrent neural network (RNN) to summarize the execution prefix
while constructing a node’s proposal distribution. This approach suffers from well-documented
RNN limitations learning long distance dependencies [Hoc98], requiring mechanisms like
attention [Har+19] to avoid degradation in the presence of long execution trace prefixes (e.g.
when nuisance random variables are present).

With respect to prior work, LIC is most similar to the attention-based extension [Har+19]
of [LBW17]. Both methods minimize inclusive KL-divergence empirically approximated by
samples from the generative model p(x,y), and both methods use neural networks to produce
a parametric proposal distribution from a set of inputs sufficient for determining a node’s
posterior distribution. However, important distinctions include (1) LIC’s use of a declarative
PPL implies Markov blanket relationships are directly queryable and ameliorates the need for
also learning an attention mechanism, and (2) LIC uses a graph neural network to summarize
the Markov blanket rather than a RNN over the execution trace prefix. [Wan+17b] is also
closely related to LIC as both are methods for amortizing MCMC by learning Markov blanket
parameterized neural Gibbs proposers, but a key difference is that LIC exploits permutation-
invariance of graph neural networks to address the issue where “Markov blankets... might not
be consistent across all instantiations” whereas [Wan+17b] restricts “focus on hand-identified
common structur[al motifs]” for constructing proposers.

5.2 Lightweight Inference Compilation

Architecture
Figure 5.2 shows a sketch of LIC’s architecture. For every latent node xi, LIC constructs
a mapping (xi,MB(xi)) 7→ φ(xi) parameterized by feedforward and graph neural networks
to produce a parameter vector φ(xi) for a parametric density estimator q(·;φ(xi)). Every
node xi has feedforward “node embedding network” used to map the value of the underlying
random variable into a vector space of common dimensionality. The set of nodes in the
Markov blanket are then summarized to a fixed-length vector following section 5.2, and a
feedforward neural network ultimately maps the concatenation of the node’s embedding with
its Markov blanket summary to proposal distribution parameters φ(xi).

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 79

Dynamic Markov Blanket embeddings

Because a node’s Markov blanket may vary in both its size and elements (e.g. in a GMM,
a data point’s component membership may change during MCMC), MB(xi) is a non-static
set of vectors (albeit all of the same dimension after node embeddings are applied) and a
feed-forward network with fixed input dimension is unsuitable for computing a fixed-length
proposal parameter vector φ(xi). Furthermore, Markov blankets (unlike execution trace
prefixes) are unordered sets and lack a natural ordering hence use of a RNN as done in [LBW17]
is inappropriate. Instead, LIC draws motivation from graph neural networks [Sca+08; DDS16]
which have demonstrated superior results in representation learning [Bru+13] and performs
summarization of Markov Blankets following [KW16] by defining

φ(xi) = σ

(
W �

xj∈MB(xi)

1√
|MB(xi)||MB(xj)|

fj(xj)

)

where fj(xj) denotes the output of the node embedding network for node xj when provided its
current value as an input, � is any differentiable permutation-invariant function (summation
in LIC’s case), and σ is an activation function. This technique is analogous to the “Deep sets
trick” [Zah+17], and we expect it to perform well when elements of the Markov blanket are
conditionally exchangeable. However, we note this assumption of permutation invariance may
not always hold hence additional investigation into more sophisticated aggregation schemes
(e.g. identifying exchangeable elements, using permutation-dependent aggregators like RNNs)
is important future work.

Parameterized density estimation

The resulting parameter vectors φ(xi) of LIC are ultimately used to parameterize proposal
distributions q(xi;φ(MB(xi))) for MCMC sampling. For discrete xi, LIC directly estimates
logit scores over the support. For continuous xi, LIC transforms continuous xi to unconstrained
space following [Car+17] and models the density using a Gaussian mixture model (GMM).
Note that although more sophisticated density estimators such as masked autoregressive
flows [Kin+16; PPM17] can equally be used.

Objective Function
To “compile” LIC, parameters are optimized to minimize the inclusive KL-divergence between
the posterior distributions and inference compilation proposers: DKL(p(x | y) ‖ q(x | y;φ)).
Consistent with [LBW17], observations y are sampled from the marginal distribution p(y),
but note that this may not be representative of observations y encountered at inference. The

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 80

resulting objective function is given by

Ep(y) [DKL(p(x | y) ‖ q(x | y;φ))] (5.2)

= Ep(x,y)
[
log p(x | y)

q(x | y;φ)

]
∝ Ep(x,y) [− log q(x | y;φ)]

≈
N∑
i=1

− log q(x | y;φ), (x,y)
i.i.d.∼ p(x,y)

=: L(φ)

where we have neglected a conditional entropy term independent of φ and performed Monte-
Carlo approximation to an expectation. The intuition for this objective is shown in Figure 5.1,
which shows how samples from p(x,y) (left) form an empirical joint approximation where
“slices” (at y = 0.25 in fig. 5.1) yield posterior approximations which the objective is computed
over (right).

5.3 Experiments
To validate LIC’s competitiveness, we conducted experiments benchmarking a variety of
desired behaviors and relevant applications. In particular:

• Training on samples from the joint distribution p(x,y) should enable discovery of
distant modes, so LIC samplers should be less likely to to get “stuck” in a local mode.
We validate this in section 5.3 using a GMM mode escape experiment, where we see
LIC escape not only escape a local mode but also yield accurate mixture component
weights.

• When there is no approximation error (i.e. the true posterior density is within the family
of parametric densities representable by LIC), we expect LIC to closely approximate the
posterior at least for the range of observations y sampled during compilation (eq. (5.2))
with high probability under the prior p(y). Section 5.3 shows this is indeed the case in
a conjugate Gaussian-Gaussian model where a closed form expression for the posterior
is available.

• Because Markov blankets can be explicitly queried, we expect LIC’s performance to be
unaffected by the presence of nuisance random variables (i.e. random variables which
extend the execution trace but are statistically independent from the observations
and queried latent variables). This is confirmed in section 5.3 using the probabilistic
program from [Har+19], where we see trace-based IC suffering an order of magnitude
increase in model parameters and compilation time while yielding an effective sample
size almost 5× smaller (Table 5.1).

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 81

0.000

0.025

0.050

0.075

D
en

si
ty

method = Adaptive HMC (Hoffman 2014) method = Adaptive RWMH (Garthwaite 2016) method = Ground Truth

−5 0 5 10 15

x

0.000

0.025

0.050

0.075

D
en

si
ty

method = Inference Compilation (this paper)

−5 0 5 10 15

x

method = NMC (Arora 2020)

−5 0 5 10 15

x

method = NUTS (Stan defaults)

Figure 5.3: When sampling the bi-modal posterior density from fig. 5.1, only inference compi-
lation (IC, this paper) and adaptive step-size random walk Metropolis-Hastings (Adaptive
RWMH, [GFS16]) are able to recover both posterior modes. Whereas RWMH’s posterior
samples erroneously assign approximately equal probability to both modes, IC’s samples
faithfully reproduce the ground truth and yields higher probability for the mode at x = 10
than the mode at x = 0.

• To verify LIC yields competitive performance in applications of interest, we benchmark
LIC against other state-of-the-art MCMC methods on a Bayesian logistic regression
problem (section 5.3) and on a generalization of the classical eight schools problem
[Rub81] called n-schools (section 5.3) which is used in production at a large internet
company for Bayesian meta-analysis [SA01]. We find that LIC exceeds the perfor-
mance of adaptive random walk Metropolis-Hastings [GFS16] and Newtonian Monte
Carlo [Aro+20] and yields comparable performance to NUTS [HG14] despite being
implemented in an interpreted (Python) versus compiled (C++) language.

A reference implementation for LIC and code to reproduce our experiments have been
made publicly available1.

GMM mode escape
Consider the multi-modal posterior resulting from conditioning on y = 0.25 in the 2-
dimensional GMM in fig. 5.1, which is comprised of two Gaussian components with greater
mixture probability on the right-hand component and a large energy barrier separating the
two components. Because LIC is compiled by training on samples from the joint distribution
p(x, y), it is reasonable to expect LIC’s proposers to assign high probability to values for

1https://github.com/facebookresearch/lightweight-inference-compilation

https://github.com/facebookresearch/lightweight-inference-compilation

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 82

Figure 5.4: In a conjugate normal-normal model, LIC’s proposal distribution mean (dashed
orange line) closely follows the closed-form posterior mean (blue solid line) across a wide
range of observed values y.

the latent variable x from both modes. In contrast, uncompiled methods such as random
walk Metropolis-Hastings (RWMH) and NUTS may encounter difficulty crossing the low-
probability energy barrier and be unable to escape the basin of attraction of the mode closest
to their initialization.

This intuition is confirmed in fig. 5.3, which illustrates kernel density estimates of 1,000
posterior samples obtained by a variety of MCMC algorithms as well as ground truth
samples. HMC with adaptive step size [HG14], NMC, and NUTS with the default settings
as implemented in Stan [Car+17] are all unable to escape the mode they are initialized in.
While both LIC and RWMH with adaptive step size escape the local mode, RWMH’s samples
erroneously imply equal mixture component probabilities whereas LIC’s samples faithfully
reproduce a higher component probability for the right-hand mode.

Conjugate Gaussian-Gaussian Model
We next consider a Gaussian likelihood with a Gaussian mean prior, a conjugate model with
closed-form posterior given by:

x ∼ N (0, σx), y ∼ N (x, σy) (5.3)

Pr[x | y, σx, σy] ∼ N
(

σ−2
y

σ−2
x + σ−2

y

y,
1

σ−2
x + σ−2

y

)

There is minimal approximation error because the posterior density is in the same family
as LIC’s GMM proposal distributions and the relationship between the Markov blanket
MB(x) = {y} and the posterior mean is a linear function easily approximated (locally)

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 83

by neural networks. As a result, we expect LIC’s proposal distribution to provide a good
approximation to the true posterior and LIC to approximately implement a direct posterior
sampler.

To confirm this behavior, we trained LIC with a K = 1 component GMM proposal
density on 1,000 samples and show the resulting LIC proposer’s mean as the observed
value y varies in fig. 5.4. Here σx = 2 and σy = 0.1, so the marginal distribution of y (i.e.
the observations sampled during compilation in eq. (5.2)) is Gaussian with mean 0 and
standard deviation

√
σ2
x + σ2

y ≈ 2.0025. Consistent with our expectations, LIC provides
a good approximation to the true posterior for observed values y well-represented during
training (i.e. with high probability under the marginal p(y)). While LIC also provides a
reasonable proposer by extrapolation to less represented observed values y, it is clear from
fig. 5.4 that the approximation is less accurate. This motivates future work into modifying
the forward sampling distribution used to approximate eq. (5.2) (e.g. “inflating” the prior)
as well as adapting LIC towards the distribution of observations y used at inference time.

Robustness to Nuisance Variables
An important innovation of LIC is its use of a declarative PPL and ability to query for Markov
blanket relationships so that only statistically relevant inputs are utilized when constructing
proposal distributions. To validate this yields significant improvement over prior work in IC,
we reproduced an experiment from [Har+19] where nuisance random variables (i.e. random
variables which are statistically independent from the queried latent variables/observations
whose only purpose is to extend the execution trace) are introduced and the impact on system
performance is measured. As trace-based inference compilation utilizes the execution trace
prefix to summarize program state, extending the trace of the program with nuisance random
variables typically results in degradation of performance due to difficulties encountered by
RNN in capturing long range dependencies as well as the production of irrelevant neural
network embedding artifacts.

We reproduce trace-based IC as described in [LBW17] using the author-provided software
package [PyP20], and implement Program 1 from [Har+19] with the source code illustrated
in listing 5.1 where 100 nuisance random variables are added. Note that although nuisance
has no relationship to the remainder of the program, the line number where they are
instantiated has a dramatic impact on performance. By extending the trace between where
x and y are defined, trace-based IC’s RNNs degrade due to difficulty learning a long-range
dependency[Hoc98] between the two variables. For LIC, the equivalent program expressed in
the beanmachine declarative PPL [Teh+20b] is shown in listing 5.2. In this case, the order
in which random variable declarations appear is irrelevant as all permutations describe the
same probabilistic graphical model.

Listing 5.1: A version of Program 1 from [Har+19] to illustrate nuisance random variables
def magnitude(obs):
x = sample(Normal(0, 10))

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 84

for _ in range(100):
nuisance = sample(Normal(0, 10))

y = sample(Normal(0, 10))
observe(
obs**2,
likelihood=Normal(
x**2 + y**2,
0.1))

return x

Listing 5.2: The equivalent program in beanmachine, where independencies are explicit in
program specification
class NuisanceModel:
@random_variable
def x(self):

return dist.Normal(0, 10)
@random_variable
def nuisance(self, i):

return dist.Normal(0, 10)
@random_variable
def y(self):

return dist.Normal(0, 10)
@random_variable
def noisy_sq_length(self):

return dist.Normal(
self.x()**2 + self.y()**2,
0.1)

Table 5.1 compares the results between LIC and trace-based IC [LBW17] for this nuisance
variable model. Both pyprob’s defaults (1 layer 4 dimension sample embedding, 64 dimension
address embedding, 8 dimension distribution type embedding, 10 component GMM proposer,
1 layer 512 dimension LSTM) and LIC’s defaults (used for all experiments in this paper, 1
layer 4 dimension node embedding, 3 layer 8 dimension Markov blanket embedding, 1 layer
node proposal network) with a 10 component GMM proposer are trained on 10,000 samples
and subsequently used to draw 100 posterior samples. Although model size is not directly
comparable due differences in model architecture, pyprob’s resulting models were over 7×
larger than those of LIC. Furthermore, despite requiring more than 10× longer time to train,
the resulting sampler produced by pyprob yields an effective sample size almost 5× smaller
than that produced by LIC.

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 85

params compile time ESS

LIC 3,358 44 sec. 49.75
PyProb 21,952 472 sec. 10.99

Table 5.1: Number of parameters, compilation time (10,000 samples), and effective sample
size (100 samples) for inference compilation in LIC (this work) versus [PyP20]

Bayesian Logistic Regression
Consider a Bayesian logistic regression model over d covariates with prior distribution
β ∼ Nd+1(0d+1, diag(10, 2.51d)) and likelihood yi | xi

i.i.d.∼ Bernoulli(σ(β>xi)) where σ(t) =
(1 + e−t)−1 is the logistic function. This model is appropriate in a wide range of classification
problems where prior knowledge about the regression coefficients β are available.

Figure 5.5a shows the results of performing inference using LIC compared against other
MCMC inference methods. Results for existing IC approaches [LBW17] are omitted because
they are not comparable due to lack of support for vector-valued random variables in the
publicly available reference implementation [PyP20]. All methods yield similar predictive
log-likelihoods on held-out test data, but LIC and NUTS yield significantly higher ESS and
R̂s closer to 1.0 suggesting better mixing and more effective sampling.

n-Schools
The eight schools model [Rub81] is a Bayesian hierarchical model originally used to model the
effectiveness of schools at improving SAT scores. n-schools is a generalization of this model
from 8 to n possible treatments, and is used at a large internet company for performing
Bayesian meta-analysis [SA01] to estimate (fixed) effect sizes. Let K denote the total number
of schools, nj the number of districts/states/types, and jk the district/state/type of school k.

β0 ∼ StudentT(3, 0, 10)

τi ∼ HalfCauchy(σi) for i ∈ [district, state, type]
βi,j ∼ N (0, τi) for i ∈ [district, state, type], j ∈ [ni]

yk ∼ N (β0 +
∑
i

βi,jk , σk)

The treatment effects yk and standard errors σi and σk are observed.
Intuitively, each “school” corresponds to a set of treatment parameters (here a tuple of

district, state, and type) and βi,j measures the average change in response y when treatment
parameter i is set equal to j (e.g. βstate,CA measures the change in SAT scores when a school
is located in California).

Figure 5.5b presents results in a format analogous to section 5.3. Here, we see that while
both LIC and NUTS yield higher PLLs (with NUTS outperforming LIC in this case), LICs

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 86
Figure 5.5: Results of MCMC on two Bayesian inference tasks where we compare the
compilation time (neural network training for LIC and Stan’s C++ codegen / compilation for
NUTS), inference time, predictive log-likelihood (PLL) on hold-out data, expected sample
size (ESS, higher is better, [Gey11]) and the rank normalized R̂ diagnostic (Rhat, closer to 1
is better, [Veh+20]).

(a) Bayesian logistic regression (2000 rows, 10 features). Both LIC and Stan (NUTS) amortize the
upfront compilation cost with accelerated inference times. LIC achieves comparable PLL to NUTS
[HG14] and other methods, and yields ESS comparable to NUTS and higher than any other method.
The R̂ of LIC is close to 1 (similar to NUTS and lower than all other methods).

(b) n-schools (1000 schools, 8 states, 5 districts, 5 types). Again, increased compilation times are
offset by accelerated inference times. In this case, LIC achieves comparable PLL to NUTS while
simultaneously producing higher ESS and lower R̂, suggesting that the resulting posterior samples
are less autocorrelated and provide a more accurate posterior approximation.

CHAPTER 5. ACCELERATING METROPOLIS-HASTINGS WITH LIGHTWEIGHT
INFERENCE COMPILATION 87

ESS is significantly higher than other compared methods. Additionally, the R̂ of NUTS is
also larger than the other methods which suggests that even after 1,000 burn-in samples
NUTS has still not properly mixed.

5.4 Conclusion
We introduced Lightweight Inference Compilation (LIC) for building high quality single-site
proposal distributions to accelerate Metropolis-Hastings MCMC. LIC utilizes declarative
probabilistic programming to retain graphical model structure and graph neural networks
to approximate single-site Gibbs sampling distributions. To our knowledge, LIC is the first
proposed method for inference compilation within an open-universe declarative probabilistic
programming language and an open-source implementation will be released in early 2021.
Compared to prior work, LIC’s use of Markov blankets resolves the need for attention to
handle nuisance random variances and yields posterior sampling comparable to state-of-the-art
MCMC samplers such as NUTS and adaptive RWMH.

88

Chapter 6

Fat-tailed variational inference

In some applications of probabilistic modeling, researchers may desire to explicitly model
large deviation “tail” or “black-swan” events. While fat-tailed densities commonly arise
as posterior and marginal distributions in robust models and scale mixtures, they present
challenges when prior methods (including Chapter 5) fails to capture tail decay accurately.
In this chapter, we first improve previous theory on tails of Lipschitz flows by quantifying
how the tails affect the rate of tail decay and by expanding the theory to non-Lipschitz
polynomial flows. We then develop an alternative theory for multivariate tail parameters
which is sensitive to tail-anisotropy. In doing so, we unveil a fundamental problem which
plagues many existing flow-based methods: they can only model tail-isotropic distributions
(i.e., distributions having the same tail parameter in every direction). To mitigate this
and enable modeling of tail-anisotropic targets, we propose anisotropic tail-adaptive flows
(ATAF). Experimental results on both synthetic and real-world targets confirm that ATAF is
competitive with prior work while also exhibiting appropriate tail-anisotropy. Parts of this
chapter were first presented in Feynman Liang, Liam Hodgkinson, and Michael Mahoney.
“Fat–Tailed Variational Inference with Anisotropic Tail Adaptive Flows”. In: Proceedings of
the 39th International Conference on Machine Learning. Vol. 162. 2022, p. 132.

6.1 Introduction
Flow-based methods [Pap+21] have proven to be effective techniques to model complex
probability densities. They compete with the state of the art on density estimation [Hua+18;
Dur+19; Jai+20], generative modeling [Che+19; KD18], and variational inference [Kin+16;
ASD20] tasks. These methods start with a random variable X having a simple and tractable
distribution µ, and then apply a learnable transport map fθ to build another random variable
Y = fθ(X) with a more expressive pushforward probability measure (fθ)∗µ [Pap+21]. In
contrast to the implicit distributions [Hus17] produced by generative adversarial networks
(GANs), flow-based methods restrict the transport map fθ to be invertible and to have
efficiently-computable Jacobian determinants. As a result, probability density functions can

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 89

be tractably computed through direct application of a change of variables

pY (y) = pX(f
−1
θ (y))

∣∣∣∣∣det df−1
θ (z)

dz

∣∣∣∣
z=y

∣∣∣∣∣ . (6.1)

While recent developments [Che+19; Hua+18; Dur+19] have focused primarily on the
transport map fθ, the base distribution µ has received comparatively less investigation. The
most common choice for the base distribution is standard Gaussian µ = N (0, I). However, in
Theorem 6.1, we show this choice results in significant restrictions on the expressivity of the
model, limiting its utility for data that exhibits fat-tailed (or heavy-tailed) structure. Prior
work addressing heavy-tailed flows [Jai+20] are limited to tail-isotropic base distributions.
In Proposition 6.1, we prove flows built on these base distributions are unable to model
accurately multivariate anisotropic fat-tailed structure.

−10 −5 0 5 10
StudentT(ν = 1)

−5

0

5

N
or
m
a
l(
µ
=

0
,σ

2
=

1
) Target

−10 −5 0 5 10
−5

0

5
ADVI

−10 −5 0 5 10
−5

0

5
TAF

−10 −5 0 5 10
−5

0

5
ATAF

Figure 6.1: Variational inference against a tail-anisotropic target distribution N (0, 1) ⊗
StudentT(ν = 1) (top left). Only ATAF (bottom right) is able to correctly reproduce the
tail-anisotropy (fat-tailed along x-axis, Gaussian along y-axis). In contrast, ADVI’s (top right)
Gaussian base distribution and TAF’s (bottom left) tail-isotropic

∏2
i=1 StudentT(ν) base

distribution can only model tail-isotropic distributions (Proposition 6.1), which erroneously
imposes power-law tails with the same rate of decay along both the x and y axes.

Our work here aims to identify and address these deficiencies. To understand the impact of
the base distribution µ in flow-based models, we develop and apply theory for fat-tailed random
variables and their transformations under Lipschitz-continuous functions. Our approach
leverages the theory of concentration functions [Led01, Chapter 1.2] to sharpen significantly
and extend prior results [JSY19, Theorem 4] by describing precisely the tail parameters

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 90

of the pushforward distribution (fθ)∗µ under both Lipschitz-continuous (Theorem 6.1) and
polynomial (Corollary 6.2) transport maps. In the multivariate setting, we develop a theory
of direction-dependent tail parameters (Definition 6.4), and we show that tail-isotropic base
distributions yield tail-isotropic pushforward measures (Proposition 6.1). As a consequence
of Proposition 6.1, prior methods [Jai+20] are limited in that they are unable to capture
tail-anisotropy. This motivates the construction of anisotropic tail adaptive flows (ATAF,
Definition 6.5) as a means to alleviate this issue (Remark 6.1) and to improve modeling
of tail-anisotropic distributions. Our experiments show that ATAF exhibits correct tail
behaviour in synthetic target distributions exhibiting fat-tails (Figure 6.5 of Section 6.4) and
tail-anisotropy (Figure 6.1). On realistic targets, we find that ATAF can yield improvements
in variational inference (VI) by capturing potential tail-anisotropy (Section 6.4).

Related Work
Fat-Tails in Variational Inference. Recent work in variational autoencoders (VAEs) have
considered relaxing Gaussian assumptions to heavier-tailed distributions [Mat+19; Che+19;
Boe+20; AO20]. In Mathieu et al. [Mat+19], a StudentT prior distribution p(z) is considered
over the latent code z in a VAE with Gaussian encoder q(z | x). They argue that the
anisotropy of a StudentT product distribution leads to more disentangled representations, as
compared to the standard choice of Normal distributions. A similar modification is performed
in Chen et al. [CSN20] for a coupled VAE [Cao+22]. This result showed improvements in
the marginal likelihoods of reconstructed images. In addition, Boenninghoff et al. [Boe+20]
consider a mixture of StudentTs for the prior p(z). To position our work in context, note that
the encoder q(z | x) may be viewed as a variational approximation to the posterior p(z | x)
defined by the decoder model p(x | z) and the prior p(z). Our work differs from Mathieu
et al. [Mat+19], Chen et al. [CSN20], and Boenninghoff et al. [Boe+20], in that we consider
fat-tailed variational approximations q(z | x) rather than priors p(z). Although Abiri et al.
[AO20] also considers a StudentT approximate posterior, our work involves a more general
variational family which uses normalizing flows. Similarly, although Wang et al. [WLL18]
also deals with fat-tails in variational inference, their goal is to improve α-divergence VI by
controlling the moments of importance sampling ratios (which may be heavy-tailed). Our
work here adopts Kullback-Leibler divergence and is concerned with enriching the variational
family to include anisotropic fat-tailed distributions. More directly comparable recent work
[DQV11; FSS17] studies the t-exponential family variational approximation which includes
StudentTs and other heavier-tailed densities. Critically, the selection of their parameter t
(directly related to the StudentT’s degrees of freedom ν), and the issue of tail anisotropy, are
not discussed.

Flow-Based Methods. Normalizing flows and other flow-based methods have a rich
history within variational inference [Kin+16; RM15; ASD20; Web+19a]. Consistent with
our experience (Figure 6.6), Webb et al. [Web+19a] documents normalizing flows can offer
improvements over ADVI and NUTS across thirteen different Bayesian linear regression

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 91

models from Gelman et al. [GH06]. Agrawal et al. [ASD20] shows that normalizing flows
compose nicely with other advances in black-box VI (e.g., stick the landing, importance
weighting). However, none of these works treat the issue of fat-tailed targets and inappropriate
tail decay. To our knowledge, only TAFs [Jai+20] explicitly consider flows with tails heavier
than Gaussians. Our work here can be viewed as a direct improvement of Jaini et al. [Jai+20],
and we make extensive comparison to this work throughout the body of this paper. At a
high level, we provide a theory for fat-tails which is sensitive to the rate of tail decay and
develop a framework to characterize and address the tail-isotropic limitations plaguing TAFs.

6.2 Flow-Based Methods for Fat-Tailed Variational
Inference

Flow-Based VI Methods
The objective of VI is to approximate a target distribution π(x) by searching over a variational
family Q = {qφ : φ ∈ Φ} of probability distributions qφ. While alternatives exist [LT16;
WLL18], VI typically seeks to find qφ “close” to π, as measured by Kullback-Leibler divergence
D(qφ ‖ π). To ensure tractability without sacrificing generality, in practice [WW13; RGB14]
a Monte-Carlo approximation of the evidence lower bound (ELBO) is maximized:

ELBO(φ) =

∫
qφ(x) log π̄(x)

qφ(x)
dx

≈ 1

n

n∑
i=1

log π̄(xi)

qφ(xi)
, xi

i.i.d.∼ qφ, π̄ ∝ π.

To summarize, this procedure enables tractable black-box VI by replacing π with π̄ ∝ π and
approximating expectations with respect to qφ (which are tractable only in simple variational
families) through Monte-Carlo approximation. In Bayesian inference and probabilistic
programming applications, the target posterior π(x) = p(x | y) = p(x,y)

p(y)
is typically intractable

but π̄(x) = p(x, y) is computable (i.e., represented by the probabilistic program’s generative
/ forward execution).

While it is possible to construct a variational family Q tailored to a specific task, we are
interested in VI methods which are more broadly applicable and convenient to use: Q should
be automatically constructed from introspection of a given probabilistic model/program.
Automatic differentiation variational inference (ADVI, Kucukelbir et al. [Kuc+17]) is an
early implementation of automatic VI and it is still the default in certain probabilistic
programming languages [Car+17]. ADVI uses a Gaussian base distribution µ and a transport
map fθ = f ◦ΦAffine comprised of an invertible affine transform composed with a deterministic
transformation f from R to the target distribution’s support (e.g., exp : R→ R≥0, sigmoid :
R→ [0, 1]). As Gaussians are closed under affine transformations, ADVI’s representational
capacity is limited to deterministic transformations of Gaussians. Hence it cannot represent

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 92

Model Autoregressive transform Suff. cond. for Lipschitz-continuity

NICE[DKB15] zj + µj · 1k 6∈[j] µj Lipschitz
MAF[PPM17] σjzj + (1− σj)µj σj bounded
IAF[Kin+16] zj · exp(λj) + µj λj bounded, µj Lipschitz

Real-NVP[DSB17] exp(λj · 1k 6∈[j]) · zj + µj · 1k 6∈[j] λj bounded, µj Lipschitz
Glow[KD18] σj · zj + µj · 1k 6∈[j] σj bounded, µj Lipschitz

NAF[Hua+18] σ−1(w> · σ(σjzj + µj)) Always (logistic mixture CDF)
NSF[Dur+19] zj1zj 6∈[−B,B] +Mj(zj ; z<j)1xj∈[−B,B] Always (linear outside [−B,B])

FFJORD[Gra+19] n/a (not autoregressive) Always (required for invertibility)
ResFlow[Che+19] n/a (not autoregressive) Always (required for invertibility)

Table 6.1: Some popular / recently developed flows, the autoregressive transform used in the
flow (if applicable), and sufficient conditions conditions for Lipschitz-continuity. A subset
of this table was first presented in Jaini et al. [Jai+20]. M(·) denotes monotonic rational
quadratic splines [Dur+19].

complex multi-modal distributions. To address this, more recent work [Kin+16; Web+19a]
replaces the affine map ΦAffine with a flow ΦFlow typically parameterized by an invertible
neural network:

Definition 6.1 ADVI (with normalizing flows) comprise the variational family

QADVI := {(f ◦ ΦFlow)∗µ}

where µ = Normal(0d, Id), ΦFlow is an invertible flow transform (e.g., Table 6.1) and f is a
deterministic bijection between constrained supports [Kuc+17].

As first noted in Jaini et al. [Jai+20], the pushforward of a light-tailed Gaussian base distri-
bution under a Lipschitz-continuous flow will remain light-tailed and provide poor approxima-
tion to fat-tailed targets. Despite this, many major probabilistic programming packages still
make a default choice of Gaussian base distribution (AutoNormalizingFlow/AutoIAFNormal
in Pyro [Bin+19], method=variational in Stan [Car+17], NormalizingFlowGroup in PyMC
[PHF10]). To address this issue, tail-adaptive flows [Jai+20] use a base distribution
µν =

∏d
i=1 StudentT(ν), where a single degrees-of-freedom ν ∈ R is used across all d

dimensions. Here is a more precise definition.

Definition 6.2 Tail adaptive flows (TAF) comprise the variational family QTAF := {(f ◦
ΦFlow)∗µν}, where µν =

∏d
i=1 StudentT(ν) with ν shared across all d dimensions, ΦFlow is an

invertible flow, and f is a bijection between constrained supports [Kuc+17]. During training,
the shared degrees of freedom ν is treated as an additional variational parameter.

Fat-Tailed Variational Inference
Fat-tailed variational inference (FTVI) considers the setting where the target π(x) is fat-
tailed. Such distributions commonly arise during a standard “robustification” approach

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 93

where light-tailed noise distributions are replaced with fat-tailed ones [TL05]. They also
appear when weakly informative prior distributions are used in Bayesian hierarchical models
[Gel+06].

To formalize these notions of fat-tailed versus light-tailed distributions, a quantitative
classification for tails is required. While prior work classified distribution tails according
to quantiles and the existence of moment generating functions [Jai+20, Section 3], here we
propose a more natural and finer-grained classification based upon the theory of concentration
functions [Led01, Chapter 1.2], which is sensitive to the rate of tail decay.

Definition 6.3 (Classification of tails) For each α, p > 0, we let

• Epα denote the set of exponential-type random variables X with P(|X| ≥ x) = Θ(e−αx
p
);

• Lpα denote the set of logarithmic-type random variables X with P(|X| ≥ x) = Θ(e−α(logx)p).

In both cases, we call p the class index and α the tail parameter for X. Note that every
Epα and Lqβ are disjoint, that is, Epα ∩ L

q
β = ∅ for all α, β, p, q > 0. For brevity, we define

the ascending families Epα and Lpα analogously as before except with Θ(·) replaced by O(·).
Similarly, we denote the class of distributions with exponential-type tails with class index at
least p by Ep = ∪α∈R+E

p
α, and similarly for Lp.

For example, E2α corresponds to α−1/2-sub-Gaussian random variables, E1α corresponds to
sub-exponentials, and (of particular relevance to this paper) L1

α corresponds to the class of
power-law distributions.

6.3 Tail Behavior of Lipschitz Flows
This section contains our main theoretical contributions and proofs. We sharpen previous
impossibility results approximating fat-tailed targets using light-tailed base distributions
[Jai+20, Theorem 4] by characterizing the effects of Lipschitz-continuous transport maps on
not only the tail class but also the class index and tail parameter (Definition 6.3). Furthermore,
we extend the theory to include polynomial flows [JSY19]. For the multivariate setting, we
define the tail-parameter function (Definition 6.4) to help formalize the notion of tail-isotropic
distributions and prove a fundamental limitation that tail-isotropic pushforwards remain
tail-isotropic (Proposition 6.1).

As an initial but nevertheless crucial result, we first bound the tail parameters of the sum
of two power law random variables.

Lemma 6.1 Suppose X ∈ L1
α and Y ∈ L1

β. Then X + Y ∈ L1
min{α,β}.

Proof First, let γ = min{α, β}. It will suffice to show that (I) P(|X + Y | ≥ r) = O(r−γ),
and (II) P(|X + Y | ≥ r) ≥ Θ(r−γ). Since (X,Y) 7→ |X + Y | is a 1-Lipschitz function on

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 94

R2 and P(|X| ≥ r) + P(|Y | ≥ r) = O(r−γ), (I) follows directly from the hypotheses and
Proposition 1.11 of Ledoux [Led01]. To show (II), note that for any M > 0, conditioning on
the event |Y | ≤M ,

P (|X|+ |Y | ≥ r | |Y | ≤M) ≥ P (|X| ≥ r −M) .

Therefore, by taking M to be sufficiently large so that P(|Y | ≤M) ≥ 1
2
,

P (|X + Y | ≥ r) ≥ P (|X|+ |Y | ≥ r)

≥ P (|X|+ |Y | ≥ r | |Y | ≤M)P (|Y | ≤M)

≥ 1

2
P (|X| ≥ r −M) = Θ(r−α).

The same process with X and Y reversed implies P(|X + Y | ≥ r) ≥ Θ(r−β) as well. Both
(II) and the claim follow.

Most of our following results are developed within the context of Lipschitz-continuous
transport maps fθ. In practice, many flow-based methods exhibit Lipschitz-continuity in
their transport map, either by design [Gra+19; Che+19], or as a consequence of choice of
architecture and activation function (Table 6.1). The following assumption encapsulates this
premise.

Assumption 6.1 fθ is invertible, and both fθ and f−1
θ are L-Lipschitz continuous (e.g.,

sufficient conditions in Table 6.1 are satisfied).

It is worth noting that domains other than Rd may require an additional bijection between
supports (e.g. exp : R→ R+) which could violate assumption 6.1.

Closure of Tail Classes
Our first set of results pertains to the closure of the tail classes in Definition 6.3 under
Lipschitz-continuous transport maps. While earlier work [Jai+20] demonstrated closure of
exponential-type distributions ∪p>0Ep under flows satisfying Assumption 6.1, our results
in Theorem 6.1 and Corollaries 6.1 and 6.2 sharpen these observations, showing that: (1)
Lipschitz transport maps cannot decrease the class index p for exponential-type random
variables, but they can alter the tail parameter α; and (2) under additional assumptions,
they cannot change either class index p or the tail parameter α for logarithmic-type random
variables.

Theorem 6.1 (Lipschitz maps of tail classes) Under Assumption 6.1, the distribution
classes Ep and Lpα (with p, α > 0) are closed under every flow transformation in Table 6.1.

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 95

Informally, Theorem 6.1 asserts that light-tailed base distributions cannot be transformed
via Lipschitz transport maps into fat-tailed target distributions. Note this does not violate
universality theorems for certain flows [Hua+18] as these results only apply in the infinite-
dimensional limit. Indeed, certain exponential-type families (such as Gaussian mixtures) are
dense in the class of all distributions, including those that are fat-tailed.
Proof [Proof of Theorem 6.1] Let X be a random variable from either Epα or Lpα. Its
concentration function (Equation 1.6 Ledoux [Led01] is given by

αX(r) := sup{µ{x : d(x,A) ≥ r};A ⊂ supp X,µ(A) ≥ 1/2} = P(|X −mX | ≥ r).

Under Assumption 1, fθ is Lipschitz (say with Lipschitz constant L) so by Proposition 1.3 of
Ledoux [Led01],

P(|fθ(X)−mfθ(X)| ≥ r) ≤ 2αX(r/L) = O(αX(r/L)),

where mfθ(X) is a median of fθ(X). Furthermore, by the triangle inequality

P(|fθ(X)| ≥ r) = P(|fθ(X)−mfθ(X) +mfθ(X)| ≥ r)

≤ P(|fθ(X)−mfθ(X)| ≥ r − |mfθ(X)|)
= O(P(|fθ(X)−mfθ(X)| ≥ r))

= O(αX(r/L)), (6.2)

where the asymptotic equivalence holds because |mfθ(X)| is independent of r. When X ∈ Epα,
Equation (6.2) implies

P(|fθ(X)| ≥ r) = O(e−
α
L
rp) =⇒ fθ(X) ∈ Epα/L,

from whence we find that the Lipschitz transform of exponential-type tails continues to
possess exponential-type tails with the same class index p, although the tail parameter may
have changed. Hence, Ep is closed under Lipschitz maps for each p ∈ R>0. On the other
hand, when X ∈ Lpα, Equation (6.2) also implies that

P(|fθ(X)| ≥ r) = O(e−α(log(r/L))p) = O(e−α(log r)p),

and therefore, fθ(X) ∈ Lpα. Unlike exponential-type tails, Lipschitz transforms of logarithmic-
type tails not only remain logarithmic, but their tails decay no slower than a logarithmic-type
tail of the same class index with the same tail parameter α. This upper bound suffices to
show closure under Lipschitz maps for the ascending family Lpα.

Note that Lpα ⊃ Eqβ for all p, q, α, β, so Theorem 6.1 by itself does not preclude transforma-
tions of fat-tailed base distributions to light-tailed targets. Under additional assumptions on
fθ, we further establish a partial converse that a fat-tailed base distribution’s tail parameter
is unaffected after pushforward, hence heavy-to-light transformations are impossible. Note
here there is no ascending union over tail parameters (i.e., Lpα instead of Lpα).

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 96

Corollary 6.1 (Closure of Lpα) If in addition fθ is smooth with no critical points on the
interior or boundary of its domain, then Lpα is closed.

This implies that simply fixing a fat-tailed base distribution a priori is insufficient;
the tail-parameter(s) of the base distribution must be explicitly optimized alongside the
other variational parameters during training. While these additional assumptions may seem
restrictive, note that many flow transforms explicitly enforce smoothness and monotonicity
[WL19; Hua+18; Dur+19] and hence satisfy the premises.
Proof [Proof of Corollary 6.1] Let fθ be as before with the additional assumptions. Since fθ
is a smooth continuous bijection, it is a diffeomorphism. Furthermore, by assumption fθ has
invertible Jacobian on the closure of its domain hence supx∈dom fθ

|(fθ)′(x)| ≥M > 0. By the
inverse function theorem, (fθ)−1 exists and is a diffeomorphism with

d

dx
(fθ)

−1(x) =
1

(fθ)′((fθ)−1(x))
≤ 1

M
.

Therefore, (fθ)−1 is M−1-Lipschitz and we may apply Theorem 6.1 to conclude the desired
result.

In fact, we can show a version of Theorem 6.1 ensuring closure of exponential-type
distributions under polynomial transport maps which do not satisfy Assumption 6.1. This
is significant because it extends the closure results to include polynomial flows such as
sum-of-squares flows [JSY19].

Corollary 6.2 (Closure under polynomial maps) For any α, β, p, q ∈ R+, there does
not exist a finite-degree polynomial map from Epα into Lqβ.

Proof [Proof of Corollary 6.2] Let X ∈ Epα. By considering sufficiently large X such that
leading powers dominate, it suffices to consider monomials Y = Xk. Notice P(Y ≥ x) =

P(X ≥ x1/k) = Θ(e−αx
p/k

), and so Y ∈ Ep/kα . The result follows by disjointedness of E and L.

Multivariate Fat-Tails and Anisotropic Tail Adaptive Flows
Next, we restrict attention to power-law tails L1

α, and we develop a multivariate fat-tailed
theory and notions of isotropic/anisotropic tail indices. Using our theory, we prove that both
ADVI and TAF are fundamentally limited because they are only capable of fitting tail-isotropic
target measures (Proposition 6.1). We consider anisotropic tail adaptive flows (ATAF): a
density modeling method which can represent tail-anisotropic distributions (Remark 6.1).

For example, consider the target distribution shown earlier in Figure 6.1 formed as the
product of N (0, 1) and StudentT(ν = 1) distributions. The marginal/conditional distribution

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 97

along a horizontal slice (e.g., the distribution of 〈X, e0〉) is fat-tailed, while along a vertical
slice (e.g., 〈X, e1〉) it is Gaussian. Another extreme example of tail-anisotropy where the tail
parameter for 〈X, v〉 is different in every direction v ∈ S1 is given in Figure 6.2. Here Sd−1

denotes the (d− 1)-sphere in d dimensions. Noting that the tail parameter depends on the
choice of direction, we are motivated to consider the following direction-dependent definition
of multivariate tail parameters.

Definition 6.4 For a d-dimensional random vector X, its tail parameter function αX :
Sd−1 → R̄+ is defined as αX(v) = − limx→∞ logP(〈v,X〉 ≥ x)/ logx when the limit exists,
and αX(v) = +∞ otherwise. In other words, αX(v) maps directions v into the tail parameter
of the corresponding one-dimensional projection 〈v,X〉. The random vector X is tail-isotropic
if αX(v) ≡ c is constant and tail-anisotropic if αX(v) is not constant but bounded.

−4 −2 0 2 4
−5.0

−2.5

0.0

2.5

5.0

θ

eθ

0 2 4 6
θ

1

2

3
α
(θ
)

eθ = e0, θ = 0

eθ = e1, θ = π/2

Figure 6.2: Illustration of the direction-dependent tail-parameter function (right) on a
tail-anisotropic distribution (left) with PDF dP (r, θ) = r−α(θ)rdrdθ and tail parameter
α(θ) = 2 + cos(2θ). While prior fat-tailed theory based on ‖X‖2 = sup‖v‖2=1 〈X, v〉 is only
sensitive to the largest tail parameter maxθ∈[0,2π] α(θ) = 3.0, our direction-dependent tail
parameter function (bottom, red line) and its values along the standard basis axes (α(0) and
α(π/2)) capture tail-anisotropy.

Example of Non-existence of Tail Parameter Due to Oscillations

Of course, one can construct pathological densities where this definition is not effective. As a
degenerate example, consider StudentT(ν = 1)⊗ StudentT(ν = 2) and “spin” it using the
radial transformation (r, θ) 7→ (r, r + θ) (Figure 6.3). Due to oscillations, αX(v) is not well
defined for all v ∈ S1.

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 98

−10 0 10
−10

−5

0

5

10
StudentT(1)⊗ StudentT(2)

−10 0 10
−10

−5

0

5

10
After spin transform

0 100

−510.0

−507.5

−505.0

−502.5

log p(x, y = 0)

Figure 6.3: Taking a tail-anisotropic distribution (left) and “spinning” it (middle) results in
one-dimensional projections which oscillate between tail parameters (as seen in log p(〈X, e0〉)
in right panel) and result in an ill-defined direction-dependent tail parameter function αX(·)
due to a divergent limit.

Comparison versus TAF

It is illustrative to contrast with the theory presented for TAF [Jai+20], where only the tail
exponent of ‖X‖2 is considered. For X = (X1, . . . , Xd) with Xi ∈ L1

αi
, by Fatou-Lebesgue

and Lemma 6.1

P[‖X‖2 ≥ t] = P
[

sup
z∈Sd−1

〈X, z〉 ≥ t

]
≥ sup

z∈Sd−1

P[〈X, z〉 ≥ t] = max
1≤i≤d

νi = max
0≤i≤d−1

αX(ei).

Therefore, considering only the tail exponent of ‖X‖2 is equivalent to summarizing αX(·)
by an upper bound. Given the absence of the tail parameters for other directions (i.e.,
αX(v) 6= sup‖v‖=1 αX(v)) in the theory for TAF [Jai+20], it should be unsurprising that both
their multivariate theory as well as their experiments only consider tail-isotropic distributions
obtained either as an elliptically-contoured distribution with fat-tailed radial distribution
or
∏d

i=1 StudentT(ν) (tail-isotropic by Lemma 6.1). Our next proposition shows that this
presents a significant limitation when the target distribution is tail-anisotropic.

Proposition 6.1 (Pushforwards of tail-isotropic distributions) Let µ be tail isotropic
with non-integer parameter ν and suppose fθ satisfies Assumption 6.1. Then (fθ)∗µ is tail
isotropic with parameter ν.

To show Proposition 6.1, we will require a few extra assumptions to rule out pathological
cases. The full content of Proposition 6.1 is contained in the following theorem.

Theorem 6.2 Suppose there exists ν > 0 such that C : Sd−1 → (0,∞) satisfies C(v) :=
limx→∞ xνP(|〈v,X〉| > x) for all v ∈ Sd−1. If ν is not an integer and f is a bilipschitz
function, then f(X) is tail-isotropic with tail index ν.

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 99

Proof Since x 7→ 〈v, f(x)〉 is Lipschitz continuous for any v ∈ Sd−1, Theorem 6.1 implies
〈v, f(X)〉 ∈ L1

ν . Let θ ∈ (0, π/2) (say, θ = π/4), and let Sv = {x : cos−1(〈x/‖x‖, v〉) ≤ θ}
for each v ∈ Sd−1. Then

Hv := {x : 〈v, x〉 > 1} ⊃ {x : ‖x‖ > (1− cos θ)−1} ∩ Sv.

From Theorem C.2.1 of Buraczewski et al. [BDM16], since ν 6∈ Z, there exists a non-zero
measure µ such that

µ(E) = lim
x→∞

P(x−1X ∈ E)

P(‖X‖ > x)
,

for any Borel set E. Consequently, µ is regularly varying, and so by the spectral representation
of regularly varying random vectors (see p. 281 Buraczewski et al. [BDM16]), there exists a
measure P such that

lim
x→∞

P(‖X‖ > tx,X/‖X‖ ∈ E)

P(‖X‖ > x)
= t−νP (E),

for any Borel set E on Sd−1 and any t > 0. Letting Fv = {y/‖y‖ : f(y) ∈ Sv} ⊂ Sd−1

(noting that P (Fv) > 0 by assumption), since m‖x− y‖ ≤ ‖f(x)− f(y)‖ ≤M‖x− y‖ for all
x, y,

lim inf
x→∞

P(f(X) ∈ xHv)

P(‖f(X)‖ > x)
≥ lim inf

x→∞

P(‖f(X)‖ > x(1− cos θ)−1, f(X) ∈ Sv)

P(‖f(X)‖ > x)

≥ lim inf
x→∞

P(‖X‖ > x(m(1− cos θ))−1, X/‖X‖ ∈ Fv)

‖X‖ > x/M

≥ P (Fv)

(
M

m(1− cos θ)

)−ν

> 0, yaB

where P (Fv) > 0 follows from the bilipschitz condition for f . Therefore, we have shown that
P(〈v, f(X)〉 > x) = Θ(P(‖f(X)‖ > x)) for every v ∈ Sd−1. Since P(‖f(X)‖ > x) obeys a
power law with exponent ν by Corollary 6.1, f(X) is tail-isotropic with exponent ν.

Anisotropic tail adaptive flows

To work around this limitation without relaxing Assumption 6.1, it is evident that tail-
anisotropic base distributions µ must be considered. Perhaps the most straightforward
modification to incorporate a tail-anisotropic base distribution replaces TAF’s isotropic base
distribution

∏d
i=1 StudentT(ν) with

∏d
i=1 StudentT(νi). Note that ν is no longer shared

across dimensions, enabling d different tail parameters to be represented:

Definition 6.5 Anisotropic Tail-Adaptive Flows (ATAF) comprise the variational family
QATAF := {(f ◦ ΦFlow)∗µν}, where µν =

∏d
i=1 StudentT(νi), each νi is distinct, and f is a

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 100

bijection between constrained supports [Kuc+17]. Analogous to Jaini et al. [Jai+20], ATAF’s
implementation treats νi identically to the other parameters in the flow and jointly optimizes
over them.

Remark 6.1 Anisotropic tail-adaptive flows can represent tail-anisotropic distributions with
up to d different tail parameters while simultaneously satisfying Assumption 6.1. For example,
if ΦFlow = Identity and µν =

∏d
i=1 StudentT(i) then the pushforward (ΦFlow)∗µν = µν is

tail-anisotropic.

Naturally, there are other parameterizations of the tail parameters νi that may be more
effective depending on the application. For example, in high dimensions, one might prefer
not to allow for d unique indices, but perhaps only fewer. On the other hand, by using only
d tail parameters, an approximation error will necessarily be incurred when more than d
different tail parameters are present. Figure 6.2 presents a worst-case scenario where the
target distribution has a continuum of tail parameters. In theory, this density could itself
be used as an underlying base distribution, although we have not found this to be a good
option in practice. The key takeaway is that to capture several different tails in the target
density, one must consider a base distribution that incorporates sufficiently many distinct
tail parameters.

Concerning the choice of StudentT families, we remark that since StudentT(ν)⇒ N (0, 1)
as ν →∞, ATAF should still provide reasonably good approximations to target distributions
in E2 by taking ν sufficiently large. This can be seen in practice in Section 6.4.

6.4 Experiments
Here we validate ATAF’s ability to improve a range of probabilistic modeling tasks. Prior
work [Jai+20] demonstrated improved density modelling when fat tails are considered, and
our experiments are complementary by evaluating TAFs and ATAFs for variational inference
tasks as well as by demonstrating the effect of tail-anisotropy for modelling real-world financial
returns and insurance claims datasets. We implement using the beanmachine probabilistic
programming language [Teh+20a] and the flowtorch library for normalizing flows [Flo21],
and we have open-sourced code for reproducing experiments in Supplementary Materials.

All experiments were performed on an Intel i8700K with 32GB RAM and a NVIDIA
GTX 1080 running PyTorch 1.9.0 / Python 3.8.5 / CUDA 11.2 / Ubuntu Linux 20.04 via
Windows Subsystem for Linux.

Toy Examples
Normal-normal Conjugate Model

We consider a Normal-Normal conjugate inference problem where the posterior is known to
be a Normal distribution as well. Here, we aim to show that ATAF performs no worse than

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 101

ADVI because StudentT(ν) → N(0, 1) as ν → ∞. Figure 6.4 shows the resulting density
approximation, which can be seen to be reasonable for both a Normal base distribution (the
“correct” one) and a StudentT base distribution. This suggests that mis-specification (i.e.,
heavier tails in the base distribution than the target) may not be too problematic.

Figure 6.4: Variational inference against a light tailed Normal posterior. Both light and
heavy tail variational families yield similar results.

Experiments Performing VI Against a Fat-tailed Cauchy Target

The motivation for the fat-tailed variational families used in TAF/ATAF is easily illustrated
on a toy example consisting of X ∼ Cauchy(x0 = 0, γ = 1) ∈ L1

1. As seen in Figure 6.5,
while ADVI with normalizing flows [Kin+16; Web+19a] appears to provide a reasonable fit
to the bulk of the target distribution (left panel), the improper imposition of sub-Gaussian
tails results in an exponentially bad tail approximation (middle panel). As a result, samples
drawn from the variational approximation fail a Kolmogorov-Smirnov goodness-of-fit test
against the true target distribution much more often (right panel, smaller p-values imply
more rejections) than a variational approximation which permits fat-tails. This example is a
special case of Theorem 6.1.

Real-World Datasets
For all flow-transforms ΦFlow, we used inverse autoregressive flows [Kin+16] with a dense
autoregressive conditioner consisting of two layers of either 32 or 256 hidden units depending
on problem (see code for details) and ELU activation functions. As described in Jaini et al.

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 102

−5 0 5
x

0.0

0.1

0.2

0.3

p(x)

0 10
x

10−7

10−4

10−1

log p(x)

0 1
p-value

0

50

100

150

C
o
u
n
t

K-S p-values

ADVI

ATAF

Target

Figure 6.5: When performing FTVI to approximate a X ∼ Cauchy(x0 = 0, γ = 1) target
(left panel, green dotted line), the use of a Gaussian variational family (ADVI, solid blue
line) can incur exponentially bad tail approximations (middle panel) compared to methods
such as ATAF which permit heavier tails (orange dashed line). As a consequence, ADVI
samples (blue, right panel) are rejected by the Kolmogorov-Smirnov test more often than
ATAF samples (orange, right panel).

[Jai+20], TAF is trained by including ν within the Adam optimizer alongside other flow
parameters. For ATAF, we include all νi within the optimizer. Models were trained using
the Adam optimizer with 10−3 learning rate for 10000 iterations, which we found empirically
in all our experiments to result in negligible change in ELBO at the end of training.

For table 6.2a and table 6.2b, the flow transform ΦFlow used for ADVI, TAF, and ATAF
is comprised of two hidden layers of 32 units each. NUTS uses no such flow transform.
Variational parameters for each normalizing flow were initialized using torch’s default
Kaiming initialization [He+15] Additionally, the tail parameters νi used in ATAF were
initialized to all be equal to the tail parameters learned from training TAF. We empirically
observed this resulted in more stable results (less variation in ELBO / log p(y) across trials),
which may be due to the absence of outliers when using a Gaussian base distribution resulting
in more stable ELBO gradients. This suggests other techniques for handling outliers such as
winsorization may also be helpful, and we leave further investigation for future work.

For fig. 6.6, the closed-form posterior was computed over a finite element grid to produce
the “Target” row. A similar progressive training scheme used for table 6.2a was also used
here, with the TAF flow transform ΦFlow initialized from the result of ADVI and ATAF
additionally initialized all tail parameters νi based on the final shared tail parameter obtained
from TAF training. Tails are computed along the β = 1 or σ = 1 axes because the posterior
is identically zero for σ = 0, hence it reveals no information about the tails.

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 103

2.5 5.0 7.5
σ

−2

0

2

β

p(β, σ)

T
ar
ge
t

0.0 0.5 1.0
σ ×106

−8

−7

p(β = 1, σ)

0.0 0.5 1.0
β ×106

−5

0
×1011p(β, σ = 1)

2.5 5.0 7.5
σ

−2

0

2

β

G
au
ss
ia
n

0.0 0.5 1.0
σ ×106

−5

0
×1012

0.0 0.5 1.0
β ×106

−5

0
×1010

2.5 5.0 7.5
σ

−2

0

2

β

T
A
F

0.0 0.5 1.0
σ ×106

−80

−60

0.0 0.5 1.0
β ×106

−100

−75

2.5 5.0 7.5
σ

−2

0

2

β

A
T
A
F

0.0 0.5 1.0
σ ×106

−30

−25

0.0 0.5 1.0
β ×106

−5

0
×1010

Figure 6.6: Bayesian linear regression’s tail-anisotropic posterior (top left) exhibits a fat-tailed
conditional in σ (as evidenced by the convex power-law decay in the top middle panel) and a
Gaussian conditional in β (concave graph in top right panel). While all methods appear to
provide a good approximation of the bulk (left column), Proposition 6.1 implies Gaussian
(Gaussian, second row) or isotropic StudentT product (TAF, third row) base distributions
yield Gaussian or power-law tails, respectively, for both σ and β. In contrast, ATAF (bottom
row) illustrates Remark 6.1 by modeling simultaneously a power-law tail on σ and Gaussian
tail on β.

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 104

ELBO log p(y)

ADVI 2873.90± 6.95 2969.73± 1.73
TAF 2839.64± 9.10 2973.85± 0.87

ATAF 2842.75± 8.83 2976.75± 0.66
NUTS n/a 3724.59± 0.036

(a) diamonds

ELBO log p(y)

ADVI −72.13± 6.89 −53.25± 3.44
TAF −64.64± 4.88 −52.51± 4.41

ATAF −58.63± 4.75 −51.01± 3.71
NUTS n/a −47.78± 0.093

(b) Eight schools

Table 6.2: Monte-Carlo ELBO and importance weighted Monte-Carlo marginal likelihood
p(y) = Ex∼qθ

p(x,y)
qθ(x)

(higher is better, ± standard errors) estimates from VI on real-world
datasets. To understand the variational approximation gap, we include marginal likelihoods
based on “golden samples” from posteriordb [The21] computed using No-U-Turn-Sampling
(NUTS, Hoffman et al. [HG14] and Carpenter et al. [Car+17]).

Fama-French 5 Industry Daily CMS 2008-2010 DE-SynPUF

ADVI −5.018± 0.056 −1.883± 0.012
TAF −4.703± 0.023 −1.659± 0.004

ATAF −4.699± 0.024 −1.603± 0.034

Table 6.3: Log-likelihoods (higher is better, ± standard errors) achieved on density modeling
tasks involving financial returns [FF15] and insurance claims [Cen10] data.

Bayesian Linear Regression
Consider one-dimensional Bayesian linear regression (BLR) with conjugate priors, defined by
priors and likelihood

σ2 ∼ Inv-Gamma(a0, b0)
β | σ2 ∼ N (0, σ2), y | X, β, σ ∼ N (Xβ, σ2),

where a0, b0 are hyperparameters and the task is to approximate the posterior distribution
p(β, σ2 | X, y). Owing to conjugacy, the posterior distribution can be explicitly computed.
Indeed, p(β, σ2 | X, y) = ρ(σ2)ρ(β | σ) where ρ(β | σ) = N (Σn(X

>Xβ̂), σ2Σn), Σn =
(X>X + σ−2)−1, β̂ = (X>X)−1X>y, and

ρ(σ2) = Inv-Gamma
(
a0 +

n

2
, b0 +

1

2
(y>y − µ>

nΣnµn)

)
.

This calculation reveals that the posterior distribution is tail-anisotropic: for fixed c we have
that p(σ2, β = c | X, y) ∝ ρ(σ2) ∈ L1

αn
as a function of σ (with αn a function of n) and

p(σ2 = c, β | X, y) ∝ ρ(β | c) ∈ E2 as a function of β. As a result of Proposition 6.1, we

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 105

expect ADVI and TAF to erroneously impose Gaussian and power-law tails respectively for
both β and σ2 as neither method can produce a tail-anisotropic pushforward. This intuition
is confirmed in Figure 6.6, where we see that only ATAF is the only method capable of
modeling the tail-anisotropy present in the data.

Conducting Bayesian linear regression is among the standard tasks requested of a prob-
abilistic programming language, yet it still displays tail-anisotropy. To accurately capture
large quantiles, this tail-anisotropy should not be ignored, necessitating a method such as
ATAF.

Diamond Price Prediction Using Non-Conjugate Bayesian
Regression
Without conjugacy, the BLR posterior is intractable and there is no reason a priori to expect
tail-anisotropy. Regardless, this presents a realistic and practical scenario for evaluating
ATAF’s ability to improve VI. For this experiment, we consider BLR on the diamonds
dataset [Wic11] included in posteriordb [The21]. This dataset contains a covariate matrix
X ∈ R5000×24 consisting of 5000 diamonds each with 24 features as well as an outcome variable
y ∈ R5000 representing each diamond’s price. The probabilistic model for this inference task
is specified in Stan code provided by The Stan Developers [The21] and is reproduced here for
convenience:

α ∼ StudentT(ν = 3, loc = 8, scale = 10)

σ ∼ HalfStudentT(ν = 3, loc = 0, scale = 10)

β ∼ N (0, I24), y ∼ N (α +Xβ, σ).

For each VI method, we performed 100 trials each consisting of 5000 descent steps on
the Monte-Carlo ELBO estimated using 1000 samples and report the results in Table 6.2a.
We report both the final Monte-Carlo ELBO as well as a Monte-Carlo importance-weighted
approximation to the log marginal likelihood log p(y) = logEx∼qθ

p(x,y)
qθ(y)

both estimated using
1000 samples.

Eight Schools SAT Score Modelling with Fat-tailed Scale Mixtures
The eight-schools model [Rub81; Gel+13] is a classical Bayesian hierarchical model used
originally to consider the relationship between standardized test scores and coaching programs
in place at eight schools. A variation using half Cauchy non-informative priors [Gel+06]
provides a real-world inference problem involving fat-tailed distributions, and is formally
specified by the probabilistic model

τ ∼ HalfCauchy(loc = 0, scale = 5)

µ ∼ N (0, 5), θ ∼ N (µ, τ), y ∼ N (θ, σ).

CHAPTER 6. FAT-TAILED VARIATIONAL INFERENCE 106

Given test scores and standard errors {(yi, σi)}8i=1, we are interested in the posterior dis-
tribution over treatment effects θ1, . . . , θd. The experimental parameters are identical to
Section 6.4, and results are reported in Table 6.2b.

Financial and Actuarial Applications
To examine the advantage of tail-anisotropic modelling in practice, we considered two
benchmark datasets from financial (daily log returns for five industry indices during 1926–2021
[FF15]) and actuarial (per-patient inpatient and outpatient cumulative Medicare/Medicaid
(CMS) claims during 2008–2010 [Cen10]) applications where practitioners actively seek to
model fat-tails and account for black-swan events. Identical flow architectures and optimizers
were used in both cases, with log-likelihoods presented in Table 6.3. Both datasets exhibited
superior fits after allowing for heavier tails, with a further improved fit using ATAF for the
CMS claims dataset.

6.5 Conclusion
In this work, we have sharpened existing theory for approximating fat-tailed distributions
with normalizing flows, and we formalized tail-(an)isotropy through a direction-dependent
tail parameter. With this, we have shown that many prior flow-based methods are inherently
limited by tail-isotropy. With this in mind, we proposed a simple flow-based method capable
of modeling tail-anisotropic targets. As we have seen, anisotropic FTVI is already applicable
in fairly elementary examples such as Bayesian linear regression; and ATAFs provide one
of the first methods for using the representational capacity of flow-based methods, while
simultaneously producing tail-anisotropic distributions. A number of open problems still
remain, including the study of other parameterizations of the tail behaviour of the base
distribution. Even so, going forward, it seems prudent that density estimators, especially
those used in black-box settings, consider accounting for tail-anisotropy using a method such
as ATAF.

107

Chapter 7

The generalized gamma tail algebra

Whereas previous chapters considered adaptive methods which learn an approximation’s
bulk (Chapter 5) and tail (Chapter 6) from samples, in this chapter we develop a systematic
approach for analyzing the tails of random variables during the static analysis (before drawing
samples) pass of a probabilistic programming language (PPL) compiler. To characterize
how the tails change under algebraic operations, we develop an algebra acting on a three-
parameter family of tail asymptotics based on the generalized Gamma distribution. Our
algebraic operations are closed under addition and multiplication, capable of distinguishing
sub-Gaussians with differing scales, and handle ratios sufficiently well to reproduce the tails
of most important statistical distributions directly from their definitions. Our experiments
confirm that inference algorithms leveraging generalized Gamma algebra metadata attain
superior performance across a number of density modeling and variational inference tasks.
Parts of this chapter have been submitted for peer review as Feynman Liang, Liam Hodgkinson,
and Michael Mahoney. “Static Analysis of Tail Behaviour with a Generalized Gamma Algebra”.
In: Submitted to AISTATS 2023 (2023).

7.1 Introduction
To facilitate efficient probabilistic modelling and inference, modern probabilistic programming
languages (PPLs) draw upon recent developments in functional programming [Tol+16],
programming languages [Ber19], and deep variational inference [Bin+19]. Despite their
broadening appeal, common pitfalls such as mismatched distribution supports [Lee+19] and
non-integrable expectations [WLL18; Veh+15; Yao+18a] remain uncomfortably commonplace
and challenging to debug. Recent innovations aiming to improve PPLs have automated
verification of distribution constraints [Lee+19], tamed noisy gradient estimates [Esl+16] and
unruly density ratios [Veh+15; WLL18], and approximated high-dimensional distributions
with non-trivial bulks [Pap+21] and non-Gaussian tails [Jai+20].

Continuing this line of work, here we we consider how to statically analyze a probabilistic
program in order to automate the inference of tail behavior for any random variables present.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 108

At present, correct inference of tail behaviour for target distributions remains an outstanding
issue [Yao+18a; WLL18], which causes challenges for downstream Monte Carlo tasks. For
example, importance sampling estimators can exhibit infinite variance if the tail of the
approximating density is lighter than the target. Most prominent black-box variational
inference methods are incapable of changing their tail behaviour from an initial proposal
distribution [Jai+20; LHM22]. MCMC algorithms may also lose ergodicity when the tail of
the target density falls outside of a particular family [RT96]. All of these issues could be
avoided if the tail of the target is known before runtime.

To classify tail asymptotics and define calibration, we propose a three-parameter family
based on the generalized Gamma distribution (eq. (7.2)) which interpolates between estab-
lished asymptotics on sub-Gaussian [Led01] and regularly varying [Mik99] random variables.
Algebraic operations on random variables can be lifted to computations on the tail parameters
resulting in what we call the generalized Gamma algebra (GGA). Through analyzing opera-
tions like X + Y , X2, and X/Y at the level of densities (e.g. additive convolution pX ⊕ pY),
the tail parameters of a target density can be estimated from the parameters of any input
distributions using Table 7.1.

Operationalizing the GGA, we propose tail inferential static analysis analogous to tradi-
tional type inference and provide a reference implementation using the beanmachine graph
[Teh+20a] PPL compiler. GGA tail metadata can be used to diagnose and address tail-related
problems in downstream tasks, such as employing Riemannian-manifold methods [GC11]
to sample heavy tails or pre-emptively detect unbounded expectations. Here, we consider
density estimation and variational inference where we use the GGA-computed tail of the
target density to calibrate our density approximation. When composed with a learnable
Lipschitz pushforward map (Section 7.4), the resulting combination is a flexible density
approximator with provably calibrated tails.

Contributions

• The GGA is introduced, generalizing prior work on classifying tail asymptotics while
including both sub-Gaussian / sub-exponentials [Led01] as well as power-law / Pareto-
based tail indices [CSN09]. Composing operations outlined in table 7.1, one can compute
the GGA tail class for downstream random variables of interest.

• The GGA is implemented in the static analysis phase of a PPL compiler. This unlocks the
ability to leverage GGA metadata in order to better tailor the emitted inference algorithm.

• Finally, we propose and evaluate a density estimator which combines GGA tails with
normalizing flows in order to simultaneously achieve good bulk approximation as well as
correct tails.

7.2 Related Work
Heavy tails and probabilistic machine learning

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 109

Analyze Target Calibrate Tails Refine Bulk

(1) (2) (3) (4)

Figure 7.1: Our overall approach for density approximations with calibrated tails. A generative
model expressed in a PPL (1) and analyzed using the GGA (2) to compute the tail parameters
of the target. A representative distribution with calibrated tails is chosen for the initial
approximation (3) and a learnable Lipschitz pushforward (see Lemma 7.2) is optimized (4)
to correct the bulk approximation.

For studying heavy tails, methods based on subexponential distributions [GK98] and
generalized Pareto distributions (GPD) or equivalently regularly varying distributions [Taj03]
have received attention historically. Mikosch [Mik99] presents closure theorems for regularly
varying which are special cases of Proposition 7.1 and Lemma 7.2. Heavy tails can impact
probabilistic machine learning methods in a number of ways. The observation that density
ratios p(x)

q(x)
tend to be heavy tailed has resulted in new methods for smoothing importance

sampling [Veh+15], adaptively modifying divergences [WLL18], and diagnosing variational
inference through the Pareto k̂ diagnostic [Yao+18a]. These works are complementary to our
paper and our reported results include k̂ diagnostics for VI and α̂ tail index estimates based
on GPD.

Our work considers heavy-tailed targets p(x) which is the same setting as Jaini et al.
[Jai+20] and Liang et al. [LHM22]. Whereas those respective works lump the tail parameter
in as another variational parameter and may be more generally applicable, the GGA may be
applied before samples are drawn and leads to perfectly calibrated tails when applicable.

Probabilistic programming
PPLs can be characterized by the primary use case optimized for, whether that’s Gibbs

sampling over Bayes nets [Spi+96; Val+17], stochastic control flow [Goo+12; WSG11], deep
stochastic variational inference [Tra+18; Bin+19], or Hamiltonian Monte-Carlo [Car+17;
Xu+20]. Our implementation target beanmachine [Teh+20a] is a declarative PPL selected
due to availability of a PPL compiler and support for static analysis plugins. Similar to
Bingham et al. [Bin+19] and Siddharth et al. [Sid+17], it uses PyTorch [Pas+19] for GPU
tensors and automatic differentiation. Synthesizing an approximating distribution during

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 110

PPL compilation (Section 7.4) is also performed in the Stan language by Kucukelbir et al.
[Kuc+17] and normalizing flow extensions in Webb et al. [Web+19b]. We compare directly
against these related density approximators in Section 7.5.

Static analysis
There is a long history of formal methods and probabilistic programming [Koz79; JP89].

While much of the research [Cla+13] is concerned with defining formal semantics and
establishing invariants [WHR18] See [Ber19] for a recent review. Static analysis utilizes the
abstract syntax tree (AST) representation of a program in order to compute invariants (e.g.
the return type of a function, the number of classes implementing a trait) without executing
the underlying program. As dynamic analysis in PPLs is less reliable due to non-determinism,
static analysis methods for PPLs become increasingly important.

Within PPLs, static analysis has traditionally been applied in the context of formalizing
semantics [Koz79] and has been used to verify probabilistic programs by ensuring termination,
bounding random values values [SCG13]. [Lee+19] proposes a static analyzer for the Pyro
PPL [Bin+19] to verify distribution supports and avoid −Inf log probabilities.

More relevant to our work are applications of static analysis to improve inference. Nori
et al. [Nor+14] statically analyzes a probabilistic program and computes pre-images of
observations in order to better adapt MCMC proposal distributions. While we also perform
static analysis over abstract syntax tree (AST) representations of a probabilistic program,
applying GGA yields an upper bound on the tails of all random variables so that calibrated
tails can be imposed on distribution estimates.

7.3 The Generalized Gamma Algebra
Here we formulate an algebra of random variables that is closed under most standard
elementary operations (addition, multiplication, powers) which forms the foundation for our
static analysis.

Definition 7.1 A random variable X is said to have a generalized Gamma tail if the Lebesgue
density of |X| satisfies

p|X|(x) ∼ cxνe−σx
ρ

, as x→∞, (7.1)
for some c > 0, ν ∈ R, σ > 0 and ρ ∈ R. Denote the set of all such random variables by G.

Consider the following equivalence relation on G: X ≡ Y if and only if 0 < p|X|(x)/p|Y |(x) <
+∞ for all sufficiently large x. The resulting equivalence classes can be represented by their
corresponding parameters ν, σ, ρ, and hence, we denote the class of random variables X
satisfying eq. (7.1) by (ν, σ, ρ). In the special case where ρ = 0, for a fixed ν < −1, each
class (ν, σ, 0) for σ > 0 is equivalent, and is denoted by R|ν|, representing regularly varying
tails. Our algebra operates on these equivalence classes of G, characterizing the change in
tail behaviour under various operations.

The form of eq. (7.1) and the name of the algebra is derived from the generalized Gamma
distribution.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 111

Ordering max{(ν1, σ1, ρ1), (ν2, σ2, ρ2)}

≡

(ν1, σ1, ρ1) if lim supx→∞
xν1e

−σ1x
ρ1

xν2e
−σ2x

ρ2 < +∞

(ν2, σ2, ρ2) otherwise.

Addition (ν1, σ1, ρ1)⊕ (ν2, σ2, ρ2)

≡


max{(ν1, σ1, ρ1), (ν2, σ2, ρ2)} if ρ1 6= ρ2 or ρ1, ρ2 < 1

(ν1 + ν2 + 1,min{σ1, σ2}, 1) if ρ1 = ρ2 = 1

(ν1 + ν2 +
2−ρ
2 , (σ

− 1
ρ−1

1 + σ
− 1

ρ−1

2)1−ρ, ρ) if ρ = ρ1 = ρ2 > 1.

Powers (ν, σ, ρ)β ≡ (ν+1
β − 1, σ, ρβ) for β > 0

Reciprocal* (ν, σ, ρ)−1 ≡

{
(−ν − 2, σ,−ρ) if (ν + 1)/ρ > 0 and ρ 6= 0

R2 otherwise
Scalar

Multiplica-
tion

c(ν, σ, ρ) ≡ (ν, σ/|c|ρ, ρ)

Multiplication
(ν1, σ1, ρ1)⊗ (ν2, σ2, ρ2)

≡



(
1
µ

(
ν1
|ρ1| +

ν2
|ρ2| +

1
2

)
, σ,− 1

µ

)
if ρ1, ρ2 < 0(

1
µ

(
ν1
ρ1

+ ν2
ρ2
− 1

2

)
, σ, 1

µ

)
if ρ1, ρ2 > 0

R|ν1| if ρ1 ≤ 0, ρ2 > 0

Rmin{|ν1|,|ν2|} if ρ1 = 0, ρ2 = 0

where µ = 1
|ρ1| +

1
|ρ2| =

|ρ1|+|ρ2|
|ρ1ρ2| , σ = µ(σ1|ρ1|)

1
µ|ρ1| (σ2|ρ2|)

1
µ|ρ2| .

Product of
Densities (ν1, σ1, ρ1)&(ν2, σ2, ρ2) ≡


(ν1 + ν2, σ1, ρ1) if ρ1 < ρ2

(ν1 + ν2, σ1 + σ2, ρ) if ρ = ρ1 = ρ2

(ν1 + ν2, σ2, ρ2) otherwise.
Functions

(L-Lipschitz) f(X1, . . . , Xn) ≡ Lmax{X1, . . . , Xn}

Table 7.1: Operations on random variables (e.g.X1 +X2) are viewed as actions on density
functions (e.g. convolution (ν1, σ1, ρ1)⊕ (ν2, σ2, ρ2)) and the tail parameters of the result are
analyzed and reported.

Definition 7.2 Let ν ∈ R, σ > 0, and ρ ∈ R\{0} be such that (ν+1)/ρ > 0. A non-negative
random variable X is generalized Gamma distributed with parameters ν, σ, ρ if it has Lebesgue
density

pν,σ,ρ(x) = cν,σ,ρx
νe−σx

ρ

, x > 0, (7.2)

where cν,σ,ρ = ρσ(ν+1)/ρ/Γ((ν + 1)/ρ) is the normalizing constant.

The importance of the generalized Gamma form arises due to a combination of two factors:

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 112

(i) The majority of interesting continuous univariate distributions with infinite support
satisfy eq. (7.1), including Gaussians (ν = 0, ρ = 2), gamma/exponential/chi-squared
(ν > −1, ρ = 1), Weibull/Frechet (ρ = ν + 1), and Student T/Cauchy/Pareto (Rν).
However, some notable exceptions include the log-normal distributions.

(ii) The set G is known to be closed under additive convolution, positive powers, and
Lipschitz functions — we will show it is closed under multiplicative convolution as well.
This covers the majority of elementary operations on independent random variables,
with reciprocals, exponentials and logarithms the only exceptions. However, we will
introduce a few “tricks” to handle these cases as well.

The full list of operations in GGA is compiled in table 7.1. All operations in the GGA can be
proven to exhibit identical behaviour with their corresponding operations on random variables,
with the sole exception of reciprocals (marked by asterisk), where additional assumptions are
required.

Illustrative examples
To further illustrate the GGA through example, in this section we work out explicit GGA
computations using distributions from table 7.2 and operations in table 7.1 and recover some
common probability identities.

Example 7.1 (Chi-squared random variables) Let X1, . . . , Xk be k independent stan-
dard normal random variables. The variable Z =

∑k
i=1 X

2
i is chi-squared distributed with

k degrees of freedom. Using the generalized Gamma algebra, we can accurately determine
the tail behaviour of this random variable directly from its construction. Recall that each
Xi ≡ (0, 1/2, 2), and by the power operation, X2

i ≡ (−1/2, 1/2, 1). Applying the addition
operation k times reveals that Z ≡ (k/2−1, 1/2, 1) and implies that the density of Z is asymp-
totically cxk/2−1e−x/2 as x→∞. In fact, the density of Z is exactly pZ(x) = ckx

k/2−1e−x/2

where ck = 2−k/2/Γ(k/2).

Example 7.2 (Products of random variables) To demonstrate the efficacy of the multi-
plication operation in our algebra, we consider the product of two exponential, Gaussian, and
reciprocal Gaussian random variables. In section 7.3, we manually prove the following.

Lemma 7.1 Let X1, X2 ∼ Exp(λ) and Z1, Z2 ∼ N (0, 1) be independent. The densities of
X1X2, Z1Z2 and Z = 1/Z1 · 1/Z2 satisfy as x→∞,

pX1X2(x) ∼
λ3/2
√
π

x1/4
e−2λ

√
x, pZ1Z2(x) ∼

1√
2πx

e−x, pZ(x) ∼
1√

2π|z|3/2
e−1/|z|.

With ease, our algebra correctly determines that X1X2 ≡ (−1
4
, 2λ, 1

2
), Z1Z2 ≡ (−1

2
, 1, 1) and

Z ≡ (−3
2
, 1,−1).

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 113

Example 7.3 (Reciprocal distributions) Perhaps the most significant challenge with a
tail algebra is correctly identifying the tail behaviour of reciprocal distributions. Here, we test
the efficacy of our formulation with known reciprocal distributions.

• Reciprocal normal: X ∼ N (0, 1) ≡ (0, 1/2, 2), and X−1 ≡ (−2, 1/2,−2).

• Inverse exponential: X ∼ Exp(λ) ≡ (0, λ, 1), and X−1 ≡ (−2, λ,−1).

• Inverse t-distribution: X ≡ Rν, and X−1 ≡ R2.

• Inverse Cauchy: X ≡ R2, it is known X−1 has the same distribution and our theory
predicts X−1 ≡ R2.

Example 7.4 (Cauchy distribution) A simple special case of the Student T distribution
is the Cauchy distribution, which arises as the ratio of two standard normal random variables.
For X ∼ N (0, 1), X ≡ (0, 1/2, 2) and X−1 ≡ (−2, 1/2,−2). Hence, the multiplication
operation correctly predicts that the ratio of two standard normal random variables is in R2.

Example 7.5 (Student T distribution) Let X be a standard normal random variable,
and V a chi-squared random variable with ν degrees of freedom. The random variable
T = X/

√
V /ν is t-distributed with ν degrees of freedom. Since V ≡ (ν/2 − 1, 1/2, 1),

multiplying by the constant 1/ν reveals V /ν ≡ (ν/2 − 1, 1/(2ν), 1). Applying the square
root operation,

√
V /ν ≡ (ν − 1, 1/(2ν), 2). To compute the division operation, we first take

the reciprocal to find (V /ν)−1/2 ≡ (−ν − 1, 1/(2ν),−2). Finally, since ρ = −2 < 1 for this
random variable, the multiplication operation with X ≡ (0, 1/2, 2) yields T ≡ Rν+1, and
so the density of T is asymptotically cx−ν−1 as x → ∞. Indeed, the density of T satisfies
pT (x) = cν(1 + x2/ν)−(ν+1)/2 where cν = Γ(ν+1

2
)/Γ(ν

2
)(νπ)−1/2, which exhibits the predicted

tail behaviour.

Example 7.6 Log-normal distribution Although the log-normal distribution does not lie in
G, the existence of log-normal tails arising from the multiplicative central limit theorem is
suggested by our algebra. Let X1, X2, . . . be independent standard normal random variables
and let Zk = X1 · · ·X2k for each k = 1, 2, By the multiplicative central limit theorem,
letting τ = exp(E log |Xi|) ≈ 1.13,

(
X1···Xn

τ

)1/√n converges in distribution as n → ∞ to a
log-normal random variable Z with density

pZ(x) =
1

x
√
2π

exp(−1
2
(logx)2).

Therefore, the same is true for Vk = (Zk/τ)
2−k/2. Using our algebra, we will attempt to

reproduce the tail of this density. Letting Z̃k = X2k · · ·X2k+1, we see that Zk+1 = ZkZ̃k,
and Zk, Z̃k are iid. Let Zk ≡ (νk, σk, ρk), by induction using the multiplication operation,
we find that νk+1 = 1

µ

(
2νk
ρk
− 1

2

)
= νk − ρk

4
, σk+1 = µ (σkρk)

2
µρk = 2

ρk
(σkρk) = 2σk, and

ρk+1 =
1
µ
= ρk

2
. Since ρ0 = 2, σ0 = 1/2, and ν0 = 0, we find that ρk = 21−k and σk = 2k−1.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 114

Furthermore, νk+1 = νk−2−k−1 and so νk = −1+2−k. Therefore Zk ≡ (−1+2−k, 2k−1, 21−k),
and

Vk ≡ (−1 + 2−k/2, 2k−1τ−21−k

, 21−k/2),

and letting εk = 2−k/2, the tail behaviour of the density of Vk satisfies

pk(x) ∼ ckx
−1+εk exp

(
− ε−2

k

2τ−2ε2k
x2εk

)
∼ ckx

−1+εk exp

(
− 1

2τ−2ε2k

(
xεk − 1

εk

)2
)
≈ ckx

−1 exp
(
−1

2
(logx)2

)
,

as x→∞, where the approximation improves as k gets larger. The quality of this approxi-
mation is shown in fig. 7.2.

Figure 7.2: Estimation of the log-normal density by tail algebra applied to Vk.

Operations in the Generalized Gamma Algebra
Whereas table 7.1 provides a summary of our theory useful for referencing, in this section we
provide additional explanation and references for how operations on random variables affect
their GGA tails.

Ordering. A total ordering is imposed on the equivalence classes of G according to the heav-
iness of tails. In particular, we say that (ν1, σ1, ρ1) ≤ (ν2, σ2, ρ2) if (xν1e−σ1xρ1)/(xν2e−σ2xρ2)
is bounded as x→∞. As usual, we say (ν1, σ1, ρ1) < (ν2, σ2, ρ2) if (ν1, σ1, ρ1) ≤ (ν2, σ2, ρ2)
but (ν1, σ1, ρ1) 6≡ (ν2, σ2, ρ2).

Addition. Tails of this form are closed under addition. Combining subexponentiality for
ρ < 1 [AA10, Chapter X.1], with [Asm+17, Thm 3.1 & eqn. (8.3)],

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 115

Proposition 7.1 Denoting the addition of random variables (additive convolution of densi-
ties) by ⊕,

(ν1, σ1, ρ1)⊕ (ν2, σ2, ρ2)

≡


max{(ν1, σ1, ρ1), (ν2, σ2, ρ2)} if ρ1 6= ρ2 or ρ1, ρ2 < 1

(ν1 + ν2 + 1,min{σ1, σ2}, 1) if ρ1 = ρ2 = 1

(ν1 + ν2 + 1− ρ
2
, (σ

− 1
ρ−1

1 + σ
− 1

ρ−1

2)1−ρ, ρ) if ρ = ρ1 = ρ2 > 1.

(7.3)

Powers. For all exponents β > 0, by invoking a change of variables x 7→ xβ, it is easy to
show that (ν, σ, ρ)β ≡

(
ν+1
β
− 1, σ, ρ

β

)
. We define negative powers and reciprocals equivalently

to positive powers in the case β < 0. This equivalence cannot be proven to hold in general since
we cannot determine tail asymptotics of the reciprocal without knowledge of its behaviour
around zero. Therefore, we implicitly assume that the behaviour around zero mimics the
tail behaviour, that is, eq. (7.1) holds as x → 0+. However, this can only hold provided
(ν + 1)/ρ > 0 and ρ 6= 0. In all other cases, including Rν , we assume that the density of X
approaches a nonzero value near zero, and define the reciprocal to be R2.

Multiplication. For any c ∈ R\{0}, it can be readily seen from a change of variables
x 7→ cx that c(ν, σ, ρ) = (ν, σ/|c|ρ, ρ). The class G is also closed under multiplication
(assuming independence of random variables), as we show in the following result — the proof
is delayed to Appendix C.

Proposition 7.2 Denoting the multiplication of independent random variables (multiplicative
convolution) by ⊗,

(ν1, σ1, ρ1)⊗ (ν2, σ2, ρ2) ≡



(
1
µ

(
ν1
|ρ1| +

ν2
|ρ2| +

1
2

)
, σ,− 1

µ

)
if ρ1, ρ2 < 0(

1
µ

(
ν1
ρ1

+ ν2
ρ2
− 1

2

)
, σ, 1

µ

)
if ρ1, ρ2 > 0

R|ν1| if ρ1 ≤ 0, ρ2 > 0

Rmin{|ν1|,|ν2|} if ρ1 = 0, ρ2 = 0

where µ = 1
|ρ1| +

1
|ρ2| =

|ρ1|+|ρ2|
|ρ1ρ2| and σ = µ(σ1|ρ1|)

1
µ|ρ1| (σ2|ρ2|)

1
µ|ρ2| .

Product of Densities. We can also consider a product of densities operation acting on
two random variables X,Y , denoted X&Y , by pX&Y (x) = cpX(x)pY (x), where c > 0 is an
appropriate normalizing constant and pX , pY , pX&Y are the densities of X, Y , and X&Y ,
respectively. In terms of the equivalence classes:

(ν1, σ1, ρ1)&(ν2, σ2, ρ2) ≡


(ν1 + ν2, σ1, ρ1) if ρ1 < ρ2

(ν1 + ν2, σ1 + σ2, ρ) if ρ = ρ1 = ρ2

(ν1 + ν2, σ2, ρ2) otherwise.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 116

Note that this particular operation does not require either pX or pY to be normalized —
only the tail behaviour is needed. We may also use this to work out the tail behaviour of a
posterior density, provided the tail behaviour of the likelihood in the parameters is known.

Lipschitz Functions. There are many multivariate functions that cannot be readily
represented in terms of the operations covered thus far. For these, it is important to specify
the tail behaviour of pushforward measures under Lipschitz-continuous functions. Fortunately,
this is covered by lemma 7.2 below, presented in [Led01, Proposition 1.3]. Hölder-continuous
functions can also be represented as a composition of a power operation and a Lipschitz-
continuous function.

Lemma 7.2 For any Lipschitz continuous function f : Rd → R satisfying ‖f(x)− f(y)‖ ≤
L‖x− y‖ for x, y ∈ Rd, there is f(X1, . . . , Xd) ≡ Lmax{X1, . . . , Xd}.

Power Law Approximation. Note that as x→∞, p|X|(x) ∼ cxνe−σx
ρ
= c̃xνe−σρ

xρ−1
ρ ≈

c̃xνe−σρ logx

p|X|(x) ∼ cxνe−σx
ρ

= c̃xνe−σ(x
ρ−0) = c̃xνe−σρ

xρ−1
ρ ≈ c̃xνe−σρ logx = c̃xν−σρ,

where we have used the approximation logx = ρ−2(xρ − 1) +O(ρ2). Consequently, we can
represent tails of this form by the Student t distribution with |ν − σρ| − 1 degrees of freedom.
In practice, we find this approximation tends to overestimate the heaviness of the tail.
Alternatively, the generalized Gamma density (7.2) satisfies EXr = σ−r/ρΓ(ν+1+r

ρ
)/Γ(ν+1

ρ
)

for r > 0. Let α > 0 be such that EXα = 2. By Markov’s inequality, the tail of X satisfies
P(X > x) ≤ 2x−α. Therefore, we can represent tails of this form by the Student t distribution
with α+ 1 degrees of freedom (generate X ∼ tα). In practice, we find this approximation to
be more accurate, and is hence used in Section 4.1.

List of univariate distributions
Here we provide an enumeration of common parametric distributions and their corresponding
GGA parameterizations.

Table 7.2: List of univariate distributions

Name Support Density p(x) Class

Benktander Type II (0,∞) e
a
b
(1−xb)xb−2(axb − b+ 1) (2b− 2, ab , b)

Beta prime distribution (0,∞) Γ(α+β)
Γ(α)Γ(β)x

α−1(1 + x)−α−β Rβ+1

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 117

Burr distribution (0,∞) ckxc−1(1 + xc)−k−1 Rck+1

Cauchy distribution (−∞,∞) (πγ)−1

[
1 +

(
x−x0
γ

)2]−1

R2

Chi distribution (0,∞) 1
2k/2−1Γ(k/2)

xk−1e−x
2/2 (k − 1, 12 , 2)

Chi-squared distribution (0,∞) 1
2k/2Γ(k/2)

x
k
2
−1e−x/2 (k2 − 1, 12 , 1)

Dagum distribution (0,∞) ap
x

(
x
b

)ap ((x
b

)a
+ 1
)−p−1 Ra+1

Davis distribution (0,∞) ∝ (x− µ)−1−n/
(
e

b
x−µ − 1

)
(−1− n, b,−1)

Exponential distribution (0,∞) λe−λx (0, λ, 1)

F distribution (0,∞) ∝ xd1/2−1(d1x+ d2)
−(d1+d2)/2 Rd2/2+1

Fisher z-distribution (−∞,∞) ∝ ed1x

(d1e2x+d2)(d1+d2)/2
(0, d2, 1)

Frechet distribution (0,∞) α
λ

(
x−m
λ

)−1−α
e−

(
x−m

λ

)−α

(−1− α, λα,−α)

Gamma distribution (0,∞) βα

Γ(α)x
α−1e−βx (α− 1, β, 1)

Gamma/Gompertz distribution (0,∞) bsebxβs/(β − 1 + ebx)s+1 (0, bs, 1)

Gen. hyperbolic distribution (−∞,∞) ∝ eβ(x−µ)
Kλ−1/2(α

√
δ2+(x−µ)2)

(δ2+(x−µ)2)1/4−λ/2 (λ− 1, α− β, 1)

Gen. Normal distribution (−∞,∞) β
2αΓ(1/β) exp

(
−
(
|x−µ|
α

)β)
(0, α−β, β)

Geometric stable distribution (−∞,∞) no closed form Rα+1

Gompertz distribution (0,∞) ση exp(η + σx− ηeσx) L

Gumbel distribution (0,∞) β−1e−(β−1(x−µ)+e−β−1(x−µ)) (0, 1
β , 1)

Gumbel Type II distribution (0,∞) αβx−α−1e−βx
−α

(−α− 1, β,−α)

Holtsmark distribution (−∞,∞) no closed form R5/2

Hyperbolic secant distribution (−∞,∞) 1
2sech

(
πx
2

)
(0, π2 , 1)

Inv. chi-squared distribution (0,∞) 2−k/2

Γ(k/2)x
−k/2−1e−1/(2x) (−k

2 − 1, 12 ,−1)

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 118

Inv. gamma distribution (0,∞) βα

Γ(α)x
−α−1e−β/x (−α− 1, β,−1)

Levy distribution (0,∞)
√

c
2π (x− µ)−3/2e

− c
2(x−µ) (−3

2 ,
c
2 ,−1)

Laplace distribution (−∞,∞) 1
2λ exp

(
− |x−µ|

λ

)
(0, 1

λ , 1)

Logistic distribution (−∞,∞) e−(x−µ)/λ

λ(1+e−(x−µ)/λ)2
(0, 1

λ , 1)

Log-Cauchy distribution (0,∞) σ
xπ ((logx− µ)2 + σ2)−1 R1

Log-Laplace distribution (0,∞) 1
2λx exp

(
− |logx−µ|

λ

)
R1/λ+1

Log-logistic distribution (0,∞) β
α

(
x
α

)β−1
(
1 +

(
x
α

)β)−2
Rβ+1

Log-t distribution (0,∞) ∝ x−1(1 + 1
ν (logx− µ)2)−

ν+1
2 R1

Lomax distribution (0,∞) α
λ

(
1 + x

λ

)−α−1 Rα+1

Maxwell-Boltzmann distribution (0,∞)
√

2
π
x2e−x2/(2σ2)

σ3 (2, 1
2σ2 , 2)

Normal distribution (−∞,∞) 1
σ
√
2π
e−

1
2
(x−µ

σ
)2 (0, 1

2σ2 , 2)

Pareto distribution (x0,∞) αxα0x
−α−1 Rα+1

Rayleigh distribution (0,∞) x
σ2 e

−x2/(2σ2) (1, 1
2σ2 , 2)

Rice distribution (0,∞) x
σ2 exp

(
− (x2+ν2)

2σ2

)
I0
(
xν
σ2

)
(12 ,

1
2σ2 , 2)

Skew normal distribution (−∞,∞) no closed form (0, 1
2σ2 , 2)

Slash distribution (−∞,∞) 1−e−
1
2x2

√
2πx2

(−2, 12 , 2)

Stable distribution (−∞,∞) no closed form Rα+1

Student’s t-distribution (−∞,∞)
Γ(ν+1

2
)√

νπΓ(ν
2
)

(
1 + x2

ν

)− ν+1
2 Rν+1

Tracy-Widom distribution (−∞,∞) no closed form (−3β
4 − 1, 2β3 , 32)

Voigt distribution (−∞,∞) no closed form R2

Weibull distribution (0,∞) ρ
λ

(
x
λ

)ρ−1
e−(x/λ)ρ (ρ− 1, λ−ρ, ρ)

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 119

The following densities are not supported by our algebra: Benini distribution; Benktander
Type I distribution; Johnson’s SU -distribution; and the log-normal distribution. All of these
densities exhibit log-normal tails.

Proofs of new results
Proof [Proof of Lemma 7.1] The proof relies on the following integral definition [Wat95, pg.
183] and asymptotic relation as z → ∞ [Wat95, pg. 202] of the modified Bessel function
Kν(z) for z > 0 and ν ≥ 0,

Kν(z) =
1

2

(z
2

)ν ∫ ∞

0

u−ν−1 exp
(
−u− z2

4u

)
du ∼

√
π

2z
e−z. (7.4)

We also make use of the known density for the product of two independent continuous random
variables: if X and Y have densities pX and pY respectively, then Z = XY has density

pZ(z) =

∫
R
pX(x)pY (z/x)|x|−1dx.

Exponentials. Recalling that the density of X ∼ Exp(λ) is pX(x) = λe−λx for x ≥ 0, for
Z = XY where X ∼ Exp(λ1) and Y ∼ Exp(λ2) are independent,

pZ(z) =

∫ ∞

0

x−1λ1e
−λ1xλ2e

−λ2z/xdx = λ1λ2

∫ ∞

0

x−1e−λ1x−λ2z/xdx.

Since 2K0(2
√
z) =

∫∞
0

u−1 exp(−u− z
u
)du, let u = λ1v, so that du = λ1dv,

2K0(2
√

λ1λ2z) =

∫ ∞

0

u−1 exp
(
−λ1v − λ2

z

v

)
dv.

Therefore, letting λ =
√
λ1λ2,

pZ(z) = 2λ2K0(2λ
√
z) ∼

√
πλ3/2z−1/4e−2λz1/2 .

Normals. Recalling that the density of X ∼ N (0, 1) is pX(x) = (2π)−1/2 exp(−1
2
x2), for

Z = XY where X,Y ∼ N (0, 1) are independent,

pZ(z) =
1

2π

∫
R
|x|−1 e−

1
2
x2e−

1
2
z2/x2dx

=
1

π

∫ ∞

0

x−1e−
1
2
x2− 1

2
z2/x2dx

=
1

π

∫ ∞

0

x−1e−
1
2
x2− 1

2
z2/x2dx.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 120

Let u = 1
2
x2 so that du = xdx and

Kν(z) = zν
∫ ∞

0

x−2ν−1 exp
(
−1

2
x2 − z2

2x2

)
dx.

In particular, for any z ∈ R,

K0(|z|) =
∫ ∞

0

x−1 exp
(
−1

2
x2 − z2

2x2

)
dx, (7.5)

and so
pZ(z) =

1

π
K0(|z|) ∼

1√
2π|z|

e−|z|.

Reciprocal Normals. Finally, by a change of variables, we note that the density of
X−1 where X ∼ N (0, 1) is pX−1(x) = (2π)−1/2x−2 exp(− 1

2x2
). Therefore, the density of

Z = 1/(XY) where X,Y ∼ N (0, 1) are independent is given by

pZ(z) =

∫
R

1√
2πx2

e−
1

2x2
x2

√
2πz2

e−
x2

2z2
1

|x|
dx

=
1

2πz2

∫
R
e−

1
2x2

− x2

2z2
1

|x|
dx

=
1

πz2

∫ ∞

0

e−
1

2x2
− x2

2z2
1

x
dx

=
1

πz2
K0(|z|−1) ∼

√
1

2π
|z|−3/2e−|z|−1

,

where we have once again used (7.5).

Recall that the Mellin transform of a function f on (0,∞) is given by

Ms[f] =

∫ ∞

0

xs−1f(x)dx.

Letting pXY denote the density of the product of independent random variables X,Y with
respective densities pX and pY , Ms[pXY] =Ms[pX]Ms[pY]. There is

Ms[cx
νe−σx

ρ

] =
cσ−ν/ρ

ρ
σ−s/ρΓ

(
ν

ρ
+

s

ρ

)
.

To facilitate the proof of Proposition 7.2, we define the Fox H-function

Hm,n
p,q

[
z
∣∣∣(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq ,Bq)

]

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 121

as the inverse Mellin transform of

Θ(s) = z−s
∏m

j=1 Γ(bj +Bjs) · · ·
∏n

j=1 Γ(1− aj − Ajs)∏q
j=m+1 Γ(1− bj −Bjs)

∏p
j=n+1 Γ(aj + Ajs)

.

An important property of the Fox H-function is its asymptotic behaviour as z →∞. From
[MSH09, Theorem 1.3],

Hq,0
p,q

[
z
∣∣∣(a1,A1),...,(ap,Ap)
(b1,B1),...,(bq ,Bq)

]
∼ cx(δ+ 1

2
)/µ exp(−µβ−1/µx1/µ), as x→∞,

for some constant c > 0, where β =
∏p

j=1(Aj)
−Aj

∏q
j=1 B

Bj

j , µ =
∑q

j=1Bj −
∑p

j=1Aj, and
δ =

∑q
j=1 bj −

∑p
j=1 aj +

p−q
2

.
Proof [Proof of Proposition 7.2] The ρ1 ≤ 0, ρ2 > 0 and ρ1 = ρ2 = 0 cases follow from
Breiman’s lemma [BDM16, Lemma B.5.1]. Our argument proceeds similar to [Asm+17].
Assume that ρ1, ρ2 > 0 and let 0 < ε < 1 be such that 0 < a− < a+ < 1, where

a+ =
(1 + ε)ρ2
ρ1 + ρ2

, a− = 1− (1 + ε)ρ1
ρ1 + ρ2

.

Then for ρ = ρ1ρ2
ρ1+ρ2

, if X ≡ (ν1, σ1, ρ1) and Y ≡ (ν2, σ2, ρ2), then

P(XY > x,X /∈ [xa− , xa+]) ≤ P(X > xa+) + P(Y > x1−a−)

∼ c1x
ν1a+e−σ1x

ρ1a+
+ c2x

ν2(1−a−)e−σ2x
ρ2(1−a−)

≤
(
c1x

ν1a+ + c2x
ν2(1−a−)

)
e−min{σ1,σ2}x(1+ε)ρ

= o(xνe−σx
ρ

),

for any ν, σ > 0. Hence, it will suffice to show the claimed tail asymptotics for the generalized
Gamma distribution. In this case, since a− > 0 and a+ < 1, the tail of the distribution for
the product of X,Y depends only on the tail of the distributions for X and Y .

Therefore, assume without loss of generality that pX(x) = cXx
ν1e−σ1x

ρ1 and pY (x) =
cY x

ν2e−σ2x
ρ2 . Then

Ms[pXY] = cXcY
σ
−ν1/ρ1
1

ρ1

σ
−ν2/ρ2
2

ρ2

(
σ
1/ρ1
1 σ

1/ρ2
2

)−s
Γ

(
ν1
ρ1

+
s

ρ1

)
Γ

(
ν2
ρ2

+
s

ρ2

)
.

Consequently,

pXY (z) = cXcY
σ
−ν1/ρ1
1

ρ1

σ
−ν2/ρ2
2

ρ2
Hm,n
p,q

[
σ
1/ρ1
1 σ

1/ρ2
2 z

∣∣∣ −
(
ν1
ρ1
, 1
ρ1

),(
ν2
ρ2
, 1
ρ2

)

]
Computing the corresponding β, δ, µ for the asymptotic expansion, we find that

µ =
1

ρ1
+

1

ρ2
, δ =

ν1
ρ1

+
ν2
ρ2
− 1, β = ρ

−1/ρ1
1 ρ

−1/ρ2
2 .

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 122

Consequently, for some c > 0,

pXY (z) ∼ cz
1
µ
(1
2
+δ) exp

(
−µβ− 1

µ (σ
1/ρ1
1 σ

1/ρ2
2)

1
µ z

1
µ

)
,

which completes the ρ1, ρ2 > 0 case. The final case follows by composing the multiplication
and reciprocal operations. Note that

(ν1, σ1,−ρ1)−1 ⊗ (ν2, σ2,−ρ2)−1 ≡ (−ν1 − 2, σ1, ρ1)⊗ (−ν2 − 2, σ2, ρ2)

≡
(
1

µ

(
−ν1 − 2

ρ1
+
−ν2 − 2

ρ2
− 1

2

)
, σ,

1

µ

)
≡
(
1

µ

(
−ν1
ρ1

+
−ν2
ρ2
− 2µ− 1

2

)
, σ,

1

µ

)
≡
(
1

µ

(
−ν1
ρ1

+
−ν2
ρ2
− 1

2

)
− 2, σ,

1

µ

)
,

and therefore

(ν1, σ1,−ρ1)⊗ (ν2, σ2,−ρ2) ≡
(
1

µ

(
ν1
ρ1

+
ν2
ρ2

+
1

2

)
, σ,− 1

µ

)
.

7.4 Implementation

Compile-time static analysis
To illustrate an implementation of GGA for static analysis, we sketch the operation of the
PPL compiler at a high-level and defer to the supplementary code for details. A probabilistic
program is first inspected using Python’s built-in ast module and transformed to static single
assignment (SSA) form [RWZ88]. Next, standard compiler optimizations (e.g. dead code
elimination, constant propagation) are applied and an execution of the optimized program
is traced [WSG11; Bin+19] and accumulated in a directed acyclic graph representation. A
breadth-first type checking pass, as seen in Algorithm 2, completes in linear time, and GGA
results may be applied to implement computeGGA() using the following steps:

• If a node has no parents, then it is an atomic distribution and its tail parameters are
known (Table 7.2)

• Otherwise, the node is an operation taking its potentially stochastic inputs (parents) to
its output. Consult Table 7.1 for the output GGA tails.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 123

Algorithm 2 Pseudocode for a GGA tails static analysis pass
Require: Abstract syntax tree for a PPL program

frontier ← [rv : Parents(rv) = ∅]
GGAs ← {}
while frontier 6= ∅ do

next ← frontier.popLeft()
GGAs[next] ← computeGGA(next.op, next.parent)
frontier ← frontier + next.children()

end while
return GGA parameter estimates for all random variables

Representative distributions
For each (ν, σ, ρ) we make a carefully defined choice of p on R such that if X ∼ p, then
X ≡ (ν, σ, ρ). This way, any random variable f(X), where f is 1-Lipschitz, will exhibit the
correct tail, and so approximations of this form may be used for variational inference or
density estimation. Let X ≡ (ν, σ, ρ) and 0 < ε� 1 denote a small parameter such that tails
e−x

ε are deemed to be “very heavy” (we chose ε = 0.1).

(ρ ≤ 0) If ρ ≤ −1, then pX(x) ∼ cx−|ν|. A prominent distribution on R with power law tails
is the Student t distribution, in this case, with |ν| − 1 degrees of freedom if ν < −1
(generate X ∼ t|ν|−1).

(ρ > ε) For moderately sized ρ > 0, we consider a symmetrized variant of the generalized
Gamma density (Equation (7.2)).

(ρ ≤ ε) If X ≡ (ν, σ, ρ) where ρ is small, then X will exhibit much heavier tails, and the
generalized Gamma distribution in Case 1 will become challenging to sample from. In
these cases, we expect that the tail of X should be well represented by a power law. The
generalized Gamma density (Equation (7.2)) satisfies EXr = σ−r/ρΓ(ν+1+r

ρ
)/Γ(ν+1

ρ
) for

r > 0. Let α > 0 be such that EXα = 2. By Markov’s inequality, the tail of X satisfies
P(X > x) ≤ 2x−α. Therefore, we can represent tails of this form by the Student t
distribution with α + 1 degrees of freedom (generate X ∼ tα).

Bulk correction by Lipschitz mapping
While a representative distribution will exhibit the desired tails, the target distribution’s
bulk may be very different from a generalized Gamma and result in poor distributional
approximation. To address this, we propose splicing together the tails from a generalized
Gamma with a flexible density approximation for the bulk. While many combinations
are possible, in this work we rely on Lemma 7.2 and post-compose neural spline flows
[Dur+19] (which are identity functions outside of a bounded interval) after properly initialized

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 124

generalized Gamma distributions. Optimizing the parameters of the flow results in good bulk
approximation while simultaneously preserving the tail correctness guarantees attained by
the GGA.

Example 7.7 Let A ∈ Rk×k, x, y ∈ Rk, with xi, yi, Aij
iid∼ N (−1, 1). The distribution

of x>Ay =
∑

i,j xiAijyj is convolution of normal-powers [GG08] and has no convenient
closed form expression. Using GGA’s closure theorems (table 7.1), one can compute its tail
parameters to be (k

2
− 1, 3

2
, 2
3
).

0 10 20
0.0

0.1

0.2

0.3

D
en

sit
y

k=3

0 10 20

k=5

0 10 20

k=10

q(x)
|x>Ay|

0 20 40
0.000

0.025

0.050

0.075

0.100

D
en

sit
y

Before/after flow correction

q(x)
flow(q)(x)
target

101 102
10−7

10−5

10−3

10−1

D
en

sit
y

Tails preserved by Lipschitz mappings

Figure 7.3: (Top) 5000 samples of |x>Ay| vs the calibrated GGA density q(x). While
calibrated tails are provably guarantees, the target distribution’s bulk differs from the
assumed generalized Gamma representative distribution (section 7.4) for all k. To fix the
bulk approximation, a normalizing flow is composed with the GGA representative to form
flow(q)(x). The bulk approximation is improved (bottom) while the tails continue to exhibit
the same behavior (bottom right).

The GGA representative is a gamma distribution with the correct tails, but there is
non-negligible error in the bulk where x is small. To address this, a learnable bijector can
be optimized as in Figure 7.3 bottom left to correct the bulk approximation. Guaranteed by
Lemma 7.2 and visualized in Figure 7.3 bottom right, the tails of the overall composition
remain calibrated.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 125

7.5 Experiments
In this section we demonstrate that GGA-based density estimation yields improvements
across a variety of metrics. We consider the parametric family defined in Section 7.4 and
compare against pushforwards of Normal distributions. To understand the individual effect
of using a GGA base distribution over standard normals versus more expressive pushforward
maps [Dur+19], we also report ablation results where normalizing flows are replaced by affine
transforms as originally proposed in [Kuc+17]. All experiments are repeated for 50 trials,
trained to convergence using the Adam optimizer with manually tuned learning rate, and
conducted on i7-8700K CPU and GTX 1080 GPU hardware.

All target distributions in this section are expressed as generative PPL programs: Cauchy
using a reciprocal normal, Chi2 using a sum of squared normals, IG (Inverse Gamma) using
a reciprocal exponential, Normal using a sum of normals, and StudentT using a normal and
Cauchy ratio. Doing so tasks the static analyzer to infer the target’s tails and makes the
analysis non-trivial. See supplementary for full details.

Our results in the following tables share a consistent narrative where a GGA base
distribution rarely hurts and can significantly help with heavy tailed targets. Except for when
targets are truly light tailed (α =∞ in Chi2 and Normal), GGA-based approximations are
the only ones to reproduce appropriate GPD tail index α̂ in density estimation and achieve
a passing Pareto k̂ diagnostic [Yao+18a] below 0.2 in variational inference. When viewed
through traditional evaluation metrics such as negative cross-entropy H(p, q) = Ep log p(X),
ELBO Eq log q(X)

p(X)
, and importance-weighted autoencoder bound [BGS15] Eq log

∑1000
i

p(X)
q(X)

,
GGA-based approximations remain favorable on almost all heavy-tailed targets and have
negligible difference for light tailed targets. Less surprising is the result that adding a flow
improved approximation metrics, as we expect the additional representation flexibility to be
beneficial.

Density Estimation We minimize a Monte-Carlo estimate of the cross entropy H(p, q) =
−Ep[log q(X)] ≈ − 1

N

∑N
i=1 log q(xi), xi ∼ p. The results are shown in Table 7.3 along with

power-law tail index estimates [CSN09] α̂. Overall, we see that GGA performs better (lower
NLL, α̂ closer to target) when the target has heavier tails (lower α̂ target/theory) and that
the difference is smaller but still non-negligible for distributions such as Chi1 which possess
tails heavier than Gaussian.

Variational Inference The optimization objective is the ELBO

Eq log p(X)

q(X)
≈ 1

N

N∑
i=1

log p(xi)

q(xi)
, xi ∼ q

Here, the density p must also be evaluated so for simplicity experiments in table 7.4 use
closed-form marginalized densities for targets. The overall trends also show that GGA yields
consistent improvements as measured by both ELBO and importance-weighted estimates of
marginal likelihood and that the difference was greater when the tails of p(z) were heavier.
The k̂ diagnostics [Yao+18a] corroborate our findings that variational inference succeeds

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 126

Table 7.3: Density estimation metrics attained (mean, standard deviation in parenthesis)
on targets of varying tail index (smaller α = heavier tails). Higher negative cross entropy
−H(p, q) = Ep log q(X) implies a better overall approximation (row maxes bolded) while
close agreement between the target Pareto tail index α [CSN09] and its estimate α̂ in q(x)
suggest calibrated tails (closest in row bolded).

Method Normal Affine Normal Flow GGA Affine GGA Flow
Target Metric

Cauchy
(α = 2)

α̂ 7.7 (2.5) 7.1 (6.6) 2.1 (0.064) 2 (0.067)
-H(p,q) -1.4e7 (6.2e7) -5.3e+10 (2.6e+11) -3.9e3 (56) -3.9e3 (55)

Chi2
(α =∞)

α̂ 6.8 (2.4) 6.4 (0.88) 5.5 (1.2) 5.2 (1.6)
-H(p,q) -2.8e3 (38) -2.9e3 (55) -2.8e3 (26) -2.8e3 (44)

IG
(α = 2)

α̂ 7.3 (1.7) 27 (39) 1.9 (0.092) 1.9 (0.092)
-H(p,q) -1.4e8 (6.2e8) -4.3e9 (2.1e+10) -4e3 (54) -3.9e3 (47)

Normal
(α =∞)

α̂ 8.4 (3.5) 8.8 (4.6) 8.8 (2.8) 8.2 (4)
-H(p,q) -1.4e3 (19) -1.4e3 (19) -1.4e3 (21) -1.4e3 (24)

StudentT
(α = 3)

α̂ 7.7 (2.3) 13 (11) 3.1 (0.16) 3.3 (0.45)
-H(p,q) -3e3 (4.7e2) -2.7e3 (6.4e2) -3.6e3 (28) -3.4e3 (42)

(k̂ < −1.2) when a GGA with appropriately matched tails is used and fails (k̂ > 1) when
Gaussian tails are erroneously imposed.

The targets in Table 7.3 and Table 7.4 are analyzed using the GGA. Note that Inverse
Gamma (“IG”) corresponds to the inverse exponential. We selected closed form targets so
that the Pareto tail index α is known analytically and the quality of theoretical predictions
as well as empirical results can be evaluated against. All experiments are repeated for 100
trials and 1, 000 samples from the model (as well as the approximation in VI) were used to
compute each gradient estimate. Losses were trained until convergence, which all occurred in
under 10, 000 iterations at a 0.05 learning rate and the Adam [KB14] optimizer.

SGD for least-squares linear regression
For inputs X and labels Y from a dataset D, the least squares estimator for linear regression
satisfies β = minβ 1

2
EX,Y∼D(Y −Xβ)2. To solve for this estimator, one can apply stochastic

gradient descent (SGD) sampling over independent Xk, Yk ∼ D to obtain the sequence of
iterations

βk+1 = (I − δXkX
>
k)βk + δYkXk

for a step size δ > 0. For large δ, the iterates βk typically exhibit heavy-tailed fluctuations;
in this regard, this sequence of iterates has been used as a simple model for more general
stochastic optimization dynamics [GSZ21; HM21]. In particular, generalization performance
has been tied to the heaviness of the tails in the iterates [SSG19]. Here we use our algebra

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 127

Table 7.4: Variational inference metrics (mean, standard deviation in parenthesis) on targets
of varying tail index (smaller α = heavier tails). Both the IWAE bound Eq log

∑K
i

p(Xi)
q(Xi)

and
the ELBO (K = 1) measure (a lower bound) on the marginal likelihood where larger is better
(row maxes bolded). In Yao et al. [Yao+18a], a Pareto k̂ diagnostic > 0.2 is interpreted as
potentially problematic so only values below are bolded.

Method Normal Affine Normal Flow GGA Affine GGA Flow
Target Metric

Cauchy
(α = 2)

k̂ 0.46 (0.13) 0.35 (0.43) 0.011 (0.0063) 0.034 (0.01)
ELBO -0.19 (0.011) -0.1 (0.028) 1.4 (0.00027) 1.4 (0.0015)
IWAE 6.8 (0.031) 6.9 (0.15) 8.3 (0.00028) 8.3 (0.0015)

Chi2
(α =∞)

k̂ 0.26 (0.094) 0.23 (0.12) 0.075 (0.07) 0.14 (0.1)
ELBO -0.024 (0.0072) -0.046 (0.034) -0.002 (0.003) -0.031 (0.031)
IWAE 6.9 (0.0066) 6.9 (0.0098) 6.9 (0.0016) 6.9 (0.0067)

IG
(α = 2)

k̂ 13 (3.4) 0.63 (0.55) 11 (3.2) 5.7 (5.7)
ELBO -0.63 (6.5) -1.5 (0.1) 0.44 (4.2) -0.14 (0.9)
IWAE 2e3 (3.9e3) 11 (23) 9.5e2 (1.6e3) 1.6e2 (1.6e2)

Normal
(α =∞)

k̂ 0.0055 (0.0082) 0.022 (0.017) 0.007 (0.007) 0.017 (0.014)
ELBO -0.000 (0.001) -0.00038 (0.0013) -0.0002 (0.0006) -0.00071 (0.001)
IWAE 6.9 (0.0005) 6.9 (0.0013) 6.9 (0.00055) 6.9 (0.00094)

StudentT
(α = 3)

k̂ 0.53 (0.17) 0.21 (0.26) 0.002 (0.003) 0.12 (0.064)
ELBO -0.072 (0.0099) -0.017 (0.0025) 1.4 (0.00012) 1.4 (0.0052)
IWAE 6.9 (0.058) 6.9 (0.01) 8.3 (0.00012) 8.3 (0.0052)

Figure 7.4: Density of iterates of SGD vs. predicted tail behaviour

to predict the tail behaviour in a simple one-dimensional setting where Xk ∼ N (0, σ2) and
Yk ∼ N (0, 1). From classical theory [BDM16], it is known that Xk converges in distribution
to a power law with tail exponent α > 0 satisfying E|1− δX2

k |α = 1. In fig. 7.4, we plot the
density of the representative obtained using our algebra after 104 iterations against a kernel
density estimate of the first 106 iterates when σ ∈ {0.4, 0.5} and δ ∈ {1.5, 2.0}. In all cases,
the density obtained from the algebra provides a surprisingly close fit.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 128

Figure 7.5: Density estimation and VI against a known normal target

Normal target
Consider the toy example of a Normal target. This case is trivial for Gaussian based methods
and is oftentimes the initialization. This lack of approximation gap in ADVI is seen in
Figure 7.5, where we also see that GGA achieves similar approximation quality. This is
unsurprising as the GGA approximation in Table 7.2 is also a Normal distribution.

Chi-square
Now let Xij ∼ N(0, 1) and consider trX>X. Such quantities arise in the analysis of random
projections. It is important here to recognize that the power operation X 7→ X2 is not equiv-

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 129

Figure 7.6: 5000 samples of JL matrix trace (blue) vs GGA prediction (yellow)

alent to the multiplication operation X 7→ X ⊗X, as multiplication assumes independence.

7.6 Conclusion
In this work, we have proposed a novel systematic approach for conducting tail inferential static
analysis by implementing a three-parameter generalized Gamma algebra into a PPL compiler.
Initial results are promising, showing that improved inference with simpler approximation
families is possible when combined with tail metadata. While already useful, the generalized
Gamma algebra and its implementation currently has some notable limitations:

• Since the algebra assumes independence, handling of dependencies between defined random
variables must be conducted externally. This will inevitably require interoperability with
a symbolic package to decompose complex expressions into operations on independent
random variables.

• The GGA is formulated for univariate distributions only. Suitably defining multivariate
tails is an open problem with interesting alternatives [Jai+20; LHM22] all of which could
extend GGA to higher dimensions.

• Conditioning is arguably the most important feature of a PPL and what distinguishes
it from a glorified simulator. Exact marginalization in general is NP-hard [KF09], so
treatment of conditional distributions using symbolic manipulations is a significant open
problem, with some basic developments [SR17; CJ19]. Since only the tails are required in
our setup, it may be possible to construct a dual algebra for operations under conditioning;
this is left for future work.

CHAPTER 7. THE GENERALIZED GAMMA TAIL ALGEBRA 130

• Compile-time static analysis only applicable to fixed model structure. While out of scope
for our current work, open-universe models [MR10] and PPLs to support them [Bin+19]
are an important research direction.

• The most significant omission to the algebra itself is classification of log-normal tails;
while addition may be treated using [GT16] for example, multiplicative convolution with
log-normal tails remains elusive.

• At present, reciprocals are approximated by assuming behaviour near zero. Reciprocals
may be better treated by covering near-zero asymptotics separately.

The GGA provides a necessary first step into the static analysis of tails in a probabilistic
program. As the above limitations are improved in future work and GGA becomes more
broadly applicable, we are excited to see how improved tail modelling will improve downstream
PPL applications as well as other researchers will utilize GGA metadata to develop novel
PPL applications.

131

Bibliography

[AA10] Soren Asmussen and Hansjorg Albrecher. Ruin probabilities. Vol. 14. World
scientific, 2010.

[AB13] Haim Avron and Christos Boutsidis. “Faster Subset Selection for Matrices and
Applications”. In: SIAM Journal on Matrix Analysis and Applications 34.4
(2013), pp. 1464–1499.

[Ach03] Dimitris Achlioptas. “Database-friendly random projections: Johnson-Lindenstrauss
with binary coins”. In: Journal of computer and System Sciences 66.4 (2003),
pp. 671–687.

[All+17] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. “Near-Optimal
Design of Experiments via Regret Minimization”. In: Proceedings of the 34th
International Conference on Machine Learning. Vol. 70. Proceedings of Machine
Learning Research. Sydney, Australia, Aug. 2017, pp. 126–135. url: http:
//proceedings.mlr.press/v70/allen-zhu17e.html.

[AM15] Ahmed El Alaoui and Michael W. Mahoney. “Fast Randomized Kernel Ridge
Regression with Statistical Guarantees”. In: Proceedings of the 28th International
Conference on Neural Information Processing Systems. 2015, pp. 775–783.

[AMT10] Haim Avron, Petar Maymounkov, and Sivan Toledo. “Blendenpik: Supercharging
LAPACK’s Least-Squares Solver”. In: SIAM Journal on Scientific Computing
32.3 (2010), pp. 1217–1236.

[AO20] Najmeh Abiri and Mattias Ohlsson. “Variational auto-encoders with Student’s
t-prior”. In: arXiv preprint arXiv:2004.02581 (2020).

[Aro+19] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. “Implicit Regularization
in Deep Matrix Factorization”. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc,
E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 7411–7422.

[Aro+20] Nimar S Arora, Nazanin Khosravani Tehrani, Kinjal Divesh Shah, Michael
Tingley, Yucen Lily Li, Narjes Torabi, David Noursi, Sepehr Akhavan Masouleh,
Eric Lippert, and Erik Meijer. “Newtonian Monte Carlo: single-site MCMC
meets second-order gradient methods”. In: arXiv preprint arXiv:2001.05567
(2020).

http://proceedings.mlr.press/v70/allen-zhu17e.html
http://proceedings.mlr.press/v70/allen-zhu17e.html

BIBLIOGRAPHY 132

[ASD20] Abhinav Agrawal, Daniel R Sheldon, and Justin Domke. “Advances in black-box
VI: Normalizing flows, importance weighting, and optimization”. In: Advances
in Neural Information Processing Systems 33 (2020), pp. 17358–17369.

[Asm+17] Søren Asmussen, Enkelejd Hashorva, Patrick J Laub, and Thomas Taimre. “Tail
asymptotics of light-tailed Weibull-like sums”. In: Probability and Mathematical
Statistics 37.2 (2017), pp. 235–256.

[Bar+19] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign Overfitting in
Linear Regression. Tech. rep. Preprint: arXiv:1906.11300. 2019.

[BDM16] Dariusz Buraczewski, Ewa Damek, and Thomas Mikosch. “Stochastic models
with power-law tails”. In: Springer Ser. Oper. Res. Financ. Eng., Springer,
Cham 10 (2016), pp. 978–3.

[Bel+19] M. Belkin, D. Hsu, S. Ma, and S. Mandal. “Reconciling modern machine-learning
practice and the classical bias–variance trade-off”. In: Proc. Natl. Acad. Sci.
USA 116 (2019), pp. 15849–15854.

[Ber+02] Donald A Berry, Peter Mueller, Andy P Grieve, Michael Smith, Tom Parke,
Richard Blazek, Neil Mitchard, and Michael Krams. “Adaptive Bayesian designs
for dose-ranging drug trials”. In: Case studies in Bayesian statistics. Springer,
2002, pp. 99–181.

[Ber11] Dennis S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas. Second.
Princeton University Press, 2011.

[Ber19] Ryan Bernstein. “Static analysis for probabilistic programs”. In: arXiv preprint
arXiv:1909.05076 (2019).

[BGS10] Mustapha Bouhtou, Stéphane Gaubert, and Guillaume Sagnol. “Submodularity
and Randomized rounding techniques for Optimal Experimental Design”. In:
Electronic Notes in Discrete Mathematics 36 (Aug. 2010), pp. 679–686. doi:
10.1016/j.endm.2010.05.086.

[BGS15] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. “Importance weighted
autoencoders”. In: arXiv preprint arXiv:1509.00519 (2015).

[BHM18] Mikhail Belkin, Daniel J Hsu, and Partha Mitra. “Overfitting or perfect fitting?
Risk bounds for classification and regression rules that interpolate”. In: Advances
in Neural Information Processing Systems 31. Ed. by S. Bengio, H. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates,
Inc., 2018, pp. 2300–2311.

[BHX19] Mikhail Belkin, Daniel Hsu, and Ji Xu. “Two models of double descent for weak
features”. In: arXiv preprint arXiv:1903.07571 (2019).

https://doi.org/10.1016/j.endm.2010.05.086

BIBLIOGRAPHY 133

[Bia+17] Andrew An Bian, Joachim M. Buhmann, Andreas Krause, and Sebastian Tschi-
atschek. “Guarantees for Greedy Maximization of Non-submodular Functions
with Applications”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceed-
ings of Machine Learning Research. International Convention Centre, Sydney,
Australia: PMLR, June 2017, pp. 498–507. url: http://proceedings.mlr.
press/v70/bian17a.html.

[Bin+19] Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj
Pradhan, Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and
Noah D Goodman. “Pyro: Deep universal probabilistic programming”. In: The
Journal of Machine Learning Research 20.1 (2019), pp. 973–978.

[BJ03] Francis R. Bach and Michael I. Jordan. “Kernel Independent Component
Analysis”. In: J. Mach. Learn. Res. 3 (Mar. 2003), pp. 1–48. issn: 1532-4435.

[BMD08] Christos Boutsidis, Michael Mahoney, and Petros Drineas. “An Improved Ap-
proximation Algorithm for the Column Subset Selection Problem”. In: Pro-
ceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (Dec.
2008).

[BMM18] M. Belkin, S. Ma, and S. Mandal. “To understand deep learning we need to
understand kernel learning”. In: Proceedings of the 35st International Conference
on Machine Learning. Vol. 80. Proceedings of Machine Learning Research.
Stockholm, Sweden: PMLR, 2018.

[Boe+20] Benedikt Boenninghoff, Steffen Zeiler, Robert M Nickel, and Dorothea Kolossa.
“Variational Autoencoder with Embedded Student-t Mixture Model for Author-
ship Attribution”. In: arXiv preprint arXiv:2005.13930 (2020).

[BRT19] M. Belkin, A. Rakhlin, and A. B. Tsybakov. “Does data interpolation contradict
statistical optimality?” In: Proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics. Vol. 89. Proceedings of Machine Learning
Research. Naha, Okinawa, Japan: PMLR, 2019.

[Bru+13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spec-
tral networks and locally connected networks on graphs”. In: arXiv preprint
arXiv:1312.6203 (2013).

[BRV19] David Burt, Carl Edward Rasmussen, and Mark Van Der Wilk. “Rates of Con-
vergence for Sparse Variational Gaussian Process Regression”. In: Proceedings
of the 36th International Conference on Machine Learning. Ed. by Kamalika
Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. Long Beach, California, USA: PMLR, Sept. 2019, pp. 862–871.

[BS+98] Zhi-Dong Bai, Jack W Silverstein, et al. “No eigenvalues outside the support
of the limiting spectral distribution of large-dimensional sample covariance
matrices”. In: The Annals of Probability 26.1 (1998), pp. 316–345.

http://proceedings.mlr.press/v70/bian17a.html
http://proceedings.mlr.press/v70/bian17a.html

BIBLIOGRAPHY 134

[BS10] Zhidong Bai and Jack W Silverstein. Spectral analysis of large dimensional
random matrices. Vol. 20. Springer, 2010.

[Bur73] Donald L Burkholder. “Distribution function inequalities for martingales”. In:
the Annals of Probability (1973), pp. 19–42.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.

[BY+93] ZD Bai, YQ Yin, et al. “Limit of the Smallest Eigenvalue of a Large Dimensional
Sample Covariance Matrix”. In: The Annals of Probability 21.3 (1993), pp. 1275–
1294.

[Cao+22] Shichen Cao, Jingjing Li, Kenric P Nelson, and Mark A Kon. “Coupled VAE:
Improved accuracy and robustness of a variational autoencoder”. In: Entropy
24.3 (2022), p. 423.

[Car+17] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich,
Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell.
“Stan: A probabilistic programming language”. In: Journal of statistical software
76.1 (2017).

[Cen10] Centers for Medicare and Medicaid Services. CMS 2008-2010 Data Entrepreneurs’
Synthetic Public Use File (DE-SynPUF). [Online; accessed 10-March-2020].
2010. url: https : / / www . cms . gov / Research - Statistics - Data - and -
Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF.

[CF11] R. Dennis Cook and Liliana Forzani. “On the mean and variance of the gener-
alized inverse of a singular Wishart matrix”. In: Electron. J. Statist. 5 (2011),
pp. 146–158.

[Che+19] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen.
“Residual flows for invertible generative modeling”. In: Advances in Neural
Information Processing Systems 32 (2019), pp. 9913–9923.

[Chi90] Yasuko Chikuse. “The matrix angular central Gaussian distribution”. In: Journal
of Multivariate Analysis 33.2 (1990), pp. 265–274.

[Chi91] Yasuko Chikuse. “High dimensional limit theorems and matrix decompositions
on the Stiefel manifold”. In: Journal of Multivariate Analysis 36.2 (1991),
pp. 145–162.

[Chi98] Yasuko Chikuse. “Density Estimation on the Stiefel Manifold”. In: Journal of
Multivariate Analysis 66.2 (1998), pp. 188–206.

[CJ19] Kenta Cho and Bart Jacobs. “Disintegration and Bayesian inversion via string di-
agrams”. In: Mathematical Structures in Computer Science 29.7 (2019), pp. 938–
971.

https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF
https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/SynPUFs/DE_Syn_PUF

BIBLIOGRAPHY 135

[CL11] Chih-Chung Chang and Chih-Jen Lin. “LIBSVM: A library for support vector
machines”. In: ACM Transactions on Intelligent Systems and Technology 2 (3
2011), 27:1–27:27.

[Cla+13] Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D Gordon, and
Johannes Borgström. “Bayesian inference using data flow analysis”. In: Proceed-
ings of the 2013 9th Joint Meeting on Foundations of Software Engineering.
2013, pp. 92–102.

[CN80] R Dennis Cook and Christopher J Nachtrheim. “A comparison of algorithms for
constructing exact D-optimal designs”. In: Technometrics 22.3 (1980), pp. 315–
324.

[CNW16] Michael B. Cohen, Jelani Nelson, and David P. Woodruff. “Optimal Approximate
Matrix Product in Terms of Stable Rank”. In: 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy. 2016, 11:1–11:14.

[Coh+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and
Madalina Persu. “Dimensionality Reduction for k-Means Clustering and Low
Rank Approximation”. In: Proceedings of the Forty-seventh Annual ACM Sym-
posium on Theory of Computing. STOC ’15. Portland, Oregon, USA: ACM,
2015, pp. 163–172. isbn: 978-1-4503-3536-2. doi: 10.1145/2746539.2746569.

[CR17] Luiz Chamon and Alejandro Ribeiro. “Approximate supermodularity bounds for
experimental design”. In: Advances in Neural Information Processing Systems.
2017, pp. 5403–5412.

[CR18] L. F. O. Chamon and A. Ribeiro. “Greedy Sampling of Graph Signals”. In:
IEEE Transactions on Signal Processing 66.1 (Jan. 2018), pp. 34–47.

[CSN09] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. “Power-law
distributions in empirical data”. In: SIAM review 51.4 (2009), pp. 661–703.

[CSN20] Kevin R Chen, Daniel Svoboda, and Kenric P Nelson. “Use of Student’s t-
Distribution for the Latent Layer in a Coupled Variational Autoencoder”. In:
arXiv preprint arXiv:2011.10879 (2020).

[Cus+19] Marco F Cusumano-Towner, Feras A Saad, Alexander K Lew, and Vikash K
Mansinghka. “Gen: a general-purpose probabilistic programming system with
programmable inference”. In: Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation. 2019, pp. 221–236.

[CV95] Kathryn Chaloner and Isabella Verdinelli. “Bayesian Experimental Design: A
Review”. In: Statist. Sci. 10.3 (Aug. 1995), pp. 273–304. doi: 10.1214/ss/
1177009939. url: https://doi.org/10.1214/ss/1177009939.

https://doi.org/10.1145/2746539.2746569
https://doi.org/10.1214/ss/1177009939
https://doi.org/10.1214/ss/1177009939
https://doi.org/10.1214/ss/1177009939

BIBLIOGRAPHY 136

[CW17] Kenneth L. Clarkson and David P. Woodruff. “Low-Rank Approximation and
Regression in Input Sparsity Time”. In: J. ACM 63.6 (Jan. 2017), 54:1–54:45.
issn: 0004-5411. doi: 10.1145/3019134. url: http://doi.acm.org/10.1145/
3019134.

[DDS16] Hanjun Dai, Bo Dai, and Le Song. “Discriminative embeddings of latent variable
models for structured data”. In: International conference on machine learning.
2016, pp. 2702–2711.

[Der+19] Michał Dereziński, Kenneth L. Clarkson, Michael W. Mahoney, and Manfred K.
Warmuth. “Minimax experimental design: Bridging the gap between statistical
and worst-case approaches to least squares regression”. In: Proceedings of the
Thirty-Second Conference on Learning Theory. Ed. by Alina Beygelzimer and
Daniel Hsu. Vol. 99. Proceedings of Machine Learning Research. Phoenix, USA,
25–28 Jun 2019, pp. 1050–1069.

[Der+20a] Michał Dereziński, Burak Bartan, Mert Pilanci, and Michael W Mahoney.
“Debiasing Distributed Second Order Optimization with Surrogate Sketching
and Scaled Regularization”. In: Advances in Neural Information Processing
Systems. Vol. 33. 2020, pp. 6684–6695.

[Der+20b] Michał Dereziński, Feynman Liang, Zhenyu Liao, and Michael W Mahoney.
“Precise expressions for random projections: Low-rank approximation and ran-
domized Newton”. In: Advances in Neural Information Processing Systems.
Vol. 33. 2020, pp. 18272–18283.

[Der19] Michał Dereziński. “Fast determinantal point processes via distortion-free inter-
mediate sampling”. In: Proceedings of the Thirty-Second Conference on Learning
Theory. 2019, pp. 1029–1049.

[DKB15] L Dinh, D Krueger, and Y Bengio. “NICE: non-linear independent components
estimation”. In: 3rd International Conference on Learning Representations,
Workshop Track Proceedings. 2015.

[DKM20] Michał Dereziński, Rajiv Khanna, and Michael W Mahoney. “Improved guaran-
tees and a multiple-descent curve for Column Subset Selection and the Nyström
method”. In: Advances in Neural Information Processing Systems. Vol. 33. 2020,
pp. 4953–4964.

[DL19] Edgar Dobriban and Sifan Liu. “Asymptotics for sketching in least squares
regression”. In: Advances in Neural Information Processing Systems. 2019,
pp. 3675–3685.

[DLM20a] Michał Dereziński, Feynman Liang, and Michael Mahoney. “Bayesian experi-
mental design using regularized determinantal point processes”. In: International
Conference on Artificial Intelligence and Statistics. 2020, pp. 3197–3207.

https://doi.org/10.1145/3019134
http://doi.acm.org/10.1145/3019134
http://doi.acm.org/10.1145/3019134

BIBLIOGRAPHY 137

[DLM20b] Michał Dereziński, Feynman Liang, and Michael W Mahoney. “Exact expressions
for double descent and implicit regularization via surrogate random design”. In:
Advances in Neural Information Processing Systems. Vol. 33. 2020, pp. 5152–
5164.

[DM14] D. F. Gleich and M. W. Mahoney. “Anti-differentiating Approximation Algo-
rithms: A case study with Min-cuts, Spectral, and Flow”. In: Proceedings of the
31st International Conference on Machine Learning. 2014, pp. 1018–1025.

[DM16] Petros Drineas and Michael W. Mahoney. “RandNLA: Randomized Numerical
Linear Algebra”. In: Communications of the ACM 59 (2016), pp. 80–90.

[DM17] Petros Drineas and Michael W. Mahoney. Lectures on Randomized Numerical
Linear Algebra. Tech. rep. Preprint: arXiv:1712.08880; To appear in: Lectures
of the 2016 PCMI Summer School on Mathematics of Data. 2017.

[DM18] P. Drineas and M. W. Mahoney. “Lectures on Randomized Numerical Linear
Algebra”. In: The Mathematics of Data. Ed. by M. W. Mahoney, J. C. Duchi,
and A. C. Gilbert. IAS/Park City Mathematics Series. AMS/IAS/SIAM, 2018,
pp. 1–48.

[DM19] Michał Dereziński and Michael W Mahoney. “Distributed estimation of the
inverse Hessian by determinantal averaging”. In: Advances in Neural Information
Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d
Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 11401–
11411.

[DM21] Michał Dereziński and Michael W Mahoney. “Determinantal Point Processes in
Randomized Numerical Linear Algebra”. In: Notices of the American Mathe-
matical Society 68.1 (2021), pp. 34–45.

[DQV11] Nan Ding, Yuan Qi, and Svn Vishwanathan. “t-divergence based approximate
inference”. In: Advances in Neural Information Processing Systems 24 (2011),
pp. 1494–1502.

[DRM08] Meichun Ding, Gary L Rosner, and Peter Müller. “Bayesian optimal design for
phase II screening trials”. In: Biometrics 64.3 (2008), pp. 886–894.

[DSB17] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation
using Real NVP”. In: 5th International Conference on Learning Representations.
2017.

[Dur+19] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. “Neural
spline flows”. In: Advances in Neural Information Processing Systems 32 (2019),
pp. 7509–7520.

[DW17] Michał Dereziński and Manfred K. Warmuth. “Unbiased estimates for linear
regression via volume sampling”. In: Advances in Neural Information Processing
Systems 30. Long Beach, CA, USA, 2017, pp. 3087–3096.

BIBLIOGRAPHY 138

[DW18a] Michał Dereziński and Manfred K. Warmuth. “Reverse Iterative Volume Sam-
pling for Linear Regression”. In: Journal of Machine Learning Research 19.23
(2018), pp. 1–39.

[DW18b] Michał Dereziński and Manfred K. Warmuth. “Subsampling for Ridge Regres-
sion via Regularized Volume Sampling”. In: Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics. Ed. by Amos
Storkey and Fernando Perez-Cruz. Playa Blanca, Lanzarote, Canary Islands,
Apr. 2018, pp. 716–725.

[DWH18] Michał Dereziński, Manfred K. Warmuth, and Daniel Hsu. “Leveraged volume
sampling for linear regression”. In: Advances in Neural Information Processing
Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N.
Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., 2018, pp. 2510–2519.

[DWH19a] Michał Dereziński, Manfred K. Warmuth, and Daniel Hsu. “Correcting the
bias in least squares regression with volume-rescaled sampling”. In: Proceedings
of the 22nd International Conference on Artificial Intelligence and Statistics.
Ed. by Kamalika Chaudhuri and Masashi Sugiyama. Vol. 89. Proceedings of
Machine Learning Research. PMLR, 16–18 Apr 2019, pp. 944–953.

[DWH19b] Michał Dereziński, Manfred K. Warmuth, and Daniel Hsu. “Unbiased estimators
for random design regression”. In: arXiv e-prints, arXiv:1907.03411 (July 2019),
arXiv:1907.03411. arXiv: 1907.03411 [stat.ML].

[Esl+16] SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,
Geoffrey E Hinton, et al. “Attend, infer, repeat: Fast scene understanding with
generative models”. In: Advances in Neural Information Processing Systems 29
(2016).

[FF15] Eugene F Fama and Kenneth R French. “A five-factor asset pricing model”. In:
Journal of Financial Economics 116.1 (2015), pp. 1–22.

[FHT01] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of
statistical learning. Vol. 1. 10. Springer series in statistics New York, 2001.

[Flo21] FlowTorch Development Team. Flowtorch. [Online; accessed 15-May-2021]. 2021.
url: https://flowtorch.ai/.

[Flo93] Nancy Flournoy. “A clinical experiment in bone marrow transplantation: Es-
timating a percentage point of a quantal response curve”. In: case studies in
Bayesian Statistics. Springer, 1993, pp. 324–336.

[FSS17] Futoshi Futami, Issei Sato, and Masashi Sugiyama. “Expectation propagation
for t-exponential family using q-algebra”. In: Advances in Neural Information
Processing Systems 30 (2017), pp. 2245–2254.

[FSS20] Michaël Fanuel, Joachim Schreurs, and Johan AK Suykens. “Diversity sampling
is an implicit regularization for kernel methods”. In: arXiv:2002.08616 (2020).

https://arxiv.org/abs/1907.03411
https://flowtorch.ai/

BIBLIOGRAPHY 139

[FW16] Peter I Frazier and Jialei Wang. “Bayesian optimization for materials design”.
In: Information Science for Materials Discovery and Design. Springer, 2016,
pp. 45–75.

[GC11] Mark Girolami and Ben Calderhead. “Riemann manifold langevin and hamilto-
nian monte carlo methods”. In: Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 73.2 (2011), pp. 123–214.

[Gei+19] M. Geiger, A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G. Biroli,
C. Hongler, and M. Wyart. Scaling description of generalization with number of
parameters in deep learning. Tech. rep. Preprint: arXiv:1901.01608. 2019.

[Gel+06] Andrew Gelman et al. “Prior distributions for variance parameters in hierarchical
models (comment on article by Browne and Draper)”. In: Bayesian analysis 1.3
(2006), pp. 515–534.

[Gel+13] Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari,
and Donald B Rubin. Bayesian data analysis. CRC press, 2013.

[Gey11] Charles Geyer. “Introduction to markov chain monte carlo”. In: Handbook of
markov chain monte carlo 20116022 (2011), p. 45.

[GFS16] Paul H Garthwaite, Yanan Fan, and Scott A Sisson. “Adaptive optimal scal-
ing of Metropolis–Hastings algorithms using the Robbins–Monro process”. In:
Communications in Statistics-Theory and Methods 45.17 (2016), pp. 5098–5111.

[GG08] Rameshwar D Gupta and Ramesh C Gupta. “Analyzing skewed data by power
normal model”. In: Test 17.1 (2008), pp. 197–210.

[GG14] Samuel Gershman and Noah Goodman. “Amortized inference in probabilistic
reasoning”. In: Proceedings of the annual meeting of the cognitive science society.
Vol. 36. 36. 2014.

[GH06] Andrew Gelman and Jennifer Hill. Data analysis using regression and multi-
level/hierarchical models. Cambridge university press, 2006.

[Gha15] Zoubin Ghahramani. “Probabilistic machine learning and artificial intelligence”.
In: Nature 521.7553 (2015), pp. 452–459.

[GK17] Surbhi Goel and Adam Klivans. “Eigenvalue Decay Implies Polynomial-Time
Learnability for Neural Networks”. In: Advances in Neural Information Process-
ing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 2192–
2202. url: http : / / papers . nips . cc / paper / 6814 - eigenvalue - decay -
implies-polynomial-time-learnability-for-neural-networks.pdf.

[GK98] Charles M Goldie and Claudia Klüppelberg. “Subexponential distributions”. In:
A practical guide to heavy tails: statistical techniques and applications (1998),
pp. 435–459.

http://papers.nips.cc/paper/6814-eigenvalue-decay-implies-polynomial-time-learnability-for-neural-networks.pdf
http://papers.nips.cc/paper/6814-eigenvalue-decay-implies-polynomial-time-learnability-for-neural-networks.pdf

BIBLIOGRAPHY 140

[GM16] Alex Gittens and Michael W. Mahoney. “Revisiting the Nyström Method for
Improved Large-scale Machine Learning”. In: J. Mach. Learn. Res. 17.1 (Jan.
2016), pp. 3977–4041. issn: 1532-4435.

[Goo+12] Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and
Joshua B Tenenbaum. “Church: a language for generative models”. In: arXiv
preprint arXiv:1206.3255 (2012).

[Goo13] Noah D Goodman. “The principles and practice of probabilistic programming”.
In: ACM SIGPLAN Notices 48.1 (2013), pp. 399–402.

[Gor+20] Maria I Gorinova, Andrew D Gordon, Charles Sutton, and Matthijs Vakar.
“Conditional independence by typing”. In: arXiv preprint arXiv:2010.11887
(2020).

[Gow+19] Robert Gower, Dmitry Koralev, Felix Lieder, and Peter Richtarik. “RSN: Ran-
domized Subspace Newton”. In: Advances in Neural Information Processing
Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc,
E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 614–623. url: http:
//papers.nips.cc/paper/8351-rsn-randomized-subspace-newton.pdf.

[GR15] Robert M. Gower and Peter Richtárik. “Randomized Iterative Methods for
Linear Systems”. In: SIAM. J. Matrix Anal. & Appl., 36(4), 1660–1690, 2015
(2015).

[Gra+19] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, Ilya Sutskever, and David
Duvenaud. “FFJORD: Free-Form Continuous Dynamics for Scalable Reversible
Generative Models”. In: International Conference on Learning Representations.
2019.

[GRB20] Robert Gower, Peter Richtárik, and Francis Bach. “Stochastic quasi-gradient
methods: variance reduction via Jacobian sketching”. In: Mathematical Pro-
gramming (May 2020). doi: 10.1007/s10107-020-01506-0.

[GSZ21] Mert Gurbuzbalaban, Umut Simsekli, and Lingjiong Zhu. “The heavy-tail
phenomenon in SGD”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 3964–3975.

[GT16] Archil Gulisashvili and Peter Tankov. “Tail behavior of sums and differences of
log-normal random variables”. In: Bernoulli 22.1 (2016), pp. 444–493.

[Gun+17] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur,
and Nati Srebro. “Implicit Regularization in Matrix Factorization”. In: Advances
in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Curran
Associates, Inc., 2017, pp. 6151–6159.

[Hac+13] Walid Hachem, Philippe Loubaton, Jamal Najim, and Pascal Vallet. “On bilinear
forms based on the resolvent of large random matrices”. In: Annales de l’IHP
Probabilités et statistiques 49.1 (2013), pp. 36–63.

http://papers.nips.cc/paper/8351-rsn-randomized-subspace-newton.pdf
http://papers.nips.cc/paper/8351-rsn-randomized-subspace-newton.pdf
https://doi.org/10.1007/s10107-020-01506-0

BIBLIOGRAPHY 141

[Har+19] William Harvey, Andreas Munk, Atılım Güneş Baydin, Alexander Bergholm,
and Frank Wood. “Attention for Inference Compilation”. In: arXiv preprint
arXiv:1910.11961 (2019).

[Has+19] T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani. Surprises in High-
Dimensional Ridgeless Least Squares Interpolation. Tech. rep. Preprint: arXiv:1903.08560.
2019.

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification”. In:
Proceedings of the IEEE international conference on computer vision. 2015,
pp. 1026–1034.

[HG14] Matthew D Hoffman and Andrew Gelman. “The No-U-Turn sampler: adaptively
setting path lengths in Hamiltonian Monte Carlo.” In: J. Mach. Learn. Res.
15.1 (2014), pp. 1593–1623.

[HLN+07] Walid Hachem, Philippe Loubaton, Jamal Najim, et al. “Deterministic equiv-
alents for certain functionals of large random matrices”. In: The Annals of
Applied Probability 17.3 (2007), pp. 875–930.

[HM21] Liam Hodgkinson and Michael Mahoney. “Multiplicative noise and heavy tails
in stochastic optimization”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 4262–4274.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. “Finding structure
with randomness: Probabilistic algorithms for constructing approximate matrix
decompositions”. In: SIAM review 53.2 (2011), pp. 217–288.

[Hoc98] Sepp Hochreiter. “The vanishing gradient problem during learning recurrent
neural nets and problem solutions”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 6.02 (1998), pp. 107–116.

[Hou+06] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, Bálint Virág, et al. “Deter-
minantal processes and independence”. In: Probability surveys 3 (2006), pp. 206–
229.

[Hua+18] Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville.
“Neural autoregressive flows”. In: International Conference on Machine Learning.
PMLR. 2018, pp. 2078–2087.

[Hus17] Ferenc Huszár. “Variational inference using implicit distributions”. In: arXiv
preprint arXiv:1702.08235 (2017).

[Jai+20] Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus Brubaker. “Tails of
Lipschitz Triangular Flows”. In: International Conference on Machine Learning.
PMLR. 2020, pp. 4673–4681.

BIBLIOGRAPHY 142

[JP89] Claire Jones and Gordon D Plotkin. “A probabilistic powerdomain of eval-
uations”. In: Proceedings. Fourth Annual Symposium on Logic in Computer
Science. IEEE Computer Society. 1989, pp. 186–187.

[JSY19] Priyank Jaini, Kira A Selby, and Yaoliang Yu. “Sum-of-squares polynomial flow”.
In: International Conference on Machine Learning. PMLR. 2019, pp. 3009–3018.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[KD18] Diederik Kingma and Prafulla Dhariwal. “Glow: Generative Flow with Invertible
1x1 Convolutions”. In: Advances in Neural Information Processing Systems 31
(2018), pp. 10236–10245.

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and
techniques. MIT press, 2009.

[Kin+16] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. “Improved variational inference with inverse autoregressive flow”.
In: Advances in neural information processing systems. 2016, pp. 4743–4751.

[KLS18] D. Kobak, J. Lomond, and B. Sanchez. Optimal ridge penalty for real-world high-
dimensional data can be zero or negative due to the implicit ridge regularization.
Tech. rep. Preprint: arXiv:1805.10939. 2018.

[Koz79] Dexter Kozen. “Semantics of probabilistic programs”. In: 20th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1979). IEEE. 1979, pp. 101–
114.

[KT12] Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine
Learning. Hanover, MA, USA: Now Publishers Inc., 2012.

[Kub+19] M. Kubo, R. Banno, H. Manabe, and M. Minoji. Implicit Regularization in
Over-parameterized Neural Networks. Tech. rep. Preprint: arXiv:1903.01997.
2019.

[Kuc+17] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David
M Blei. “Automatic differentiation variational inference”. In: The Journal of
Machine Learning Research 18.1 (2017), pp. 430–474.

[KW16] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph
convolutional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[LBW17] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. “Inference compila-
tion and universal probabilistic programming”. In: Artificial Intelligence and
Statistics. PMLR. 2017, pp. 1338–1348.

[Led01] Michel Ledoux. The concentration of measure phenomenon. Mathematical
surveys and monographs 89. American Mathematical Soc., 2001.

BIBLIOGRAPHY 143

[Lee+19] Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. “Towards verified
stochastic variational inference for probabilistic programs”. In: Proceedings of
the ACM on Programming Languages 4.POPL (2019), pp. 1–33.

[LEM19] Miles E Lopes, N Benjamin Erichson, and Michael W Mahoney. “Bootstrapping
the Operator Norm in High Dimensions: Error Estimation for Covariance
Matrices and Sketching”. In: arXiv preprint arXiv:1909.06120 (2019).

[LHM22] Feynman Liang, Liam Hodgkinson, and Michael Mahoney. “Fat–Tailed Varia-
tional Inference with Anisotropic Tail Adaptive Flows”. In: Proceedings of the
39th International Conference on Machine Learning. Vol. 162. 2022, p. 132.

[LHM23] Feynman Liang, Liam Hodgkinson, and Michael Mahoney. “Static Analysis of
Tail Behaviour with a Generalized Gamma Algebra”. In: Submitted to AISTATS
2023 (2023).

[Lia+21] Feynman Liang, Nimar Arora, Nazanin Tehrani, Yucen Li, Michael Tingley, and
Erik Meijer. “Accelerating Metropolis-Hastings with Lightweight Inference Com-
pilation”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2021, pp. 181–189.

[LJB19] D. LeJeune, H. Javadi, and R. G. Baraniuk. The Implicit Regularization of
Ordinary Least Squares Ensembles. Tech. rep. Preprint: arXiv:1910.04743. 2019.

[LP11] Olivier Ledoit and Sandrine Péché. “Eigenvectors of some large sample co-
variance matrix ensembles”. In: Probability Theory and Related Fields 151.1-2
(2011), pp. 233–264.

[LP19] Jonathan Lacotte and Mert Pilanci. “Faster Least Squares Optimization”. In:
arXiv preprint arXiv:1911.02675 (2019).

[LPP19] Jonathan Lacotte, Mert Pilanci, and Marco Pavone. “High-Dimensional Opti-
mization in Adaptive Random Subspaces”. In: Advances in Neural Information
Processing Systems. 2019, pp. 10846–10856.

[LR19] T. Liang and A. Rakhlin. “Just Interpolate: Kernel “Ridgeless” Regression Can
Generalize”. In: The Annals of Statistics, to appear (2019).

[LT16] Yingzhen Li and Richard E Turner. “Rényi divergence variational inference”. In:
Advances in Neural Information Processing Systems 29 (2016), pp. 1073–1081.

[Lun+00] David J Lunn, Andrew Thomas, Nicky Best, and David Spiegelhalter. “WinBUGS-
a Bayesian modelling framework: concepts, structure, and extensibility”. In:
Statistics and computing 10.4 (2000), pp. 325–337.

[M W12] M. W. Mahoney. “Approximate Computation and Implicit Regularization for
Very Large-scale Data Analysis”. In: Proceedings of the 31st ACM Symposium
on Principles of Database Systems. 2012, pp. 143–154.

BIBLIOGRAPHY 144

[MAM10] Iain Murray, Ryan Adams, and David MacKay. “Elliptical slice sampling”. In:
Proceedings of the thirteenth international conference on artificial intelligence
and statistics. 2010, pp. 541–548.

[Mat+19] Emile Mathieu, Tom Rainforth, N Siddharth, and Yee Whye Teh. “Disentangling
disentanglement in variational autoencoders”. In: International Conference on
Machine Learning. PMLR. 2019, pp. 4402–4412.

[MDK20] Mojmir Mutny, Michał Dereziński, and Andreas Krause. “Convergence Analysis
of Block Coordinate Algorithms with Determinantal Sampling”. In: International
Conference on Artificial Intelligence and Statistics. 2020, pp. 3110–3120.

[Mey73] Carl D. Meyer. “Generalized Inversion of Modified Matrices”. In: SIAM Journal
on Applied Mathematics 24.3 (1973), pp. 315–323. issn: 00361399. url: http:
//www.jstor.org/stable/2099767.

[Mic11] Michael W. Mahoney. “Randomized algorithms for matrices and data”. In:
Foundations and Trends in Machine Learning 3.2 (2011). Also available at:
arXiv:1104.5557, pp. 123–224.

[Mik99] T Mikosch. Regular Variation Subexponentiality and Their Applications in
Probability Theory. 1999. url: https://www.eurandom.tue.nl/reports/
1999/013-report.pdf.

[Mil+07] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L Ong,
and Andrey Kolobov. “1 blog: Probabilistic models with unknown objects”. In:
Statistical relational learning (2007), p. 373.

[Mit19] P. P. Mitra. Understanding overfitting peaks in generalization error: Ana-
lytical risk curves for l2 and l1 penalized interpolation. Tech. rep. Preprint:
arXiv:1906.03667. 2019.

[ML11] M. W. Mahoney and L. Orecchia. “Implementing regularization implicitly via
approximate eigenvector computation”. In: Proceedings of the 28th International
Conference on Machine Learning. 2011, pp. 121–128.

[MM18] C. H. Martin and M. W. Mahoney. Implicit Self-Regularization in Deep Neural
Networks: Evidence from Random Matrix Theory and Implications for Learning.
Tech. rep. Preprint: arXiv:1810.01075. 2018.

[MM19a] C. H. Martin and M. W. Mahoney. “Traditional and Heavy-Tailed Self Regular-
ization in Neural Network Models”. In: Proceedings of the 36th International
Conference on Machine Learning. 2019, pp. 4284–4293.

[MM19b] S. Mei and A. Montanari. The generalization error of random features re-
gression: Precise asymptotics and double descent curve. Tech. rep. Preprint:
arXiv:1908.05355. 2019.

http://www.jstor.org/stable/2099767
http://www.jstor.org/stable/2099767
https://www.eurandom.tue.nl/reports/1999/013-report.pdf
https://www.eurandom.tue.nl/reports/1999/013-report.pdf

BIBLIOGRAPHY 145

[MR10] Brian Milch and Stuart Russell. “Extending Bayesian networks to the open-
universe case”. In: Heuristics, Probability and Causality: A Tribute to Judea
Pearl. College Publications (2010).

[MSH09] Arakaparampil M Mathai, Ram Kishore Saxena, and Hans J Haubold. The
H-function: theory and applications. Springer Science & Business Media, 2009.

[MSM14] X. Meng, M. A. Saunders, and M. W. Mahoney. “LSRN: A Parallel Iterative
Solver for Strongly Over- or Under-Determined Systems”. In: SIAM Journal on
Scientific Computing 36.2 (2014), pp. C95–C118.

[MSP14] Vikash Mansinghka, Daniel Selsam, and Yura Perov. “Venture: a higher-order
probabilistic programming platform with programmable inference”. In: arXiv
preprint arXiv:1404.0099 (2014).

[Mut+19] V. Muthukumar, K. Vodrahalli, V. Subramanian, and A. Sahai. Harmless
interpolation of noisy data in regression. Tech. rep. Preprint: arXiv:1903.09139.
2019.

[MYM18] Joseph Marino, Yisong Yue, and Stephan Mandt. “Iterative amortized inference”.
In: arXiv preprint arXiv:1807.09356 (2018).

[Ney17] B. Neyshabur. Implicit Regularization in Deep Learning. Tech. rep. Preprint:
arXiv:1709.01953. 2017.

[NN13] Jelani Nelson and Huy L. Nguyên. “OSNAP: Faster Numerical Linear Algebra
Algorithms via Sparser Subspace Embeddings”. In: Proceedings of the 2013
IEEE 54th Annual Symposium on Foundations of Computer Science. FOCS
’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 117–126. isbn:
978-0-7695-5135-7. doi: 10.1109/FOCS.2013.21. url: http://dx.doi.org/
10.1109/FOCS.2013.21.

[Nor+14] Aditya Nori, Chung-Kil Hur, Sriram Rajamani, and Selva Samuel. “R2: An
efficient MCMC sampler for probabilistic programs”. In: Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 28. 2014.

[NST19] Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. “Propor-
tional Volume Sampling and Approximation Algorithms for A -Optimal Design”.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. Jan. 2019, pp. 1369–1386.

[NTS14] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive
bias: on the role of implicit regularization in deep learning. Tech. rep. Preprint:
arXiv:1412.6614. 2014.

[ODo+16] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. “Conic
optimization via operator splitting and homogeneous self-dual embedding”. In:
Journal of Optimization Theory and Applications 169.3 (2016), pp. 1042–1068.

https://doi.org/10.1109/FOCS.2013.21
http://dx.doi.org/10.1109/FOCS.2013.21
http://dx.doi.org/10.1109/FOCS.2013.21

BIBLIOGRAPHY 146

[Owe+16] David Owen, Andrew Melbourne, David Thomas, Enrico De Vita, Jonathan
Rohrer, and Sebastien Ourselin. “Optimisation of arterial spin labelling using
bayesian experimental design”. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer. 2016, pp. 511–518.

[Pap+21] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. “Normalizing flows for probabilistic
modeling and inference”. In: Journal of Machine Learning Research 22.57
(2021), pp. 1–64.

[Pas+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. “Pytorch: An imperative style, high-performance deep learning library”.
In: Advances in neural information processing systems 32 (2019).

[Pea87] Judea Pearl. “Evidential reasoning using stochastic simulation of causal models”.
In: Artificial Intelligence 32.2 (1987), pp. 245–257.

[PHF10] Anand Patil, David Huard, and Christopher J Fonnesbeck. “PyMC: Bayesian
stochastic modelling in Python”. In: Journal of Statistical Software 35.4 (2010),
p. 1.

[Plu+03] Martyn Plummer et al. “JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling”. In: Proceedings of the 3rd international workshop
on distributed statistical computing. Vol. 124. 125.10. Vienna, Austria. 2003,
pp. 1–10.

[PM11] P. O. Perry and M. W. Mahoney. “Regularized Laplacian Estimation and
Fast Eigenvector Approximation”. In: Annual Advances in Neural Information
Processing Systems 24: Proceedings of the 2011 Conference. 2011.

[PMB15] P. Ma, M. W. Mahoney, and B. Yu. “A Statistical Perspective on Algorithmic
Leveraging”. In: Journal of Machine Learning Research 16 (2015), pp. 861–911.

[Por+08] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic
Smyth, and Max Welling. “Fast collapsed gibbs sampling for latent dirichlet
allocation”. In: Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining. 2008, pp. 569–577.

[PPM17] George Papamakarios, Theo Pavlakou, and Iain Murray. “Masked autoregressive
flow for density estimation”. In: Advances in Neural Information Processing
Systems. 2017, pp. 2338–2347.

[Puk06] Friedrich Pukelsheim. Optimal Design of Experiments. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2006. isbn: 0898716047.

[PW16a] Brooks Paige and Frank Wood. “Inference networks for sequential Monte Carlo
in graphical models”. In: International Conference on Machine Learning. 2016,
pp. 3040–3049.

BIBLIOGRAPHY 147

[PW16b] Mert Pilanci and Martin J Wainwright. “Iterative Hessian sketch: Fast and
accurate solution approximation for constrained least-squares”. In: The Journal
of Machine Learning Research 17.1 (2016), pp. 1842–1879.

[PyP20] PyProb. PyProb. https://github.com/pyprob/pyprob. 2020.
[QR16] Zheng Qu and Peter Richtárik. “Coordinate descent with arbitrary sampling II:

Expected separable overapproximation”. In: Optimization Methods and Software
31.5 (2016), pp. 858–884.

[Qu+16] Zheng Qu, Peter Richtárik, Martin Takác, and Olivier Fercoq. “SDNA: Stochas-
tic Dual Newton Ascent for Empirical Risk Minimization”. In: Proceedings of
The 33rd International Conference on Machine Learning (Feb. 2016). eprint:
1502.02268. url: https://arxiv.org/abs/1502.02268.

[RDP+16] Caitriona M Ryan, Christopher C Drovandi, Anthony N Pettitt, et al. “Optimal
Bayesian experimental design for models with intractable likelihoods using
indirect inference applied to biological process models”. In: Bayesian Analysis
11.3 (2016), pp. 857–883.

[RDP15] Elizabeth Ryan, Christopher Drovandi, and Anthony Pettitt. “Fully Bayesian
experimental design for pharmacokinetic studies”. In: Entropy 17.3 (2015),
pp. 1063–1089.

[RGB14] Rajesh Ranganath, Sean Gerrish, and David Blei. “Black box variational in-
ference”. In: International Conference on Artificial Intelligence and Statistics.
PMLR. 2014, pp. 814–822.

[RHG16] Daniel Ritchie, Paul Horsfall, and Noah D Goodman. “Deep amortized inference
for probabilistic programs”. In: arXiv preprint arXiv:1610.05735 (2016).

[RM15] Danilo Rezende and Shakir Mohamed. “Variational inference with normaliz-
ing flows”. In: International Conference on Machine Learning. PMLR. 2015,
pp. 1530–1538.

[RM16] G. Raskutti and M. W. Mahoney. “A Statistical Perspective on Randomized
Sketching for Ordinary Least-Squares”. In: Journal of Machine Learning Re-
search 17.214 (2016), pp. 1–31.

[RM19] Farbod Roosta-Khorasani and Michael W Mahoney. “Sub-sampled Newton
methods”. In: Mathematical Programming 174.1-2 (2019), pp. 293–326.

[Roo+18] F. Roosta, Y. Liu, P. Xu, and M. W. Mahoney. Newton-MR: Newton’s Method
Without Smoothness or Convexity. Tech. rep. Preprint: arXiv:1810.00303. 2018.

[RSG16] Daniel Ritchie, Andreas Stuhlmüller, and Noah Goodman. “C3: Lightweight
incrementalized MCMC for probabilistic programs using continuations and
callsite caching”. In: Artificial Intelligence and Statistics. 2016, pp. 28–37.

https://github.com/pyprob/pyprob
1502.02268
https://arxiv.org/abs/1502.02268

BIBLIOGRAPHY 148

[RT96] Gareth O Roberts and Richard L Tweedie. “Exponential convergence of Langevin
distributions and their discrete approximations”. In: Bernoulli (1996), pp. 341–
363.

[Rub81] Donald B Rubin. “Estimation in parallel randomized experiments”. In: Journal
of Educational Statistics 6.4 (1981), pp. 377–401.

[RV13] Mark Rudelson and Roman Vershynin. “Hanson-Wright inequality and sub-
gaussian concentration”. In: Electronic Communications in Probability 18 (2013).

[RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[RWZ88] Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck. “Global value numbers
and redundant computations”. In: Proceedings of the 15th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 1988, pp. 12–
27.

[SA01] Alex J Sutton and Keith R Abrams. “Bayesian methods in meta-analysis and
evidence synthesis”. In: Statistical methods in medical research 10.4 (2001),
pp. 277–303.

[San+97] Huaiyu Zhu Santa, Huaiyu Zhu, Christopher K. I. Williams, Richard Rohwer,
and Michal Morciniec. “Gaussian Regression and Optimal Finite Dimensional
Linear Models”. In: Neural Networks and Machine Learning. Springer-Verlag,
1997, pp. 167–184.

[Sar06] Tamas Sarlos. “Improved Approximation Algorithms for Large Matrices via
Random Projections”. In: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science. FOCS ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 143–152.

[SB95] Jack W Silverstein and ZD Bai. “On the empirical distribution of eigenvalues
of a class of large dimensional random matrices”. In: Journal of Multivariate
analysis 54.2 (1995), pp. 175–192.

[SB98] Dalene K Stangl and Donald A Berry. “Bayesian statistics in medicine: Where
are we and where should we be going?” In: Sankhyā: The Indian Journal of
Statistics, Series B (1998), pp. 176–195.

[Sca+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. “The graph neural network model”. In: IEEE Transactions
on Neural Networks 20.1 (2008), pp. 61–80.

[SCG13] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. “Static
analysis for probabilistic programs: inferring whole program properties from
finitely many paths”. In: Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation. 2013, pp. 447–458.

BIBLIOGRAPHY 149

[Ser10] D. Serre. Matrices: Theory and Applications. Graduate Texts in Mathematics.
Springer, 2010. isbn: 9781441930101. url: https://books.google.to/books?
id=IYWLcgAACAAJ.

[Sid+17] N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison,
Noah D. Goodman, Pushmeet Kohli, Frank Wood, and Philip Torr. “Learning
Disentangled Representations with Semi-Supervised Deep Generative Models”.
In: Advances in Neural Information Processing Systems 30. Ed. by I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett. Curran Associates, Inc., 2017, pp. 5927–5937. url: http://papers.
nips.cc/paper/7174-learning-disentangled-representations-with-
semi-supervised-deep-generative-models.pdf.

[Sou+18] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan
Srebro. “The implicit bias of gradient descent on separable data”. In: The Journal
of Machine Learning Research 19.1 (2018), pp. 2822–2878.

[Spi+04] David J Spiegelhalter et al. “Incorporating Bayesian ideas into health-care
evaluation”. In: Statistical Science 19.1 (2004), pp. 156–174.

[Spi+96] David Spiegelhalter, Andrew Thomas, Nicky Best, and Wally Gilks. “BUGS
0.5: Bayesian inference using Gibbs sampling manual (version ii)”. In: MRC
Biostatistics Unit, Institute of Public Health, Cambridge, UK (1996), pp. 1–59.

[SR17] Chung-chieh Shan and Norman Ramsey. “Exact Bayesian inference by symbolic
disintegration”. In: Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages. 2017, pp. 130–144.

[Sri03] M.S. Srivastava. “Singular Wishart and multivariate beta distributions”. In:
Ann. Statist. 31.5 (Oct. 2003), pp. 1537–1560.

[SSG19] Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. “A tail-index anal-
ysis of stochastic gradient noise in deep neural networks”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 5827–5837.

[Taj03] Nader Tajvidi. “Confidence intervals and accuracy estimation for heavy-tailed
generalized Pareto distributions”. In: Extremes 6.2 (2003), pp. 111–123.

[Teh+20a] Nazanin Tehrani, Nimar S Arora, Yucen Lily Li, Kinjal Divesh Shah, David
Noursi, Michael Tingley, Narjes Torabi, Eric Lippert, Erik Meijer, et al. “Bean
machine: A declarative probabilistic programming language for efficient pro-
grammable inference”. In: International Conference on Probabilistic Graphical
Models. PMLR. 2020.

[Teh+20b] Nazanin Tehrani, Nimar S Arora, Yucen Lily Li, Kinjal Divesh Shah, David
Noursi, Michael Tingley, Narjes Torabi, Sepehr Masouleh, Eric Lippert, Erik
Meijer, and et al. “Bean Machine: A Declarative Probabilistic Programming
Language For Efficient Programmable Inference”. In: The 10th International
Conference on Probabilistic Graphical Models. 2020.

https://books.google.to/books?id=IYWLcgAACAAJ
https://books.google.to/books?id=IYWLcgAACAAJ
http://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models.pdf
http://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models.pdf
http://papers.nips.cc/paper/7174-learning-disentangled-representations-with-semi-supervised-deep-generative-models.pdf

BIBLIOGRAPHY 150

[The21] The Stan Developers. posteriordb: a database of Bayesian posterior inference.
https://github.com/stan-dev/posteriordb. 2021.

[TL05] Michael E Tipping and Neil D Lawrence. “Variational inference for Student-t
models: Robust Bayesian interpolation and generalised component analysis”. In:
Neurocomputing 69.1-3 (2005), pp. 123–141.

[Tol+16] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood.
“Design and implementation of probabilistic programming language anglican”.
In: Proceedings of the 28th Symposium on the Implementation and Application
of Functional programming Languages. 2016, pp. 1–12.

[Tra+18] Dustin Tran, Matthew W Hoffman, Dave Moore, Christopher Suter, Srinivas
Vasudevan, and Alexey Radul. “Simple, distributed, and accelerated probabilis-
tic programming”. In: Advances in Neural Information Processing Systems 31
(2018).

[TUM12] Gabriel Terejanu, Rochan R Upadhyay, and Kenji Miki. “Bayesian experimental
design for the active nitridation of graphite by atomic nitrogen”. In: Experimental
Thermal and Fluid Science 36 (2012), pp. 178–193.

[Uen+16] Tsuyoshi Ueno, Trevor David Rhone, Zhufeng Hou, Teruyasu Mizoguchi, and
Koji Tsuda. “COMBO: an efficient Bayesian optimization library for materials
science”. In: Materials discovery 4 (2016), pp. 18–21.

[Vaa65] H. Robert van der Vaart. “A Note on Wilks’ Internal Scatter”. In: Ann. Math.
Statist. 36.4 (Aug. 1965), pp. 1308–1312.

[Val+17] Perry de Valpine, Daniel Turek, Christopher J Paciorek, Clifford Anderson-
Bergman, Duncan Temple Lang, and Rastislav Bodik. “Programming with mod-
els: writing statistical algorithms for general model structures with NIMBLE”.
In: Journal of Computational and Graphical Statistics 26.2 (2017), pp. 403–413.

[Veh+15] Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry.
“Pareto smoothed importance sampling”. In: arXiv preprint arXiv:1507.02646
(2015).

[Veh+20] Aki Vehtari, Andrew Gelman, Daniel Simpson, Bob Carpenter, Paul-Christian
Bürkner, et al. “Rank-normalization, folding, and localization: An improved R̂
for assessing convergence of MCMC”. In: Bayesian Analysis (2020).

[Ver18] Roman Vershynin. High-dimensional probability: An introduction with applica-
tions in data science. Vol. 47. Cambridge university press, 2018.

[Wan+17a] Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and Michael W. Mahoney.
“GIANT: Globally Improved Approximate Newton Method for Distributed
Optimization”. In: CoRR abs/1709.03528 (2017). arXiv: 1709.03528. url:
http://arxiv.org/abs/1709.03528.

https://github.com/stan-dev/posteriordb
https://arxiv.org/abs/1709.03528
http://arxiv.org/abs/1709.03528

BIBLIOGRAPHY 151

[Wan+17b] Tongzhou Wang, Yi Wu, David A Moore, and Stuart J Russell. “Meta-learning
MCMC proposals”. In: arXiv preprint arXiv:1708.06040 (2017).

[Wat95] George Neville Watson. A treatise on the theory of Bessel functions. Cambridge
university press, 1995.

[Web+18] Stefan Webb, Adam Golinski, Rob Zinkov, N Siddharth, Tom Rainforth, Yee
Whye Teh, and Frank Wood. “Faithful inversion of generative models for effective
amortized inference”. In: Advances in Neural Information Processing Systems.
2018, pp. 3070–3080.

[Web+19a] Stefan Webb, J.P. Chen, Martin Jankowiak, and Noah Goodman. “Improv-
ing Automated Variational Inference with Normalizing Flows”. In: 6th ICML
Workshop on Automated Machine Learning (AutoML) (2019).

[Web+19b] Stefan Webb, Jonathan P. Chen, Matrin Jankowiak, and Noah Goodman.
“Improving automated variational inference with normalizing flows”. In: ICML
Workshop on Automated Machine Learning. 2019.

[Wei+19] Christian Weilbach, Boyan Beronov, William Harvey, and Frank Wood. “Effi-
cient Inference Amortization in Graphical Models using Structured Continuous
Conditional Normalizing Flows”. In: (2019).

[WGM17] Shusen Wang, Alex Gittens, and Michael W. Mahoney. “Sketched Ridge Regres-
sion: Optimization Perspective, Statistical Perspective, and Model Averaging”.
In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Re-
search. International Convention Centre, Sydney, Australia: PMLR, June 2017,
pp. 3608–3616. url: http://proceedings.mlr.press/v70/wang17c.html.

[WHR18] Di Wang, Jan Hoffmann, and Thomas Reps. “PMAF: an algebraic framework
for static analysis of probabilistic programs”. In: ACM SIGPLAN Notices 53.4
(2018), pp. 513–528.

[Wic11] Hadley Wickham. “ggplot2”. In: Wiley Interdisciplinary Reviews: Computational
Statistics 3.2 (2011), pp. 180–185.

[WL19] Antoine Wehenkel and Gilles Louppe. “Unconstrained monotonic neural net-
works”. In: Advances in Neural Information Processing Systems 32 (2019),
pp. 1543–1553.

[WLL18] Dilin Wang, Hao Liu, and Qiang Liu. “Variational inference with tail-adaptive
f-divergence”. In: Advances in Neural Information Processing Systems 31 (2018),
pp. 5737–5747.

[WMM14] Frank Wood, Jan Willem Meent, and Vikash Mansinghka. “A new approach to
probabilistic programming inference”. In: Artificial Intelligence and Statistics.
2014, pp. 1024–1032.

http://proceedings.mlr.press/v70/wang17c.html

BIBLIOGRAPHY 152

[Woo14] David P. Woodruff. “Sketching as a tool for numerical linear algebra”. In:
Foundations and Trends® in Theoretical Computer Science 10.1–2 (2014), pp. 1–
157.

[WS01] Christopher K. I. Williams and Matthias Seeger. “Using the Nyström Method
to Speed Up Kernel Machines”. In: Advances in Neural Information Processing
Systems 13. Ed. by T. K. Leen, T. G. Dietterich, and V. Tresp. MIT Press,
2001, pp. 682–688.

[WSG11] David Wingate, Andreas Stuhlmüller, and Noah Goodman. “Lightweight im-
plementations of probabilistic programming languages via transformational
compilation”. In: Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics. 2011, pp. 770–778.

[WW13] David Wingate and Theophane Weber. “Automated variational inference in
probabilistic programming”. In: arXiv preprint arXiv:1301.1299 (2013).

[WYS17] Yining Wang, Adams W. Yu, and Aarti Singh. “On Computationally Tractable
Selection of Experiments in Measurement-constrained Regression Models”. In:
J. Mach. Learn. Res. 18.1 (Jan. 2017), pp. 5238–5278. issn: 1532-4435. url:
http://dl.acm.org/citation.cfm?id=3122009.3208024.

[XRM17] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-Type Methods
for Non-Convex Optimization Under Inexact Hessian Information. Tech. rep.
Preprint: arXiv:1708.07164. 2017.

[Xu+20] Kai Xu, Hong Ge, Will Tebbutt, Mohamed Tarek, Martin Trapp, and Zoubin
Ghahramani. “AdvancedHMC. jl: A robust, modular and efficient implementa-
tion of advanced HMC algorithms”. In: Symposium on Advances in Approximate
Bayesian Inference. PMLR. 2020, pp. 1–10.

[Yan+20] Fan Yang, Sifan Liu, Edgar Dobriban, and David P Woodruff. “How to
reduce dimension with PCA and random projections?” In: arXiv preprint
arXiv:2005.00511 (2020).

[Yao+18a] Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. “Yes, but did
it work?: Evaluating variational inference”. In: International Conference on
Machine Learning. PMLR. 2018, pp. 5581–5590.

[Yao+18b] Z. Yao, P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Inexact Non-Convex
Newton-Type Methods. Tech. rep. Preprint: arXiv:1802.06925. 2018.

[Zah+17] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Rus-
lan Salakhutdinov, and Alexander Smola. “Deep sets”. In: arXiv preprint
arXiv:1703.06114 (2017).

[Zaj18] Krzysztof Zajkowski. “Bounds on tail probabilities for quadratic forms in
dependent sub-gaussian random variables”. In: arXiv preprint arXiv:1809.08569
(2018).

http://dl.acm.org/citation.cfm?id=3122009.3208024

BIBLIOGRAPHY 153

[Zha+18] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. “Ad-
vances in variational inference”. In: IEEE transactions on pattern analysis and
machine intelligence 41.8 (2018), pp. 2008–2026.

[Zhu+15] Rong Zhu, Ping Ma, Michael W Mahoney, and Bin Yu. “Optimal subsampling ap-
proaches for large sample linear regression”. In: arXiv preprint arXiv:1509.05111
(2015).

	Contents
	Introduction
	Bayesian experimental design with regularized determinantal point processes
	Introduction
	Related work
	A new regularized determinantal point process
	Guarantees for Bayesian experimental design
	Experiments
	Conclusions

	Exact expressions for double descent in determinantal random designs
	Introduction
	Related work
	Surrogate random designs
	Determinant preserving random matrices
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Empirical evaluation of asymptotic consistency
	Conclusions

	Exact expectation expressions for sub-Gaussian random projections
	Introduction
	Convergence analysis of randomized iterative methods
	Precise analysis of the residual projection
	Proof of Theorem 4.2
	Explicit formulas under known spectral decay
	Empirical results
	Conclusions

	Accelerating Metropolis-Hastings with lightweight inference compilation
	Background
	Lightweight Inference Compilation
	Experiments
	Conclusion

	Fat-tailed variational inference
	Introduction
	Flow-Based Methods for Fat-Tailed Variational Inference
	Tail Behavior of Lipschitz Flows
	Experiments
	Conclusion

	The generalized gamma tail algebra
	Introduction
	Related Work
	The Generalized Gamma Algebra
	Implementation
	Experiments
	Conclusion

	Bibliography

