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ABSTRACT

Loop detectors are the preeminent vehicle detector for freeway traffic surveillance.  Although single

loops have been used for decades, debate continues on how to interpret the measurements.  Many

researchers have sought better estimates of velocity from single loops.  The preceding work has

emphasized post-processing techniques.  Although rarely noted, these techniques effectively seek

to reduce the bias due to long vehicles in measured occupancy and flow.  This paper presents a

different approach, using a new aggregation methodology to estimate velocity and reduce the

impact of long vehicles in the original traffic measurements.

Keywords:
traffic surveillance, loop detectors, velocity estimation
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INTRODUCTION

Loop detectors are the preeminent vehicle detector for freeway traffic surveillance.  They are

frequently deployed as single detectors, i.e., one loop per lane per detector station.  Recent work

by our group has identified a fundamental shortcoming with conventional estimates of velocity

from single loop detectors.  These estimates presume a "mean vehicle length"1 that applies to all

samples, but Coifman (2000) has shown that this assumption breaks down because a given sample

may not be representative of the "average vehicle".

Many researchers have investigated post-processing techniques to reduce the influence of long

vehicles, e.g., Mikhalkin et al (1972), Pushkar et al (1994), Dailey (1999), and Coifman (2000).

All of these studies used aggregate flow (q) and occupancy (occ) to estimate mean velocity.  Rather

than manipulating aggregate data, this paper examines new aggregation methods to reduce the

estimation errors.

The first section of this paper reviews the state of the practice and the related shortcomings of

parameter estimation from single loop detectors.  The next section proposes an alternative method

for estimating velocity and the final section contrasts the new approach against conventional

estimates.

CONVENTIONAL VELOCITY ESTIMATION

Provided that vehicle lengths and vehicle velocities are uncorrelated, it can be shown that harmonic

mean velocity (mean v) and arithmetic mean vehicle length (L) for a given sample are related by the

following equation:

mean v
q L

occ
 ≈ ⋅

(1)

However, these two parameters can not be measured independently at a single loop.  Typically, an

operating agency will set L to a constant value and use Equation 1 to estimate velocity from single

loop measurements.  But this approach fails to account for the fact that the percentage of long

vehicles may change during the day or the simple fact that a sample may not include "typical"

vehicle lengths.  Particularly during low flow, when the number of vehicles in a sample is small, a

long vehicle can skew occupancy simply because it takes more time for that vehicle to pass the

detector.  For example, Coifman (2000) found that approximately 85 percent of the individual

                                                

1 Throughout this paper, "length" refers to the "effective vehicle length" as seen by the detectors.
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vehicle lengths observed at one detector station were between 15 and 22 feet, but some vehicles

were as long as 85 feet, or roughly four times the median length.

In accordance with the law of large numbers, the sample distribution should become more

representative of the entire population as the sample size increases, which in turn, increases with

flow.  Figure 1 illustrates this phenomena using two common sampling periods (T).  In part A,

T=30 sec and the maximum number of vehicles per sample is so small that the observations fall

into distinct columns, i.e., the first column contains observations with only one vehicle, the second

column contains observations with only two vehicles, and so on.  Notice that for both values of T,

the range of L is inversely proportional to q.

ALTERNATIVE PARAMETERS

For this study, we examine 24 hours of detector actuations, sampled at 60 Hz, from a dual loop

directional-detector2 station, where a directional-detector consists of two closely spaced loop

detectors in the same lane.  In this configuration it is possible to measure true vehicle velocities by

the quotient of the loop separation and the difference in arrival times at each loop.  While an

individual vehicle's length is simply the product of its velocity and on time3.  The detector station

includes five lanes in each direction.  In an attempt to capture the temporal changes in vehicle

lengths, the data were arbitrarily subdivided into three hour long segments by lane.  The two

distributions shown in Figure 2 represent the "best" distribution (lowest vehicle length variance)

and "worst" distribution (highest vehicle length variance) observed across the 80 subsets.

Removing the temporal component, consider a sample of N vehicles drawn at random from the

"worst" distribution.  Intuitively, the sample mean vehicle length is likely to be biased towards

long vehicles because of the extended tail.  The median vehicle length, however, should be less

sensitive to the outliers.  This hypothesis was verified using Monte Carlo simulation.  The

simulation consisted of 10,000 samples of N vehicles from each distribution, where N was set to

10, 50, 100, 500 and 1000 vehicles, and the sample mean and median were calculated.  Table 1

summarizes the 99 percent confidence intervals for the mean and median lengths.  The mean length

confidence interval was significantly worse than the median length under all conditions.  In fact,

the range of the median length confidence interval for N vehicles was proportional to that of that of

the mean for 10·N.  If we continue to assume that individual vehicle length and velocity are

uncorrelated, then the simulation results lead to the following postulate:

                                                

2 Commonly referred to as speed trap detectors.
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median v
L

median on time
 

  
≈ (2)

ESTIMATING VELOCITY

For both Equations 1 and 2, with a fixed L, one can consider the function on the right hand side as

an estimate of the parameter on the left hand side.  Using the entire day's worth of data from each

lane and setting the sample size to N consecutive vehicles in a given lane, Figures 3 and 4 show

scatter plots of the estimates versus the corresponding measured parameters for two different

values of N.  In each figure, the top and bottom plots come from the same samples and L is

assumed to be 20 feet in all plots.  Any error in L would skew the estimates proportional to the true

values.  In both figures, the mean velocity estimate is much noisier than the median velocity

estimate.  Notice that the median velocity and its estimate tend to fall into discrete columns and

rows, respectively, due to the resolution of the 60 Hz measurements.  With N=10, the mean

estimate is subject to errors from long vehicles throughout all traffic conditions, as highlighted with

the circles in Figure 3.  At larger N, Figure 4, the error is only evident during free flow conditions.

This bias is due to the fact that trucks represent a larger percentage of the vehicle fleet in the early

morning hours, a period when there was no observed congestion.  To quantify these errors, we

define the Measure of Variance (MOV) and Measure of Bias (MOB) over n samples as follows:

MOV
x x

n

i i
i

n

=
−( )

=
∑ * ˆ

2

1 (3)

MOB
x x

n

i i
i

n

=
−( )

=
∑ * ˆ

1 (4)

where xi
*  is the true value of the parameter for the i-th sample and x̂i  is the corresponding estimate.

The resulting MOV and MOB for the velocity estimates from five different sample sizes are shown

in the first few columns of Table 2.  In each case, the MOV for the median velocity estimator is

approximately one third of that for the mean velocity estimator.  Of course, the MOV is sensitive to

the choice of L.  So the analysis is repeated in the latter columns with L selected such that MOB=0

for the given sample size and parameter.

                                                                                                                                                            

3 On time is the amount of time that a given vehicle occupies the detector.



Coifman, B. and Lee, Z.

5

The estimates thus far are based on samples of a fixed number of vehicles.  But the fixed number

sampling is not very informative if the freeway is blocked or flow drops for some other reason.

So in practice, it is better to sample over fixed time periods.  Fixed time sampling has the added

benefit that all samples can be synchronized at a detector station and thus, requires less

computational and communications overhead.  It is important, nonetheless, to ensure that the

sample period is large enough to ensure a sufficient number of vehicles in a sample during any

period when surveillance is desired.  Looking at Figure 3 and Table 2, N=10 vehicles appears to

provide satisfactory results for the median estimate, but this sample size is a little low for the mean

estimate.  With T=30 seconds, this criteria would require q>1200 veh/hr throughout the entire day.

Applying this sampling period to the data results in very poor performance by both estimation

techniques (see Table 2).  On the other hand, if T=5 minutes, the criteria only requires q>120

veh/hr.  Repeating the preceding analysis with T=5 minutes yields Figures 5 and 6.  In Figure 5,

one can see significant errors in the mean estimate and few errors in the median estimate.  The

corresponding statistics are reported in Table 2 and the performance appears to be on the order of

fixed samples with N=10 vehicles.  Figure 6 shows that the flow is quite low at this site for at least

four hours in the early morning and it is above 1200 veh/hr for only about half of the day.  The

reader should also note that this location sees a relatively large volume of traffic, with an average of

approximately 25,000 vehicles/lane/day for this data set.  Most other locations will have a lower

average flow, reaffirming the need for longer sample periods.

Although T=5 minutes appears to provide sufficient sample size, the long delay between

measurement updates may be undesirable.  Fortunately, many applications only need a single

estimate of velocity for a given detector station or link.  To keep N high while reducing T, one can

sample across multiple lanes before estimating velocity.  In particular, setting T=30 seconds and

sampling individual vehicle measurements across the four outside lanes in a given direction yields

Figure 7 and the final row of statistics in Table 2.4

Finally, note that the median estimates will degrade in the presence of high truck volumes.  To

address this fact, the methodology could be modified to use a lower percentile, e.g., the 25th

percentile rather than the median.  Additional information could also be used, such as the presence

of truck restrictions in specific lanes or slightly more complicated models that exclude low flow

conditions, e.g., Coifman (2000).

                                                

4 The inside lane was excluded because it is a high occupancy vehicle lane in both directions.
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CONCLUSIONS

Many researchers have sought better estimates of velocity from single loops.  The earlier works

have emphasized post-processing techniques to reduce the bias from long vehicles in mean velocity

estimates.  This paper has taken a different approach, it used a new aggregation methodology to

estimate median velocity and it was shown that the estimate is less sensitive to the presence of long

vehicles.  This fact leads to the added benefit that the assumed value of L is less sensitive to site-

specific characteristics of the traffic flow.  Furthermore, the proposed method of estimating median

velocity is simple enough that it can be deployed on existing traffic controllers.

It may seem intuitive that the median is less sensitive to outliers than the mean, but it does not

appear that this fact has previously been employed for estimating velocity from single loops.

Although the median is less sensitive to outliers, it is still necessary to observe several vehicles in a

given sample to reduce the impact of long vehicles and it is not advisable to estimate velocity with

short sample periods during low flow conditions.  To this end, one method for increasing N while

keeping T low was proposed.  The approach combined data from multiple lanes before estimating

velocity and yielded satisfactory results on the experimental data set.
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Figure 1, Observed average effective length versus flow for five lanes at one detector 
station, over one day sampled at (A) T = 30 sec, (B) T = 5 min.
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Figure 2, Observed distributions of individual effective vehicle lengths in a single lane for 
three hour periods. (A) lowest variance or "Best" case, (B) highest variance or 
"worst" case.
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Figure 3, This figure uses real traffic data to compare estimated versus measured (A) mean 
velocity (B) median velocity for 24,640 samples of 10 vehicles each. Note that the 
circles were added to the same locations in both plots to highlight the differences.
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Figure 4, Now using samples of 100 vehicles each, this figure compares estimated versus 
measured (A) mean velocity (B) median velocity for 2,460 samples. Again, the 
circles were added to the same locations in both plots to highlight the differences.
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Figure 5, Moving to a fixed sample period of 5 minutes, this figure compares estimated 
versus measured (A) mean velocity (B) median velocity for 2,870 samples. Again, 
the circles were added to the same locations in each plot to highlight differences.
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Figure 6, Range of observed sample sizes (light region) and median sample size (solid 
line) across five adjacent lanes for  the data shown in the previous figure (A) 
northbound lanes, (B) southbound lanes.
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Figure 7, Finally, using a fixed sample period of 30 seconds and combining data over four lanes, 
this figure shows estimated versus measured (A) mean velocity (B) median velocity for 
5,760 samples. Once more, the circles highlight the differences betwen the plots.
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Table 1, 

upper bound lower bound difference upper bound lower bound difference
N=10 veh 25.07 16.65 8.42 21.82 18.45 3.37
N=50 veh 21.78 18.75 3.03 20.77 20.00 0.77
N=100 veh 21.27 19.16 2.11 20.00 20.00 0.00
N=500 veh 20.59 19.71 0.88 20.00 20.00 0.00
N=1000 veh 20.45 19.82 0.63 20.00 20.00 0.00

N=10 veh 40.77 19.03 21.74 27.69 19.23 8.46
N=50 veh 32.07 21.42 10.65 21.74 20.00 1.74
N=100 veh 30.23 22.62 7.61 21.67 20.00 1.67
N=500 veh 27.89 24.42 3.47 21.54 20.00 1.54
N=1000 veh 27.34 24.88 2.46 21.45 20.00 1.45

for mean for median
99 percent confidence intervals of vehicle length (ft)

Confidence intervals for mean and median effective vehicle length from Monte Carlo simulation 
for various sample sizes from the "best" and "worst" observed distributions.
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Table 2,

sampling 
criteria

number of 
samples

for 
mean v

for 
median v

for 
mean v

for 
median v

for 
mean v

for 
median v

for 
mean v

for 
median v

N=10 veh 24640 26.63 7.22 2.44 1.03 21.62 6.15 20.96 20.39
N=50 veh 4920 17.10 5.58 2.71 1.09 9.36 4.28 21.08 20.42
N=100 veh 2460 15.48 5.38 2.74 1.11 7.31 4.04 21.09 20.42
N=500 veh 490 13.99 4.92 2.77 1.00 5.37 3.84 21.12 20.38
N=1000 veh 235 13.54 5.09 2.78 1.05 4.77 3.86 21.13 20.40
T=30 sec 28750 63.69 29.23 2.82 1.35 60.94 28.48 21.08 20.50
T=5 min 2870 34.36 7.02 3.59 1.03 22.37 5.96 21.39 20.38
T=30 sec and 
combining 4 
lanes

5760 47.39 8.73 4.02 0.98 33.12 7.85 21.59 20.36

Measure of Variance (MOV) and Measure of Bias (MOB) for estimated mean and median 
velocity using different sampling criteria on the same set of vehicle measurements. Note 
that these data come from real observations rather than simulation.

L set to 20 feet L set to eliminate bias

MOV (mph)2
MOB (mph) L (ft)MOV (mph)2
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