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ABSTRACT OF THE DISSERTATION

Resampling Inhomogeneous Marked Point Processes

by

William John Garner

Doctor of Philosophy in Mathematics

University of California, San Diego, 2011

Professor Dimitris Politis, Chair

We investigate methods for resampling inhomogeneous marked point processes, focusing

on Poisson point processes. In Chapter 1 we introduce the problem and provide some background

information. In Chapter 2 we adapt existing methods for resampling homogeneous marked

point processes to the case of one-dimensional inhomogeneous marked point processes data. In

Chapter 3 we extend theoretical results such as asymptotic normality from the homogeneous to

the inhomogeneous setting. In Chapter 4 we establish the validity of our local block bootstrap

procedure for one-dimensional inhomogeneous marked point processes data while in Chapter 5

we compare the performance of the one-dimensional methods. In Chapter 6 and Chapter 7,

we extend the theory and validity of our local block bootstrap procedure to higher dimensions.

We carry out simulations to test the performance of our methods under varying distributions of

points as well as varying dependencies on the associated marks.
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Chapter 1

Introduction

When criticized for the lack of motivation in his proofs, Carl Friedrich Gauss is quoted

as saying, “The scaffold had to be removed before the edifice of a mathematical work should see

the light of the public.”

This is in stark contrast to the theme taken for this thesis, as great care has been taken

to motivate the steps in the proofs. Most times, the final step was not known in advance and

many of the figures and tables used to arrive at the end are included to aid the reader.

In many ways, this thesis reads like a narrative, which captures over three years of work.

Pictures are included whenever they can help to visualize what is going on. In fact, this thesis

contains a total of 76 figures!

All figures in this document were produced using Mathematica, Version 8.0 [81] while

all simulations were carried out using R, Version 2.14 [61].

This paper discusses methods for resampling marked point process (MPP) data that arise

from an inhomogeneous Poisson process. Some authors use the term nonhomogeneous Poisson

process instead, and some care must be taken when researching the subject. A nice introduction

to inhomogeneous Poisson processes can be found in [68]. A more formal treatment can be found

in [13].

The difference between a point process and a marked point process is the fact that each

observation of the point process carries with it an associated value (called a mark). Krickeberg

[33] provides more details regarding marked point processes. On a very simple level, a marked

point process can be thought of as a generalized time series. An example will help to illustrate

this point.

Suppose we consider the price of a particular stock. In the case of a time series, we have

an alarm clock on our desk that goes off at 4pm every day. At the moment, we record the stock

price. Thus, we obtain equally spaced samples that can be indexed by an integer, k. (For the

1
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purpose of this example, weekends and other days the stock market is closed are ignored.)

In the case of a marked point process, we are again concerned with the stock price.

This time, however, our alarm clock goes off at random times throughout the day according to

some probability distribution. (We can think of the time series situation as the case where the

probability distribution assigns a probability of 0 for all times except for 4pm.)

Our objective is statistical inference of the common mean µ on the basis of measurements

of a random, wide-sense stationary field X(·) at a finite number of non-lattice, irregularly spaced

points. As part of our inference, we shall consider the following two estimators of the mean and

assess their asymptotic properties.

X̃K =
1

E [N(K)]

∫
K

X(t)N(dt)

and

X̄K =
1

N(K)

∫
K

X(t)N(dt)

We have adopted the convention that 0/0 = 1. Here, N denotes the point process, K

denotes the region of interest, and N(K) denotes the number of observations in K. N(dt) acts

as a counting measure and the above integral is really just a sum over the observed values of N ,

namely the τi, which are themselves random. That is, we could express the above as:

X̃K =
1

E [N(K)]

N(K)∑
i=1

X(τi)

and

X̄K =
1

N(K)

N(K)∑
i=1

X(τi)

The case where the data comes from a time series has been well studied. See, for example,

[6] or [80]. In such a setting (where the data is regularly spaced), various methods have been

developed to model (and resample) the data. Since we are concerned with obtaining confidence

intervals for µ, we will need to employ bootstrap methods for resampling our data.

The simplest bootstrap technique is sampling with replacement where we associate each

of n values with a chip in a bag, draw one chip at a time, record the value, replace the chip in

the bag, and then repeat the process a total of n times.

This approach is often too näıve for the time-dependent data mentioned above. More

sophisticated methods based on using blocks of data (as opposed to individual measurements)

have been proposed.
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Hall [23], Carlstein [7], Künsch [35], Lahiri [37], Liu and Singh [46], Politis and Romano

[54, 55, 56, 57, 58], Räıs [62], and Sherman and Carlstein [76, 77] have developed different block-

resampling techniques for the situations where data are of the form {X(t), t ∈ E}, with E being

a finite subset of the rectangular lattice Zd.
Politis, Romano, and Wolf [59] offer a nice overview of the subject, bringing together

work from the above authors.

But in many instances such as queuing theory, spatial statistics, mining and geostatistics,

and meterology, the data corresponding to the observations X(t) occur at non-lattice, irregularly

spaced points.

There are a myriad of possible distributions for such irregulary spaced data. A common

assumption is that of an Poisson process, which is the focus of this work. Karr [31] provides some

justification for such an assumption. Moreover, Karr puts together the theory for a homogeneous

Poisson process with wide-sense stationary marks. Much of this work is based upon earlier

work done by Masry [50] for nonparametric covariance estimation. Masry also explored spectral

density estimation in [48, 49] and later with Lii in [44, 45].

One of the earliest papers on the subject of estimation of the mean of a continuous

time stochastic process can be found in [5]. Brillinger considers continuous sampling, followed

by discrete samples taken at regular intervals and irregularly spaced. He establishes asymptotic

normality for an estimate of the mean and provides an approximation to the variance of this

estimator.

For example, the rate at which customers arrive at a fast food restaurant would be well-

modeled by a one-dimensional Poisson process (see Figure 1.1). If d = 2, one might consider the

location of weather stations.

Breakfast Lunch Dinner

0 5 10 15 20
time

10

20

30

40

50

60

rate

Figure 1.1: Customer arrivals at a fast food restaurant

There exists a vast amount of literature on inhomogeneous Poisson processes. Diggle,

Lange, and Beneš [16], Schäbe [72], Cowling, Hall, and Phillips [9], Davison and Hinkley [14],

Ventura, Davison, and Boniface [79], and Braun and Kulperger [4] provide excellent examples of

data as well as provide different resampling methods and confidence intervals for the intensity

function. Study of periodic or almost periodic intensities has been carried out by Lee, Wilson,
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and Crawford [39], Kuhl, Wilson, and Johnson [34], Helmers and Mangku [24], Helmers, Mangku

and Zitikis [25], and most recently, Shao and Lii [75].

A common approach to resample such data is a two-step method that first makes some

parametric assumptions regarding the intensity function, λ(t) or uses a non-parametric estimator

and then resamples the data using a Monte Carlo method.

Snethlage [78] provides solid arguments against (blindly) applying a bootstrap procedure,

such as a block bootstrap, to point process data as local structures will be destroyed. This is

particular relevant for inhomogeneous point processes.

Our concern, however, is not on the point process itself, but rather the associated marks.

Continuing with the above examples, if d = 1, then X(t) might represent the amount of money

a customer spends at a fast food restaurant. If d = 2, then X(t) might represent the amount of

rainfall at location t during a fixed time interval. Many authors have noted [10], [31], and [66]

that irregularly spaced data seems to be the rule rather than the exception for d > 1.

A central assumption that we will make is that the location of our points is independent

of the associated marks. As one might imagine, this is a fairly restrictive assumption as it

precludes such data as the location and heights of trees in a forest. For example, as the density

of trees increases, there is increased competition for resources and the heights will be reduced.

[27] provides more discussion on this topic. Several tests have been proposed to test for the

independence between the points and the marks. See [73], [8], [21], and [22] for more details.

The example of the fast food restaurant is a little complicated to begin with, so instead

we shall consider a simpler example. Suppose we record the arrival time of customers at a liquor

store. We might observations (plotted over time) that look like the following:

t

Figure 1.2: Distribution of points according to λ(t)

Notice that we have more data near the middle of the observation window than on the

edges. Since we observe this clustering, we have reason to suspect that the data comes from

an inhomogeneous point process. Indeed, the data comes from the following an Inhomogeneous

Poisson Point Process with intensity function given as follows:

But as we said above, our primary focus is not the point process, but rather the associated

marks. To that end, we are likely to encounter marked point process data like Figure 1.4.

Moreover, we will not limit ourselves to one-dimensional data. Indeed, in Chapter 7, we

shall run simulations in two dimensions. Such a point process may look like Figure 1.5.

And the associated marks would look like Figure 1.6.
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t

ΛHtL

Figure 1.3: Intensity function, λ(t)

t

Figure 1.4: One-Dimensional Marked Point Process

t1

t2

Figure 1.5: Two-Dimensional Point Process

t1

t2

Figure 1.6: Two-Dimensional Marked Point Process

The central question of this thesis is how to accurately resample this data. To that end,

we turn our attention to existing methods in the literature.



Chapter 2

Adaptation of Existing Methods

2.1 Introduction

As was mentioned in Chapter 1, our concern is with estimation of the mean, µ, of an

inhomogeneous marked Poisson process. We have two estimators for the mean,

X̃K =
1

Λ(K)

∫
K

X(t)N(dt)

and

X̄K =
1

N(K)

∫
K

X(t)N(dt)

In particular, our focus is on obtaining confidence intervals for the mean. To that end,

we need to resample our data. Currently, there are no methods for resampling an inhomogeneous

marked (Poisson) point process. There are many references to resampling the inhomogeneous

Poisson process itself, however. See, for example, [40].

The closest related works are by Politis, Paparoditis, and Romano for resampling homo-

geneous marked point processes [53] and by Politis and Sherman for estimating moments from

marked point processes [60]. The available literature all pertain to homogeneous point processes,

though. As such, it would seem natural to try to use this approach to resample our data. As we

shall use this method shortly, we record it below.

6
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2.2 Block Bootstrap for a Homogeneous Marked Poisson

Point Process

In their paper, Politis, Paparoditis, and Romano propose a block resampling scheme that

would fill a block with any block of equal width from the entire window. We state their circular

bootstrap algorithm below. (Note: This algorithm performs wrapping. A similar algorithm is

also presented in the paper that does not wrap, but instead changes the probabilities near the

boundary.)

1. Begin by imagining that K is “wrapped around” on a strip; in other words, we interpret

the index t as being modulo K. If t /∈ K we will redefine t = t (modulo K). With this

definition, we have data X(t) even if t /∈ K.

2. Let c = c(K) be a number in (0, 1) depending on K such that c→ 0 but cK →∞. Define

a scaled-down replica of K by B = {ct : t ∈ K}. B has the same shape as K but smaller

dimensions. Also, define the displaced sets B + y and let L = b1/cc.

3. Generate random points Y1, Y2, . . . , YL independent and identically distributed from a uni-

form distribution on K and define

X̃∗ ≡ 1
L

L∑
i=1

1
λ |B|

∫
B+Yi

X(t)N(dt)

and

X̄∗ ≡ 1
L

L∑
i=1

1
N(B + Yi)

∫
B+Yi

X(t)N(dt)

Unfortunately, the algorithm above (as stated) is not appropriate in our setting, as the

following sequence of figures illustrates.

Suppose we have the following distribution of points (see Figure 2.1) and our goal is to

resample the second block. (Blocks are separated by the vertical lines.)

t

Figure 2.1: Original distribution of points

Notice that the second block is fairly dense (this would correspond to a larger value

of λ(t)). Our block resampling scheme might choose the block illustrated by a red dash (see

Figure 2.2).



8

t

Figure 2.2: Choosing our resampling block

Notice that this block contains only 4 points whereas the original block contained 7.

After we replace the second block with this block, our data has lost the clustering it had before

(see Figure 2.3). In fact, this set of points looks like it could have come from a homogeneous

Poisson process.

t

Figure 2.3: Resampled points

One of Politis’ formers students, Arif Dowla, considered problems in time series [18] and

since resampling techniques exist for time series data, it seemed like a good place to start. (It

was thoughts of time series that motivated the opening example in Chapter 1). That is, suppose

that we have marked point process data such as that in Figure 2.4.

0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
t
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12
XHtL

Figure 2.4: Example Marked Point Process Data

The data does not appear too different from time series data. If we impose a restriction

that the points are not “too dense” and “somewhat” equally spaced, then they could be mapped

to a grid, such as in Figure 2.5.
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Figure 2.5: Mapping Marked Point Process Data to a Grid

While this would shift the values, with the (vague) assumptions, the impact would be

minimal and it should be possible to get a handle on the problem. The issue is that these

assumptions are not well-specified, nor realistic. It even precludes homogeneous Poisson process

data, which is more closely related to the actual data that we would expect.

However, thinking about trying to reindex the data did lead to the discovery of one way

to resample inhomgeneous Marked Poisson process data (for the one-dimensional case).

2.3 The Method

An inhomogeneous Poisson process X(t) with rate λ(t) can be transformed into a homo-

geneous Poisson process Y (u(t)) with rate 1 via the time transformation u(t) = Λ(t). See [13]

for an overview. In essence, the time axis is being stretched to spread the points out.

t

Figure 2.6: Inhomogeneous Poisson Process Before Remapping

The vertical lines in Figure 2.6 denote an area where the intensity, λ(t) increases. Notice

that in Figure 2.7, that area has been expanded.

But for this method to work, we need to know the cumulative intensity function, Λ(t).

The literature mentioned in Chapter 1 provide many ways to estimate the cumulative intensity

function. Law and Kelton [38] suggest a non-parametric procedure for estimating λ(t) with a
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ut

Figure 2.7: Inhomogeneous Poisson Process After Remapping

piecewise-constant function.

This requires one to divide the interval [0,K] into non-overlapping pieces on which the

intensity is assumed to be (fairly) constant and estimate a single rate for each interval.

Issues arise when determining the size of the pieces, which we shall denote w. (The

method described allows for unequal widths, but for the sake of simplicity, we assume equal

widths of our pieces, which is a divisor of K.) Suppose w = 1 and we have points as seen below

in Figure 2.8.

1 2 3 4 5 6 7 8 9 10
t

Figure 2.8: Estimating Λ(t) with w = 1

To estimate the intensity, we have λ̂(t) =
# of points

w
. This gives us estimates for λ(t)

in Table 2.1.

Table 2.1: Estimates of λ̂(t) for w = 1
Interval (0, 1] (1, 2] (2, 3] (3, 4] (4, 5] (5, 6] (6, 7] (7, 8] (8, 9] (9, 10]
λ̂(t) 2 2 1 0 3 3 1 1 2 1

If we use w = 2, instead, we arrive at a similar result.

2 4 6 8 10
t

Figure 2.9: Estimating Λ(t) with w = 2

Table 2.2: Estimates of λ̂(t) for w = 2
Interval (0, 2] (2, 4] (4, 6] (6, 8] (8, 10]
λ̂(t) 2 0.5 3 1 1.5

If we were to use too large of an w, say w = 5, then our estimate will suffer.
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5 10
t

Figure 2.10: Estimating Λ(t) with w = 5

Table 2.3: Estimates of λ̂(t) for w = 5
Interval (0, 5] (5, 10]
λ̂(t) 1.6 1.6

In the last example, it would appear as though the intensity is constant on the entire

interval.

So, the question remains as to what constitutes the optimal choice of w. Unfortunately,

that answer changes depending on the data.

Lewis and Shedler [42] suggest a non-parametric kernel estimate of the form

λ̂(t;K) =
1

h(K)

N(K)∑
j=1

W

(
t− τj
h(K)

)
where N(K) is the number of observations on [0,K], τ1, . . . τN(K) are the observed values,

W (·) is a bounded non-negative integrable weight function with

∞∫
−∞

W (u)du = 1 and h(K) is a

positive bandwidth function which tends to zero as K →∞, but in such a way that o(h(K)) =

1/K. Thus, it might be that h(K) ∼ K−1/2, for example.

The first method described can be thought of a special case of this kernel estimate, in

which the weight function is rectangular (it applies equal weight to all observations in a particular

window and no weight to any other observations).

But similar to above, this problem requires the user to specify both a bandwidth function

and a weight function.

We shall also consider a second approach where we break the interval into a fine grid and

estimate the intensity at each point by taking a local average (on [−w,w], say). Both methods

give us a reasonable approximation to the true intensity function, λ(t).

Once we have an estimate for λ(t), we have access to a way to resample an inhomogeneous

marked (Poisson) point process. The idea is as follows:

1. Estimate the cumulative intensity function, Λ(t).
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2. Use the fact that an inhomogeneous Poisson process N(t) with rate λ(t) can be transformed

to a homogeneous Poisson process Y (u) with rate 1 via the time transformation u = Λ(t).

See [13] for an overview.

3. Apply the block bootstrap algorithm for resampling a homogeneous marked point process

to Y (u).

4. Invert Λ(t) to map back to the inhomogeneous setting, if so desired.

The last step is is not necessary, as we are just concerned with the value of the marks,

not necessarily of the original location of the points. Also, it should be noted that the methods

we used above are not exhaustive. Many other techniques for estimating λ(t) and Λ(t) exist. For

example, Leemis [40] provides another nonparametric technique for estimating Λ(t) that does

not require the user to specify any parameters or weighting functions.

2.4 Simulations

In the simulations that follow, we use accept-reject algorithms specified by Lewis and

Shedler [43] to generate one-dimensional inhomogeneous Poisson process data. Pasupathy [52] is

another excellent reference for generating (in)homogeneous Poisson processes data.

We run our simulations using the statistical software R [61]. The R code used for these

simulations can be found in the appendix.

We consider five different intensity functions to generate the points.

First, we consider λ1(t) = 2 + sin
2π
250

t for 0 ≤ t ≤ 1000. This is shown in Figure 2.11.

250 500 750 1000
t

1

2

3

4
Λ1HtL

Figure 2.11: One-Dimensional Inhomogeneous Simulation Intensity Function 1

Second, we consider λ2(t) = 1 +
1

500
t for 0 ≤ t ≤ 1000. This is shown in Figure 2.12.
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Figure 2.12: One-Dimensional Inhomogeneous Simulation Intensity Function 2

Third, we consider λ3(t) = 3− 1
250
|t− 500| for 0 ≤ t ≤ 1000. This is shown in Fig-

ure 2.13.
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t
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4
Λ3HtL

Figure 2.13: One-Dimensional Inhomogeneous Simulation Intensity Function 3

Fourth, we consider λ4(t) = 1 +
3

1000000
t2 for 0 ≤ t ≤ 1000. This is shown in Fig-

ure 2.14.

Fifth, we consider λ5(t) = 4− 2
(
t− 500

450

)6

for 0 ≤ t ≤ 1000. This is shown in Fig-

ure 2.15.

Once we have the points, we use two different covariance functions to generate associated

marks. First, we consider R(t) = exp(−|t|) and second, we consider R(t) = exp(−|t|/3).

Since we need to transform the inhomogeneous Poisson process into a homogeneous

Poisson process, we use three different transformation methods.

In Method 1, we estimate λ(t) as a piecewise constant function on intervals of length w.

By finding the area under these rectangles, we are able to estimate Λ(t).
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Figure 2.14: One-Dimensional Inhomogeneous Simulation Intensity Function 4

250 500 750 1000
t

1

2

3

4

Λ5HtL

Figure 2.15: One-Dimensional Inhomogeneous Simulation Intensity Function 5
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In Method 2, we estimate λ(t) by taking a local average over a window [−w,w]. We

construct a fine grid (with points every 0.1) and use this as our approximation to λ(t). Again,

by considering the area under the curve, we estimate Λ(t).

In Method 3, we use the knowledge of λ(t) to integrate the function and obtain an exact

expression for Λ(t). That is, Λ(t) =
∫ t

0

λ(s)ds. Notice that in the third method, we do not need

an additional parameter, w, but is not a feasible method in practice.

Once we have obtained our homogeneous Poisson process data, we apply the block boot-

strap techniques in [53] to resample our (now homogeneous) marked point process. This requires

us to specify a block size, b, for which we consider three different choices (b = 2, 5, 10).

Putting all of the above together, we have a total of 210 models under consideration.

Each model was simulated 1,000 times and each time, a 95% confidence interval was constructed.

At this point, a note on the choice of b is in order. The choice of block size was determined

by the assumptions that appear in Section 4.3. Simply put, we need to choose a b that is of a

much smaller order than K. Also, for the sake of simplicity, we consider b that divide K.

In terms of applying these methods to actual data, one needs estimates for w, the bin

width and b, the block size. Estimating w for our piecewise constant and local averaging ap-

proaches has been well-studied. For example, see [71] and [36]. An optimal choice for b can be

selected by modifying the method used for selecting blocks using subsampling methods in [28]

for time-series data, which is itself an extension of work done by [20] and [3] for the case of i.i.d.

data. This will be the focus of future work.

It was brought to the author’s attention that Brillinger [5] considered the problem of

estimation of the mean and showed how one may estimate the variance of X̄K . In particular,

using our blocks of size b, we have that the variance of X̄K is approximated by

1
L(L− 1)

L∑
j=1

(
γ

(b)
X (j)− X̄K

)2

where L = K/b (which is assumed to be an integer) and

γ
(b)
X (j) =

1
N(jb)−N((j − 1)b)

jb∫
(j−1)b

X(t)N(dt)

Note that we have corrected the typo in formula (25), where γ(S)
X was incorrectly listed as

γ
(T )
X . Also, Brillinger makes use of assumptions based upon cumulants while we make assumptions

on α-mixing. Some work is needed to show that our assumptions imply Brillinger’s.

In the tables that follow, we present the mean and standard deviation of the constructed

confidence intervals as well as the percentage of confidence intervals containing the true mean, 0
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(the coverage probability).

When considering all of the tables, we see that the mean confidence interval length is

around 0.1 while the standard deviation is around 0.025. Also, the average number of resampled

observations varies, but stays within 5% of the true counts.

Examining Tables 2.4 - 2.8, we see that b = 2 seems to give the best coverage in all

instances. For various choices of w, the results are roughly the same, though in Tables 2.4 - 2.6,

w = 10 seems best while in Table 2.7, w = 5 seems best and in Table 2.8, w = 20 is best.

In Table 2.8, we observe overall poor coverage. This could be attributed to the fast

changing intensities near the sides of the interval. However, this would not explain why such a

large choice of w was optimal.

When examining Tables 2.9 - 2.13, we see some differences. First, the choice of b = 2

and w = 10 is optimal across all tables. Moreover, changes in b have an appreciable impact on

the overall coverage in Tables 2.9 and 2.10. That is, we see a 5% decrease when increasing from

b = 2 to b = 5 and an additional 5% decrease when increasing from b = 5 to b = 10. This is not

present in the other tables, however.

Instead, the overall coverage drops significantly in Tables 2.11 - 2.13. It is not clear why

only three out of five tables exhibit this behavior, though.

Table 2.4: Transformation Method with Intensity function λ1(t) and R(t) = exp(−|t|)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 2092.908 0.09316 0.02215 85.8%

10 1947.576 0.09468 0.02344 87.9%
20 2007.023 0.09425 0.02151 83.6%

2 5 2058.042 0.09351 0.02175 83.7%
10 2005.433 0.09376 0.02381 84.8%
20 2038.794 0.09393 0.02188 82.0%

3 NA 1946.399 0.09637 0.02618 95.0%
5 1 5 2024.743 0.09420 0.02164 78.8%

10 1937.223 0.95000 0.02365 80.0%
20 2068.244 0.09335 0.02203 78.2%

2 5 2053.537 0.09373 0.02197 78.1%
10 1951.529 0.09437 0.02315 81.4%
20 2066.126 0.09337 0.02187 76.4%

3 NA 1969.763 0.09597 0.02636 90.7%
10 1 5 2045.831 0.09374 0.02168 75.2%

10 1961.638 0.09431 0.02345 78.0%
20 2068.244 0.09303 0.02151 73.4%

2 5 2075.651 0.09299 0.02162 77.1%
10 1931.079 0.09510 0.02358 76.3%
20 2036.970 0.09378 0.02159 74.4%

3 NA 1933.351 0.09624 0.02574 87.0%
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Table 2.5: Transformation Method with Intensity function λ2(t) and R(t) = exp(−|t|)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 1967.525 0.10034 0.02396 70.7%

10 2063.676 0.09794 0.02338 85.4%
20 2006.179 0.09981 0.02437 68.3%

2 5 2006.785 0.09910 0.02358 73.7%
10 2063.376 0.09694 0.02371 84.6%
20 2030.599 0.09838 0.02339 73.1%

3 NA 2038.185 0.09899 0.02414 94.9%
5 1 5 2008.460 0.09900 0.02368 72.2%

10 2022.507 0.09733 0.02380 82.6%
20 2047.619 0.09814 0.02366 71.2%

2 5 2043.625 0.09851 0.02389 70.7%
10 2074.556 0.09750 0.02403 82.7%
20 2009.071 0.09929 0.02376 67.7%

3 NA 2045.142 0.09773 0.02514 93.1%
10 1 5 2081.618 0.09751 0.02372 65.8%

10 2076.823 0.09649 0.02322 82.7%
20 2024.016 0.09869 0.02376 69.0%

2 5 2033.735 0.09841 0.02386 69.1%
10 2008.519 0.09885 0.02389 82.3%
20 2057.804 0.09844 0.02376 67.7%

3 NA 2044.047 0.09849 0.02487 92.0%



18

Table 2.6: Transformation Method with Intensity function λ3(t) and R(t) = exp(−|t|)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 2037.237 0.09326 0.02255 93.6%

10 2062.927 0.09320 0.02299 95.1%
20 2098.390 0.09232 0.02296 93.8%

2 5 2041.594 0.09294 0.02239 93.7%
10 2086.367 0.09314 0.02343 94.2%
20 2094.782 0.09281 0.02339 93.3%

3 NA 2075.337 0.09337 0.02371 93.5%
5 1 5 2106.712 0.09199 0.02277 87.2%

10 2030.061 0.09387 0.02286 89.2%
20 2042.671 0.09355 0.02313 86.5%

2 5 1996.850 0.09447 0.02296 88.1%
10 2032.069 0.09346 0.02262 88.6%
20 2078.169 0.09285 0.02294 85.7%

3 NA 2005.316 0.09400 0.02261 86.1%
10 1 5 2073.468 0.09279 0.02306 83.8%

10 2097.910 0.09186 0.02242 87.3%
20 2057.125 0.09330 0.02312 83.4%

2 5 2010.870 0.09391 0.02263 84.6%
10 2083.004 0.09278 0.02387 86.5%
20 1983.265 0.09496 0.02306 80.8%

3 NA 2034.399 0.09360 0.02270 80.8%
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Table 2.7: Transformation Method with Intensity function λ4(t) and R(t) = exp(−|t|)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 2001.551 0.09284 0.02234 93.4%

10 2006.680 0.09229 0.02195 93.1%
20 2034.798 0.09197 0.02217 92.5%

2 5 2041.922 0.09229 0.02268 94.4%
10 2068.085 0.09137 0.02251 87.8%
20 2033.748 0.09155 0.02185 93.1%

3 NA 1994.686 0.09230 0.02150 93.5%
5 1 5 2043.547 0.09201 0.02254 89.4%

10 1962.131 0.09347 0.02220 85.3%
20 2019.791 0.92277 0.02221 88.1%

2 5 1995.500 0.09198 0.02137 87.9%
10 2077.124 0.09108 0.02216 87.8%
20 1989.552 0.09265 0.02193 87.5%

3 NA 1975.456 0.09308 0.02158 88.9%
10 1 5 2091.278 0.09027 0.02159 87.3%

10 2017.657 0.09182 0.02172 84.7%
20 1952.381 0.09322 0.02164 85.5%

2 5 1980.919 0.09278 0.02183 83.7%
10 2054.709 0.09137 0.02185 84.1%
20 2024.077 0.09206 0.02220 85.0%

3 NA 1974.671 0.09245 0.02114 85.5%
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Table 2.8: Transformation Method with Intensity function λ5(t) and R(t) = exp(−|t|)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 3430.586 0.08431 0.03161 56.7%

10 3528.629 0.08380 0.03210 57.8%
20 3667.806 0.08116 0.03123 61.7%

2 5 3509.555 0.08216 0.03079 61.5%
10 3442.563 0.08387 0.03157 59.9%
20 3487.787 0.08227 0.03082 62.3%

3 NA 3380.220 0.08675 0.03446 59.6%
5 1 5 3484.546 0.08264 0.03079 56.4%

10 3495.254 0.08314 0.03141 58.3%
20 3510.250 0.08294 0.03148 58.1%

2 5 3596.883 0.08175 0.03104 59.6%
10 3615.060 0.08121 0.03084 61.4%
20 3547.707 0.08245 0.03131 59.8%

3 NA 3612.726 0.08390 0.03434 60.9%
10 1 5 3453.226 0.08332 0.03113 55.9%

10 3400.524 0.08340 0.03073 56.0%
20 3469.936 0.08272 0.03089 60.2%

2 5 3558.986 0.08195 0.03079 59.0%
10 3495.875 0.08223 0.03056 58.7%
20 3585.228 0.08090 0.03033 59.1%

3 NA 3392.772 0.08581 0.03384 60.3%
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Table 2.9: Transformation Method with Intensity function λ1(t) and R(t) = exp(−|t|/3)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 2023.552 0.10275 0.02638 86.8%

10 1910.069 0.10572 0.02635 87.8%
20 2042.987 0.10255 0.02676 87.1%

2 5 1965.352 0.10385 0.02623 84.2%
10 2038.069 0.10257 0.02680 86.5%
20 2017.845 0.10373 0.02737 83.4%

3 NA 2045.079 0.10147 0.02552 88.3%
5 1 5 1952.009 0.10491 0.02671 75.1%

10 2042.744 0.10194 0.02629 73.5%
20 1957.214 0.10478 0.02687 74.9%

2 5 2022.115 0.10311 0.02699 74.9%
10 2040.431 0.10219 0.02674 73.4%
20 1982.684 0.10354 0.02646 71.7%

3 NA 2049.844 0.10158 0.02570 78.3%
10 1 5 2020.047 0.10274 0.02670 66.9%

10 1950.018 0.10431 0.02635 66.7%
20 1988.093 0.10332 0.02637 65.7%

2 5 2009.881 0.10240 0.02590 65.9%
10 2000.272 0.10322 0.02656 64.7%
20 1953.765 0.10436 0.02644 62.6%

3 NA 2032.483 0.10184 0.02559 66.9%
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Table 2.10: Transformation Method with Intensity function λ2(t) and R(t) = exp(−|t|/3)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 1878.512 0.10018 0.02409 90.8%

10 1907.633 0.09929 0.02395 92.6%
20 1941.822 0.09836 0.02389 90.2%

2 5 1933.702 0.09901 0.02437 90.2%
10 1939.827 0.09843 0.02387 89.5%
20 1920.165 0.09940 0.02413 89.5%

3 NA 1928.076 0.09960 0.02534 87.4%
5 1 5 1900.411 0.09957 0.02410 80.5%

10 1942.919 0.09853 0.02415 82.0%
20 1959.518 0.09783 0.02371 80.7%

2 5 1940.572 0.09816 0.02357 81.8%
10 1953.456 0.09792 0.02374 81.7%
20 1895.902 0.09936 0.02361 78.0%

3 NA 1915.697 0.10000 0.02550 77.5%
10 1 5 1942.785 0.09831 0.02374 71.5%

10 1916.959 0.09846 0.02322 71.5%
20 1912.716 0.09887 0.02369 71.4%

2 5 1948.358 0.09849 0.02414 70.9%
10 1929.970 0.09807 0.02317 71.8%
20 1932.286 0.09826 0.02332 70.6%

3 NA 1956.429 0.09869 0.02541 72.0%
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Table 2.11: Transformation Method with Intensity function λ3(t) and R(t) = exp(−|t|/3)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 2051.810 0.09073 0.02198 46.2%

10 2000.916 0.09121 0.02119 50.3%
20 1961.677 0.09216 0.02134 47.1%

2 5 1999.232 0.09195 0.02217 45.8%
10 2021.857 0.09133 0.02182 46.9%
20 2003.470 0.09188 0.02203 43.4%

3 NA 1980.930 0.09175 0.02077 47.2%
5 1 5 1961.745 0.09270 0.02213 46.0%

10 1992.937 0.09182 0.02186 48.7%
20 2039.625 0.09016 0.02119 46.5%

2 5 1955.352 0.09281 0.02206 43.6%
10 2015.492 0.09122 0.02192 46.1%
20 1920.793 0.09351 0.02185 44.9%

3 NA 2027.315 0.09017 0.02044 47.1%
10 1 5 1989.511 0.09203 0.02247 45.1%

10 1985.328 0.09230 0.02232 45.1%
20 1982.043 0.09239 0.02240 42.4%

2 5 2009.688 0.09153 0.02205 45.4%
10 2021.135 0.09136 0.02222 44.5%
20 1993.055 0.09175 0.02186 45.6%

3 NA 1972.788 0.09158 0.02077 43.9%
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Table 2.12: Transformation Method with Intensity function λ4(t) and R(t) = exp(−|t|/3)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 2003.359 0.09976 0.02831 35.6%

10 2007.652 0.09951 0.02826 36.4%
20 2031.888 0.09892 0.02829 36.2%

2 5 1993.151 0.09890 0.02734 38.4%
10 2010.916 0.09923 0.02793 38.4%
20 2005.910 0.09954 0.02825 37.4%

3 NA 2039.875 0.09858 0.02797 36.6%
5 1 5 2023.721 0.09816 0.02721 35.4%

10 2049.873 0.09853 0.02848 32.6%
20 2003.407 0.09918 0.02808 35.2%

2 5 2032.391 0.09898 0.02833 31.7%
10 2001.556 0.09931 0.02792 33.3%
20 2015.623 0.09919 0.02817 35.0%

3 NA 1987.632 0.09928 0.02733 35.5%
10 1 5 2005.652 0.09885 0.02755 32.0%

10 1970.179 0.10014 0.02787 32.0%
20 2017.393 0.09872 0.02756 34.5%

2 5 2012.970 0.09872 0.02766 32.3%
10 2019.836 0.09833 0.02720 33.0%
20 1948.918 0.09988 0.02690 34.9%

3 NA 2018.217 0.09864 0.02766 31.3%
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Table 2.13: Transformation Method with Intensity function λ5(t) and R(t) = exp(−|t|/3)
b Method w N Obs. CI Len. Mean CI Len. SD Cover %
2 1 5 3532.622 0.07621 0.02929 48.8%

10 3360.993 0.07680 0.02849 53.4%
20 3431.828 0.07646 0.02870 53.9%

2 5 3352.252 0.07747 0.02880 51.4%
10 3425.007 0.07622 0.02855 54.1%
20 3426.325 0.07664 0.02882 52.0%

3 NA 3381.245 0.07949 0.03193 51.6%
5 1 5 3495.971 0.07539 0.02838 53.7%

10 3395.725 0.07679 0.02859 52.7%
20 3311.624 0.07741 0.02879 53.6%

2 5 3508.099 0.07602 0.02902 52.1%
10 3384.467 0.07712 0.02889 52.2%
20 3446.214 0.07645 0.02900 52.9%

3 NA 3475.020 0.07825 0.03157 53.5%
10 1 5 6435.853 0.07561 0.02854 51.0%

10 3393.209 0.07695 0.02882 50.2%
20 3411.386 0.07677 0.02903 49.7%

2 5 3422.886 0.07606 0.02856 50.1%
10 3415.915 0.07582 0.02815 53.7%
20 3501.770 0.07595 0.02896 49.7%

3 NA 3398.694 0.07932 0.03209 50.4%



Chapter 3

Theory for a One-Dimensional

Inhomogeneous Poisson Process

3.1 Introduction

Our goal is statistical inference of the mean of the random process, µ = E[X(t)] on the

basis of observing {X(t)} for the points generated by an inhomogeneous Poisson process N over

the closed interval [0,K]. There are two natural ways to estimate µ:

X̃K =
1

Λ(K)

∫
K

X(t)N(dt)

and

X̄K =
1

N(K)

∫
K

X(t)N(dt)

Note: The only difference between the two formulas is the division by either the expected

or actual sample size, respectively.

Karr [31] explored the case where N is a homogeneous Poisson process and established

the fact that the above estimators are consistent and asymptotically normal at rate
√
|K| with

the same asymptotic variance. We state Karr’s Theorem below as it is the springboard for our

extension to the inhomogeneous setting.

Theorem 3.1.1 (Karr’s Theorem). Let R(t) = Cov(X(0), X(t)) and assume that
∫
R(t)dt <∞

Also, let
1√
|K|

∫
K

(X(t)− µ)dt d−→ N

(
0,
∫
R(t)dt

)
as K →∞. Then, as K →∞, we have

26
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√
|K|

(
X̃K − µ

)
d−→ N

(
0, σ2

)
and

√
|K|

(
X̄K − µ

) d−→ N
(
0, σ2

)
and furthermore,

lim
K→∞

var
(√
|K|X̃K

)
= lim
K→∞

var
(√
|K|X̄K

)
= σ2 ≡

∫
R(t)dt+

R(0) + µ2

λ

A key assumption Karr makes is the independence of the point process, N , and the

associated marks, X. This is also the case in [47]. However, one can imagine in a forest, where

the placement of trees follows a point process and their heights are the associated marks. Due

to limited resources, we would expect the marks to be dependent on the point process. This

complicates matters significantly. [27] is a great resource on this subject.

The goal of this chapter is to extend Karr’s Theorem [31] to the inhomogeneous setting.

Along the way we shall mimic many of the proof techniques that are employed by Politis, Pa-

paroditis and Romano [53]. To that end, we begin with some background on mixing coefficients.

3.2 One-Dimensional Mixing Coefficients

We shall assume that our random process {X(t), t ∈ R} satisfies a certain weak depen-

dence condition that will be quantified in terms of mixing coefficients.

Let ρ(·, ·) denote the distance in the l∞-norm on R. The strong mixing coefficients of

Rosenblatt [67] are then defined as:

αX(k) ≡ sup
E1,E2⊂R

{|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei), i = 1, 2, ρ(E1, E2) ≥ k}

where F(Ei) is the σ-algebra generated by {X(t), t ∈ Ei}.
In a similar manner, Doukhan [17] defined mixing conditions that also depend on the

size of the sets considered.

αX(k; l1, l2) ≡
sup

E1,E2⊂R
{|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei), |Ei| ≤ li, i = 1, 2, ρ(E1, E2) ≥ k}

Notice that αX(k; l1, l2) ≤ αX(k), and that in essence αX(k) = αX(k;∞,∞).

Definition 3.2.1. A random field is said to be α-strong mixing if lim
k→∞

αX(k) = 0.

Definition 3.2.2. We shall define a weaker set of mixing called ᾱ-strong mixing. Define
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ᾱX(k; l) ≡ sup{|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei), i = 1, 2,

E2 = E1 + t, |E1| ≤ l, ρ(E1, E2) ≥ k}

where the supremum is taken over all closed intervals E1 ⊂ R, and over all t ∈ R such

that ρ(E1, E1 + t) ≥ k. Also, we define ᾱX(k) = ᾱX(k;∞).

Notice that ᾱX(k) ≤ αX(k), so that if the random field is α-strong mixing, then it will

necessarily be ᾱ-strong mixing as well, and thus lim
k→∞

ᾱX(k) = 0.

More discussion and references on strong mixing coefficients can be found in Doukhan

[17], Roussas and Ioannides [69], and Leonenko and Ivanov [41].

3.3 Assumptions

For our theoretical results, we make an assumption regarding the process X(t) and an

assumption regarding the mixing coefficients.

A.3.1. 0 < λmin ≤ λ(t) ≤ λmax (That is, λ(t) is bounded above and below.)

A.3.2. X(t) is wide-sense stationary with E[|X(t)|2+δ] <∞ for some δ > 0

A.3.3. ᾱ(k; 0) < const.k−1−ε, where ε >
2
δ

for the δ specified in Assumption A.3.2

3.4 Main Results

We shall begin by showing that our estimators from Section 3.1 are unbiased for µ.

E
[
X̃K

]
=

1
Λ(K)

E

∫
K

X(t)N(dt)


=

1
Λ(K)

E

E
∫
K

X(t)N(dt)

∣∣∣∣∣∣N


=
1

Λ(K)
E

∫
K

E [X(t)]N(dt)


=

1
Λ(K)

E

∫
K

µN(dt)


=

1
Λ(K)

E [µN(K)]

= µ
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E
[
X̄K

]
= E

 1
N(K)

∫
K

X(t)N(dt)


= E

 1
N(K)

E

∫
K

X(t)N(dt)

∣∣∣∣∣∣N


= E

 1
N(K)

∫
K

E [X(t)]N(dt)


= E

 1
N(K)

∫
K

µN(dt)


= E

[
1

N(K)
µN(K)

]
= µ

Note: In both calculations above, we used the stationarity of X(t). Also, we have

adopted the convention that 0/0 = 1. Next, we wish to discuss the variance of our estimators.

The following lemma will prove useful as we go between X̃K and X̄K .

Lemma 3.4.1. Assuming A.3.1, as K →∞,
N(K)
Λ(K)

p−→ 1.

Note: There is actually a stronger result, namely that the convergence happens almost

surely. For our needs, though, convergence in probability is enough. Armed with the above

lemma, Slutsky’s Theorem (see [74]) implies that convergence results that hold for X̃K also

apply to X̄K . Some care needs to be taken when using this fact, though, as we shall see shortly.

To compute the variance of X̃K , we begin by considering the following:

E

∫
K

∫
K

X(t)N(dt)X(s)N(ds)

 =
∫
K

∫
K

E [X(t)N(dt)X(s)N(ds)]

=
∫
K

∫
K

E [X(t)X(s)]E [N(dt)N(ds)]

where the second equality follows from the assumed independence of X(·) and N(·).

Observe, though, that for a wide-sense stationary process, we have:

E [X(t)X(s)] = cov(X(t), X(s)) + E[X(t)]E[X(s)] = R(s− t) + µ2

and
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E [N(dt)N(ds)] =

 E [N(dt)]E[N(ds)] if t 6= s

(E [N(dt)])2 if t = s

=

 λ(t)λ(s)dtds if t 6= s

(λ(t)dt)2 + λ(t)dt if t = s

This follows since N(dt) is a Poisson(λ(t)dt) random variable. Thus, its first moment is

equal to λ(t)dt and its second moment is equal to square of the first moment plus the variance,

i.e. (λ(t)dt)2 + λ(t)dt.

Thus, we have that

E

∫
K

∫
K

X(t)N(dt)X(s)N(ds)

 =
∫
K

∫
K

(
R(s− t) + µ2

)
λ(t)λ(s)dtds

+
∫
K

(
R(0) + µ2

)
λ(t)dt

And so, it follows that

var(X̃K) =
1

[Λ(K)]2
var

∫
K

X(t)N(dt)



=
1

[Λ(K)]2


E

∫
K

∫
K

X(t)N(dt)X(s)N(ds)


− E

∫
K

X(t)N(dt)

E
∫
K

X(s)N(ds)





=
1

[Λ(K)]2



∫
K

∫
K

(
R(s− t) + µ2

)
λ(t)λ(s)dtds

+
∫
K

(
R(0) + µ2

)
λ(t)dt− µ2[Λ(K)]2


=

1
[Λ(K)]2

∫
K

∫
K

R(s− t)λ(t)λ(s)dtds+
∫
K

(
R(0) + µ2

)
λ(t)dt


Just as a check to ensure that our formula is correct, suppose that instead we had a

homogeneous Poisson process.

In that instance, we have that λ(t) = λ for all t, at which point the above formula reduces

to:
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var(X̃K) =
1

(λK)2

λ2

∫
K

∫
K

R(s− t)dtds+
(
R(0) + µ2

)
λK


=

1
K2

∫
K

∫
K

R(s− t)dtds+
R(0) + µ2

λK

Letting u = s− t, then du = ds, and we have

1
K2

∫
K

∫
K

R(s− t)dtds =
1
K2

K∫
0

K−t∫
−t

R(u)dudt

=
1
K2

 0∫
−K

K∫
−u

R(u)dtdu+

K∫
0

K−u∫
0

R(u)dtdu


=

1
K2

 0∫
−K

(K + u)R(u)du+

K∫
0

(K − u)R(u)du


=

1
K2

K 0∫
−K

(
1 +

u

K

)
R(u)du+K

K∫
0

(
1− u

K

)
R(u)du


=

1
K

K∫
−K

(
1− |u|

K

)
R(u)du

which gives us precisely Prop 10.8 in [31] (pg 391).

At this point, it is worth addressing some confusion that exists in the literature. Karr

[31] gives the formula listed above. However, in their paper, Politis, Paparoditis, and Romano

[53] “correct” the formula by eliminating the µ2. This might come from the following:

var(X̃K) =
1

[Λ(K)]2
var

∫
K

X(t)N(dt)


=

1
[Λ(K)]2

E

∫
K

∫
K

(X(t)− µ)(X(s)− µ)N(dt)N(ds)


=

1
[Λ(K)]2

∫
K

∫
K

E [(X(t)− µ)(X(s)− µ)N(dt)N(ds)]

=
1

[Λ(K)]2

∫
K

∫
K

E [(X(t)− µ)(X(s)− µ)]E [N(dt)N(ds)]

=
1

[Λ(K)]2

∫
K

∫
K

R(s− t)λ(t)λ(s)dtds+
∫
K

R(0)λ(t)dt
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So, what happened? The steps above seem compelling. The fallacy is with the second

line. Suppose, for the sake of contradiction, that the second line were true and that X(t) = µ

for all t. Since E [(X(t)− µ)] = 0, the reasoning above would give us that the variance would be

equal to 0.

But Campbell’s Theorem [32] (stated below without proof) gives us var(X̃K) =
µ2

Λ(K)
.

Theorem 3.4.2 (Campbell’s Theorem). Let N be a Poisson process on K with mean measure

λ(t), and let X(t) : K → R be measurable. Then the sum Σ =
∑
t∈N

X(t) is absolutely convergent

in probability if and only if
∫
K

min(|X(t)| , 1)λ(t)dt <∞.

If this condition holds, then E[eθΣ] = e
∫
K

(eθX(t)−1)λ(t)dt for any complex θ for which the

integral on the right converges. Moreover,

E[Σ] =
∫
K

X(t)λ(t)dt

in the sense that the expectation exists if and only if the integral converges, and they are

equal. If the expected value converges, then

var[Σ] =
∫
K

[X(t)]2λ(t)dt,

finite or infinite.

Under Assumption A.3.1, we have that∫
K

min(|µ| , 1)λ(t)dt ≤ max(µK, λmaxK) <∞

Also, we have that

E

[∫
K

µN(dt)
]

=
∫
K

µλ(t)dt = µΛ(K),

so we have that the expected value exists and the integral converges. Thus, we have that

var
[∫

K

µN(dt)
]

=
∫
K

µ2λ(t)dt = µ2Λ(K).

The question remains: what is wrong with subtracting µ from X(t)? The reason is there

are two sources of variability: X(t) and N(t). So, even if X(t) is fixed, there will still be some

variability in our estimator, X̃K .

We can see this another way, by conditioning on N .
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var(X̃K) =
1

[Λ(K)]2
var

∫
K

µN(dt)


=

1
[Λ(K)]2

var

E
∫
K

µN(dt)

∣∣∣∣∣∣N
+ E

var

∫
K

µN(dt)

∣∣∣∣∣∣N


=
1

[Λ(K)]2

var

E [µ|N ]
∫
K

N(dt)

+ E

∫
K

var [µ|N ]N(dt)


=

1
[Λ(K)]2

(
µ2Λ(K) + 0

)
=

µ2

Λ(K)

This, in turn, led to an examination of the variance of X̄K . IfX(t) = µ, then V ar
[
X̄K

]
=

0, and µ is strangely absent. It is possible that Politis, Paparoditis, and Romano [53] were

considering X̄K when they argued that µ2 should not be present.

This belief is further supported by considering the proof of their Theorem 3. They claim

that

√
|K|

(
X̃K − µ+ µ− X̄K

)
=
N(K)− λ |K|
N(K)λ

√
|K|

∫
K

(X(t)− µ)N(dt)

which is used as justification as to why
√
|K|

(
X̃K − µ

)
and

√
|K|

(
X̄K − µ

)
have the

same asymptotic distribution and same asymptotic variance.

However, the statement is not true. Indeed,

N(K)− λ |K|
N(K)λ

√
|K|

∫
K

(X(t)− µ)N(dt)

=
√
|K|

 1
λ |K|

∫
K

(X(t)− µ)N(dt)− 1
N(K)

∫
K

(X(t)− µ)N(dt)


=
√
|K|

 1
λ |K|

∫
K

X(t)N(dt)− N(K)
λ |K|

µ+ µ− 1
N(K)

∫
K

X(t)N(dt)


=
√
|K|

(
X̃K −

N(K)
λ |K|

µ+ µ− X̄K

)

As they point out in the lines preceeding this equality, N(K)
λ|K| = 1 +Op

(
1/
√
|K|
)

. Thus,√
|K|

(
X̃K − X̄K

)
6= op(1) as claimed and hence

√
|K|

(
X̃K − µ

)
and

√
|K|

(
X̄K − µ

)
do not

necessarily share the same asymptotic properties.
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These differing results as well as the confusion in the literature led to a deeper exploration

of the two estimators and a discovery that there is some truth and fallacy in both [31] and [53].

In particular, Theorem 3.1.1 is not correct as stated.

More precisely, the result stated are true for X̃K , but are not correct for X̄K as the

following simple example illustrates. Suppose that the marks are i.i.d. N(µ, σ2). Let us compute

the variance of both of our appropriately centered and scaled estimators. We begin with X̃K .

V ar
[√

Λ(K)
(
X̃K − µ

)]
= V ar

[
E
[√

Λ(K)
(
X̃K − µ

)∣∣∣N(K)
]]

+ E
[
V ar

[√
Λ(K)

(
X̃K − µ

)∣∣∣N(K)
]]

= V ar

[
N(K)− Λ(K)√

Λ(K)
µ

]
+ E

[
N(K)

[Λ(K)]2
σ2

]

=
µ2 + σ2

Λ(K)

where the last line holds since E[N(K)] = V ar[N(K)] = Λ(K) gives us that

V ar

[
N(K)− Λ(K)√

Λ(K)

]
= 1.

Turning our attention to X̄K , we have that

V ar
[√

Λ(K)
(
X̄K − µ

)]
= V ar

[
E
[√

Λ(K)
(
X̄K − µ

)∣∣∣N(K)
]]

+ E
[
V ar

[√
Λ(K)

(
X̄K − µ

)∣∣∣N(K)
]]

= V ar [0] + E

[
N(K)

[N(K)]2
σ2

]

≈ σ2

Λ(K)

Strictly speaking, the last expectation is infinite since P (N(K) = 0) > 0. However, since

E [N(K)] /
√
V ar [N(K)] tends towards infinity as K → ∞, the region where 1/N(K) is large

has an extremely small probability and thus can be ignored. The approximation comes from

an asymptotic series expansion where the higher order terms have been omitted. Slightly more

formal, the approximation holds since N(K) ≈ Λ(K) for large K by the Law of Large Numbers

and thus E [N(K)] ≈ 1/Λ(K).

This also calls into question Karr’s claim regarding the asymptotic normality of X̄K .

However, we can appeal to work done by Brillinger [5]. In particular, we can transform our

inhomogeneous Poisson process to a homogeneous Poisson process using the transformation,
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Λ(t) discussed in Chapter 2. Brillinger established the asymptotic normality of X̄K and showed

that the variance does not contain a µ2, which is in agreement with our work above. However, he

bases his proofs on assumptions of cumulants while we make assumptions on α-mixing. Additional

work is needed to show that our assumptions imply Brillinger’s.

Notice, however, that in the case of µ = 0, we may apply Slutsky’s Theorem [74] both

X̃K and X̄K are asymptotically normal with the same variance, as Karr claimed.

Our last goal is to establish a central limit theorem. Suppose that X(t) is wide-sense

stationary with finite second moment and the covariance function is absolutely integrable, i.e.

∫
|R(t)| dt <∞. (3.4.1)

Let

1√
Λ(K)

∫
K

(X(t)− µ)λ(t)dt d−→ N
(
0, θ2

)
(3.4.2)

as K →∞, for a θ2 that will be defined below.

Lemma 3.4.3. If there exists a δ > 0 such that Assumptions A.3.2 and A.3.3 hold, then equations

(3.4.1) and (3.4.2) hold.

Note: Different sufficient conditions for equations (3.4.1) and (3.4.2) can be found in

Rozanov [70].

Above, we made reference to θ2. Necessarily, it will be the asymptotic variance of

1√
Λ(K)

∫
K

(X(t)− µ)λ(t)dt

To that end, we compute it. Let X̂(t) = X(t)− µ. Notice that
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var

 1√
Λ(K)

∫
K

X̂(t)λ(t)dt



=
1

Λ(K)


E

∫
K

X̂(s)λ(s)ds

∫
K

X̂(t)λ(t)dt


− E

∫
K

X̂(s)λ(s)ds

E
∫

K

X̂(t)λ(t)dt




=

1
Λ(K)

∫
K

∫
K

E[X̂(s)X̂(t)]λ(s)λ(t)dsdt− 0

=
1

Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt

So, we have that θ2 = lim
K→∞

1
Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt.

By Assumption A.3.1, we have that

1
Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt ≤ (λmax)2

Λ(K)

∫
K

∫
K

|R(s− t)| dsdt

=
(λmax)2K

Λ(K)

K∫
−K

(
1− |u|

K

)
|R(u)| du

≤ (λmax)2K

Λ(K)

∞∫
−∞

|R(u)| du

By equation (3.4.1), we have that this integral is finite, so we are assured that θ2 <∞.

Theorem 3.4.4. Assuming equations (3.4.1) and (3.4.2), then as K →∞, we have that

√
Λ(K)

(
X̃K − µ

)
d−→ N

(
0, σ2

)
and

√
Λ(K)

(
X̄K − µ

) d−→ N
(
0, φ2

)
,

where φ2 = θ2 +R(0) and σ2 = φ2 + µ2.

For X̃K , our result is analogous to Karr [31]. And for X̄K , our result is analogous

to Politis, Paparoditis, and Romano [53]. The reason we are able to extend results from the



37

homogeneous setting to the inhomogeneous setting is the generality of Theorem 3.4.2 which

applies to both homogeneous and inhomogeneous point processes.

3.5 Proofs

Proof of Lemma 3.4.1: We begin by establishing the result for the homogeneous case, then gen-

eralizing to the inhomogeneous setting. Note: N(t) is short-hand for N(0, t], the number of

points on the interval (0, t].

Suppose N(K) is a homogeneous Poisson process with intensity λ (so we have that

N(K) ∼ Poisson(λK)). Then

E[N(K)] = λK

and

V ar[N(K)] = λK

By Markov’s inequality, for any ε > 0,

P

(∣∣∣∣N(K)
K

− λ
∣∣∣∣ ≥ ε) ≤ λ

ε2K

Now, let tj = j2. Then the above inequality implies that

∞∑
j=1

P

(∣∣∣∣N(j2)
j2

− λ
∣∣∣∣ ≥ ε) <∞

So, by the Borel-Cantelli lemma, with probability 1, we have that∣∣∣∣N(j2)
j2

− λ
∣∣∣∣ ≥ ε

for at most a finite number of integer values of j. Since ε > 0 is arbitrary, we have

lim
K→∞

N(j2)
j2

= λ

with probability 1. To obtain our desired result, take j to be the integer part of K1/2,

so that for K > 1,

N(j2) ≤ N(K) ≤ N((j + 1)2)
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and

j2 ≤ K ≤ (j + 1)2

Since (j + 1)2/j2 → 1, the proof is complete for the homogeneous case.

Now, suppose that N is an inhomogeneous Poisson process. Define N1 = Λ(N). Then

N1 is a homogeneous Poisson process with rate 1. (Note: This is the same transformation used

in Chapter 2.) And so, with probability 1, we have that lim
K→∞

N(K)
Λ(K)

= 1.

Proof of Lemma 3.4.3: We appeal to Theorem 1.7.1 of Leonenko and Ivanov [41] where they

employ a weaker notion than our ᾱ-mixing.

We only need to verify the finiteness of
∫
|R(t)| dt <∞, as that is enough to ensure that

the limiting variance of
1√

Λ(K)

∫
K

(X(t)− µ)λ(t)dt is finite.

A result in Roussas and Ioannides [69] (which requires Assumption A.3.2) states

|cov(X(0), X(t)| ≤ const.ᾱX(|t| ; 0)1−2/(2+δ)

Thus, we have that∫
|R(t)| dt = O

(∫
ᾱX(|t| ; 0)1−2/(2+δ)

dt

)

= O

 ∞∫
1

(
1

y1+ε

)1−2/(2+δ)

dy


= O

 ∞∫
1

1
y1+(εδ−2)/(2+δ)

dy


< ∞

The first line follows from the inequality from Roussas and Ioannides.

The second line follows by letting y = |t|, using the bound on the mixing coefficients

(Assumption A.3.3), and recognizing that the contribution of the integral from 0 to 1 does not

affect the order. (We can bound the integrand by |R(0)|.)
The third line is simple algebra and the finiteness comes from the assumption that ε >

2
δ

so we have that
εδ − 2
2 + δ

> 0, and thus the integral converges.
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Proof of Theorem 3.4.4: Our strategy is to show that the characteristic function of

√
Λ(K)

(
X̃K − µ

)
converges to that of a N(0, σ2) random variable.

E
[
exp

(
iα
√

Λ(K)
(
X̃K − µ

))]
= E

[
E
[

exp
(
iα
√

Λ(K)
(
X̃K − µ

))∣∣∣X]]
= E

[
E

[
exp

(
iα√
Λ(K)

∫
K

X(t)N(dt)− iα√
Λ(K)

∫
K

µλ(t)dt
)∣∣∣∣X]]

= E

[
exp

(∫
K

(
exp

(
iα√
Λ(K)

X(t)
)
− 1
)
λ(t)dt− iα√

Λ(K)

∫
K

µλ(t)dt
)]

The second line follows from the properties of iterated expectation.

The third line follows by substituting X̃K , using the fact that µ =
1√

Λ(K)

∫
K

µλ(t)dt,

and distributing iα
√

Λ(K) through both terms inside of the parentheses.

The fourth line follows by applying Campbell’s Theorem (Theorem 3.4.2) to the first

term (which applies since X is deterministic after we condition on it) and recognizing that the

second term is a constant with respect to the inner expectation.

From here, we consider a Taylor Series expansion of
∫
K

(
e

iα√
Λ(K)

X(t)
− 1
)
λ(t)dt

Recall, ex = 1 + x+ x2/2 +O(x3). Thus, ex− 1 ≈ x+ x2/2. It should be noted that the

error term converges in probability to 0. Hence, we have:∫
K

(
e

iα√
Λ(K)

X(t)
− 1
)
λ(t)dt

≈
∫
K

iα√
Λ(K)

X(t)λ(t)dt+
∫
K

1
2

(
iα√
Λ(K)

X(t)

)2

λ(t)dt

=
∫
K

iα√
Λ(K)

X(t)λ(t)dt+
∫
K

i2α2

2Λ(K)
X2(t)λ(t)dt

=
iα√
Λ(K)

∫
K

X(t)λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt

And so, we have that
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E

exp

∫
K

(
e

iα√
Λ(K)

X(t)
− 1
)
λ(t)dt− iα√

Λ(K)

∫
K

µλ(t)dt


≈ E

exp

 iα√
Λ(K)

∫
K

X(t)λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt− iα√
Λ(K)

∫
K

µλ(t)dt


= E

[
exp

(
iα√
Λ(K)

∫
K

[X(t)− µ]λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt

)]

Recall, we assumed that
1√

Λ(K)

∫
K

(X(t)− µ)λ(t)dt d−→ N
(
0, θ2

)
. In terms of charac-

teristic functions, we have

exp

(
iα√
Λ(K)

∫
K

(X(t)− µ)λ(t)dt

)

= exp

(
iα

(
1√

Λ(K)

∫
K

(X(t)− µ)λ(t)dt

))
d−→ e−

α2
2 θ2

By consistency, we have that

1
Λ(K)

∫
K

X2(t)λ(t)dt −→ E[X(t)2] = V ar[X(t)] + (E[X(t)])2 = R(0) + µ2.

Thus,

E

[
exp

(
iα√
Λ(K)

∫
K

[X(t)− µ]λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt

)]

−→ exp
(
−α

2

2
θ2 − α2

2
(R(0) + µ2)

)

So, we have that
√

Λ(K)
(
X̃K − µ

)
d−→ N

(
0, σ2

)
, where σ2 = θ2 +R(0) + µ2.

Brillinger [5] establishes the asymptotic normality and variance of X̄K . As we noted

above, the main difference is that unlike X̃K , there is no µ2.



Chapter 4

Local Block Bootstrap for a

One-Dimensional Inhomogeneous

Poisson Process

4.1 Introduction

In Chapter 3, we established the asymptotic normality of the sample mean. In order to

construct confidence intervals for the mean µ, though, the asymptotic variance would need to be

explicitly estimated. Difficulties arise when trying to consistently estimate
∫
R(t)dt as we have

irregularly spaced data.

The resampling method discussed in the next section is able to yield confidence intervals

for the mean without the need for explicit estimation of the asymptotic variance. Alternatively,

the resampling method may provide an estimate of the asymptotic variance to be used in con-

nection with the asymptotic normality result established in Chapter 3.

4.2 Local Block Bootstrap Algorithm in One Dimension

Our observation interval K can be any closed interval in R. For the sake of simplicity,

though, we suppose that the interval starts at the origin. Thus, we are considering [0,K]. For

our asymptotic results, K will be assumed to expand towards ∞.

Suppose we obtain observations τ1, τ2, . . . , τN(K) from an inhomogeneous Poisson process

with intensity function λ(t). And suppose that for each τi, we observe a corresponding mark,

X(τi). Together, this gives us an inhomogeneous marked point process.

41
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We shall employ a local block bootstrap method to resample such data, as was introduced

in [51]. Essentially, we resample the data in blocks (just like a block bootstrap), but when filling

a particular block, we only consider blocks that are in a “local” neighborhood of the original

block. The block size itself is a parameter while the proximity to the original block is determined

by a second parameter.

There is not much literature on the local block bootstrap. It is first introduced in [51],

and is used by Dowla in his thesis [18] and in a subsequent paper [19].

The local block bootstrap algorithm for generating X∗(τ1), X∗(τ2), . . . , X∗(τN∗(K)) will

necessarily depend on the bootstrap point process, N∗. In particular, we have that Λ∗(K) =

E∗[N∗(K)]. Our algorithm can be described as follows:

1. Select an integer block size b such that b5/2/K → 0 as K →∞

2. Choose an α > 2.

3. Define the bandwidth parameter to be h = O(bα)

4. Define the total number of blocks to be L = K/b

5. For each of the j = 1, 2, . . . , L blocks, denote the coordinate of the point closest to the

origin as cj . That is, let cj = (j − 1)b.

6. Add a perturbation dj to cj where dj are i.i.d. Uniform[−h, h] random variables.

7. Form a new block of width b starting at cj+dj and record which of the X(τ1), . . . , X(τN(K))

occur in this block.

Note: It is possible that parts of the block may lay outside of [0,K]. To correct this,

imagine that K is “wrapped around” on itself. That is, our calculations are done modulo

K.

8. Let

X̃∗ =
1

Λ∗(K)

N(K)∑
i=1

WiX(τi), where Wi is the number of times that X(τi) occurs in the

resampled data

and

X̄∗ =
1

N∗(K)

N(K)∑
i=1

WiX(τi)

Also, let

≈
X∗ =

1
Λ(K)

N(K)∑
i=1

WiX(τi)

and
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X
∗

=
1

N(K)

N(K)∑
i=1

WiX(τi)

This generation of points X∗(τ1), ..., X∗(τN∗(K)) and subsequently of X̃∗, X̄∗,
≈
X∗, and X

∗

is governed by a probability mechanism which we will denote by P ∗, with moments denoted

by E∗, V ar∗, etc. This generation is done conditionally on the marked point process data

observed; thus P ∗ is really a conditional probability. Notice that the first two estimates

involve the bootstrap point process N∗, while the last two do not.

9. Let P ∗(
√

Λ(K)(
≈
X∗−E∗[

≈
X∗]) ≤ x) and P ∗(

√
Λ(K)(X

∗
−E∗[X

∗
]) ≤ x) denote the condi-

tional (given the marked point process data) distribution functions of the bootstrap sample

means.

Note: We will not concern ourselves with the trivial matter of divisibility, and issues like

K/b being an integer. The reason for this is that for a practical application with a finite sample,

we can truncate the window size K and obtain perfect divisibility. As for the asymptotic case,

we can always ignore truncations which are clearly of negligible order.

4.3 Assumptions

For our bootstrap results, we need to impose some various restrictions on the process

X(t), the mixing coefficients, and the parameters.

A.4.1. 0 < λmin ≤ λ(t) ≤ λmax (That is, λ(t) is bounded above and below.)

A.4.2. X(t) is wide-sense stationary with E[|X(t)|6+δ] <∞ for some δ > 0

A.4.3. ᾱ(k; 0) < const.k−1−ε, where ε > max
{

2
δ
,

8 + δ

4 + δ

}
for the δ specified in Assumption A.4.2

A.4.4.

∞∫
−∞

|Q(u, v, v − w)| dv = CQ <∞, for all u,w

A.4.5. h/K → 0 as K →∞

A.4.6. b5/2/K → 0 as K →∞

Note: If we assume µ = 0, we can use (A1) in the proof Theorem 3.3 in Kunsch [35] (which

appeals to Theorem 17.2.3 of Ibragimov and Linnik [26]). That is, if we assume

A.4.7.
∫
t2α(t)δ/(6+δ)

dt <∞
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then in conjunction with Assumption A.4.2 (with the same δ), we have that Assump-

tion A.4.4 holds.

4.4 Main Results

Since the resampling process can be difficult to keep track of, it will help to consider

examples (with illustrations). A few words are in order, though.

First, the α used in these examples is less than 2, but that does not affect the theory

that we develop. Indeed, the results would hold for any α > 1, but as we will see later, in order

to ensure that our bootstrap variance tends to the true variance, we need to impose an additional

restriction on α.

Second, the examples used have h =
⌈
bα−1

⌉
b. (Note that this is of order bα, as required.)

The reason for this is for the ease of the display of the probability calculations. While true in

a more general setting (that is, h = const.bα), by requiring h to be an integer multiple of b, we

have some nice geometric interpretations for many of the formulas.

Our goal is fairly straightforward: We want to show that our bootstrap mean and variance

are consistent for their real-world counterparts and that we have a corresponding Central Limit

Theorem in the bootstrap world.

Suppose we begin with a window [0,K] and we define h =
⌈
bα−1

⌉
b for α > 1. Let b = 3

and α = 3/2, so that h = 6.

0 b 2b 3b 4b 5b 6b 7b . . .

Figure 4.1: Resampling a Block Using the Local Block Bootstrap

As was mentioned in the algorithm, suppose we index the blocks that we wish to fill

by their starting point. So, above, we wish to fill the block 3b (the fourth block). The vertical

dashed lines show how far the starting point for the 3b-block can move. (It can move left or right

at most h, and we use toroidal wrapping if we reach an edge.)

Recall that X̃∗ =
1

Λ∗(K)

N(K)∑
i=1

WiX(τi), where Wi is the number of times that X(τi)

occurs in the resampled data.

We can think of Wi as a sum of Bernoulli random variables, where the sum runs over all
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of the blocks. That is, suppose we have L blocks. Then

Wi =
L∑
j=1

Yij , where Yij ∼ Bernoulli(pij)

Here, pij represents the probability that τi is contained in block j. Recall, τi denotes

the position of the mark of the ith datapoint, while X(τi) is the mark at τi.

Lemma 4.4.1. E∗[Wi] = 1.

To see why the claim is true, let us work through an example. Suppose that we have

eight blocks (with b = 3 and α = 3/2, so K = 24) and only a single data point, τ1, at t = 7.

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1

Figure 4.2: A single data point τ1

Following our resampling scheme, the probability that τ1 is included in block j (for

j = 0, 1, . . . , 7) is given in Table 4.1:

Table 4.1: Probabilities that τ1 is included in block j
j 0 1 2 3 4 5 6 7
p1j 2/12 3/12 3/12 3/12 1/12 0 0 0

Notice that all of the probabilities sum to 1. Since E∗[Yij ] = pij if Yij ∼ Bernoulli(pij),

we have that E∗[Wi] = 1.

The reason this works is because of our choice of h. Our resampling scheme allows us to

choose a block uniformly from an integer multiple of b blocks (in fact, 2
⌈
bα−1

⌉
blocks).

Notice that the point τ1 can only be include in the resampling if the block we choose

comes from the shaded region that is within b units to the left of τ1.

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1

Figure 4.3: Visualizing how we include τ1

The grey area is spread across two original blocks. (In fact, it can only be spread across

at most two blocks.) How many blocks can contain the part in between b and 2b? There are

2
⌈
bα−1

⌉
such blocks. The same is true for how many blocks can contain the part in between 2b

and 3b.
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Thus, the entire grey area will appear 2
⌈
bα−1

⌉
times in the sum over all of the blocks.

The probabilities in Table 4.1 actually are just given by

pij =
part of grey area in block j

2h

Since the entire grey area appears 2
⌈
bα−1

⌉
in the sum over all of the blocks and its area

is equal to b, the total area is given by 2
⌈
bα−1

⌉
b = 2h. Thus, we have that

∑
pij =

∑ part of grey area in block j
2h

=
2h
2h

= 1

as we claimed.

In Table 4.1, we did not specify a formula for computing the probabilities p1j . Notice

that the probabilities depend on both the block j that we wish to fill and the relative location

of the point τ1 to the nearest blocks.

By the division algorithm, we can express τ1 as τ1 = J1b +R1, where 0 ≤ R1 < b. Then

we claim the following is true:

Claim 4.4.2. If τ1 is at least h units from the boundary, then

p1j =
(b−R1)1{|τ1−(j+1)b|<h} +R11{|τ1−jb|<h}

2h
.

Notice that τ1 − (j + 1)b < h corresponds to the event that block j will contain the

portion of the grey area that appears in the block to the left of the block that τ1 appeared in.

In our example above, τ1 appears in the [2b, 3b] block, so this represents the portion of

the grey area in the previous figure that appears in the [b, 2b] block.

That block has an area of b−R1 by its construction. Thus, we have the first part of our

formula, namely
(b−R1)1{|τ1−(j+1)b|<h}

2h
.

We also have that τ1 − jb < h corresponds to the event that block j will contain the

portion of the grey area that appears in the same block as τ1.

In our example above, τ1 appears in the [2b, 3b] block, so this represents the portion of

the grey area from in the previous figure that appears in the [2b, 3b] block.

That block has an area of R1 by its construction. Thus, we have the second part of our

formula, namely
R11{|τ1−jb|<h}

2h
.

To see this numerically, consider Table 4.2, which is an expanded version of Table 4.1.

Those entries in the fourth row that have a value less than h (h = 6) represent the blocks

for which the grey area in the [b, 2b] block will be included. (The area in that block is precisely

b−R1 = 3− 1 = 2.)
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Table 4.2: Probabilities that τ1 is included in block j, expanded
j 0 1 2 3 4 5 6 7
p1j 2/12 3/12 3/12 3/12 1/12 0 0 0
jb 0 3 6 9 12 15 18 21

|τ1 − (j + 1)b| |4| |1| |−2| |−5| |−8| |−11| |−14| |−17|
|τ1 − jb| |7| |4| |1| |−2| |−5| |−8| |−11| |−14|

Similarly, those entries in the fifth row that have a value less than h represent the blocks

for which the grey area in the [2b, 3b] block will be included. (The area in that block is precisely

R1 = 1.)

Our formula fails to hold when we have a point, τ1, that is within h units of the boundary.

In that case, we have to consider the fact that the block on the opposite side can wrap around

to include the point. Consider the following examples.

Suppose τ1 = 2, b = 3 and α = 3/2, so h = 6. We visualize this in Figure 4.4, which is

analogous to Figure 4.3.

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1

Figure 4.4: Visualizing how we include τ1 near the edge (1st case)

Again, the grey area is spread across two blocks. But our criteria from above for deter-

mining probabilities fails. Consider Table 4.3.

Table 4.3: Probabilities that τ1 is included in block j near the edge (1st case)
j 0 1 2 3 4 5 6 7
p1j 3/12 3/12 2/12 0 0 0 1/12 3/12
jb 0 3 6 9 12 15 18 21

|τ1 − (j + 1)b| |−1| |−4| |−7| |−10| |−13| |−16| |−19| |−22|
|τ1 − jb| |2| |−1| |−4| |−7| |−10| |−13| |−16| |−19|

Notice that if |τ1 − (j + 1)b| < h, we add (b − R1)/2h to our probability. At the same

time, though, if K − |τ1 − (j + 1)b| < h, then we also add (b−R1)/2h to our probability.

Similarly, if |τ1 − jb| < h, we add R1/2h to our probability. At the same time, though,

if K − |τ1 − jb| < h, then we also add R1/2h to our probability.

Something similar happens when the point τ1 is near the right-boundary of K. Suppose

τ1 = 2, b = 3 and α = 3/2, so h = 6. We visualize this in Figure 4.5.

Again, the grey area is spread across two blocks. But our criteria from above for deter-

mining probabilities fails. Consider Table 4.4.

Again, if |τ1 − (j + 1)b| < h, we add (b − R1)/2h to our probability. At the same time,
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0 b 2b 3b 4b 5b 6b 7b 8b

Τ1

Figure 4.5: Visualizing how we include τ1 near the edge (2nd case)

Table 4.4: Probabilities that τ1 is included in block j near the edge (2nd case)
j 0 1 2 3 4 5 6 7
p1j 3/12 1/12 0 0 0 2/12 3/12 3/12
jb 0 3 6 9 12 15 18 21

|τ1 − (j + 1)b| |19| |16| |13| |10| |7| |4| |1| |−2|
|τ1 − jb| |22| |19| |16| |13| |10| |7| |4| |1|

though, if K − |τ1 − (j + 1)b| < h, then we also add (b−R1)/2h to our probability.

Similarly, if |τ1 − jb| < h, we add R1/2h to our probability. At the same time, though,

if K − |τ1 − jb| < h, then we also add R1/2h to our probability.

As we shall see shortly, we will not need to worry about these last two cases, as they will

constitute a minority of cases when considering all possible points.

Next, we need to determine V ar∗
[√

Λ∗(K)X̃∗
]

= V ar∗

 1√
Λ∗(K)

N(K)∑
i=1

WiX(τi)

. To

that end, we need to first compute Cov∗(Wi,Wk).

Recall Wi =
L∑
j=1

Yij , where L is the total number of blocks and Yij ∼ Bernoulli(pij),

where pij is the probability that block j will contain τi.

Thus, we have Cov∗(Wi,Wk) = Cov∗

 L∑
j=1

Yij ,

L∑
m=1

Ykm

 =
L∑
j=1

L∑
m=1

Cov∗(Yij , Ykm).

So, we have reduced the problem above to that of computing Cov∗(Yij , Ykm). But since

the covariance of two indicator random variables 1A and 1B is given by P ∗(A∩B)−P ∗(A)P ∗(B),

we are left computing the joint probabilities of Yij and Ykm.

Definition 4.4.3. We say that two points τi and τk are sufficiently close to each other provided

that |τk − τi| < b. Otherwise, we say that τi and τk are far apart.

Definition 4.4.4. Given [a1, a2], we say that a point τi is removed from the boundary by

h units provided that |τi − a1| > h and |τi − a2| > h.
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Claim 4.4.5. If τi and τk are far apart, then the probability that a particular block contains both

τi and τk will be zero. On the otherhand, if τi and τk are sufficiently close, then the probability

that a particular block contains both τi and τk will be positive.

The reason is because if τi and τk are far apart, then both cannot appear in the same

block. Moreover, if, for example, the probability for τi is non-zero, then necessarily the probability

for τj will be zero.

We also know that the probability that block j contains τi and block m contains τk are

independent, because of the independence of the resampling of the blocks.

Thus, P ∗(YijYkm) = P ∗(Yij)P ∗(Ykm) for all j 6= m, so we have that

Cov∗(Yij , Ykm) = P ∗(YijYkm)− P ∗(Yij)P ∗(Ykm) = 0.

Hence,

Cov∗(Wi,Wk) = Cov∗

 L∑
j=1

Yij ,

L∑
m=1

Ykm


=

L∑
j=1

L∑
m=1

Cov∗(Yij , Ykm)

=
L∑
j=1

Cov∗(Yij , Ykj)

And by Claim 4.4.5, we only need to consider the case where τi and τk are sufficiently

close. That is, when τi and τk are within b units of each other.

Moreover, we only need to consider those pairs τi and τk that are removed from the

boundary by h units. The reason can be seen Claim 4.4.6.

Claim 4.4.6. Assuming A.4.1 and A.4.5, the number of τi that are within h units of the boundary

is O(h).

Recall, if N ∼ Poission(λ), then on a window of size w, we would expect to see wλ

observations in that window. Under Assumption A.4.1, we have that the expected number of

points within h units of the boundary would be between 2λminh and 2λmaxh. Thus, the number

of observed points within h units of the boundary is O(h).

Since K/h→∞ (by Assumption A.4.5), the number of points that are within h units of

the boundary is asymptotically negligible.

We can say a little more by showing that their contribution to the overall variance is

negligible. To bound those covariances near the boundary, we make the following observations:
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P ∗(Yij) = pij ≤
b

2h
, P ∗(Ykj) = pkj ≤

b

2h
for each j, and

P ∗(YijYkj) ≤
b− |τi − τk|

2h
≤ b

2h
.

Thus, we have that Cov∗(Yij , Ykj) ≤
b

2h
−
(
b

2h

)2

= O

(
b

h

)
.

Hence, the contribution to V ar∗
[√

Λ∗(K)X̃∗
]

is O
(
b

K

)
, which tends to 0 by Assump-

tion A.4.5 (since b is of smaller order than h).

Let us turn our attention to another example. This time, suppose that τ1 = 8 and

τ2 = 9.5. (Again, suppose that b = 3 and α = 3/2, so that h = 6.)

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1 Τ2

Figure 4.6: Placements of τ1 and τ2

Again, as was the case with Figure 4.3, we can shade in area b units to the left of τ1 and

τ2 to visualize the probability that a particular block will include both τ1 and τ2.

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1 Τ2

Figure 4.7: The probability of choosing τ1 and τ2

Notice that only if we choose a block which begins inside the purple area will we include

both τ1 and τ2 in our resampled block. The width of that purple area is given by 0.5 (which, in

general is given by b− |τ2 − τ1|.
Thus, we have the following table for the joint probabilities (Table 4.5).

Table 4.5: Joint probabilities for τ1 and τ2
j 0 1 2 3 4 5 6 7

p1j ∩ p2j 0 1.5/12 1.5/12 1.5/12 1.5/12 0 0 0

In general, there will be a total of 2
⌈
bα−1

⌉
blocks that will contain the purple area,

which has a probability of
b− |τ2 − τ1|

2h
.

By itself, though, this is not so useful. When we are computing the covariances, we

need both the joint probabilities and the individual probabilities. To that end, we construct a
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modified version of Table 4.5.

Table 4.6: All probabilities for τ1 and τ2 in different blocks
j 0 1 2 3 4 5 6 7
p1j 1/12 3/12 3/12 3/12 2/12 0 0 0
p2j 0 2.5/12 3/12 3/12 3/12 0.5/12 0 0

p1j ∩ p2j 0 1.5/12 1.5/12 1.5/12 1.5/12 0 0 0

Notice that whenever the joint probability is equal to 0, either p1j = 0 or p2j = 0. This

simplifies the calculation of the covariance quite a bit.

Letting τi = Jib +Ri, we have a clean expression for the covariance.

There are 2
⌈
bα−1

⌉
− 2 blocks where p1j ∩ p2j =

b− |τ2 − τ1|
2h

and p1j = p2j =
b

2h
.

There is one block where p1j ∩ p2j =
b− |τ2 − τ1|

2h
, but p1j =

b

2h
and p2j =

R2

2h
.

And there is one block where p1j ∩ p2j =
b− |τ2 − τ1|

2h
, but p1j =

R1

2h
and p2j =

b−R2

2h
.

For every other block, the covariance will be zero. When we compute Cov∗(W1,W2), we

sum up Cov∗(Y1j , Y2j) over all the j blocks. This leads to the following (general) formula:

Lemma 4.4.7. For τi and τk sufficiently close, in different blocks (with τi < τk), τi and τk

removed from the boundary by h units, we have that

Cov∗(Wi,Wk) =
L∑
j=1

Cov∗(Yij , Ykj)

=
(
2
⌈
bα−1

⌉
− 2
)(b− |τi − τk|

2h
−
(
b

2h

)2
)

+
(
b− |τi − τk|

2h

)
−
(
b

2h

)(
b−Rk

2h

)
+
(
b− |τi − τk|

2h

)
−
(
Ri
2h

)(
b

2h

)

=
(
2
⌈
bα−1

⌉)(b− |τi − τk|
2h

−
(
b

2h

)2
)

+
b(Rk + b−Ri)

(2h)2

=
2h
b

(
b− |τi − τk|

2h
−
(
b

2h

)2
)

+O

(
b2

h2

)

= 1− |τi − τk|
b

− b

2h
+O

(
b2

h2

)
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where the O(·) term is uniform as it does not depend on i and k (since Rk ≈ b).

Suppose that τ1 = 7 and τ2 = 8.5. (Again, suppose that b = 3 and α = 3/2, so that

h = 6.) We have the following analogous figures to Figure 4.6 and Figure 4.7.

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1 Τ2

Figure 4.8: Different τ1 and τ2

0 b 2b 3b 4b 5b 6b 7b 8b

Τ1 Τ2

Figure 4.9: The probability of choosing τ1 and τ2 again

This time, notice that the purple area is split across two different blocks. Thus, there

is a chance that a particular block will include both τ1 and τ2, but not with a probability that

corresponds to the entire purple area.

Let us construct a table similar to that of Table 4.6.

j 0 1 2 3 4 5 6 7
p1j 2/12 3/12 3/12 3/12 1/12 0 0 0
p2j 0.5/12 3/12 3/12 3/12 2.5/12 0 0 0

p1j ∩ p2j 0.5/12 1.5/12 1.5/12 1.5/12 1/12 0 0 0

Table 4.7: All probabilities for τ1 and τ2 in the same block

Notice that when τ1 and τ2 appear in the same block to begin with, their resampling

probabilities are contained in the same blocks as well.

In fact, if we write τ1 = J1b +R1 and τ2 = J2b +R2, then we will have that J1 = J2.

Moreover, we have that for 2
⌈
bα−1

⌉
− 1 blocks,

P ∗(Y1jY2j) =
b− |τ1 − τ2|

2h
=
b− |R1 −R2|

2h

and

P ∗(Y1j) = P ∗(Y2j) =
b

2h
.

Thus, Cov∗(Y1j , Y2j) =
b− |R1 −R2|

2h
−
(
b

2h

)2

.
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Notice that on the edges, though, the probabilities are specified differently. Without loss

of generality, suppose that τ1 < τ2. Then on the left edge, we will have that

P ∗(Y1jY2j) = P ∗(Y2j) =
b−R2

2h

and

P ∗(Y1j) =
b−R1

2h
.

So, Cov∗(Y1j , Y2j) =
(
b−R2

2h

)(
1−

(
b−R1

2h

))
.

On the right edge, we will have that

P ∗(Y1jY2j) = P ∗(Y1j) =
R1

2h
and P ∗(Y2j) =

R2

2h
.

So, Cov∗(Y1j , Y2j) =
(
R1

2h

)(
1− R2

2h

)
.

For every other block, the covariance will be zero. When we compute Cov∗(W1,W2), we

sum up Cov∗(Y1j , Y2j) over all the j blocks. This leads to the following (general) formula:

Lemma 4.4.8. For τi and τk sufficiently close, in the same block (with τi < τk), τi and τk

removed from the boundary by h units, we have that

Cov∗(Wi,Wk) =
L∑
j=1

Cov∗(Yij , Ykj)

=
(
2
⌈
bα−1

⌉
− 1
)(b− |Ri −Rk|

2h
−
(
b

2h

)2
)

+
(
b−Rk

2h

)(
1−

(
b−Ri

2h

))
+
(
Ri
2h

)(
1− Rk

2h

)

=
(
2
⌈
bα−1

⌉)(b− |τi − τk|
2h

−
(
b

2h

)2
)

+
bRi + bRk − 2RiRk

(2h)2

=
2h
b

(
b− |τi − τk|

2h
−
(
b

2h

)2
)

+O

(
b2

h2

)

= 1− |τi − τk|
b

− b

2h
+O

(
b2

h2

)
where the O(·) term is uniform as it does not depend on i and k (since Rk ≈ b).
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Here, we used the fact that τi < τk (so, Ri < Rk) to express
b−Rk +Ri

2h
as
b− |Ri −Rk|

2h
and |Ri −Rk| = |τi − τk| (since Ji = Jk) to obtain the formula on the third line.

Let us take a moment to collect everything we have done up until this point.

Our goal is to compute V ar∗
[√

Λ∗(K)X̃∗
]

= V ar∗

 1√
Λ∗(K)

N(K)∑
i=1

WiX(τi)

.

In order to compute this formula, we needed a formula for Cov∗(Wi,Wk). We began by

recognizing that each Wi can be thought of as a sum of Bernoulli random variables, where the

sum runs over all of the blocks.

We found a formula for the probability pij that the point τi is resampled in block j, but

discovered that our formula fails to hold when τi is within h units of the boundary.

That was not a problem, though; as we were able to show that the contribution of those

points is asymptotically negligible.

From there, we developed a formula for the covariance that depended on the placement

of the points τi and τk, but only differed in an error term of insignificant order.

And so, we have that

V ar∗[
√

Λ∗(K)X̃∗]

=
1

Λ∗(K)
V ar∗

N(K)∑
i=1

WiX(τi)


=

1
Λ∗(K)

N(K)∑
i=1

N(K)∑
k=1

Cov∗(Wi,Wk)X(τi)X(τk)

=
1

Λ∗(K)

N(K)∑
i=1

N(K)∑
k=1

(
1− |τi − τk|

b
− b

2h
+O

(
b2

h2

))
1{|τi−τk|<b}X(τi)X(τk)

=
1

Λ∗(K)

∑
i 6=k

(
1− |τi − τk|

b

)
1{|τi−τk|<b}X(τi)X(τk)

+
1

Λ∗(K)

N(K)∑
i=1

X2(τi)

+
1

Λ∗(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk|<b}X(τi)X(τk)

With all of the relevant theory established, we are ready to state our results. But first,

we make an important observation.

In the algorithm described in Section 4.2, references were made to four estimators. The
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first two contain random quantities, Λ∗(K), in the denominator (in the bootstrap world) while

the last two do not (they use Λ(K) instead). Since the division by a random quantity compli-

cates things, we shall use the last two estimators to prove our results. The following lemma,

Lemma 4.4.9, when coupled with Slutsky’s Theorem (see [74]), allows us to do this.

Lemma 4.4.9. Assuming A.4.1, as K →∞,
Λ∗(K)
Λ(K)

p−→ 1.

And so, we shall state results pertaining to
≈
X∗ instead. (That is, we will use Λ(K) in

the denominator instead of the quantity Λ∗(K).)

Lemma 4.4.10. Assuming A.4.1, A.4.5, and A.4.6, we have that

1
Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk|<b}X(τi)X(τk)

p−→ 0

Thus, we see that the third line of the variance formula above does not contribute

anything asymptotically.

Lemma 4.4.11. Let R̂(0) =
1

Λ(K)

N(K)∑
i=1

X2(τi). Then, under Assumptions A.4.1-A.4.3,

i. E[R̂(0)] = R(0) + µ2

ii. V ar[R̂(0)]→ 0 as K →∞

To establish Lemma 4.4.11(ii), the following lemma from [53] will prove useful:

Lemma 4.4.12. Let Ng be a general Poisson process (not necessarily homogeneous) on Rd,

possessing mean measure Λg, and assumed to be independent of the random field {X(t), t ∈ Rd}.
Let E1, E2 be two subsets of Rd such that ρ(E1, E2) = k > 0, and define

Ỹi =
1

Ng(Ei)

∫
Ei

X(t)N(dt)

and

Ȳi =
1

Λg(Ei)

∫
Ei

X(t)N(dt)

for i = 1, 2; also assume that E[|X(t)|p] = Cp <∞ for some p > 2. Then

∣∣∣Cov(Ỹ1, Ỹ2)
∣∣∣ ≤ 10C2/p

p (αX(k; |E1| , |E2|))1−2/p
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and

∣∣Cov(Ȳ1, Ȳ2)
∣∣ ≤ 10C2/p

p (αX(k; |E1| , |E2|))1−2/p

If E1, E2 are compact, convex, and are translates of one another, that is, if E1 = E2 +t,

then we also have

∣∣∣Cov(Ỹ1, Ỹ2)
∣∣∣ ≤ 10C2/p

p (ᾱX(k; |E1|))1−2/p

and

∣∣Cov(Ȳ1, Ȳ2)
∣∣ ≤ 10C2/p

p (ᾱX(k; |E1|))1−2/p

where | · | denotes the Lebesgue measure (volume) of the set.

In anticipation of the component of the variance with unequal indices, the following seven

lemmas will prove useful. The motivation for this approach is based upon a similar decomposition

carried out in [50].

Lemma 4.4.13a. Under Assumption A.4.4, we have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−u|b

)+

× |Q(u− v, t− v, s− v)|

 dsdtdudv = O

(
b2

K

)

Lemma 4.4.13b. Under Assumption A.4.2 and Assumption A.4.3, we have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−u|b

)+

× |R(t− v)R(s− u)|

 dsdtdudv = O

(
b2

K

)

Lemma 4.4.13c. Under Assumption A.4.2 and Assumption A.4.3, we have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−u|b

)+

× |R(s− v)R(u− t)|

 dsdtdudv = O

(
b2

K

)

Lemma 4.4.13d. Under Assumption A.4.4, we have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |t−u|b

)+

× |Q(t− t, u− t, s− t)|

 dsdtdu = O

(
b

K

)
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Lemma 4.4.13e. We have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |t−u|b

)+

× |R(0)R(s− u)|

 dsdtdu = O

(
b2

K

)

Lemma 4.4.13f. We have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |t−u|b

)+

× |R(u− t)R(s− t)|

 dsdtdu = O

(
b2

K

)

Lemma 4.4.13g. We have that

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |t−u|b

)+

× |R(s− t)R(t− u)|

 dsdtdu = O

(
b2

K

)
We have the following result pertaining to the unequal terms in the variance formula.

Lemma 4.4.14. Suppose Assumptions A.4.1-A.4.4, and A.4.6 hold.

Let θ̂2 =
1

Λ(K)

∑
i 6=k

(
1− |τi − τk|

b

)
1{|τi−τk|<b}X(τi)X(τk). Then

i. E[θ̂2]
p−→ θ2

ii. V ar[θ̂2]→ 0 as K →∞

where θ2 = lim
K→∞

1
Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt

The preceding lemmas give us the following result.

Lemma 4.4.15. If Assumptions A.4.1-A.4.6 hold, then V ar∗[
√

Λ(K)
≈
X∗]

p−→ θ2 +R(0) + µ2 as

K →∞.

Now that we have established that the bootstrap variance tends (asymptotically) to the

true variance, we are ready to state our main theorem.

Theorem 4.4.16. Suppose Assumptions A.4.1-A.4.6 hold. Then we have the following:

i. E∗
[ ≈
X∗
]

= X̃K

ii.
V ar∗[

≈
X∗]

V ar[X̃K ]
p−→ 1
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iii. sup
x

∣∣∣∣P ∗(√Λ(K)(
≈
X∗−X̃K) ≤ x

)
− P

(√
Λ(K)(X̃K − µ) ≤ x

)∣∣∣∣ p−→ 0

Instead of using torodial wrapping, we could take a different approach for edge effects.

That is, we only take a one-sided average. This approach may be preferrable in cases where the

intensity at the edges differs significantly.

The drawback for this approach, though, is that not all points will be resampled once (on

average). Indeed, those points within h units of the boundary will appear (on average) less than

once. The solution for this is to modify our theorems not to subtract X̃K , but rather subtract

E∗[X̃∗]. This recenters the data around the bootstrap mean. (Note: In the case of torodial

wrapping, E∗[X̃∗] = X̃K .)

As a simple example, suppose we have b = 3, h = 5 and five blocks (so K = 15). Suppose

we have data τ1 = 1, τ2 = 4.5, and τ3 = 10. This is illustrated in Figure 4.10.

0 b 2b 3b 4b 5b

Τ1 Τ2 Τ3

Figure 4.10: Three points to be resampled without torodial wrapping

Let us examine τ1. As before, we shade a region b units to the left of the point, stopping

when we hit the left boundary. In Figure 4.11, τ1 will only be included in a resample block if the

shifted block starts in the shaded region.

0 b 2b 3b 4b 5b

Τ1

Figure 4.11: Probability of including τ1 without wrapping

Notice that unlike before, since τ1 is near the left boundary, the probability of its inclusion

is reduced from 3 to 1. We repeat the same for τ2 and τ3. These appear in Figure 4.12 and

Figure 4.13, respectively.

0 b 2b 3b 4b 5b

Τ2

Figure 4.12: Probability of including τ2 without wrapping

In Table 4.8, we compute a table of probabilities for the inclusion of the points in a block.
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0 b 2b 3b 4b 5b

Τ3

Figure 4.13: Probability of including τ3 without wrapping

Table 4.8: Probabilities when not using torodial wrapping
j 0 1 2 3 4
p1j 1/5 1/8 0/10 0/8 0/5
p2j 3/5 3/8 3/10 0.5/8 0/5
p3j 0/5 1/8 3/10 3/8 3/5

Notice that
4∑
j=0

p1j =
26
80

,
4∑
j=0

p2j =
107
80

, and
4∑
j=0

p3j =
102
80

.

In Section 4.5, we resample our data using torodial wrapping and no wrapping.

As was discussed in Chapter 3, the results for X̃∗ do not extend immediately to X̄∗.

However, as we saw, the results were nearly identical though the asymptotic variance was dif-

ferent. We conjecture that analogous results hold for our bootstrap estimators and this will be

investigated further.

4.5 Simulations

The first step is to generate data from a one-dimensional marked point process. Since

we have assumed independence between the point process and the associated marks, we begin

by generating an inhomogeneous Poisson process.

We do this using the Accept-Reject Method as specified by Lewis and Shedler ([43]).

The idea is as follows:

• Choose λ such that λ(t) ≤ λ for all t ≤ K.

• Generate events according to a Poisson process with rate λ

• Accept the event, say at time t, with probability λ(t)/λ, independently of what has hap-

pened before.

• The process of the counted events then forms an inhomogeneous Poisson process with

intensity function λ(t), t ≤ K

Formally, we have the following algorithm:

1. Set i = 0 and t = 0
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2. Generate a random number U1 ∼ U(0, 1)

3. Set t = t− ln(U1)/λ. If t > K, stop.

4. Generate another random number U2 ∼ U(0, 1)

5. If U2 ≤ λ(t)/λ, set i = i+ 1 and S(i) = t

6. Go to step 2.

The output will consist of the counter i, which is the number of events that occur up to

time K and S(1), . . . , S(i) will constitute the event times.

Next, we need to generate the corresponding marks. We assume that X(·) is a stationary,

Gaussian process with mean 0 and covariance function R(t). Our algorithm for generating the

marks is as follows:

1. Initialize a matrix of covariances, Σ with dimensions given by N(K), the number of points

found in the algorithm above

2. Populate Σ with values R(S[i]− S[j]) for all pairs i, j

3. Consider the eigenvalue decomposition of Σ = V DV T and express Σ1/2 = V D1/2V T

4. Generate N(K) i.i.d. N(0, 1) random variables and place them into the vector Z

5. Set the marks equal to X = Σ1/2Z

Finally, we record the pair {S(j), X(S(j))}. This is our randomly generated marked

point process.

We run simulations using two resampling methods (torodial wrapping and no wrapping),

two different covariance functions, five different intensity functions, three choices of b, and two

corresponding choices of h for a total of 120 models. The covariance functions, intensity functions,

and block sizes are the same as those considered in Chapter 2. Each model was simulated 1,000

times and each time, a 95% confidence interval was constructed.

As was mentioned in Chapter 2, in practice, one needs to determine optimal choices for

b and h. Since there is a strong relationship in purpose of the local bandwidth parameter h and

the window parameter w from Chapter 2, we suggest using the same value of h as would be

determined for w. Again, methods from [28] can be adapted to choose an optimal b and will be

the focus of future work.

In the tables that follow, we present the mean and standard deviation of the constructed

confidence intervals as well as the percentage of confidence intervals containing the true mean, 0

(the coverage probability).
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When considering all of the tables, we see that the mean confidence interval length is

around 0.1 while the standard deviation is around 0.0025. This is ten times smaller than the

standard deviations observed in Chapter 2, suggesting that the local block bootstrap proce-

dure is more stable than the transformation methods. Also, the average number of resampled

observations varies, but stays within 5% of the true counts.

Again, looking at all of the tables, we see that the choice of using torodial wrapping or

not using wrapping leads to differences around 1-2%. This is likely due to edge effects. And in

all of the tables, it would appear that the best choice for b and h was given by b = 2 and h = 8.

In general, as b increases, the coverage decreases.

In Tables 4.9 - 4.13 increasing from b = 2 to b = 5 led to a 5% reduction in coverage. A

similar reduction was seen when increasing from b = 5 to b = 10.

In Tables 4.14 - 4.18, the decrease in coverage is more pronounced. Increasing from b = 2

to b = 5 led to approximately a 15% reduction and increasing from b = 5 to b = 10 led to an

additional 10% reduction.

In all of the tables, we see that increasing the size of h led to a reduction in coverage.

This makes sense, as we are venturing further and further away from the original source block if

h is large. Notice that the coverage is poorest for b = 10 and h = 200. With such a large h, it is

almost as though we are performing a block bootstrap on the data.

Investigating further, with b = 2 and h = 64, coverage probabilities dropped from around

90% (with b = 2 and h = 8) to under 60%. Again, that is to be expected. With such a small block

size and a large area to choose a block from, we are essentially performing an i.i.d. bootstrap

which ignores the dependencies between the marks.

Overall, we see that the method performs as well as the transformation methods discussed

in Chapter 2, if not better in Tables 4.9 - 4.12. In Table 4.13, there is almost a 20% improvement.

It is not clear why the difference is so profound. This may have to do with the small b and h

better capturing the changes in intensity compared to the averaging techniques.

4.6 Proofs

Proof of Lemma 4.4.9: Recall, we defined Λ(K) = E[N(K)]. The bootstrap analog is given by

Λ∗(K) = E∗[N∗(K)]. That is, Λ∗(K) represents the expected number of points in our resampled

data.

Suppose we are given data X(τ1), . . . , X(τN(K)) from an inhomogeneous marked point

processes. We can express the number of points in the resampled data as N∗(K) =
N(K)∑
i=1

Wi,

where Wi =
L∑
j=1

Yij , with L being the total number of blocks and each Yij ∼ Bernoulli(pij),

where pij is the probability that block j will contain τi.
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Table 4.9: LBB with Intensity function λ1(t) and R(t) = exp(−|t|)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 1954.318 0.08609 0.00206 93.7%
16 1952.737 0.08621 0.00220 89.6%

5 32 1950.369 0.08616 0.00254 89.2%
64 1951.194 0.08589 0.00262 86.3%

10 125 1953.077 0.08586 0.00298 82.8%
200 1956.268 0.08578 0.00314 80.3%

Yes 2 8 1950.289 0.08616 0.00207 92.0%
16 1950.606 0.08621 0.00219 92.0%

5 32 1951.117 0.08619 0.00245 88.1%
64 1950.563 0.08607 0.00258 84.7%

10 125 1950.539 0.08624 0.00298 80.8%
200 1953.133 0.08605 0.00302 81.8%

Table 4.10: LBB with Intensity function λ2(t) and R(t) = exp(−|t|)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 2043.184 0.08630 0.00213 93.8%
16 2040.180 0.08658 0.00227 90.4%

5 32 2043.399 0.08638 0.00225 87.4%
64 2042.942 0.08649 0.00238 83.7%

10 125 2041.969 0.08619 0.00245 83.4%
200 2049.441 0.08584 0.00248 80.2%

Yes 2 8 2043.876 0.08623 0.00219 95.2%
16 2042.437 0.08613 0.00230 90.9%

5 32 2044.057 0.08629 0.00239 86.8%
64 2042.413 0.08635 0.00249 85.2%

10 125 2039.997 0.08640 0.00275 82.8%
200 2043.570 0.08630 0.00285 80.6%

Table 4.11: LBB with Intensity function λ3(t) and R(t) = exp(−|t|)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 2061.352 0.08496 0.00220 93.7%
16 2060.136 0.08509 0.00226 93.1%

5 32 2063.514 0.08480 0.00218 88.7%
64 2065.587 0.08467 0.00218 84.1%

10 125 2078.238 0.08438 0.00211 85.3%
200 2100.423 0.08374 0.00206 83.3%

Yes 2 8 2058.005 0.08493 0.00220 92.8%
16 2059.290 0.08494 0.00226 91.7%

5 32 2061.326 0.08484 0.00216 87.5%
64 2059.865 0.08491 0.00216 85.2%

10 125 2059.506 0.08484 0.00209 82.7%
200 2058.204 0.08492 0.00214 84.7%
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Table 4.12: LBB with Intensity function λ4(t) and R(t) = exp(−|t|)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 2029.325 0.08421 0.00241 91.2%
16 2028.551 0.08410 0.00253 86.2%

5 32 2030.243 0.08441 0.00258 82.3%
64 2028.417 0.08433 0.00280 80.9%

10 125 2020.363 0.08420 0.00258 78.9%
200 2011.100 0.08417 0.00258 79.4%

Yes 2 8 2026.474 0.08419 0.00240 93.8%
16 2025.551 0.08434 0.00252 88.4%

5 32 2025.267 0.08411 0.00260 81.7%
64 2023.321 0.08434 0.00254 80.2%

10 125 2025.233 0.08415 0.00274 77.0%
200 2026.084 0.08419 0.00287 76.0%

Table 4.13: LBB with Intensity function λ5(t) and R(t) = exp(−|t|)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 3536.550 0.06726 0.00155 83.8%
16 3541.459 0.06721 0.00161 81.6%

5 32 3545.025 0.06717 0.00156 78.5%
64 3563.186 0.06694 0.001652 74.4%

10 125 3610.997 0.06653 0.00175 71.9%
200 3656.953 0.06594 0.00184 75.8%

Yes 2 8 3540.276 0.06730 0.00159 85.5%
16 3539.508 0.06723 0.00163 83.7%

5 32 3540.601 0.06726 0.00157 76.4%
64 3537.530 0.06729 0.00167 76.6%

10 125 3540.439 0.06712 0.00183 73.5%
200 3541.537 0.06708 0.00193 73.2%

Table 4.14: LBB with Intensity function λ1(t) and R(t) = exp(−|t|/3)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 2001.073 0.09348 0.00267 90.8%
16 2002.933 0.09348 0.00283 86.6%

5 32 2001.081 0.09353 0.00333 74.4%
64 2003.042 0.09357 0.00342 75.1%

10 125 2003.474 0.09388 0.00412 67.3%
200 1999.383 0.09407 0.00439 66.6%

Yes 2 8 2003.642 0.09329 0.00263 90.3%
16 2000.942 0.09355 0.00273 85.5%

5 32 2001.530 0.09324 0.00328 75.0%
64 2002.528 0.09329 0.00348 72.9%

10 125 2003.680 0.09314 0.00428 70.7%
200 1999.656 0.09332 0.00431 69.7%
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Table 4.15: LBB with Intensity function λ2(t) and R(t) = exp(−|t|/3)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 1939.197 0.09009 0.00247 94.2%
16 1939.619 0.09019 0.00270 90.2%

5 32 1944.503 0.09009 0.00313 73.0%
64 1945.081 0.08994 0.00322 71.7%

10 125 1945.487 0.08981 0.00312 63.9%
200 1942.283 0.08939 0.00333 66.4%

Yes 2 8 1937.296 0.09010 0.00268 93.9%
16 1936.591 0.09006 0.00265 85.7%

5 32 1936.508 0.08993 0.00302 75.5%
64 1938.310 0.08994 0.00323 73.3%

10 125 1937.765 0.09002 0.00330 64.0%
200 1937.570 0.08980 0.00328 67.4%

Table 4.16: LBB with Intensity function λ3(t) and R(t) = exp(−|t|/3)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 1990.864 0.08456 0.00234 92.9%
16 1993.150 0.08449 0.00243 88.9%

5 32 1992.792 0.08449 0.00288 75.4%
64 1998.173 0.08455 0.00304 75.6%

10 125 2002.634 0.08417 0.00324 69.1%
200 2023.374 0.08304 0.00337 68.8%

Yes 2 8 1994.675 0.08443 0.00242 94.8%
16 1993.568 0.08462 0.00238 85.2%

5 32 1996.786 0.08426 0.00298 79.7%
64 1993.825 0.08431 0.00303 76.3%

10 125 1995.872 0.08410 0.00339 69.5%
200 1995.825 0.08412 0.00336 68.0%

Table 4.17: LBB with Intensity function λ4(t) and R(t) = exp(−|t|/3)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 2003.180 0.08907 0.00279 92.4%
16 2005.325 0.08894 0.00273 89.4%

5 32 2003.860 0.08875 0.00335 73.3%
64 1999.573 0.08881 0.00352 73.3%

10 125 1996.452 0.08903 0.00375 66.9%
200 1987.529 0.08928 0.00402 66.8%

Yes 2 8 2005.069 0.08900 0.00270 92.4%
16 2001.746 0.08870 0.00286 86.1%

5 32 2003.815 0.08862 0.00337 74.0%
64 2006.300 0.08859 0.00354 70.8%

10 125 2001.181 0.08855 0.00409 66.4%
200 2000.023 0.08857 0.00420 64.9%
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Table 4.18: LBB with Intensity function λ5(t) and R(t) = exp(−|t|/3)
Wrap? b h N Obs. CI Len. Mean CI Len. SD Cover %

No 2 8 3419.962 0.06293 0.00175 81.7%
16 3419.356 0.06272 0.00187 66.2%

5 32 3426.088 0.06257 0.00218 68.8%
64 3442.950 0.06253 0.00219 64.2%

10 125 3484.721 0.06207 0.00221 60.3%
200 3512.568 0.06230 0.00215 60.8%

Yes 2 8 3416.265 0.06287 0.00171 79.2%
16 3416.322 0.06288 0.00187 77.6%

5 32 3410.394 0.06295 0.00223 67.5%
64 3412.456 0.06270 0.00221 65.4%

10 125 3412.946 0.06272 0.00224 55.8%
200 3416.548 0.06293 0.00238 60.4%

In Lemma 4.4.1, we saw that E∗[Wi] = 1, so we have that Λ∗(K) = E∗[N∗(K)] = N(K).

Thus, we need only show that
N(K)

E[N(K)]
=
N(K)
Λ(K)

p−→ 1.

However, we have already established this result in Lemma 3.4.1.

Proof of Lemma 4.4.10: To get a handle on this expression, we shall first compute its expected

value.

Recall, a sequence of random variables {Xn} is said to be bounded in probability if,

given ε > 0, one can find a constant k such that P (|Xn| > k) ≤ ε for all n ≥ n0 = n0(ε). If Xn

is bounded in probability, then we write Xn = Op(1).

Thus, we have that X(τi) = Op(1). Moreover, by Assumption A.4.1, the number of

observed points grows linearly with K. That is, Λ(K) = O(K).

The only piece left is to determine an expression for
N(K)∑
i=1

N(K)∑
k=1

1{|τi−τk|<b}.

Consider its expected value. We shall condition on the value of N(K), so that the

summations are no longer random. Thus,

E

N(K)∑
i=1

N(K)∑
k=1

1{|τi−τk|<b}

 = E

E
N(K)∑

i=1

N(K)∑
k=1

1{|τi−τk|<b}

∣∣∣∣∣∣N(K) = n


We shall also make use of the following fact:

Since the marks are independent of the point process, we have that
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{(τ1, X(τ1)), (τ2, X(τ2)), . . . , (τN(K), X(τN(K)))|N(t) = n}

has the same distribution as

{U1, X(τ1)), (U2, X(τ2)), . . . , (Un, X(τn))},

where {Ui} are i.i.d. with P (Ui ∈ (t, t+ dt]) =
λ(t)

Λ(K)
1[0,K](t)dt.

Thus, fUi(t) =
λ(t)

Λ(K)
1[0,K](t).

And so, we have that

E

N(K)∑
i=1

N(K)∑
k=1

1{|τi−τk|<b}

 = E

E
N(K)∑

i=1

N(K)∑
k=1

1{|τi−τk|<b}

∣∣∣∣∣∣N(K) = n


= E

E
N(K)∑

i=1

N(K)∑
k=1

1{|Ui−Uk|<b}

∣∣∣∣∣∣N(K) = n


= E

E
N(K) +

∑
i6=k

1{|Ui−Uk|<b}

∣∣∣∣∣∣N(K) = n


= E[N(K)] +

(
E[N(K)2]− E[N(K)]

)
ρb2(K)

= Λ(K) + [Λ(K)]2ρb2(K)

where

ρb2(K) = E
[
1{|Ui−Uk|<b}

]
=

K∫
0

K∫
0

1{|t−s|<b}fUi(s)fUk(t)dsdt

=
1

[Λ(K)]2

K∫
0

K∫
0

1{|t−s|<b}λ(t)λ(s)dsdt

Note: The first term above, E[N(K)] comes from the case where i = k. (Necessarily, the

difference will be less than b, and there are n such pairs.) Since there are n2 possible pairings,

the other term, E[N(K)2]− E[N(K)], takes those into consideration.

Let us take a closer look at ρb2(K). By Assumption A.4.1, we have

∣∣ρb2(K)
∣∣ ≤ (λmax)2

[Λ(K)]2

K∫
0

K∫
0

1{|t−s|<b}dsdt
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But notice that

K∫
0

K∫
0

1{|t−s|<b}dsdt = K2 − (K − b)2 = 2Kb− b2.

And so, it follows that ρb2(K) = O

(
b

K

)
. Thus, we have that

E

N(K)∑
i=1

N(K)∑
k=1

1{|τi−τk|<b}

 = Λ(K) + [Λ(K)]2ρb2(K)

= O(K) +O(bK)

= O(bK)

Finally, we see that

E

 1
Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk|<b}X(τi)X(τk)

 = O

(
b2

h

)

But by Assumptions A.4.5 and A.4.6, we have that this tends to 0.

Next, though, we need to verify that the variance tends to 0 as well. To that end, it

suffices to show that the second moment tends to 0.

We claim that E


N(K)∑

i=1

N(K)∑
k=1

1{|τi−τk|<b}

2
 = O

(
b2K2

)
.

We have that

E


N(K)∑

i=1

N(K)∑
k=1

1{|τi−τk|<b}

2


= E

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b}


= E

E
N(K)∑

i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b}

∣∣∣∣∣∣N(K) = n


Before we continue, we need to consider all four-tuples. There are fifteen such arrange-

ments.

Suppose i = j = k = l. Then 1{|τi−τk|<b}1{|τj−τl|<b} = 1, and the sum reduces to
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N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b} =
N(K)∑
i=1

1 = N(K).

If three of them are the same (there are four ways this happens), then one of indicators

will always be true, and so the sum reduces to

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b} =
∑
i 6=k

1{|τi−τk|<b}

If i = k and j = l, then again the indicator is 1 and the sum reduces to

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b} =
∑
i 6=k

1 = N(K)(N(K)− 1)

If i = j and k = l or i = l and j = k, then the indicators are the same and so the sum

reduces to

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b} =
∑
i 6=k

1{|τi−τk|<b}

If i = k (with j and l different) or j = l (with i and k different), then one of the indicators

is 1 and the sum reduces to

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b} =
N(K)∑
i=1

N(K)∑
k=1

1{|τi−τk|<b}

If i = j (with k and l different), or i = l (with j and k different), or j = k (with i and l

different) or k = l (with i and j different), then the sum reduces to

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b} =
∑
i 6=j 6=k

1{|τi−τk|<b}1{|τi−τj |<b}

And finally, if all four are different, there is no simplification in the summation. Thus,

we have that
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E


N(K)∑

i=1

N(K)∑
k=1

1{|τi−τk|<b}

2


= E

N(K)∑
i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b}


= E

E
N(K)∑

i=1

N(K)∑
k=1

N(K)∑
j=1

N(K)∑
l=1

1{|τi−τk|<b}1{|τj−τl|<b}

∣∣∣∣∣∣N(K) = n



= E


N(K) + 8 (N(K)(N(K)− 1)) ρb2(K)

+N(K)(N(K)− 1) + 4 (N(K)(N(K)− 1)(N(K)− 2)) ρb3(K)

+ (N(K)(N(K)− 1)(N(K)− 2)(N(K)− 3)) ρb4(K)


= Λ(K) + 8[Λ(K)]2ρb2(K) + [Λ(K)]2 + 4[Λ(K)]3ρb3(K) + [Λ(K)]4ρb4(K)

where

ρb2(K) =
1

[Λ(K)]2

K∫
0

K∫
0

1{|t−s|<b}λ(t)λ(s)dsdt

ρb3(K) =
1

[Λ(K)]3

K∫
0

K∫
0

K∫
0

1{|t−s|<b}1{|t−u|<b}λ(u)λ(t)λ(s)dsdtdu

ρb4(K) =
1

[Λ(K)]4

K∫
0

K∫
0

K∫
0

K∫
0

1{|t−s|<b}1{|u−v|<b}λ(v)λ(u)λ(t)λ(s)dsdtdudv

Above, we saw that ρb2(K) = O

(
b

K

)
.

A similar calculation as above yields

K∫
0

K∫
0

K∫
0

1{|t−s|<b}1{|t−u|<b}dsdtdu = K3 − (K − b)2K = 2K2b− b2K

So, we see that ρb3(K) = O

(
b

K

)
+O

(
b2

K2

)
= O

(
b2

K2

)
. Notice that
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ρb4(K)

=
1

[Λ(K)]4

K∫
0

K∫
0

K∫
0

K∫
0

1{|t−s|<b}1{|u−v|<b}λ(v)λ(u)λ(t)λ(s)dsdtdudv

=
1

[Λ(K)]4

K∫
0

K∫
0

1{|u−v|<b}λ(v)λ(u)

 K∫
0

K∫
0

1{|t−s|<b}λ(t)λ(s)dsdt

 dudv

=
1

[Λ(K)]2

K∫
0

K∫
0

1{|t−s|<b}λ(t)λ(s)dsdt
1

[Λ(K)]2

K∫
0

K∫
0

1{|u−v|<b}λ(v)λ(u)dudv

=
(
ρb2(K)

)2
So, we have that ρb4(K) = O

(
b2

K2

)
.

Putting this together, we have that

E


N(K)∑

i=1

N(K)∑
k=1

1{|τi−τk|<b}

2


= Λ(K) + 8[Λ(K)]2ρb2(K) + [Λ(K)]2 + 4[Λ(K)]3ρb3(K) + [Λ(K)]4ρb4(K)

= O(K) +O(K2)O
(
b

K

)
+O(K2) +O(K3)O

(
b2

K2

)
+O(K4)O

(
b2

K2

)
= O(K) +O(bK) +O(K2) +O(b2K) +O(b2K2)

= O(b2K2)

Thus, it follows that
N(K)∑
i=1

N(K)∑
k=1

1{|τi−τk|<b} = Op(bK), since dividing through by bK

would give us constant values for the mean and the variance.

Hence, we have that

1
Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk|<b}X(τi)X(τk)

= O

(
1
K

)
O

(
b

h

)
Op(bK)Op(1)Op(1)

= Op

(
b2

h

)
But by Assumptions A.4.5 and A.4.6, we have that this tends to 0, completing the proof.
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Proof of Lemma 4.4.11: To establish (i), notice that

E
[
R̂(0)

]
= E

 1
Λ(K)

N(K)∑
i=1

X2(τi)


=

1
Λ(K)

E

E
N(K)∑

i=1

X2(τi)

∣∣∣∣∣∣N


=
1

Λ(K)
E
[
N(K)E[X2(t)|N ]

]
=

1
Λ(K)

E
[
N(K)

(
V ar[X(t)|N ] + (E[X(t)|N ])2

)]
=

R(0) + µ2

Λ(K)
E [N(K)]︸ ︷︷ ︸

=Λ(K)

= R(0) + µ2

In integral form, we have that

E
[
R̂(0)

]
= E

[
E
[
R̂(0)

∣∣∣N]] = E

 1
Λ(K)

∫
K

(
R(0) + µ2

)
N(dt)

 = R(0) + µ2.

To compute the variance, we use the formula V ar
[
R̂(0)

]
= E

[
R̂(0)2

]
−
(
E
[
R̂(0)

])2

.

To that end, we compute
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E
[
R̂(0)2

]
=

1
[Λ(K)]2

E

N(K)∑
i=1

N(K)∑
j=1

X2(τi)X2(τj)


=

1
[Λ(K)]2

E

∫
K

∫
K

X2(t)X2(s)N(dt)N(ds)


=

1
[Λ(K)]2

E

E
∫
K

∫
K

X2(t)X2(s)N(dt)N(ds)|N


=

1
[Λ(K)]2

E

∫
K

∫
K

E
[
X2(t)X2(s)|N

]
N(dt)N(ds)


=

1
[Λ(K)]2

E

∫
K

∫
K

(
Cov(X2(t), X2(s)) +

(
R(0) + µ2

)2)
N(dt)N(ds)


=

1
[Λ(K)]2

∫
K

∫
K

(
Cov(X2(t), X2(s)) +

(
R(0) + µ2

)2)
λ(t)λ(s)dtds

=
1

[Λ(K)]2

∫
K

∫
K

Cov(X2(t), X2(s))λ(t)λ(s)dtds+
(
R(0) + µ2

)2
[Λ(K)]2


=
(
R(0) + µ2

)2
+

1
[Λ(K)]2

∫
K

∫
K

Cov(X2(t), X2(s))λ(t)λ(s)dtds

So, we have that

V ar
[
R̂(0)

]
= E

[
R̂(0)2

]
−
(
E
[
R̂(0)

])2

=
1

[Λ(K)]2

∫
K

∫
K

Cov(X2(t), X2(s))λ(t)λ(s)dtds

By Assumption A.4.1, we have that

V ar
[
R̂(0)

]
≤ (λmax)2

[Λ(K)]2

∫
K

∫
K

∣∣Cov(X2(t), X2(s))
∣∣ dtds

Let R2(u) = Cov(X2(0), X2(u)). (Here, we use the stationarity of X(t)).

Now, making the change of variables u = t− s, we can reduce the above to
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∫
K

∫
K

∣∣Cov(X2(t), X2(s))
∣∣ dtds =

K∫
0

K∫
0

|R2(t− s)| dtds

= K

K∫
−K

(
1− |u|

K

)
|R2(u)| du

= 2K

K∫
0

(
1− |u|

K

)
|R2(u)| du

Appealing to Lemma 4.4.12, with E1 = {t} and E2 = {s}, we see that E1 and E2 are

translations of each other, k = ρ(E1, E2) = |t− s|, and |E1| = |E2| = 0.

Consider the random field {X2(t)} instead of {X(t)}. It is still independent of the

Poisson process. Then, Ỹ1 = X2(t) and Ỹ2 = X2(s).

Under the assumption that E[|X2(t)|p] = Cp <∞ for some p > 2 (which is satisfied by

the stronger Assumption A.4.2), we have that

∣∣Cov(X2(t), X2(s))
∣∣ ≤ 10C2/p

p (ᾱX(|t− s| ; 0))1−2/p

Thus, we have that

V ar
[
R̂(0)

]
≤ (λmax)2

[Λ(K)]2

2K

K∫
0

(
1− |u|

K

)
|R2(|u|)| du


≤ 2K(λmax)2

[Λ(K)]2

 K∫
0

|R2(|u|)| du


≤ 2K(λmax)2

[Λ(K)]2

|R2(|0|)|+
K∫

1

|R2(|u|)| du


But,

∣∣Cov(X2(t), X2(s))
∣∣ = |R2(|t− s|)| = |R2(|u|)| ≤ 10C2/p

p (ᾱX(|u| ; 0))1−2/p, so we

have that

K∫
d

|R2(|u|)| du ≤ const.

K∫
d

(ᾱX(|u| ; 0))1−2/(2+δ)
du, for some δ > 0.

By Assumption A.4.3, we have that
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K∫
1

(ᾱX(|u| ; 0))1−2/(2+δ)
du ≤

K∫
1

(
1

u1+ε

)1−2/(2+δ)

du

=

K∫
1

(
1

u(1+2/δ+ξ)(δ/(2+δ))

)
du

=

K∫
1

(
1

u1+ξ

)
du

As K →∞, we have that this integral will converge.

Putting this all together, we have that V ar
[
R̂(0)

]
≤ O

(
1
K

)
, and thus we have verified

that the variance tends to 0 as K →∞, which completes the proof of (ii).

Proof of Lemma 4.4.13a: Begin by making the substitutions u1 = u− v, u2 = t− v, u3 = s− v,

and u4 = v.

Notice that u1, u2 and u3 now range from −K to K while u4 still ranges from 0 to K.

Also, |t− s| = |u2− u3| and |v− u| = |u1|. Moreover, the absolute value of the Jacobian

of the transformation is 1.

And so, after making this change of variables, we have

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

[(
1− |t− s|

b

)+(
1− |v − u|

b

)+

|Q(u− v, t− v, s− v)|

]
dsdtdudv

≤ 1
[Λ(K)]2

K∫
0

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|Q(u1, u2, u3)| du1du2du3du4

=
K

[Λ(K)]2

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|Q(u1, u2, u3)| du1du2du3

Now, let v1 = u2 − u3 and v2 = u2. Then we have that
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K

[Λ(K)]2

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|Q(u1, u2, u3)| du1du2du3

≤ K

[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |v1|

b

)+(
1− |u1|

b

)+
∞∫
−∞

|Q(u1, v2, v2 − v1)| dv2du1dv1

≤ CQK

[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |v1|

b

)+(
1− |u1|

b

)+

du1dv1

=
CQKb

2

[Λ(K)]2

= O

(
b2

K

)

Proof of Lemma 4.4.13b: We begin with the same substitutions as in the proof of Lemma 4.4.13a.

Let u1 = u − v, u2 = t − v, u3 = s − v, and u4 = v. Notice that u1, u2 and u3 now range from

−K to K while u4 still ranges from 0 to K. Also, |t − s| = |u2 − u3|, |v − u| = |u1|, t − v = u2

and s− u = u3 − u1. Again, the absolute value of the Jacobian of the transformation is 1.

And so, after making this change of variables, we have

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |v − u|

b

)+

|R(t− v)R(s− u)| dsdtdudv

≤ K

[Λ(K)]2

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|R(u2)R(u3 − u1)| du1du2du3

Now, let v1 = u3 − u1 and v2 = u2 − u3 and v3 = u1. Again, the Jacobian is 1. This

gives us
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K

[Λ(K)]2

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|R(u2)R(u3 − u1)| du1du2du3

=
K

[Λ(K)]2

K∫
−K

2K∫
−2K

2K∫
−2K

(
1− |v2|

b

)+(
1− |v3|

b

)+

|R(v1 + v2 + v3)R(v1)| dv1dv2dv3

≤ |R(0)|K
[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |v2|

b

)+(
1− |v3|

b

)+
∞∫
−∞

|R(v1)| dv1dv2dv3

=
|R(0)|CRK

[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |v2|

b

)+(
1− |v3|

b

)+

dv2dv3

=
|R(0)|CRKb2

[Λ(K)]2

= O

(
b2

K

)
Note: we used the fact that |R(v1+v2+v3)| ≤ |R(0)| on the third-to-last line above. Also,

Assumption A.4.2 and Assumption A.4.3 give us

∞∫
−∞

|R(u)| du = CR <∞ on the second-to-last

line above.

Proof of Lemma 4.4.13c: The proof is almost identical to the proof of Lemma 4.4.13b.

We begin by making the same substitutions as in the proof of Lemma 4.4.13a. Let

u1 = u− v, u2 = t− v, u3 = s− v, and u4 = v. Notice that u1, u2 and u3 now range from −K
to K while u4 still ranges from 0 to K. Also, |t − s| = |u2 − u3|, |v − u| = |u1|, s− v = u3 and

u− t = u1 − u2. Again, the absolute value of the Jacobian of the transformation is 1.

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |v − u|

b

)+

|R(s− v)R(u− t)| dsdtdudv

≤ K

[Λ(K)]2

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|R(u3)R(u1 − u2)| du1du2du3

Now, let v1 = u1 − u2 and v2 = u2 − u3 and v3 = u1. Then we have that
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K

[Λ(K)]2

K∫
−K

K∫
−K

K∫
−K

(
1− |u2 − u3|

b

)+(
1− |u1|

b

)+

|R(u3)R(u1 − u2)| du1du2du3

=
K

[Λ(K)]2

K∫
−K

2K∫
−2K

2K∫
−2K

(
1− |v2|

b

)+(
1− |v3|

b

)+

|R(v3 − v1 − v2)R(v1)| dv1dv2dv3

≤ |R(0)|K
[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |v2|

b

)+(
1− |v3|

b

)+
∞∫
−∞

|R(v1)| dv1dv2dv3

=
|R(0)|CRK

[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |v2|

b

)+(
1− |v3|

b

)+

dv2dv3

=
|R(0)|CRKb2

[Λ(K)]2

= O

(
b2

K

)
Note: we used the fact that |R(v3−v1−v2)| ≤ |R(0)| on the third-to-last line above. Also,

Assumption A.4.2 and Assumption A.4.3 give us

∞∫
−∞

|R(u)| du = CR <∞ on the second-to-last

line above.

Proof of Lemma 4.4.13d: We begin with the substitutions u1 = u− t, u2 = s− t, u3 = t. Notice

that u1 and u2 now range from −K to K while u3 still ranges from 0 to K. Also, |t− s| = |u2|
and |t− u| = |u1|. The Jacobian of the transformation is 1. The above becomes
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1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|Q(0, u− t, s− t)| dsdtdu

≤ 1
[Λ(K)]2

K∫
0

K∫
−K

K∫
−K

(
1− |u2|

b

)+(
1− |u1|

b

)+

|Q(0, u1, u2)| du1du2du3

=
K

[Λ(K)]2

K∫
−K

K∫
−K

(
1− |u2|

b

)+(
1− |u1|

b

)+

|Q(0, u1, u2)| du1du2

≤ K

[Λ(K)]2

∞∫
−∞

(
1− |u2|

b

)+
∞∫
−∞

|Q(0, u1, u2)| du1du2

≤ CQK

[Λ(K)]2

∞∫
−∞

(
1− |u2|

b

)+

du2

=
CQKb

[Λ(K)]2

= O

(
b

K

)

Proof of Lemma 4.4.13e: Let u1 = s − t, u2 = u − t, and u3 = t. Notice that u1 and u2 now

range from −K to K while u3 still ranges from 0 to K. Also, |t − s| = |u1|, |t − u| = |u2| and

s− u = u1 − u2. The Jacobian of the transformation is 1. This gives us

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|R(0)R(s− u)| dsdtdu

≤ |R(0)|
[Λ(K)]2

K∫
0

K∫
−K

K∫
−K

(
1− |u1|

b

)+(
1− |u2|

b

)+

|R(u1 − u2)| du1du2du3

=
|R(0)|K
[Λ(K)]2

K∫
−K

K∫
−K

(
1− |u1|

b

)+(
1− |u2|

b

)+

|R(u1 − u2)| du1du2

≤ |R(0)|2K
[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |u1|

b

)+(
1− |u2|

b

)+

du1du2

=
|R(0)|2Kb2

[Λ(K)]2

= O

(
b2

K

)
Note: We used the fact that |R(u1 − u2)| ≤ |R(0)| in the third-to-last line above.
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Proof of Lemma 4.4.13f: Let u1 = s − t, u2 = u − t, and u3 = t. Notice that u1 and u2 now

range from −K to K while u3 still ranges from 0 to K. Also, |t− u| = |u2|. The Jacobian of the

transformation is 1. This gives us

1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|R(u− t)R(s− t)| dsdtdu

≤ 1
[Λ(K)]2

K∫
0

K∫
−K

K∫
−K

(
1− |u1|

b

)+(
1− |u2|

b

)+

|R(u2)R(u1)| du1du2du3

=
K

[Λ(K)]2

K∫
−K

K∫
−K

(
1− |u1|

b

)+(
1− |u2|

b

)+

|R(u2)R(u1)| du1du2

≤ |R(0)|2K
[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |u1|

b

)+(
1− |u2|

b

)+

du1du2

=
|R(0)|2Kb2

[Λ(K)]2

= O

(
b2

K

)

Note: We used the fact that |R(u2)R(u1)| ≤ |R(u2)||R(u1)| ≤ |R(0)|2 in the third-to-last

line above.

Proof of Lemma 4.4.13g: The proof of Lemma 4.4.13g is almost identical to Lemma 4.4.13f. The

only change is in the substitution used.

Let u1 = s− t, u2 = t− u, and u3 = t. Notice that u1 and u2 now range from −K to K

while u3 still ranges from 0 to K. Again, the Jacobian of the transformation is 1. This gives us
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1
[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|R(s− t)R(t− u)| dsdtdu

=
1

[Λ(K)]2

K∫
0

K∫
−K

K∫
−K

(
1− |u1|

b

)+(
1− |u2|

b

)+

|R(u1)R(u2)| du1du2du3

=
K

[Λ(K)]2

K∫
−K

K∫
−K

(
1− |u1|

b

)+(
1− |u2|

b

)+

|R(u1)R(u2)| du1du2

≤ |R(0)|2K
[Λ(K)]2

∞∫
−∞

∞∫
−∞

(
1− |u1|

b

)+(
1− |u2|

b

)+

du1du2

=
|R(0)|2Kb2

[Λ(K)]2

= O

(
b2

K

)

Note: We used the fact that |R(u1)R(u2)| ≤ |R(u2)||R(u1)| ≤ |R(0)|2 in the third-to-last

line above.

Proof of Lemma 4.4.14: Our estimator is given by

θ̂2 =
1

Λ(K)

∑
i 6=k

(
1− |τi − τk|

b

)
1{|τi−τk|<b}X(τi)X(τk)

We can express this in integral form as

θ̂2 =
1

Λ(K)

K∫
0

K∫
0

(
1− |t− s|

b

)+

X(t)X(s)N (2)(ds, dt),

where N (2)(dt, ds) = N(dt)N(ds)1{t 6=s}.

We begin by considering the expected value. Our strategy is to condition on N .
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E
[
θ̂2
]

=
1

Λ(K)
E

∫
K

∫
K

(
1− |t− s|

b

)+

X(t)X(s)N (2)(dt, ds)


=

1
Λ(K)

E

E
∫
K

∫
K

(
1− |t− s|

b

)+

X(t)X(s)N (2)(dt, ds)

∣∣∣∣∣∣N


=
1

Λ(K)
E

∫
K

∫
K

(
1− |t− s|

b

)+

E [X(t)X(s)|N ]N (2)(dt, ds)


=

1
Λ(K)

∫
K

∫
K

(
1− |t− s|

b

)+

R(t− s)λ(t)λ(s)dtds

Thus, we have that

θ2 − E
[
θ̂2
]

=
1

Λ(K)

∫
K

∫
K

R(t− s)λ(t)λ(s)dtds

− 1
Λ(K)

∫
K

∫
K

R(t− s)λ(t)λ(s)dtds

=
1

Λ(K)

∫
K

∫
K

(
1−

(
1− |t− s|

b

)+
)
R(t− s)λ(t)λ(s)dtds

And so,

∣∣∣θ2 − E
[
θ̂2
]∣∣∣ =

∣∣∣∣∣∣ 1
Λ(K)

∫
K

∫
K

(
1−

(
1− |t− s|

b

)+
)
R(t− s)λ(t)λ(s)dtds

∣∣∣∣∣∣
≤ 1

Λ(K)

∫
K

∫
K

(
1−

(
1− |t− s|

b

)+
)
|R(t− s)| |λ(t)| |λ(s)| dtds

Under Assumption A.4.1, we have

∣∣∣θ2 − E
[
θ̂2
]∣∣∣ ≤ (λmax)2

Λ(K)

∫
K

∫
K

(
1−

(
1− |t− s|

b

)+
)
|R(t− s)| dtds

Now, let u = t− s, so that du = dt. After making the change of variables, we can reduce

the double integral into a single integral as
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∣∣∣θ2 − E
[
θ̂2
]∣∣∣

=
(λmax)2K

Λ(K)

K∫
−K

(
1− |u|

K

)(
1−

(
1− |u|

b

)+
)
|R(u)| du

=
(λmax)2K

Λ(K)

b∫
−b

(
1− |u|

K

)
|u|
b
|R(u)| du

+
(λmax)2K

Λ(K)

−b∫
−K

(
1− |u|

K

)
|R(u)| du+

(λmax)2K

Λ(K)

K∫
b

(
1− |u|

K

)
|R(u)| du

= 2
(λmax)2K

Λ(K)

b∫
0

(
1− u

K

) u
b
|R(u)| du+ 2

(λmax)2K

Λ(K)

K∫
b

(
1− u

K

)
|R(u)| du

where the last line is due to symmetry.

In order to ensure that these integrals tend to 0, we require

|R(u)| ≤ min
{
|R(0)| , const.

|u|η
,

}
for some η > 2. We can connect this with mixing coefficients, though. Using Assump-

tion A.4.2, we can strengthen the lemma from Roussas and Ioannides to obtain the bound

|R(t)| = |Cov(X(0), X(t))| ≤ const.ᾱX(t; 0)1−2/(6+δ)

But by Assumption A.4.3 (appealing to the second condition), we have that

|R(u)| ≤ const.(ᾱX(u; 0))1−2/(6+δ)

≤ const.
(
u−1−ε)1−2/(6+δ)

< const.
(
u−1−(8+δ)/(4+δ)

)1−2/(6+δ)

= const.
(
u−2

)
And so, our assumption on |R(u)| is valid. Hence,
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∣∣∣θ2 − E
[
θ̂2
]∣∣∣

≤ 2
(λmax)2K

Λ(K)

b∫
0

(
1− u

K

) u
b
|R(u)| du+ 2

(λmax)2K

Λ(K)

K∫
b

(
1− u

K

)
|R(u)| du

≤ 2(λmax)2K

Λ(K)

d∫
0

(
1− u

K

) u
b
|R(0)| du+

2(λmax)2K

Λ(K)

b∫
d

(
1− u

K

) u
b

C

uη
du

+
2(λmax)2K

Λ(K)

K∫
b

(
1− u

K

) C

uη
du

= O

(
1
b

)
+O

(
1

Kbη−2
+

1
bη−1

)
+O

(
1

Kbη−2
+

1
Kη−1

+
1

bη−1

)
= O

(
1
b

)
+O

(
1

bη−1

)
= O

(
1
b

)
Here, we used the fact that K > b and η > 2 to simplify the above expressions.

Note: d is specified to be the value for which |R(0)| = const./|u|η. Thus, we see that

E[θ̂2] = θ2 +O

(
1
b

)
,

and (i) is proven.

Next, we wish to consider the second moment.

E
[
(θ̂2)

2
]

=
1

[Λ(K)]2
E


∑
i 6=k

(
1− |τi − τk|

b

)
1{|τi−τk|<b}X(τi)X(τk)

2


=
1

[Λ(K)]2
E


(∑
i 6=k

(
1− |τi−τk|b

)
1{|τi−τk|<b}X(τi)X(τk)

)

×

(∑
j 6=l

(
1− |τj−τl|b

)
1{|τj−τl|<b}X(τj)X(τl)

)


=
1

[Λ(K)]2
E

∫
K

∫
K

∫
K

∫
K

 (1− |t−s|b
)+(

1− |v−u|b

)+

×X(v)X(u)X(t)X(s)

N (2)(dv, du)N (2)(dt, ds)


There are seven cases to consider, depending on what variables are equal to each other.

So, we have that
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E
[
(θ̂2)

2
]

= V1 + V2 + V3 + V4 + V5 + V6 + V7,

where

V1 =
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−u|b

)+

×E [X(v)X(u)X(t)X(s)]λ(v)λ(u)λ(t)λ(s)

 dsdtdudv

V2 =
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |t−u|b

)+

×E
[
X(t)2

X(u)X(s)
]
λ(u)λ(t)λ(s)

 dsdtdu

V3 =
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |s−u|b

)+

×E
[
X(s)2

X(u)X(t)
]
λ(u)λ(t)λ(s)

 dsdtdu

V4 =
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−t|b
)+

×E
[
X(t)2

X(v)X(s)
]
λ(v)λ(t)λ(s)

 dsdtdv

V5 =
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−s|b

)+

×E
[
X(s)2

X(v)X(t)
]
λ(v)λ(t)λ(s)

 dsdtdv

V6 =
1

[Λ(K)]2

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |t−s|b
)+

×E
[
X(s)2

X(t)2
]
λ(t)λ(s)

 dsdt

V7 =
1

[Λ(K)]2

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |s−t|b
)+

×E
[
X(s)2

X(t)2
]
λ(t)λ(s)

 dsdt
Of the seven components listed, there are quite a few repetitions due to symmetry. In

particular, V2, V3, V4, and V5 are all the same (just with a change of variables) and V6 and V7

are the same, since |t− s| = |s− t|.
Thus, we can simplify the above expression into a more compact form as

E
[
(θ̂2)

2
]

= V1 + 4V2 + 2V6

Recall that
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(
E[θ̂2]

)2

=
1

[Λ(K)]2
E

 K∫
0

K∫
0

(
1− |t− s|

b

)+

X(t)X(s)N (2)(ds, dt)

2

=
1

[Λ(K)]2

∫
K

∫
K

(
1− |t− s|

b

)+

R(t− s)λ(t)λ(s)dtds

2

=
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

 (1− |t−s|b
)+(

1− |v−u|b

)+

×R(t− s)R(v − u)λ(v)λ(u)λ(t)λ(s)

 dsdtdudv
Notice that this has the same form as V1, so we may merge this to obtain a formula for

the variance of θ̂2, since V ar[θ̂2] = E[(θ̂2)2]− (E[θ̂2])2.

Namely, we have that

V ar[θ̂2] = Ṽ1 + 4V2 + 2V6,

where

Ṽ1 =
1

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0


(

1− |t−s|b
)+(

1− |v−u|b

)+

×(
E [X(v)X(u)X(t)X(s)]

−R(t− s)R(v − u)

)
λ(v)λ(u)λ(t)λ(s)

 dsdtdudv
Now, define

Q(s, t, u) = E[X(0)X(s)X(t)X(u)]−R(s)R(u− t)−R(t)R(u− s)−R(u)R(t− s),

the fourth-order cumulant of X. From that definition, we have that

E[X(v)X(u)X(t)X(s)]

= Q(u− v, t− v, s− v) +R(u− v)R(s− t)

+R(t− v)R(s− u) +R(s− v)R(u− t)

Note: This definition does not require s, t, u, and v to be distinct. Thus, it applies to

all terms listed above.

Consider Ṽ1. By Assumption A.4.1, we have that

Ṽ1 ≤ (λmax)4

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

∣∣∣∣∣∣∣∣
(

1− |t−s|b
)+(

1− |v−u|b

)+

×(
E [X(v)X(u)X(t)X(s)]

−R(t− s)R(v − u)

)
∣∣∣∣∣∣∣∣ dsdtdudv

≤ Ṽ11 + Ṽ12 + Ṽ13
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where

Ṽ11

=
(λmax)4

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |v − u|

b

)+

|Q(u− v, t− v, s− v)| dsdtdudv

Ṽ12 =
(λmax)4

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |v − u|

b

)+

|R(t− v)R(s− u)| dsdtdudv

Ṽ13 =
(λmax)4

[Λ(K)]2

K∫
0

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |v − u|

b

)+

|R(s− v)R(u− t)| dsdtdudv

Note: The second and fifth term inside the absolute value canceled each other out.

By Lemma 4.4.13a, we have that under Assumption A.4.4,

Ṽ11 = O

(
b2

K

)
By Lemma 4.4.13b and Lemma 4.4.13c, we have that under Assumption A.4.2 and

Assumption A.4.3,

Ṽ12 = Ṽ13 = O

(
b2

K

)

Thus, we see that Ṽ1 = O

(
b2

K

)
Now, we turn our attention to V2. We shall use the fact that the decomposition of

E[X(s)X(t)X(u)X(v)] does not require s, t, u, and v to be distinct. Thus, we can write V2

as four pieces, similar to what we did with Ṽ1. The main difference is that we do not have a

cancellation like above. Thus, we have that

V2 ≤ (λmax)3

[Λ(K)]2

K∫
0

K∫
0

K∫
0

∣∣∣∣∣
(

1− |t− s|
b

)+(
1− |t− u|

b

)+

E
[
X(t)2

X(u)X(s)
]∣∣∣∣∣ dsdtdu

≤ V21 + V22 + V23 + V24

where

V21 =
(λmax)3

[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|Q(t− t, u− t, s− t)| dsdtdu
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V22 =
(λmax)3

[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|R(t− t)R(s− u)| dsdtdu

V23 =
(λmax)3

[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|R(u− t)R(s− t)| dsdtdu

V24 =
(λmax)3

[Λ(K)]2

K∫
0

K∫
0

K∫
0

(
1− |t− s|

b

)+(
1− |t− u|

b

)+

|R(s− t)R(t− u)| dsdtdu

By Lemma 4.4.13d, we have that under Assumption A.4.4,

V21 = O

(
b

K

)
By Lemmas 4.4.13e, 4.4.13f, and 4.4.13g, we have that,

V22 = V23 = V24 = O

(
b2

K

)

Thus, we see that V2 = O

(
b2

K

)
To recap, we have established that

V ar
[
θ̂2
]

=
2

[Λ(K)]2

K∫
0

K∫
0

((
1− |t− s|

b

)2
)+

E
[
X(s)2

X(t)2
]
λ(t)λ(s)dsdt+O

(
b2

K

)

At this point, we appeal to Theorem 17.2.2 in Ibragimov and Linnik [26].

Theorem. Let the random variables ξ, η be measureable with respect to M t
−∞ and M∞t+τ re-

spectively, and suppose that for some δ > 0, E[|ξ|2+δ] < c1 < ∞, E[|η|2+δ] < c2 < ∞. Then

|E[ξη] − E[ξ]E[η]| ≤ [4 + 3(cβ1 c
1−β
2 + c1−β1 cβ2 )]α(τ)1−2β, where β = (2 + δ)−1, where α(τ) is the

strong-mixing coefficient.

Here, let ξ = X(s)2 and η = X(t)2, and notice that we can use the same bound for c1
and c2, which is valid because of Assumption A.4.2. Thus, we have that∣∣∣E [X(s)2

X(t)2
]∣∣∣ =

∣∣∣E [X(s)2
X(t)2

]
− E[X(s)2]E[X(t)2] + E[X(s)2]E[X(t)2]

∣∣∣
≤

∣∣∣E [X(s)2
X(t)2

]
− E[X(s)2]E[X(t)]2

∣∣∣+
∣∣∣E[X(s)2]E[X(t)2]

∣∣∣
≤ const.α(|t− s|)δ/(2+δ) +

(∣∣∣E[X(t)2]
∣∣∣)2

< ∞
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Also, we have that

1
[Λ(K)]2

K∫
0

K∫
0

((
1− |t− s|

b

)+
)2

dsdt ≤ 1
[Λ(K)]2

K∫
0

K∫
0

(
1− |t− s|

b

)+

dsdt

=
Kb

[Λ(K)]2

= O

(
b

K

)
So, we see that

V ar
[
θ̂2
]

= O

(
b

K

)
+O

(
b2

K

)
= O

(
b2

K

)
By Assumption A.4.6, we see that this tends to 0 as K → ∞, completing the proof of

(ii).

Proof of Lemma 4.4.15: We saw that

V ar∗[
√

Λ∗(K)X̃∗] =
1

Λ∗(K)

∑
i 6=k

(
1− |τi − τk|

b

)
1{|τi−τk|<b}X(τi)X(τk)

+
1

Λ∗(K)

N(K)∑
i=1

X2(τi)

+
1

Λ∗(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk|<b}X(τi)X(τk)

So, we have that

V ar∗[
√

Λ(K)
≈
X∗] =

1
Λ(K)

∑
i 6=k

(
1− |τi − τk|

b

)
1{|τi−τk|<b}X(τi)X(τk)

+
1

Λ(K)

N(K)∑
i=1

X2(τi)

+
1

Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O

(
b

h

)
1{|τi−τk|<b}X(τi)X(τk)

By Lemma 4.4.14, we have that first term tends in probability to θ2. By Lemma 4.4.11,

we have that the second term tends to R(0) +µ2. By Lemma 4.4.10, we have that the third term

tends to 0.
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Proof of Theorem 4.4.16:

Proof of (i):

We have that
≈
X∗ =

1
Λ(K)

N(K)∑
i=1

WiX(τi) and, by Lemma 4.4.1, E∗[Wi] = 1. In the

bootstrap world, the value of N(K) as well as the value of the τi’s is known; the only randomness

comes from the Wi. Thus, we have that:

E∗
[ ≈
X∗
]

=
1

Λ(K)

N(K)∑
i=1

E∗[Wi]X(τi) =
1

Λ(K)

N(K)∑
i=1

X(τi) =
1

Λ(K)

∫
K

X(t)N(dt) = X̃K

Proof of (ii):

V ar∗[
≈
X∗]

V ar[X̃K ]
=
V ar∗[

√
Λ(K)

≈
X∗]

V ar[
√

Λ(K)X̃K ]

We saw in Theorem 3.4.4 and Lemma 4.4.15 that both the numerator and denominator

tend to θ2 +R(0) + µ2 as K →∞. Thus, we have that their ratio tends to 1 in probability.

Proof of (iii):

We have already seen in Theorem 3.4.4 that

√
Λ(K)

(
X̃K − µ

)
d−→ N

(
0, σ2

)
Note: Assumptions A.4.2 and A.4.3 are sufficient to establish this result. Thus, all that

remains to be shown is that

√
Λ(K)

(
≈
X∗ − X̃K

)
√
V ar∗

[√
Λ(K)

≈
X∗
] d−→ N(0, 1)

But recall that

≈
X∗ =

1
Λ(K)

N(K)∑
i=1

WiX(τi)

=
1

Λ(K)

L∑
j=1

N(K)∑
i=1

YijX(τi)

Also, we have that
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X̃K =
1

Λ(K)

N(K)∑
i=1

X(τi)

=
1

Λ(K)

N(K)∑
i=1

 L∑
j=1

pij

X(τi)

=
1

Λ(K)

L∑
j=1

N(K)∑
i=1

pijX(τi)

since
L∑
j=1

pij = 1

So, we may rewrite

√
Λ(K)

( ≈
X∗ − X̃K

)
as

√
Λ(K)

( ≈
X∗ − X̃K

)
=

L∑
j=1

 1√
Λ(K)

N(K)∑
i=1

(Yij − pij)X(τi)


where pij = E∗[Yij ] is the probability that X(τi) appears in block j in the resampled

data. Also, notice that by our resampling scheme, each block (j = 1, 2, . . . , L) is independent.

Recall, the Lindeberg-Feller Central Limit Theorem with the Liapunov Condition (see

Theorem 9.8.1 in [64]).

Theorem. Let {Tj} be a sequence of independent random variables satisfying

E∗[Tj ] = 0, SL =
L∑
j=1

Tj, V ar∗[Tj ] = σ2
j <∞, and s2

L =
L∑
j=1

σ2
j

If for some γ > 0,

L∑
j=1

E∗
[
|Tj |2+γ

]
s2+γ
L

→ 0,

then

SL
sL

d−→ N(0, 1)
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Here, we define Tj =
1√

Λ(K)

N(K)∑
i=1

(Yij − pij)X(τi), for j = 1, 2, . . . , L (so each is inde-

pendent).

Notice that by its construction, we have that

E∗[Tj ] = 0, SL =
√

Λ(K)
( ≈
X∗ − X̃K

)
, and s2

L = V ar∗
[√

Λ(K)
≈
X∗
]

Using γ = 4, all that we need to show is that

L∑
j=1

E∗
[
|Tj |6

]
s6
L

→ 0

as L→∞ (where L = K/b)

By Assumption A.4.1, we have that in a block of size b, we expect to find O(b) points.

Thus, we have that there are Op(b) points in each of the L resampled blocks. Moreover, we have

that X(τi) = Op(1). Thus, we see that

N(K)∑
i=1

(Yij − pij)X(τi) = Op(b)

And so, it follows that

Tj =
1√

Λ(K)

N(K)∑
i=1

(Yij − pij)X(τi) = Op

(
b

K1/2

)

In Lemma 4.4.15, we saw that

s2
L = V ar∗

[√
Λ(K)

≈
X∗
]
p−→ θ2 +R(0) + µ2

Hence,

s6
L = (s2

L)3
(
θ2 +R(0) + µ2

)3
,

which is a constant. So, all that remains to be shown is that
L∑
j=1

E∗
[
|Tj |6

]
→ 0.

But we just saw above that Tj = Op

(
b

K1/2

)
, so it follows immediately that

E∗
[
|Tj |6

]
= Op

(
b6

K3

)
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And so, we see that

L∑
j=1

E∗
[
|Tj |6

]
= Op

(
Lb6

K3

)
= Op

(
b5

K2

)

since L = K/b. But by Assumption A.4.6, we see that this tends to 0. Thus, by the

Lindeberg-Feller Central Limit Theorem, we have that

SL
sL

=

√
Λ(K)

(
≈
X∗ − X̃K

)
√
V ar∗

[√
Λ(K)

≈
X∗
] d−→ N(0, 1)



Chapter 5

Simulation Comparison for

One-Dimensional Methods

Here, we compare the performance of the various one-dimensional methods that we have

introduced thus far. Many of the models were rerun with different parameters so that an accurate

comparison can be made. For example, in Chapter 2, the window size w referred to two different

quantities. For Method 1, it referred to the width we used on which we considered λ(t) to be a

constant.

But in Method 2, the w was the parameter that specified the distance from the point

that we could consider a local average over. That is, about each point, we considered the interval

[−w,w]. (In the case of a point near the boundary, the window was reduced accordingly.) We

considered three choices of w, namely w = 5, 10, 20 for each of the three block sizes b = 2, 5, 10.

In Chapter 4, we again considered the same models and the same block sizes, but we

used another parameter h to denote the proximity of the resampled block. (We cast a net on

the interval [−h, h] to shift the block, and in the case of no wrapping, we reduced the size

accordingly.) The choices of h was made so that the requirement of h = O(bα) where α > 5/2

would be satisfied.

In order to compare our methods, we re-ran the local block bootstrap simulations using

h = 5, 10, 20, matching those up with b = 2, 5, 10, respectively.

Also, in order to ensure that we can compare our methods as best as possible, the w

used for Method 1 was changed to w = 10, 20, 40.

Since w and h share a similar purpose, it seems only natural to use the same values

in both approaches. The choice of h or w has been combined into the column of “Band” that

appears in the tables below. That is, Band refers to the width of the interval used to determine

how “close” we are to the original point. This required the generation of an additional 70 models

not included in Chapters 2 or 4.

93



94

We consider the five approaches discussed thus far: Local Block Bootstrap with Wrap-

ping, Local Block Bootstrap without Wrapping, Block Bootstrap with Transformation using

Piecewise Constant estimates for λ(t) (Method 1), Block Bootstrap with Transformation using

Local Averaging for λ(t) (Method 2), Block Bootstrap with Transformation using True λ(t)

(Method 3).

Unlike the tables in Chapters 2 and 4, here we present only the coverage probabilities.

(We omit the average number of observations as well as the mean and standard deviation of the

length of the confidence intervals.)

We consider the same two choices of covariance function, the same five intensity functions,

as well as three choices of b (again, b = 2, 5, 10) and “Band” (Band = 10, 20, 40) for a total of

150 models. As before, each model was simulated 1,000 times and each time, a 95% confidence

interval was constructed. The coverage probability refers to the proportion of the confidence

intervals that contained the true mean.

As was noted in Chapters 2 and 4, b = 2 seems to be the best choice for all methods, in

general. When considering Table 5.1, we see that an increase in the block size results in a mild

reduction (around 5%) in coverage probabilities.

In Table 5.2, however, increases in b result in more noticeable reductions. This was seen

in Chapter 4 and is likely attributable to the increased dependence among the marks.

Looking closer at Table 5.1, we see that with λ1(t) and λ2(t), the local block bootstrap

methods perform approximately 10% better than the two averaging transformation methods

(Methods 1 and 2), and comparable to the exact transformation method (Method 3).

For λ3(t) and λ4(t), both sets of methods yield similar results, with the local block

bootstrap performing slightly better. For λ5(t), though, there is a significant improvement (20-

30%) using the local block bootstrap. The reason for this is not clear.

Similar results hold in Table 5.2 when examining λ1(t) and λ2(t). However, significant

differences appear for λ3(t) and λ4(t), with the local block bootstrap maintaining its coverage

probabilities, but the transformation method failing to work. (The differences are 30-60%!) The

reason for this difference is not clear and the models were re-run and the results similar. This

will be a source of future study.

The coverage with λ5(t) drops for all methods and the effects are more noticeable when

considering a larger b. This overall reduction is more inline with expectations.
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Table 5.1: Comparison of One-Dimensional Resampling Methods with R(t) = exp(−|t|)
LBB Method Transformation Method

λi(t) b Band Wrap No Wrap Method 1 Method 2 Method 3
1 2 10 95.6% 94.8% 87.9% 83.7% 95.0%

5 20 91.3% 91.6% 78.2% 81.4% 90.7%
10 40 93.7% 92.8% 74.5% 74.4% 87.0%

2 2 10 95.6% 95.2% 85.4% 73.7% 94.9%
5 20 93.1% 92.8% 71.2% 82.7% 93.1%
10 40 87.2% 88.4% 67.3% 67.9% 92.0%

3 2 10 94.4% 95.7% 95.1% 93.7% 93.5%
5 20 88.9% 91.2% 86.5% 88.6% 86.1%
10 40 92.4% 93.5% 86.4% 85.7% 84.8%

4 2 10 94.4% 95.2% 93.1% 94.4% 93.5%
5 20 89.8% 90.8% 88.1% 87.8% 88.9%
10 40 85.0% 83.8% 83.8% 87.5% 85.5%

5 2 10 88.8% 89.6% 57.8% 61.5% 65.6%
5 20 80.7% 85.0% 58.1% 61.4% 66.9%
10 40 76.7% 78.7% 58.7% 59.8% 66.3%

Table 5.2: Comparison of One-Dimensional Resampling Methods with R(t) = exp(−|t|/3)
LBB Method Transformation Method

λi(t) b Band Wrap No Wrap Method 1 Method 2 Method 3
1 2 10 93.2% 94.2% 87.8% 84.2% 88.3%

5 20 80.5% 83.7% 74.9% 73.4% 78.3%
10 40 74.2% 72.1% 65.6% 62.6% 66.9%

2 2 10 93.2% 94.9% 92.6% 90.2% 87.4%
5 20 85.5% 87.0% 80.7% 81.7% 77.5%
10 40 74.2% 73.9% 67.7% 70.6% 72.0%

3 2 10 92.2% 94.1% 50.3% 45.8% 47.2%
5 20 82.3% 81.7% 46.5% 46.1% 47.1%
10 40 73.6% 80.7% 45.7% 45.6% 43.9%

4 2 10 94.1% 94.1% 36.4% 38.4% 36.6%
5 20 82.3% 83.8% 35.2% 33.3% 35.5%
10 40 71.9% 72.4% 32.7% 34.9% 31.3%

5 2 10 84.4% 86.2% 53.4% 51.4% 51.6%
5 20 72.7% 70.8% 53.6% 52.2% 53.5%
10 40 66.1% 64.4% 48.7% 49.7% 50.4%



Chapter 6

Theory for Higher Dimensional

Inhomogeneous Poisson Processes

6.1 Introduction

In Chapter 3, we established the theory necessary for a Central Limit Theorem for an

Inhomogeneous Marked Poisson Process. Now, we turn our attention to generalizing the results

to higher dimensions.

This is fairly straightforward, though, as the main theorems cited in Chapter 3 also

hold for higher dimensions. Recall, our goal is to estimate the mean of the random process,

µ = E[X(t)] on the basis of observing {X(t)} for the points generated by an inhomogeneous

Poisson process N over a compact subset K ∈ Rd. There are two natural ways to estimate µ:

X̃K =
1

Λ(K)

∫
K

X(t)N(dt)

and

X̄K =
1

N(K)

∫
K

X(t)N(dt)

Note: The only difference between the two formulas is the division by either the expected

or actual sample size, respectively.

Karr [30] explored the case where N is a homogeneous Poisson process and established

the fact that the above estimators are consistent and asymptotically normal at rate
√
|K| with

the same asymptotic variance. Again, we note that the statement is not correct, as was pointed

out in Chapter 3. Here, | · | denotes the Lebesgue measure (volume).

96



97

We state the correted, multivariate form of Karr’s Theorem below (this is analogous to

Theorem 3.1.1, but has been updated to reflect the differing variances discussed in Chapter 3)

as it is the springboard for our extension to the inhomogeneous setting. We should note that

the statements pertaining to X̄K are conjectured based upon the one-dimensional results. The

work done by Brillinger [5] only applied to one-dimensional data. As we shall see below, there

is a general central limit theorem by Jenish and Prucha [29] which would give us asymptotic

normality. However, this would require some additional work to use.

Theorem 6.1.1 (Karr’s Theorem). Let R(t) = Cov(X(0), X(t)) and assume that
∫
R(t)dt <∞

Also, let
1√
|K|

∫
K

(X(t)− µ)dt d−→ N

(
0,
∫
R(t)dt

)

as diam(K)→∞. Then, as diam(K)→∞, we have

√
|K|

(
X̃K − µ

)
d−→ N

(
0, σ2

)
and

√
|K|

(
X̄K − µ

) d−→ N
(
0, φ2

)
and furthermore,

lim
diam(K)→∞

var
(√
|K|X̃K

)
= σ2 ≡

∫
R(t)dt+

R(0) + µ2

λ

and

lim
diam(K)→∞

var
(√
|K|X̄K

)
= φ2 ≡

∫
R(t)dt+

R(0)
λ

Here, diam(K) denotes the supremum of the diameters of all l∞ balls contained in K.

The goal of this chapter is to extend Karr’s Theorem [30] to the inhomogeneous setting.

We shall mimic many of the proof techniques that are employed by Politis, Paparoditis and

Romano [53]. To that end, we begin with some background on mixing coefficients.

6.2 Higher Dimensional Mixing Coefficients

We shall assume that our random field {X(t), t ∈ Rd} satisfies a certain weak dependence

condition that will be quantified in terms of mixing coefficients.

Let ρ(·, ·) denote the distance in the l∞-norm on Rd. The strong mixing coefficients of

Rosenblatt [67] are then defined as:
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αX(k) ≡ sup
E1,E2⊂Rd

{|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei), i = 1, 2, ρ(E1, E2) ≥ k}

where F(Ei) is the σ-algebra generated by {X(t), t ∈ Ei}.
In a similar manner, Doukhan [17] defined mixing conditions that also depend on the

size of the sets considered.

αX(k; l1, l2) ≡ sup
E1,E2⊂Rd

 |P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei),

|Ei| ≤ li, i = 1, 2, ρ(E1, E2) ≥ k


Notice that αX(k; l1, l2) ≤ αX(k), and that in essence αX(k) = αX(k;∞,∞).

Definition 6.2.1. A random field is said to be α-strong mixing if lim
k→∞

αX(k) = 0.

Definition 6.2.2. We shall define a weaker set of mixing called ᾱ-strong mixing. Define

ᾱX(k; l) ≡ sup{|P (A1 ∩A2)− P (A1)P (A2)| : Ai ∈ F(Ei), i = 1, 2,

E2 = E1 + t, |E1| ≤ l, ρ(E1, E2) ≥ k}

where the supremum is taken over all compact and convex sets E1 ⊂ Rd, and over all

t ∈ Rd such that ρ(E1, E1 + t) ≥ k. Also, we define ᾱX(k) = ᾱX(k;∞).

Notice that ᾱX(k) ≤ αX(k), so that if the random field is α-strong mixing, then it will

necessarily be ᾱ-strong mixing as well, and thus lim
k→∞

ᾱX(k) = 0.

More discussion and references on strong mixing coefficients can be found in Doukhan

[17], Roussas and Ioannides [69], and Leonenko and Ivanov [41].

6.3 Assumptions

For our theoretical results, we make an assumption regarding the process X(t) and an

assumption regarding the mixing coefficients.

A.6.1. 0 < λmin ≤ λ(t) ≤ λmax (That is, λ(t) is bounded above and below.)

A.6.2. X(t) is wide-sense stationary with E[|X(t)|2+δ] <∞ for some δ > 0

A.6.3. ᾱ(k; 0) < const.k−d−ε, where ε >
2d
δ

for the δ specified in Assumption A.6.2
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6.4 Main Results

We shall begin by showing that our estimators from Section 6.1 are unbiased for µ.

E
[
X̃K

]
=

1
Λ(K)

E

∫
K

X(t)N(dt)


=

1
Λ(K)

E

E
∫
K

X(t)N(dt)

∣∣∣∣∣∣N


=
1

Λ(K)
E

∫
K

E [X(t)]N(dt)


=

1
Λ(K)

E

∫
K

µN(dt)


=

1
Λ(K)

E [µN(K)]

= µ

E
[
X̄K

]
= E

 1
N(K)

∫
K

X(t)N(dt)


= E

 1
N(K)

E

∫
K

X(t)N(dt)

∣∣∣∣∣∣N


= E

 1
N(K)

∫
K

E [X(t)]N(dt)


= E

 1
N(K)

∫
K

µN(dt)


= E

[
1

N(K)
µN(K)

]
= µ

Note: In both calculations above, we used the stationarity of X(t). Also, the above is

nearly identical to the derivation in Section 3.4. For this reason, the formulas for the variance of

our estimators should not come as a surprise.

To compute the variance of X̃K , we begin by considering the following:
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E

∫
K

∫
K

X(t)N(dt)X(s)N(ds)

 =
∫
K

∫
K

E [X(t)N(dt)X(s)N(ds)]

=
∫
K

∫
K

E [X(t)X(s)]E [N(dt)N(ds)]

where the second equality follows from the assumed independence of X(·) and N(·).

Observe, though, that for a wide-sense stationary process, we have:

E [X(t)X(s)] = cov(X(t), X(s)) + E[X(t)]E[X(s)] = R(s− t) + µ2

and

E [N(dt)N(ds)] =

 E [N(dt)]E[N(ds)] if t 6= s

(E [N(dt)])2 if t = s

=

 λ(t)λ(s)dtds if t 6= s

(λ(t)dt)2 + λ(t)dt if t = s

This follows since N(dt) is a Poisson(λ(t)dt) random variable. Thus, its first moment is

equal to λ(t)dt and its second moment is equal to square of the first moment plus the variance,

i.e. (λ(t)dt)2 + λ(t)dt.

Thus, we have that

E

∫
K

∫
K

X(t)N(dt)X(s)N(ds)

 =
∫
K

∫
K

(
R(s− t) + µ2

)
λ(t)λ(s)dtds

+
∫
K

(
R(0) + µ2

)
λ(t)dt

And so, it follows that
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var(X̃K) =
1

[Λ(K)]2
var

∫
K

X(t)N(dt)



=
1

[Λ(K)]2


E

∫
K

∫
K

X(t)N(dt)X(s)N(ds)


− E

∫
K

X(t)N(dt)

E
∫
K

X(s)N(ds)





=
1

[Λ(K)]2



∫
K

∫
K

(
R(s− t) + µ2

)
λ(t)λ(s)dtds

+
∫
K

(
R(0) + µ2

)
λ(t)dt− µ2[Λ(K)]2


=

1
[Λ(K)]2

∫
K

∫
K

R(s− t)λ(t)λ(s)dtds +
∫
K

(
R(0) + µ2

)
λ(t)dt


The same issues that we saw in Chapter 3 also appear here. That is, X̄K has a different

asymptotic variance than X̃K . But unlike in Chapter 3, we cannot use the transformation method

to establish asymptotic normality. However, Theorem 1 of [29] gives us a central limit theorem

for random fields with irregularly spaced observations. (Note: Assumptions A.6.2 and A.6.3 are

stronger than Assumptions 2 and 3 needed for the theorem.)

The only concern with the application of the theorem is with their Assumption 1, which

requires that points be at least ρ0 apart. This assumption would be violated with Poisson data.

Despite this fact, we conjecture that the set of points for which this minimal distance is violated

does not contribute an appreciable amount to the sum (over all of the points). This may require

additional assumptions on λ(t) and will be the source of further investigation. (It is worth noting

that in one dimension, [83] gives an expression for the distribution of the inter-arrival times for

an inhomogeneous Poisson process, so we might quantify how many points are likely to violate

the condition.)

Our last goal is to establish a central limit theorem. Suppose that X(·) is a wide-sense

stationary process with E[X(t)2] < ∞ for each t. Also suppose that the covariance function

R(t) = Cov(X(0), X(t)) is absolutely integrable, i.e.

∫
|R(t)| dt <∞. (6.4.1)

where
∫

is short-hand for
∫

Rd . Also, let
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1√
Λ(K)

∫
K

(X(t)− µ)λ(t)dt d−→ N
(
0, θ2

)
(6.4.2)

as diam(K)→∞.

Similar to the one-dimensional case, θ2 is the asymptotic variance of

1√
Λ(K)

∫
K

(X(t)− µ)λ(t)dt

So, we have that θ2 = lim
diam(K)→∞

1
Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt.

By Assumption A.6.1, we have that

1
Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt ≤ (λmax)2

Λ(K)

∫
K

∫
K

|R(s− t)| dsdt

≤ (λmax)2|K|
Λ(K)

∫
|R(u)| du

By equation (6.4.1), we have that this integral is finite, so we are assured that θ2 <∞.

Lemma 6.4.1. If there exists a δ > 0 such that Assumptions A.6.2 and A.6.3 hold, then equations

(6.4.1) and (6.4.2) hold.

Note: Different sufficient conditions for equations (6.4.1) and (6.4.2) can be found in

Yadrenko [82].

Theorem 6.4.2. Assuming equations (6.4.1) and (6.4.2), then as diam(K)→∞, we have that

√
Λ(K)

(
X̃K − µ

)
d−→ N

(
0, σ2

)
and

√
Λ(K)

(
X̄K − µ

) d−→ N
(
0, φ2

)
,

where φ2 = θ2 +R(0) and σ2 = φ2 + µ2.

The similarity of this result to Karr’s Theorem lies with Campbell’s Theorem (Theo-

rem 3.4.2) which is applicable in a multivariate setting with an inhomogeneous point process.

As was the case with Theorem 6.1.1, the results pertaining to X̄K are only a conjecture at this

point. The same subtle issues from Chapter 3, but unlike before, we cannot use a transformation

to side-step the issue. This will be a source of further study.
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6.5 Proofs

Proof of Lemma 6.4.1: We appeal to Theorem 1.7.1 of Leonenko and Ivanov [41] where they

employ a weaker notion than our ᾱ-mixing.

We only need to verify the finiteness of
∫
|R(t)| dt <∞, as that is enough to ensure

that the limiting variance of
1√

Λ(K)

∫
K

(X(t)− µ)λ(t)dt is finite.

A result in Roussas and Ioannides [69] (which requires Assumption A.6.2) states

|cov(X(0), X(t)| ≤ const.ᾱX(maxi |ti| ; 0)1−2/(2+δ)

Thus, we have that∫
|R(t)| dt = O

(∫
ᾱX(max

i
|ti| ; 0)1−2/(2+δ)

dt
)

= O

(∫ ∞
0

yd−1

(
1

yd+ε

)1−2/(2+δ)

dy

)

= O

(∫ ∞
0

1
y1−2d/(2+δ)+ε(1−2/(2+δ))

dy

)
<∞

The first line follows from the inequality from Roussas and Ioannides.

The second line follows by letting y = max
i
|ti|, using the bound on the mixing coefficients

(Assumption A.6.3), and reducing the multiply integrals to a single integral (since this is the pdf

of the maximum of d i.i.d. random variables).

The third line is simple algebra and the finiteness comes from the fact that in the

denominator

y1−2d/(2+δ)+ε(1−2/(2+δ)) > y1−εδ/(2+δ)+ε−2ε/(2+δ)

= y1+ε(1−(δ+2)/(2+δ))

= y1+ε

> y

Proof of Theorem 6.4.2: As was mentioned above, we shall focus on establishing results for

X̃K and leave X̄K as a conjecture. Our strategy is to show the characteristic function of√
Λ(K)

(
X̃K − µ

)
converges to that of a N(0, σ2) random variable. The proof is nearly identical

to that of Theorem 3.4.4.
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E
[
exp

(
iα
√

Λ(K)
(
X̃K − µ

))]
= E

[
E
[

exp
(
iα
√

Λ(K)
(
X̃K − µ

))∣∣∣X]]
= E

E
exp

 iα√
Λ(K)

∫
K

X(t)N(dt)− iα√
Λ(K)

∫
K

µλ(t)dt

∣∣∣∣∣∣X


= E

exp

∫
K

(
exp

(
iα√
Λ(K)

X(t)

)
− 1

)
λ(t)dt− iα√

Λ(K)

∫
K

µλ(t)dt


The second line follows from the properties of iterated expectation.

The third line follows by substituting X̃K , using the fact that µ =
1√

Λ(K)

∫
K

µλ(t)dt,

and distributing iα
√

Λ(K) through both terms inside of the parentheses.

The fourth line follows by applying Campbell’s Theorem (Theorem 3.4.2) to the first

term and recognizing that the second term is a constant with respect to the inner expectation.

From here, consider a Taylor Series expansion of
∫
K

(
exp

(
iα√
Λ(K)

X(t)

)
− 1

)
λ(t)dt

Recall, ex = 1 + x+ x2/2 +O(x3). Thus, ex− 1 ≈ x+ x2/2. It should be noted that the

error term converges in probability to 0. Thus, we have:∫
K

(
e

iα√
Λ(K)

X(t)
− 1
)
λ(t)dt

≈
∫
K

iα√
Λ(K)

X(t)λ(t)dt +
∫
K

1
2

(
iα√
Λ(K)

X(t)

)2

λ(t)dt

=
∫
K

iα√
Λ(K)

X(t)λ(t)dt +
∫
K

i2α2

2Λ(K)
X2(t)λ(t)dt

=
iα√
Λ(K)

∫
K

X(t)λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt

And so, we have that

E

exp

∫
K

(
e

iα√
Λ(K)

X(t)
− 1
)
λ(t)dt− iα√

Λ(K)

∫
K

µλ(t)dt


≈ E

[
exp

(
iα√
Λ(K)

∫
K

[X(t)− µ]λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt

)]

Recall, we assumed that
1√

Λ(K)

∫
K

(X(t)− µ)λ(t)dt d−→ N
(
0, θ2

)
. In terms of charac-

teristic functions, we have
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exp

(
iα√
Λ(K)

∫
K

(X(t)− µ)λ(t)dt

)

= exp

(
iα

(
1√

Λ(K)

∫
K

(X(t)− µ)λ(t)dt

))
d−→ e−

α2
2 θ2

By consistency,

1
Λ(K)

∫
K

X2(t)λ(t)dt −→ E[X(t)2] = V ar[X(t)] + (E[X(t)])2 = R(0) + µ2

Thus,

E

[
exp

(
iα√
Λ(K)

∫
K

[X(t)− µ]λ(t)dt− α2

2Λ(K)

∫
K

X2(t)λ(t)dt

)]

−→ exp
(
−α

2

2
θ2 − α2

2
(R(0) + µ2)

)

So, we have that
√

Λ(K)
(
X̃K − µ

)
d−→ N

(
0, σ2

)
, where σ2 = θ2 +R(0) + µ2.



Chapter 7

Local Block Bootstrap for Higher

Dimensional Inhomogeneous

Poisson Processes

7.1 Introduction

In Chapter 6, we established the asymptotic normality of the sample mean. In order to

construct confidence intervals for the mean µ, though, the asymptotic variance would need to be

explicitly estimated. Difficulties arise when trying to consistently estimate
∫
R(t)dt as we have

irregularly spaced data.

The resampling method discussed in the next section is able to yield confidence intervals

for the mean without the need for explicit estimation of the asymptotic variance. Alternatively,

the resampling method may provide an estimate of the asymptotic variance to be used in con-

nection with the asymptotic normality result in Chapter 6.

Many of the results are natural extensions of the one-dimensional local block bootstrap

developed in Chapter 4. For illustrative purposes, work in two dimensions will be carried out.

The theory extends readily to higher dimensions and in those instances, formulas are stated

without rigorous proof.

From a practical point of view, one needs to verify the assumptions before resampling the

data. In particular, the stationarity asusmption may be violated. The greater the nonstationarity,

the less reliable the resampling method will be. If our data was from a homogeneous Poisson

process, then we use Ripley’s K-function (see [65], [15], and [2]) to assess the Poisson assumption.

However, the inhomogeneous assumption permits many situations where the data will

106
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fail for such tests. Baddeley, Møller, and Waagepetersen [1] extend Ripley’s K-function Tests to

the inhomogeneous setting and their paper serves as the reference on the subject.

7.2 Local Block Bootstrap Algorithm in Higher Dimen-

sions

Our observation region K can be any compact set in Rd. For the sake of simplicity,

though, we suppose that K is a d-dimensional “box” given by [0,K1]× [0,K2]× . . .× [0,Kd]. For

our asymptotic results, K will be assumed to expand uniformly in all dimensions towards ∞.

Suppose we obtain observations τ1, τ2, . . . , τN(K) from an inhomogeneous Poisson process

with intensity function λ(t). And suppose that for each τi, we observe a corresponding mark,

X(τi). Together, this gives us an inhomogeneous marked point process.

We shall employ a local block bootstrap method to resample such data, as was introduced

in [51]. Essentially, we resample the data in blocks (just like a block bootstrap), but when filling

a particular block, we only consider blocks that are in a “local” neighborhood of the original

block. The block size itself is a parameter while the proximity to the original block is determined

by a second parameter.

The main difference in higher dimensions is the fact that a neighboring block need not

be on the left or right. In essence, for each block, we have a “box” that constitutes all nearby

regions in Rd.
Also, the transformation method mentioned in Chapter 2 cannot be used here, as the

critical component to that method relied upon the fact that the cumulative intensity function

Λ(t) was invertible. Thus, we could identify points in the original (inhomogeneous space) or the

transformed (homogeneous space).

Thus, this approach appears to be the only method available to resample inhomogeneous

Poisson process data in higher dimensions.

The local block bootstrap algorithm for generating X∗(τ1), X∗(τ2), . . . , X∗(τN∗(K)) will

necessarily depend on the bootstrap point process, N∗. In particular, we have that Λ∗(K) =

E∗[N∗(K)]. Our algorithm can be described as follows:

1. For each dimension (i = 1, 2, . . . , d), select a block size bi such that b5/2i /Ki → 0 as Ki →∞

Note: This is the same as requiring diam(K)→∞.

2. Choose an α > 2.

3. For each dimension (i = 1, 2, . . . , d), define the bandwidth parameter to be hi = O(bαi )
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4. Define the total number of blocks to be L =
d∏
i=1

Ki

bi

5. For each of the j = 1, 2, . . . , L blocks, denote the “bottom-left” (thinking in R2) coordinates

of the block as cj .

6. Add a perturbation dj to cj where the components of dj are i.i.d. Uniform[−hi, hi] random

variables.

7. Form a new block of size b1×b2×· · ·×bd starting at cj +dj and record which of the X(τ1),

. . . , X(τN(K)) occur in this block.

Note: It is possible that parts of the block may lay outside of K. To correct this, imagine

that K is “wrapped around” on itself. That is, our calculations are done modulo K.

8. Let

X̃∗ =
1

Λ∗(K)

N(K)∑
i=1

WiX(τi), where Wi is the number of times that X(τi) occurs in the

resampled data

and

X̄∗ =
1

N∗(K)

N(K)∑
i=1

WiX(τi)

Also, let

≈
X∗ =

1
Λ(K)

N(K)∑
i=1

WiX(τi)

and

X
∗

=
1

N(K)

N(K)∑
i=1

WiX(τi)

This generation of points X∗(τ1), ..., X∗(τN∗(K)) and subsequently of X̃∗, X̄∗,
≈
X∗, and X

∗

is governed by a probability mechanism which we will denote by P ∗, with moments denoted

by E∗, V ar∗, etc. This generation is done conditionally on the marked point process data

observed; thus P ∗ is really a conditional probability. Notice that the first two estimates

involve the bootstrap point process N∗, while the last two do not.

9. Let P ∗(
√

Λ(K)(
≈
X∗−E∗[

≈
X∗]) ≤ x) and P ∗(

√
Λ(K)(X

∗
−E∗[X

∗
]) ≤ x) denote the condi-

tional (given the marked point process data) distribution functions of the bootstrap sample

means.

Note: We will not concern ourselves with the trivial matter of divisibility, and issues

like Ki/bi being an integer. The reason for this is that for a practical application with a finite

sample, we can truncate Ki and obtain perfect divisibility. As for the asymptotic case, we can

always ignore truncations which are clearly of negligible order.
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7.3 Assumptions

For our bootstrap results, we need to impose some various restrictions on the process

X(t), the mixing coefficients, and the parameters.

A.7.1. 0 < λmin ≤ λ(t) ≤ λmax

A.7.2. X(t) is wide-sense stationary with E[|X(t)|6+δ] <∞ for some δ > 0

A.7.3. ᾱ(k; 0) < const.k−1−ε, where ε > max
{

2
δ
,

8 + δ

4 + δ

}
for the δ specified in Assumption A.7.2

A.7.4.
∫
|Q(u, v, v − w)| dv = CQ <∞, for all u,w

A.7.5. hi/Ki → 0 as Ki →∞ for i = 1, 2, . . . d.

A.7.6. b5/2i /Ki → 0 as Ki →∞ for i = 1, 2, . . . d.

Notice that these assumptions are nearly identical to the one-dimensional case. We

require the same relationships between bi, hi and Ki in each coordinate that existed in one

dimension.

7.4 Main Results

Since the resampling process can be difficult to keep track of, it will help to consider

examples (with illustrations). A few words are in order, though.

First, the α used in these examples is less than 2, but that does not affect the theory

that we develop. Indeed, the results would hold for any α > 1, but as we will see later, in order

to ensure that our bootstrap variance tends to the true variance, we need to impose an additional

restriction on α.

Second, the examples used have h =
⌈
bα−1

⌉
b. (Note that this is of order bα, as required.)

The reason for this is for the ease of the display of the probability calculations. While true in

a more general setting (that is, h = const.bα), by requiring h to be an integer multiple of b, we

have some nice geometric interpretations for many of the formulas.

Our goal is fairly straightforward: We want to show that our bootstrap mean and variance

are consistent for their real-world counterparts and that we have a corresponding Central Limit

Theorem in the bootstrap world.

Suppose we begin with a region K = [0,K1] × [0,K2] and we define hi =
⌈
bα−1
i

⌉
bi for

α > 1. Let b1 = 3, b2 = 2 and α = 3/2, so that h1 = 6 and h2 = 4.

Our region may look like the following:
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H3b1,5b2L

b1

b2

Figure 7.1: Two-Dimensional Region With Shaded Block

Each block size has dimensions b1 and b2. There are a total of L = 48 blocks in Figure 7.1.

For the sake of identifying the blocks, we shall suppose that the bottom-left corner of K is the

origin and that each block is indexed by its lower-left coordinate.

For example, the shaded block above is located at (3b1, 5b2). To fill this block, we shall

chose a block of the same size uniformly from the original data with a lower-left coordinate

“close” to (3b1, 5b2). That is, in each coordinate, we choose a number uniformly on [−hi, hi] by

which to perturb the point (3b1, 5b2). Some possible examples are drawn in Figure 7.2.

There is a potential problem with edge effects, when we cannot choose a point uniformly

to the left or right. We can deal with that edge effect by using either a reflection or torodial

wrapping. For the reflection technique, we reflect the values on the side we do have and then

draw uniformly from our slightly extended interval. For torodial wrapping, we think about gluing

the bottom left corner to the top-right, so if we spill over, we end up on the opposite side of the

region. For our purposes, we shall use torodial wrapping.

Recall that X̃∗ =
1

Λ∗(K)

N(K)∑
i=1

WiX(τi), where Wi is the number of times that X(τi)

occurs in the resampled data.

We can think of Wi as a sum of Bernoulli random variables, where the sum runs over all

L blocks. That is, Wi =
L∑
j=1

Yij , where Yij ∼ Bernoulli(pij). Here, pij represents the probability
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H3b1,5b2L

b1

b2

Figure 7.2: Two-Dimensional Region With Possible Resampled Blocks

that τi is contained in block j. Recall, τi denotes the position of the mark of the ith datapoint,

while X(τi) is the mark at τi.

As was the case in Chapter 4, we make the following claim.

Lemma 7.4.1. E∗[Wi] = 1.

Again, the reason this is the case is because of our use of torodial wrapping. It will help

to see this with some examples, though.

As a first step, we need to determine probabilities that a particular point, τi, will be

included in a particular block, j. That is, we are looking for pij . Consider Figure 7.3.

Recall that each block is determined by its lower-left coordinate. Consider the point P .

It defines the pink shaded block. Notice that the point P , like the point τ1, can only move left or

right by at most h1 and up or down by at most h2. (The possible locations of point P are shown

with a thick black line while the possible locations for the point τ1 are shown with a dashed line.)

Where the point P ends up determines what block we will use to fill in the currently shaded

block.

Notice that only if the point P moves to the grey region will we include the point τ1 in

our chosen block. Hence, the probability that our block defined by P will include the point τ1
is equal to the area of the grey region divided by 4h1h2. In this instance, the area of the grey

region is b1b2.
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Τ1

P

b1

b2

Figure 7.3: The Resampling Procedure

Consider another example. Suppose we will to fill the block indexed by the point Q.

This is the same set up as above. That is, our block will only contain the point τ1 if

our point Q ended up in grey shaded region. However, this time, not all of the grey region is

contained inside the points available for Q to move. (That is, we do not have the full area of b1b2
like we did when considering P .)

The only part of the shaded block that Q can migrate to is given by the red region in

Figure 7.5. This time, the area of the shaded region will depend on the location of the point τ1
relative to the block which contains it.

That is, we can focus on the block originally containing τ1 since we have designed our

h1 and h2 to be multiples of b1 and b2, respectively. This leads to the area in purple being equal

to the area in red. While it may be challenging to directly determine the red area, it seems to

be more straight-forward to determine the purple area.

Consider the point τ1 = (τ11, τ12). If we consider blocks by their lower-left coordinate,

then we have that a block which is i copies to the right and j copies up from the lower-left corner

will have coordinates (ib1, jb2).

If |τ11 − (i+ 1)b1| ≥ h1 or |τ12 − (j + 1)b2| ≥ h2, then the area of the shaded region will

be 0. That is, only if |τ11− (i+ 1)b1| < h1 and |τ12− (j+ 1)b2| < h2, will there be some non-zero

probability.
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Τ1

Q

b1

b2

Figure 7.4: The Resampling Procedure Again

Τ1

Q

b1

b2

Figure 7.5: The Resampling Procedure Again (more detail)
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To better see this, consider the first example (from Figure 7.3). As we said, suppose

b1 = 3 and b2 = 2 so that the dimensions of the figure are 18× 16. Suppose that the point τ1 is

given by (9.5, 11.5). Again, we set α = 3/2 so that h1 = 6 and h2 = 4.

Consider the block specified by P (see Figure 7.3). It has coordinates P = (4 · 3, 3 · 2) =

(12, 6).

Notice that |9.5 − (4 + 1) · 3| = 5.5, which is less than 6 and |11.5 − (3 + 1) · 2| = 3.5,

which is less than 4. Thus, we have a non-zero probability.

Consider the block specified by Q. It has coordinates (2 · 3, 3 · 2) = (6, 6).

Notice that |9.5 − (2 + 1) · 3| = 0.5, which is less than 6 and |11.5 − (3 + 1) · 2| = 3.5,

which is less than 4. Thus, we have a non-zero probability.

Consider the block directly below Q. It has coordinates (2 · 3, 2 · 2) = (6, 4).

Notice that |9.5− (2 + 1) · 3| = 0.5, which is less than 4. However, |11.5− (2 + 1) · 2| =
5.5 > 4, and so that block cannot contain τ1.

Now, let us shift our attention and determine how many points end up in the resampled

data. That is, a particular point τ1 can end up in multiple resampled blocks. (In the above

example, the point τ1 could potentially occur in as many as 25 blocks.)

In general, a point can end up in as many as J =
(
2
⌈
b1
α−1

⌉
+ 1
) (

2
⌈
b2
α−1

⌉
+ 1
)

blocks.

These blocks are not created equally, though.

Those in the interior have a probability of
b1b2

4h1h2
=

1
4
⌈
b1
α−1

⌉ ⌈
b2
α−1

⌉ of containing the

point. There will be
(
2
⌈
b1
α−1

⌉
− 1
) (

2
⌈
b2
α−1

⌉
− 1
)

such blocks.

Suppose the point τ1 has coordinates (τ11, τ12). Using the division algorithm, we can

express τ11 = J11b1 + R11 and τ12 = J12b2 + R12. (In general, we can define τij = Jijbj + Rij ,

for i = 1, . . . , n and j = 1, 2.)

With this notation, we have that there will be 2
⌈
b1
α−1

⌉
−1 blocks that have a probability

of
b1R12

4h1h2
of containing τ1 and 2

⌈
b1
α−1

⌉
− 1 blocks that have a probability

b1(b2 −R12)
4h1h2

of

containing τ1.

Similarly, there will be 2
⌈
b2
α−1

⌉
−1 blocks that have a probability of

R11b2
4h1h2

of containing

τ1 and 2
⌈
b2
α−1

⌉
− 1 blocks that have a probability

(b1 −R11)b2
4h1h2

of containing τ1.

Finally, there are four corners to consider. The four corners will have probabilities

R11R12

4h1h2
,
R11(b2 −R12)

4h1h2
,

(b1 −R11)R12

4h1h2
, and

(b1 −R11)(b2 −R12)
4h1h2

.

Notice that we specified a total of
(
2
⌈
b1
α−1

⌉
+ 1
) (

2
⌈
b2
α−1

⌉
+ 1
)

blocks, as we claimed.

More importantly, we claim that the probabilities sum to 1. To see this, let us determine

the contribution from each of the blocks.



115

We have
(
2
⌈
b1
α−1

⌉
− 1
) (

2
⌈
b2
α−1

⌉
− 1
)

blocks, each with an area of b1b2.

This gives a total area of
(
2
⌈
b1
α−1

⌉
− 1
) (

2
⌈
b2
α−1

⌉
− 1
)
b1b2.

We have 2
(
2
⌈
b1
α−1

⌉
− 1
)

blocks with a total area of

(
2
⌈
b1
α−1

⌉
− 1
)
b1R12 +

(
2
⌈
b1
α−1

⌉
− 1
)
b1(b2 −R12) =

(
2
⌈
b1
α−1

⌉
− 1
)
b1b2

We have 2
(
2
⌈
b2
α−1

⌉
− 1
)

blocks with a total area of

(
2
⌈
b2
α−1

⌉
− 1
)
R11b2 +

(
2
⌈
b2
α−1

⌉
− 1
)

(b1 −R11)b2 =
(
2
⌈
b2
α−1

⌉
− 1
)
b1b2

Finally, we have 4 blocks (the corners) with a total area of

R11R12 +R11(b2 −R12) + (b1 −R11)R12 + (b1 −R11)(b2 −R12) = b1b2

Adding these areas together, we have precisely 4h1h2.

But recall that the total possible area (of all blocks) was (2h1) · (2h2) = 4h1h2. Thus,

the probabilities sum to 1 as claimed.

Notice, though, that our development would hold in d dimensions as well, by the assumed

independence in each coordinate. So, even though we have illustrated the formula for two-

dimensions, the result holds for any dimension.

As in the one-dimensional case, we shall develop formulas for Cov∗(Wi,Wk) based upon

various cases. The transition is fairly straight-forward, though there are significantly more cases

to consider. In the end, though, we shall see that they all yield the same result. Each one will

be explained in detail.

Again, we need some definitions before we continue.

Definition 7.4.2. Suppose τi = (τi1, τi2) and τk = (τk1, τk2). If |τi1− τk1| < b1 and |τi2− τk2| <
b2, we say that τi and τk are sufficiently close.

This is natural extension of our definition from the one-dimensional setting. That is,

we require the two points to be sufficiently close (using the one-dimensional definition) in each

coordinate.

Definition 7.4.3. Suppose (a11, a21), (a12, a21), (a12, a22), (a11, a22) specify the vertices of a rect-

angle. We say that a point τi = (τi1, τi2) is removed from the boundary by h1 units in its first

coordinate provided that |τi1− a11| > h1 and |τi1− a12| > h1. We say that a point τi = (τi1, τi2)

is removed from the boundary by h2 units in its second coordinate provided that |τi2−a21| > h2
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and |τi2 − a22| > h2. If both conditions above are satisfied, then the point τi = (τi1, τi2) is

removed from the boundary.

Again, this is a natural extension from the one-dimensional setting. We just require the

coordinates to be removed from the boundary by the window size in each dimension.

Similar to the one-dimensional case, those points that are not removed from the boundary

will not contribute an appreciable amount to the summation and thus may be ignored.

Finally, we use the division algorithm to express each of the points, τi, as multiples of the

block widths in each dimension, plus a remainder term. That is, suppose τi = (τi1, τi2). Using

the division algorithm, we can express τi1 = Ji1b1 +Ri1 and τi2 = Ji2b2 +Ri2.

This definition will be useful as we express our probabilities visually in the following

figures.

Now, we are ready to consider the various cases that Cov∗(Wi,Wk) may take. As before,

we shall not consider this problem directly, but rather recognize that

Cov∗(Wi,Wk) = Cov∗

 L∑
j=1

Yij ,

L∑
m=1

Ykm


=

L∑
j=1

L∑
m=1

Cov∗(Yij , Ykm)

=
L∑
j=1

Cov∗(Yij , Ykj)

where Yij ∼ Bernoulli(pij), with pij equal to the probability that τi occurs in block j.

There are a total of five cases which we shall now illustrate.

Case (i): τi and τk occur in the same block, with relative positions given below.

Notice that there are a total of
(
2
⌈
bα−1
1

⌉
+ 1
) (

2
⌈
bα−1
2

⌉
+ 1
)

blocks contained within the

boundaries of the dashed rectangles in Figure 7.6.

Recall, only those blocks (which are indexed by their lower-left coordinate) which inter-

sect the dashed rectangle will have a non-zero probability of containing the point τi.

We can break these blocks (in Figure 7.6 there are 25 such blocks) into six different

groups. We shall illustrate each section we are discussing with a corresponding diagram.

First off, we have the middle blocks.

Notice that there are a total of
(
2
⌈
bα−1
1

⌉
− 1
) (

2
⌈
bα−1
2

⌉
− 1
)

such blocks highlighted in

Figure 7.7. Each of these blocks completely contains the grey rectangles that correspond to τi
and τk, as well as their intersection (the purple area).
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Τi

Τk

b1

b2

Figure 7.6: Covariance formula for two dimensions, Case (i)

Τi

Τk

b1

b2

Figure 7.7: Covariance formula for two dimensions, Case (i), middle blocks
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We have pij =
b1b2

4h1h2
= pkj and pij ∩ pkj =

(b1 − (Ri1 −Rk1))(b2 − (Ri2 −Rk2))
4h1h2

.

Here, we abuse notation slightly and use pij ∩ pkj to represent the joint probability that

both τi and τk are contained in block j.

Also, notice that we could have expressed the joint probability as

pij ∩ pkj =
(b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)

4h1h2
.

Ultimately, we will return to this form, but with the orientation of the points such that

they are, it is easier to work exclusively with bi’s and Rim’s.

Next, we have the bottom blocks.

Τi

Τk

b1

b2

Figure 7.8: Covariance formula for two dimensions, Case (i), bottom blocks

Notice that there are a total of 2
⌈
bα−1
1

⌉
− 1 such blocks highlighted in Figure 7.8. Each

of these blocks contains the complete width, b1, of the grey blocks, but the heights are not the

full b2.

Indeed, we have that pij =
b1(b2 −Ri2)

4h1h2
and pkj =

b1(b2 −Rk2)
4h1h2

.

For the joint probability, we have pij ∩ pkj =
(b1 − (Ri1 −Rk1))(b2 −Ri2)

4h1h2
as that con-

stitutes the subset of the purple block that is captured by these blocks. (The maximum width is
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b1− (Ri1−Rk1) while the maximum height is b2− (Ri2−Rk2). Here, the height is only b2−Ri2.)

Next, we have the top blocks.

Τi

Τk

b1

b2

Figure 7.9: Covariance formula for two dimensions, Case (i), top blocks

Notice that there are a total of 2
⌈
bα−1
1

⌉
− 1 such blocks highlighted in Figure 7.9. Each

of these blocks contains the complete width, b1, of the grey blocks, but the heights are not the

full b2.

Indeed, we have that pij =
b1Ri2
4h1h2

and pkj =
b1Rk2

4h1h2
.

Here, we have that pij ∩ pkj =
(b1 − (Ri1 −Rk1))Rk2

4h1h2
as that constitutes the subset of

the purple block that is captured by these blocks.

Next, we have the left blocks.

Notice that there are a total of 2
⌈
bα−1
2

⌉
−1 such blocks highlighted in Figure 7.10. Each

of these blocks contains the complete height, b2, of the grey blocks, but the widths are not the

full b1.

Indeed, we have that pij =
(b1 −Ri1)b2

4h1h2
and pkj =

(b1 −Rk1)b2
4h1h2

.
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Τi

Τk

b1

b2

Figure 7.10: Covariance formula for two dimensions, Case (i), left blocks

Here, we have that pij ∩ pkj =
(b1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
as that constitutes the sub-

set of the purple block that is captured by these blocks. (The maximum width is b1− (Ri1−Rk1)

while the maximum height is b2 − (Ri2 −Rk2). Here, the width is only b1 −Ri1.)

Next, we have the right blocks.

Notice that there are a total of 2
⌈
bα−1
2

⌉
−1 such blocks highlighted in Figure 7.11. Each

of these blocks contains the complete height, b2, of the grey blocks, but the widths are not the

full b1.

Indeed, we have that pij =
Ri1b2
4h1h2

and pkj =
Rk1b2
4h1h2

.

Here, we have that pij ∩ pkj =
Rk1(b2 − (Ri2 −Rk2))

4h1h2
as that constitutes the subset of

the purple block that is captured by these blocks.

Finally, there are four corners to deal with as highlighted in Figure 7.12. We shall

compute those probabilities working clockwise from the bottom-left.

In the bottom-left corner, we have that

pij =
(b1 −Ri1)(b2 −Ri2)

4h1h2
, pkj =

(b1 −Rk1)(b2 −Rk2)
4h1h2

,
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Τi

Τk

b1

b2

Figure 7.11: Covariance formula for two dimensions, Case (i), right blocks

Τi

Τk

b1

b2

Figure 7.12: Covariance formula for two dimensions, Case (i), corner blocks
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and pij ∩ pkj =
(b1 −Ri1)(b2 −Ri2)

4h1h2
.

In the top-left corner, we have that

pij =
(b1 −Ri1)Ri2

4h1h2
, pkj =

(b1 −Rk1)Rk2

4h1h2
,

and pij ∩ pkj =
(b1 −Ri1)Rk2

4h1h2
.

In the top-right corner, we have that

pij =
Ri1Ri2
4h1h2

, pkj =
Rk1Rk2

4h1h2
,

and pij ∩ pkj =
Rk1Rk2

4h1h2
.

In the bottom-right corner, we have that

pij =
Ri1(b2 −Ri2)

4h1h2
, pkj =

Rk1(b2 −Rk2)
4h1h2

,

and pij ∩ pkj =
Rk1(b2 −Ri2)

4h1h2
.

Putting this all together, we have the following covariance formula:
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Cov∗(Wi,Wk)

=
l∑

j=1

Cov∗(Yij , Ykj)

=
(
2
⌈
bα−1
1

⌉
− 1
) (

2
⌈
bα−1
2

⌉
− 1
) [ (b1 − (Ri1 −Rk1))(b2 − (Ri2 −Rk2))

4h1h2
−
(
b1b2

4h1h2

)2
]

+
(
2
⌈
bα−1
1

⌉
− 1
) [ (b1 − (Ri1 −Rk1))(b2 −Ri2)

4h1h2
−
(
b1(b2 −Ri2)

4h1h2

)(
b1(b2 −Rk2)

4h1h2

)]
+
(
2
⌈
bα−1
1

⌉
− 1
) [ (b1 − (Ri1 −Rk1))Rk2

4h1h2
−
(
b1Ri2
4h1h2

)(
b1Rk2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 1
) [ (b1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
−
(

(b1 −Ri1)b2
4h1h2

)(
(b1 −Rk1)b2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 1
) [Rk1(b2 − (Ri2 −Rk2))

4h1h2
−
(
Ri1b2
4h1h2

)(
Rk1b2
4h1h2

)]
+
[

(b1 −Ri1)(b2 −Ri2)
4h1h2

−
(

(b1 −Ri1)(b2 −Ri2)
4h1h2

)(
(b1 −Rk1)(b2 −Rk2)

4h1h2

)]
+
[

(b1 −Ri1)Rk2

4h1h2
−
(

(b1 −Ri1)Ri2
4h1h2

)(
(b1 −Rk1)Rk2

4h1h2

)]
+
[
Rk1Rk2

4h1h2
−
(
Ri1Ri2
4h1h2

)(
Rk1Rk2

4h1h2

)]
+
[
Rk1(b2 −Ri2)

4h1h2
−
(
Ri1(b2 −Ri2)

4h1h2

)(
Rk1(b2 −Rk2)

4h1h2

)]

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − (Ri1 −Rk1))(b2 − (Ri2 −Rk2))
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)
Notice, we have that Ri1−Rk1 = |τi1−τk1| and Ri2−Rk2 = |τi2−τk2|, so we can reduce

the above formula to the following lemma:

Lemma 7.4.4. For τi and τk sufficiently close and in the same block (with τk1 < τi1 and

τk2 < τi2), τi and τk removed from the boundary, we have that

Cov∗(Wi,Wk)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)
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The second case is a slight variant of the first in that both τi and τk occur in the same

block, but their relative positions have changed.

Case (ii): τi and τk occur in the same block, with relative positions given below.

Τi

Τk

b1

b2

Figure 7.13: Covariance formula for two dimensions, Case (ii)

Again, notice that there are a total of
(
2
⌈
bα−1
1

⌉
+ 1
) (

2
⌈
bα−1
2

⌉
+ 1
)

blocks contained

within the boundaries of the dashed rectangles in Figure 7.13.

Recall, only those blocks (which are indexed by their lower-left coordinate) which inter-

sect the dashed rectangle will have a non-zero probability of containing the point τi.

We can break these blocks (in Figure 7.13, there are 25 such blocks) into six different

groups. We shall illustrate each section we are discussing with a corresponding diagram.

First, we have the middle blocks. There are a total of
(
2
⌈
bα−1
1

⌉
− 1
) (

2
⌈
bα−1
2

⌉
− 1
)

such

blocks highlighted in Figure 7.14. Each of these blocks completely contains the grey rectangles

that correspond to τi and τk, as well as their intersection (the purple area).

Thus, we have that pij =
b1b2

4h1h2
= pkj

and pij ∩ pkj =
(b1 − (Ri1 −Rk1))(b2 − (Rk2 −Ri2))

4h1h2
.

Next, we have the bottom blocks. Notice that there are a total of 2
⌈
bα−1
1

⌉
− 1 such
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Τi

Τk

b1

b2

Figure 7.14: Covariance formula for two dimensions, Case (ii), middle blocks

blocks highlighted in Figure 7.15. Each of these blocks contains the complete width, b1, of the

grey blocks, but the heights are not the full b2.

Indeed, we have that pij =
b1(b2 −Ri2)

4h1h2
and pkj =

b1(b2 −Rk2)
4h1h2

.

Here, we have that pij ∩ pkj =
(b1 − (Ri1 −Rk1))(b2 −Rk2)

4h1h2
as that constitutes the sub-

set of the purple block that is captured by these blocks. (The maximum width is b1− (Ri1−Rk1)

while the maximum height is b2 − (Rk2 −Ri2). Here, the height is only b2 −Rk2.)

Next, we have the top blocks.

Notice that there are a total of 2
⌈
bα−1
1

⌉
−1 such blocks highlighted in Figure 7.16. Each

of these blocks contains the complete width, b1, of the grey blocks, but the heights are not the

full b2.

Indeed, we have that pij =
b1Ri2
4h1h2

and pkj =
b1Rk2

4h1h2
.

Here, we have that pij ∩ pkj =
(b1 − (Ri1 −Rk1))Ri2

4h1h2
as that constitutes the subset of

the purple block that is captured by these blocks.
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Τi

Τk

b1

b2

Figure 7.15: Covariance formula for two dimensions, Case (ii), bottom blocks

Τi

Τk

b1

b2

Figure 7.16: Covariance formula for two dimensions, Case (ii), top blocks
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Next, we have the left blocks. Notice that there are a total of 2
⌈
bα−1
2

⌉
− 1 such blocks

highlighted in Figure 7.17. Each of these blocks contains the complete height, b2, of the grey

blocks, but the widths are not the full b1.

Τi

Τk

b1

b2

Figure 7.17: Covariance formula for two dimensions, Case (ii), left blocks

Indeed, we have that pij =
(b1 −Ri1)b2

4h1h2
and pkj =

(b1 −Rk1)b2
4h1h2

.

Here, we have that pij ∩ pkj =
(b1 −Ri1)(b2 − (Rk2 −Ri2))

4h1h2
as that constitutes the sub-

set of the purple block that is captured by these blocks. (The maximum width is b1− (Ri1−Rk1)

while the maximum height is b2 − (Rk2 −Ri2). Here, the width is only b1 −Ri1.)

Next, we have the right blocks. Notice that there are a total of 2
⌈
bα−1
2

⌉
− 1 such blocks

highlighted in Figure 7.18. Each of these blocks contains the complete height, b2, of the grey

blocks, but the widths are not the full b1.

Indeed, we have that pij =
Ri1b2
4h1h2

and pkj =
Rk1b2
4h1h2

.

Here, we have that pij ∩ pkj =
Rk1(b2 − (Rk2 −Ri2))

4h1h2
as that constitutes the subset of

the purple block that is captured by these blocks.
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Τi

Τk

b1

b2

Figure 7.18: Covariance formula for two dimensions, Case (ii), right blocks

Finally, there are four corners to deal with as highlighted in Figure 7.19. We shall

compute those probabilities working clockwise from the bottom-left.

In the bottom-left corner, we have that

pij =
(b1 −Ri1)(b2 −Ri2)

4h1h2
, pkj =

(b1 −Rk1)(b2 −Rk2)
4h1h2

,

and pij ∩ pkj =
(b1 −Ri1)(b2 −Rk2)

4h1h2
.

In the top-left corner, we have that

pij =
(b1 −Ri1)Ri2

4h1h2
, pkj =

(b1 −Rk1)Rk2

4h1h2
,

and pij ∩ pkj =
(b1 −Ri1)Ri2

4h1h2
.

In the top-right corner, we have that

pij =
Ri1Ri2
4h1h2

, pkj =
Rk1Rk2

4h1h2
,

and pij ∩ pkj =
Rk1Ri2
4h1h2

.
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Τi

Τk

b1

b2

Figure 7.19: Covariance formula for two dimensions, Case (ii), corner blocks

In the bottom-right corner, we have that

pij =
Ri1(b2 −Ri2)

4h1h2
, pkj =

Rk1(b2 −Rk2)
4h1h2

,

and pij ∩ pkj =
Rk1(b2 −Rk2)

4h1h2
.

Putting this all together, we have the following covariance formula:
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Cov∗(Wi,Wk)

=
l∑

j=1

Cov∗(Yij , Ykj)

=
(
2
⌈
bα−1
1

⌉
− 1
) (

2
⌈
bα−1
2

⌉
− 1
) [ (b1 − (Ri1 −Rk1))(b2 − (Rk2 −Ri2))

4h1h2
−
(
b1b2

4h1h2

)2
]

+
(
2
⌈
bα−1
1

⌉
− 1
) [ (b1 − (Ri1 −Rk1))(b2 −Rk2)

4h1h2
−
(
b1(b2 −Ri2)

4h1h2

)(
b1(b2 −Rk2)

4h1h2

)]
+
(
2
⌈
bα−1
1

⌉
− 1
) [ (b1 − (Ri1 −Rk1))Ri2

4h1h2
−
(
b1Ri2
4h1h2

)(
b1Rk2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 1
) [ (b1 −Ri1)(b2 − (Rk2 −Ri2))

4h1h2
−
(

(b1 −Ri1)b2
4h1h2

)(
(b1 −Rk1)b2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 1
) [Rk1(b2 − (Rk2 −Ri2))

4h1h2
−
(
Ri1b2
4h1h2

)(
Rk1b2
4h1h2

)]
+
[

(b1 −Ri1)(b2 −Rk2)
4h1h2

−
(

(b1 −Ri1)(b2 −Ri2)
4h1h2

)(
(b1 −Rk1)(b2 −Rk2)

4h1h2

)]
+
[

(b1 −Ri1)Ri2
4h1h2

−
(

(b1 −Ri1)Ri2
4h1h2

)(
(b1 −Rk1)Rk2

4h1h2

)]
+
[
Rk1Ri2
4h1h2

−
(
Ri1Ri2
4h1h2

)(
Rk1Rk2

4h1h2

)]
+
[
Rk1(b2 −Rk2)

4h1h2
−
(
Ri1(b2 −Ri2)

4h1h2

)(
Rk1(b2 −Rk2)

4h1h2

)]

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − (Ri1 −Rk1))(b2 − (Rk2 −Ri2))
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)
Notice, we have that Ri1−Rk1 = |τi1−τk1| and Rk2−Ri2 = |τi2−τk2|, so we can reduce

the above formula to the following lemma:

Lemma 7.4.5. For τi and τk sufficiently close and in the same block (with τk1 < τi1 and

τi2 < τk2), τi and τk removed from the boundary, we have that

Cov∗(Wi,Wk)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)

While technically there would be four cases to consider with τi and τk in the same block,



131

since our covariance formula only involves the points via |τi1−τk1| and |τi2−τk2|, we can assume

without loss of generality that the two cases above cover all four possibilities.

Alternatively, one can notice that in the derivation above, the only thing that changed

were some instances of i’s and k’s.

For this reason (and in the interest of conserving space), the next three cases will be

illustrated without loss of generality using τk1 < τi1 and τk2 < τi2.

Case (iii): τi and τk occur in different blocks, horizontally.

Τi

Τk

b1

b2

Figure 7.20: Covariance formula for two dimensions, Case (iii)

Notice that there are a total of
(
2
⌈
bα−1
1

⌉
+ 2
) (

2
⌈
bα−1
2

⌉
+ 1
)

blocks contained within the

boundaries of the dashed rectangles in Figure 7.20.

However, the left-most and right-most blocks do not contain both sets of dashed rect-

angles, and hence the covariance will be zero in those blocks. So, in actuality, we only need to

consider
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉
+ 1
)

blocks.

And before we continue, it will be helpful to write out explicitly the dimensions of the

purple region. Zooming in on the appropriate 2× 3 blocks, we have Figure 7.21.

As in the previous cases, we shall break down the covariance calculations into groups of

blocks. We begin with the middle blocks.
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Τi

Τk

Rk1-Ri1

Rk2

b2-Ri2

Figure 7.21: Covariance formula for two dimensions, Case (iii), enhanced

Τi

Τk

b1

b2

Figure 7.22: Covariance formula for two dimensions, Case (iii), middle blocks
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Notice that there are a total of
(
2
⌈
bα−1
1

⌉
− 2
) (

2
⌈
bα−1
2

⌉
− 1
)

such blocks highlighted in

Figure 7.22. Each of these blocks completely contains the grey rectangles that correspond to τi
and τk, as well as their intersection (the purple area).

Thus, we have that pij =
b1b2

4h1h2
= pkj

and pij ∩ pkj =
(Rk1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
.

Next, we have the bottom blocks. Notice that there are a total of 2
⌈
bα−1
1

⌉
− 2 such

blocks highlighted in Figure 7.23. Each of these blocks contains the complete width, b1, of the

grey blocks, but the heights are not the full b2.

Τi

Τk

b1

b2

Figure 7.23: Covariance formula for two dimensions, Case (iii), bottom blocks

Indeed, we have that pij =
b1(b2 −Ri2)

4h1h2
and pkj =

b1(b2 −Rk2)
4h1h2

.

Here, we have that pij ∩ pkj =
(Rk1 −Ri1)(b2 −Ri2)

4h1h2
as that constitutes the subset of

the purple block that is captured by these blocks.

Next, we have the top blocks. Notice that there are a total of 2
⌈
bα−1
1

⌉
− 2 such blocks

highlighted in Figure 7.24. Each of these blocks contains the complete width, b1, of the grey
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blocks, but the heights are not the full b2.

Τi

Τk

b1

b2

Figure 7.24: Covariance formula for two dimensions, Case (iii), top blocks

Indeed, we have that pij =
b1Ri2
4h1h2

and pkj =
b1Rk2

4h1h2
.

Here, we have that pij ∩ pkj =
(Rk1 −Ri1)Rk2

4h1h2
as that constitutes the subset of the

purple block that is captured by these blocks.

Next, we have the left blocks. Notice that there are a total of 2
⌈
bα−1
2

⌉
− 1 such blocks

highlighted in Figure 7.25. Each of these blocks contains the complete height, b2, of the grey

blocks, but the widths vary.

Indeed, we have that pij =
(b1 −Ri1)b2

4h1h2
and pkj =

b1b2
4h1h2

.

Here, we have that pij ∩ pkj =
(Rk1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
as the entire purple block

is captured by these blocks.

Next, we have the right blocks. Notice that there are a total of 2
⌈
bα−1
2

⌉
− 1 such blocks

highlighted in Figure 7.26. Each of these blocks contains the complete height, b2, of the grey

blocks, but the widths vary.
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Τi

Τk

b1

b2

Figure 7.25: Covariance formula for two dimensions, Case (iii), left blocks

Τi

Τk

b1

b2

Figure 7.26: Covariance formula for two dimensions, Case (iii), right blocks
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Indeed, we have that pij =
b1b2

4h1h2
and pkj =

Rk1b2
4h1h2

.

Here, we have that pij ∩ pkj =
(Rk1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
as the entire purple block

is captured by these blocks.

Finally, there are four corners to deal with as highlighted in Figure 7.27. We shall

compute those probabilities working clockwise from the bottom-left.

Τi

Τk

b1

b2

Figure 7.27: Covariance formula for two dimensions, Case (iii), corner blocks

In the bottom-left corner, we have that

pij =
(b1 −Ri1)(b2 −Ri2)

4h1h2
, pkj =

b1(b2 −Rk2)
4h1h2

,

and pij ∩ pkj =
(Rk1 −Ri1)(b2 −Ri2)

4h1h2
.

In the top-left corner, we have that

pij =
(b1 −Ri1)Ri2

4h1h2
, pkj =

b1Rk2

4h1h2
,

and pij ∩ pkj =
(Rk1 −Ri1)Rk2

4h1h2
.
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In the top-right corner, we have that

pij =
b1Ri2
4h1h2

, pkj =
Rk1Rk2

4h1h2
,

and pij ∩ pkj =
(Rk1 −Ri1)Rk2

4h1h2
.

In the bottom-right corner, we have that

pij =
b1(b2 −Ri2)

4h1h2
, pkj =

Rk1(b2 −Rk2)
4h1h2

,

and pij ∩ pkj =
(Rk1 −Ri1)(b2 −Ri2)

4h1h2
.

Putting this all together, we have the following covariance formula:
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Cov∗(Wi,Wk)

=
l∑

j=1

Cov∗(Yij , Ykj)

=
(
2
⌈
bα−1
1

⌉
− 2
) (

2
⌈
bα−1
2

⌉
− 1
) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
−
(
b1b2

4h1h2

)2
]

+
(
2
⌈
bα−1
1

⌉
− 2
) [ (Rk1 −Ri1)(b2 −Ri2)

4h1h2
−
(
b1(b2 −Ri2)

4h1h2

)(
b1(b2 −Rk2)

4h1h2

)]
+
(
2
⌈
bα−1
1

⌉
− 2
) [ (Rk1 −Ri1)Rk2

4h1h2
−
(
b1Ri2
4h1h2

)(
b1Rk2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 1
) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
−
(

(b1 −Ri1)b2
4h1h2

)(
b1b2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 1
) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))

4h1h2
−
(
b1b2

4h1h2

)(
Rk1b2
4h1h2

)]
+
[

(Rk1 −Ri1)(b2 −Ri2)
4h1h2

−
(

(b1 −Ri1)(b2 −Ri2)
4h1h2

)(
b1(b2 −Rk2)

4h1h2

)]
+
[

(Rk1 −Ri1)Rk2

4h1h2
−
(

(b1 −Ri1)Ri2
4h1h2

)(
b1Rk2

4h1h2

)]
+
[

(Rk1 −Ri1)Rk2

4h1h2
−
(
b1Ri2
4h1h2

)(
Rk1Rk2

4h1h2

)]
+
[

(Rk1 −Ri1)(b2 −Ri2)
4h1h2

−
(
b1(b2 −Ri2)

4h1h2

)(
Rk1(b2 −Rk2)

4h1h2

)]

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b21b2
h2

1h2

)
+O

(
b21b

2
2

h2
1h

2
2

)
+O

(
b1b2
h1h2

)
+O

(
b1b

2
2

h1h2
2

)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)

Referring back to Figure 7.21, notice that Ri1 −Rk1 = b1 − (τi1 − τk1) = b1 − |τi1 − τk1|
and that Ri2 −Rk2 = τi2 − τk2 = |τi2 − τk2|.

With this in mind, we can reduce the above formula to the following lemma:

Lemma 7.4.6. For τi and τk sufficiently close and in the adjacent horizontal blocks, with τi and

τk removed from the boundary, we have that
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Cov∗(Wi,Wk)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)

This is precisely the same formula that we found in cases (i) and (ii).

The only difference is in the explicit formula for the product of pij and pkj . The formula

was simpler in the first two cases, whereas it is more involved in this setting. Still, that only

contributes a negligible amount to the overall covariance. Indeed, it is of the same order as the

error terms from the first two cases.

Case (iv): τi and τk occur in different blocks, vertically.

Τi

Τk

b1

b2

Figure 7.28: Covariance formula for two dimensions, Case (iv)

Notice that there are a total of
(
2
⌈
bα−1
1

⌉
+ 1
) (

2
⌈
bα−1
2

⌉
+ 2
)

blocks contained within the

boundaries of the dashed rectangles in Figure 7.28.

However, the top row and bottom row of blocks do not contain both sets of dashed

rectangles, and hence the covariance will be zero in those blocks. So, in actuality, we only need

to consider
(
2
⌈
bα−1
1

⌉
+ 1
) (

2
⌈
bα−1
2

⌉)
blocks.
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And before we continue, it will be helpful to write out explicitly the dimensions of the

purple region. Zooming in on the appropriate 3× 2 blocks, we have Figure 7.29.

Τi

Τk Rk2-Ri2

Rk1b1-Ri1

Figure 7.29: Covariance formula for two dimensions, Case (iv), enhanced

We could go through the six sets of blocks as we have done in the previous cases, but

that is not needed here. Indeed, notice that the only difference between case (iii) and case (iv)

is that all of the subscripts that were 1’s are now 2’s.

As a result, the covariance calculations will be exactly the same as in case (iii). Thus,

we proceed directly to the next lemma.

Lemma 7.4.7. For τi and τk sufficiently close and in the adjacent vertical blocks, with τi and

τk removed from the boundary, we have that

Cov∗(Wi,Wk)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)

Case (v): τi and τk occur in neighboring diagonal blocks.

Notice that there are a total of
(
2
⌈
bα−1
1

⌉
+ 2
) (

2
⌈
bα−1
2

⌉
+ 2
)

blocks contained within the

boundaries of the dashed rectangles in Figure 7.30.

However, the top and bottom rows as well as the left-most and right-most blocks do not

contain both sets of dashed rectangles, and hence the covariance will be zero in those blocks. So,

in actuality, we only need to consider
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉)
blocks.

Also, the purple area is not split across multiple blocks. Thus, the covariance will be the

same in all instances, greatly reducing the complexity of our computations.

In fact, the purple area is just
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Τi

Τk

b1

b2

Figure 7.30: Covariance formula for two dimensions, Case (v)

(Rk1 −Ri1)(Rk2 −Ri2) = (b1 − (τi1 − τk1))(b2 − (τi2 − τk2))

= (b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)

As in the previous cases, we shall break down the covariance calculations into groups of

blocks. We begin with the middle blocks.

Notice that there are a total of
(
2
⌈
bα−1
1

⌉
− 2
) (

2
⌈
bα−1
2

⌉
− 2
)

such blocks highlighted in

Figure 7.31. Each of these blocks completely contains the grey rectangles that correspond to τi
and τk, as well as their intersection (the purple area).

Thus, we have that pij =
b1b2

4h1h2
= pkj

and pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

Next, we have the bottom blocks. Notice that there are a total of 2
⌈
bα−1
1

⌉
− 2 such

blocks highlighted in Figure 7.32. Each of these blocks contains the complete width, b1, of the

grey blocks, but the heights vary.

Indeed, we have that pij =
b1(b2 −Ri2)

4h1h2
and pkj =

b1b2
4h1h2

.
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Τi

Τk

b1

b2

Figure 7.31: Covariance formula for two dimensions, Case (v), middle blocks

Τi

Τk

b1

b2

Figure 7.32: Covariance formula for two dimensions, Case (v), bottom blocks
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Again, pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

Next, we have the top blocks. Notice that there are a total of 2
⌈
bα−1
1

⌉
− 2 such blocks

highlighted in Figure 7.33. Each of these blocks contains the complete width, b1, of the grey

blocks, but the heights vary.

Τi

Τk

b1

b2

Figure 7.33: Covariance formula for two dimensions, Case (v), top blocks

Indeed, we have that pij =
b1b2

4h1h2
and pkj =

b1Rk2

4h1h2
.

Again, pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

Next, we have the left blocks. Notice that there are a total of 2
⌈
bα−1
2

⌉
− 2 such blocks

highlighted in Figure 7.34. Each of these blocks contains the complete height, b2, of the grey

blocks, but the widths vary.

Indeed, we have that pij =
(b1 −Ri1)b2

4h1h2
and pkj =

b1b2
4h1h2

.

Again, pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

Next, we have the right blocks. Notice that there are a total of 2
⌈
bα−1
2

⌉
− 2 such blocks
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Τi

Τk

b1

b2

Figure 7.34: Covariance formula for two dimensions, Case (v), left blocks

highlighted in Figure 7.35. Each of these blocks contains the complete height, b2, of the grey

blocks, but the widths vary.

Indeed, we have that pij =
b1b2

4h1h2
and pkj =

Rk1b2
4h1h2

.

Again, pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

Finally, there are four corners to deal with as highlighted in Figure 7.36. We shall

compute those probabilities working clockwise from the bottom-left.

In the bottom-left corner, we have that

pij =
(b1 −Ri1)(b2 −Ri2)

4h1h2
, pkj =

b1b2
4h1h2

,

and pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

In the top-left corner, we have that

pij =
(b1 −Ri1)b2

4h1h2
, pkj =

b1Rk2

4h1h2
,
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Τi

Τk

b1

b2

Figure 7.35: Covariance formula for two dimensions, Case (v), right blocks

Τi

Τk

b1

b2

Figure 7.36: Covariance formula for two dimensions, Case (v), corner blocks
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and pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

In the top-right corner, we have that

pij =
b1b2

4h1h2
, pkj =

Rk1Rk2

4h1h2
,

and pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

In the bottom-right corner, we have that

pij =
b1(b2 −Ri2)

4h1h2
, pkj =

Rk1b2
4h1h2

,

and pij ∩ pkj =
(Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
.

Putting this all together, we have the following covariance formula:
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Cov∗(Wi,Wk)

=
l∑

j=1

Cov∗(Yij , Ykj)

=
(
2
⌈
bα−1
1

⌉
− 2
) (

2
⌈
bα−1
2

⌉
− 2
) [ (Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
−
(
b1b2

4h1h2

)2
]

+
(
2
⌈
bα−1
1

⌉
− 2
) [ (Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
−
(
b1(b2 −Ri2)

4h1h2

)(
b1b2

4h1h2

)]
+
(
2
⌈
bα−1
1

⌉
− 2
) [ (Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
−
(
b1b2

4h1h2

)(
b1Rk2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 2
) [ (Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
−
(

(b1 −Ri1)b2
4h1h2

)(
b1b2

4h1h2

)]
+
(
2
⌈
bα−1
2

⌉
− 2
) [ (Rk1 −Ri1)(Rk2 −Ri2)

4h1h2
−
(
b1b2

4h1h2

)(
Rk1b2
4h1h2

)]
+
[

(Rk1 −Ri1)(Rk2 −Ri2)
4h1h2

−
(

(b1 −Ri1)(b2 −Ri2)
4h1h2

)(
b1b2

4h1h2

)]
+
[

(Rk1 −Ri1)(Rk2 −Ri2)
4h1h2

−
(

(b1 −Ri1)b2
4h1h2

)(
b1Rk2

4h1h2

)]
+
[

(Rk1 −Ri1)(Rk2 −Ri2)
4h1h2

−
(
b1b2

4h1h2

)(
Rk1Rk2

4h1h2

)]
+
[

(Rk1 −Ri1)(Rk2 −Ri2)
4h1h2

−
(
b1(b2 −Ri2)

4h1h2

)(
Rk1b2
4h1h2

)]

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b21b2
h2

1h2

)
+O

(
b21b

2
2

h2
1h

2
2

)
+O

(
b1b2
h1h2

)
+O

(
b1b

2
2

h1h2
2

)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (Rk1 −Ri1)(b2 − (Ri2 −Rk2))
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)

Making use of the observation (Rk1−Ri1)(Rk2−Ri2) = (b1−|τi1−τk1|)(b2−|τi2−τk2|),
we can reduce the above formula to the following lemma:

Lemma 7.4.8. For τi and τk sufficiently close and in neighboring diagonal blocks, with τi and

τk removed from the boundary, we have that

Cov∗(Wi,Wk)

=
(
2
⌈
bα−1
1

⌉) (
2
⌈
bα−1
2

⌉) [ (b1 − |τi1 − τk1|)(b2 − |τi2 − τk2|)
4h1h2

−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)
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Notice that in all of the lemmas, the formulas are identical. As was the case in one-

dimension, the formulas themselves are slightly different, but are equal up to an error term of

the same order. As we shall see later, this is asymptotically negligible.

Moreover, we can rewrite the above formula as:

Cov∗(Wi,Wk)

=
4h1h2

b1b2

[
(b1 − |τi1 − τk1|) (b2 − |τi2 − τk2|)

4h1h2
−
(
b1b2

4h1h2

)2
]

+O

(
b1b2
h1h2

)

=
(b1 − |τi1 − τk1|) (b2 − |τi2 − τk2|)

b1b2
+O

(
b1b2
h1h2

)
=
(

1− |τi1 − τk1|
b1

)(
1− |τi2 − τk2|

b2

)
+O

(
b1b2
h1h2

)

This same approach can be readily extended to three dimensions. The calculations are

identical to those above, but verification will require nearly twice as many cases to consider. To

help visualize this, consider Figure 7.37.

Τi

Τk

b1

b2

b3

Figure 7.37: Covariance formula for three dimensions

For higher dimensions, we again need to modify our definitions. Again, this is a com-

pletely natural extension of the definition from lower dimensions.
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Definition 7.4.9. Suppose τi, τk ∈ Rd. If |τij − τkj | < bj for j = 1, 2, . . . , d, then we say that τi
and τk are sufficiently close.

Definition 7.4.10. Given a d-dimensional “box” specified by [a11, a12]× . . .× [ad1, ad2], we shall

say that a point τi ∈ Rd is removed from the boundary provided that |τij − aj1| > hj and

|τij − aj2| > hj for j = 1, 2, . . . , d.

Now, we are finally ready to present our main result for the covariance of Wi and Wk in

d-dimensions.

Theorem 7.4.11. For τi and τk sufficiently close with τi and τk removed from the boundary,

we have that

Cov∗(Wi,Wk) =
d∏
j=1

(
1− |τij − τkj |

bj

)
+O

 d∏
j=1

bj
hj



We remark that the formula has exactly the same structure as the one-dimensional for-

mula developed in Chapter 4, but there are products in each dimension. Moreover, the projection

of a d-dimensional Poisson process onto one dimension is also a Poisson process. (See [63] for a

more detailed discussion.) Because of this, the results that we developed above can be adapted

to our more general setting.

We have the following formula for the variance:

V ar∗
[√

Λ(K)
≈
X∗
]

=
1

Λ(K)

∑
i 6=k

 d∏
j=1

(
1− |τij − τkj |

bj

)
1{|τij−τkj |<b}

X(τi)X(τk)

+
1

Λ(K)

N(K)∑
i=1

X2(τi)

+
1

Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O
 d∏
j=1

(
bj
hj

)
1{|τij−τkj |<b}

X(τi)X(τk)

Similar to the one-dimensional case, we have the following results:

Lemma 7.4.12. Assuming A.7.1, A.7.5, and A.7.6, we have that

1
Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O
 d∏
j=1

(
bj
hj

)
1{|τij−τkj |<b}

X(τi)X(τk)
p−→ 0.

Thus, the last term is asymptotically negligible and can be safely ignored.
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Lemma 7.4.13. Let R̂(0) =
1

Λ(K)

N(K)∑
i=1

X2(τi). Then, under Assumptions A.4.1-A.4.3,

i. E[R̂(0)] = R(0) + µ2

ii. V ar[R̂(0)]→ 0 as diam(K)→∞

Again, as was the case with the one-dimensional case, to establish Lemma 7.4.13(ii), we

shall appeal to Lemma 4.4.12. (Note that the lemma, as stated, applies to Rd, so no additional

work is needed on our part.)

We have the following result pertaining to the unequal terms in the variance formula.

Lemma 7.4.14. Suppose Assumptions A.7.1-A.7.4, and A.7.6 hold.

Let θ̂2 =
1

Λ(K)

∑
i 6=k

 d∏
j=1

(
1− |τij − τkj |

bj

)
1{|τij−τkj |<b}

X(τi)X(τk). Then

i. E[θ̂2]
p−→ θ2

ii. V ar[θ̂2]→ 0 as diam(K)→∞

where θ2 = lim
diam(K)→∞

1
Λ(K)

∫
K

∫
K

R(s− t)λ(s)λ(t)dsdt

Lemmas 7.4.12 - 7.4.14 give us the following result.

Lemma 7.4.15. Suppose Assumptions A.7.1-A.7.6 hold. As diam(K) → ∞, we have that

V ar∗[
√

Λ(K)
≈
X∗]

p−→ θ2 +R(0) + µ2.

Now that we have established that the bootstrap variance tends (asymptotically) to the

true variance, we are ready to state our main theorem.

Theorem 7.4.16. Suppose Assumptions A.7.1-A.7.6 hold. Then we have the following:

i. E∗
[ ≈
X∗
]

= X̃K

ii.
V ar∗[

≈
X∗]

V ar[X̃K ]
p−→ 1

iii. sup
x

∣∣∣∣P ∗(√Λ(K)(
≈
X∗−X̃K) ≤ x

)
− P

(√
Λ(K)(X̃K − µ) ≤ x

)∣∣∣∣ p−→ 0

As in the one-dimensional setting, instead of using torodial wrapping, we could simply

reduce the window that our shift can move each block near the boundary. This approach may

be preferrable in cases where the intensity at the edges differs significantly.
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Again, the drawback for this approach, though, is that not all points will be resampled

once (on average). Indeed, those points within h units of the boundary will appear (on average)

less than once. The solution for this is to modify our theorems not to subtract X̃K , but rather

subtract E∗[X̃∗]. This recenters the data around the bootstrap mean.

In the theory above, it was assumed that K was a “box” in d dimensions. However,

our methods can be extended to the case where K is an arbitrary convex set in Rd. The most

straight-forward approach is to decompose K into a collection of non-overlapping boxes and apply

our resampling method to each segment. While this would introduce additional edge effects, if

the region can be covered (or at least well-approximated) by a few rectangles, then the impact

would be minimal.

7.5 Simulations

While the following algorithm can be adapted to dimensions greater than 2, the com-

puational complexity of the problem leads us to only consider the case of d = 2. Unlike the

one-dimensional setting in Section 4.5, we need to restrict our region to something much more

modest, [0, 20] × [0, 20], for example. (Note: The region need not be a square. In fact, we can

use any convex region in Rd.)
The first step is to generate data from a two-dimensional marked point process. Again,

since we have assumed independence between the point process and the associated marks, the

first step is to generate an inhomogeneous Poisson process.

We do this using the Accept-Reject Method as specified by Lewis and Shedler ([43]). The

idea is to generate a two-dimensional homogeneous Poisson process on the rectangle [0, xmax]×
[0, ymax], and then use thinning to create an inhomogeneous Poisson process.

Formally, we have the following algorithm:

1. Set i = 0, j = 0 and X(0) = 0

2. Generate a random number U1 ∼ U(0, 1)

3. While X(i) < xmax, set i = i+ 1 and X(i) = X(i− 1)− ln(U1)/(λymax)

4. Generate another random number Y (i) ∼ U(0, ymax)

5. Generate another random number U2 ∼ U(0, 1)

6. If U2 ≤ λ(X(i), Y (i))/λ, set j = j + 1 and P (k) = (X(i), Y (i))

7. Go to step 2.
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The output will consist of the counter j, which is the number of events that occur on

the region K and P (1), . . . , P (j) will constitute the location of the events.

Next, we need to generate the corresponding marks. (We use the same code as in the

one-dimensional case.)

We assume that X(·) is a stationary, Gaussian process with mean 0 and covariance

function R(t). Our algorithm for generating the marks is as follows:

1. Initialize a matrix of covariances, Σ with dimensions given by N(K), the number of points

found in the algorithm above

2. Populate Σ with values R(P (i)− P (j)) for all pairs i, j

3. Consider the eigenvalue decomposition of Σ = V DV T and express Σ1/2 = V D1/2V T

4. Generate N(K) i.i.d. N(0, 1) random variables and place them into the vector Z

5. Set the marks equal to X = Σ1/2Z

Finally, we record the pair {P (j), X(P (j))}. This is our randomly generated marked

point process.

We run simulations using using the statistical software R [61]. We use two resampling

methods (torodial wrapping and no wrapping), two different covariance functions, five different

models, and four combinations of b1, b2, h1 and h2 for a total of 80 models. Each model was

simulated 1,000 times and each time, a 95% confidence interval was constructed.

The five different intensity functions considered are as follows:

First, we consider λ1(t) = 1 + 9 exp
(
− 1

10

(
(t1 − 10)2 + (t2 − 10)2

))
for 0 ≤ t1 ≤ 20,

0 ≤ t2 ≤ 20. This is shown in Figure 7.38.
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Figure 7.38: Two-Dimensional Inhomogeneous Simulation Intensity Function 1
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Second, we consider λ1(t) = 1 + 9 exp
(
− 1

100

(
(t1 − 10)2 + (t2 − 10)2

))
for 0 ≤ t1 ≤

20, 0 ≤ t2 ≤ 20. This is shown in Figure 7.39.
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Figure 7.39: Two-Dimensional Inhomogeneous Simulation Intensity Function 2

Third, we consider λ3(t) = 3 + 2 sin
(

2π
15
t1

)
for 0 ≤ t1 ≤ 30, 0 ≤ t2 ≤ 20. This is shown

in Figure 7.40.
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Figure 7.40: Two-Dimensional Inhomogeneous Simulation Intensity Function 3

Fourth, we consider λ4(t) =
1
2

+
1
4
t1 +

1
32
t2 for 0 ≤ t1 ≤ 16, 0 ≤ t2 ≤ 64. This is shown

in Figure 7.41.

Fifth, we consider λ5(t) = 2 + 1.5 cos
(π

4

(
(t1 − 25)2 + (t2 − 5)2

))
for 0 ≤ t1 ≤ 50, 0 ≤

t2 ≤ 15. This is shown in Figure 7.42.

In the tables that follow, we present the mean and standard deviation of the constructed

confidence intervals as well as the percentage of confidence intervals containing the true mean, 0

(the coverage probability).

Looking at all of the tables, we see that torodial wrapping performs better than non-
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Figure 7.41: Two-Dimensional Inhomogeneous Simulation Intensity Function 4
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Figure 7.42: Two-Dimensional Inhomogeneous Simulation Intensity Function 5
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wrapping by approximately 10%, though noticeable exceptions occur in Table 7.4 and Table 7.5,

where wrapping outperforms non-wrapping by 20-40%. Usually, one would expect the edge effects

to hinder performance and thus reduce coverage, as was seen in Chapter 4.

The most likely explanation is the issues that arise with using relatively small regions

(and relatively large blocks). Due to the computational complexities that arise when increasing

dimensions (i.e., “the curse of dimensionality”), a fair amount of the regions under consideration

have blocks near the edge. Still, one would not expect such a drastic difference and this will be

a source of further study.

We also see that the mean and standard deviation of the lengths of the confidence inter-

vals are comparable to the one-dimensional case (0.1 and 0.025, respectively), so our algorithm

appears to be fairly stable.

When comparing Tables 7.1 - 7.5 with Tables 7.6 - 7.10, we see that the increased

dependence leads to a lower coverage probability. That is to be expected.

In Table 7.1 and Table 7.2, we see that the choices of parameters does not make a

significant difference with regards to the coverage probabilities, though again a smaller choice for

bi seems to produce higher coverage. The effect becomes noticeable when considering Table 7.3

and Table 7.4. There, the difference between the smallest choice of bi and the largest choice is

around 30%.

This suggests that care must be taken when choosing the parameters. As was discussed

in Chapter 2 and Chapter 4, methods exist for choosing the local parameter and methods will

need to be developed for selecting a block size for higher dimensions. Such a data-driven approach

will be the focus of future work.

Similar results holds for Table 7.6 - 7.10.

Table 7.1: Two-Dimensional LBB with Intensity function λ1(t) and R(t) = exp(−|t|)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.25 2 2 658.813 0.11819 0.00575 89.9%
2.00 1.25 8 2 668.912 0.11144 0.00528 82.2%
1.00 1.25 2 3 659.653 0.11771 0.00596 89.3%
1.00 1.00 2 2 660.186 0.11807 0.00531 94.7%

Yes 1.25 1.25 2 2 663.840 0.11739 0.00567 93.5%
2.00 1.25 8 2 666.714 0.11716 0.00573 84.7%
1.00 1.25 2 3 665.070 0.11750 0.00571 90.7%
1.00 1.00 2 2 664.460 0.11747 0.00528 97.1%
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Table 7.2: Two-Dimensional LBB with Intensity function λ2(t) and R(t) = exp(−|t|)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.25 2 2 2431.567 0.06656 0.00177 72.3%
2.00 1.25 8 2 2565.542 0.05881 0.00224 76.4%
1.00 1.25 2 3 2443.673 0.06681 0.00181 68.8%
1.00 1.00 2 2 2424.828 0.06708 0.00177 73.1%

Yes 1.25 1.25 2 2 2399.877 0.06863 0.00195 83.2%
2.00 1.25 8 2 2393.463 0.06872 0.00300 81.0%
1.00 1.25 2 3 2400.606 0.06861 0.00187 87.7%
1.00 1.00 2 2 2399.061 0.06858 0.00179 92.2%

Table 7.3: Two-Dimensional LBB with Intensity function λ3(t) and R(t) = exp(−|t|)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.25 2 2 1874.802 0.11289 0.00352 84.3%
2.00 1.25 8 2 1875.239 0.11354 0.00393 58.3%
1.00 1.25 2 3 1877.288 0.11299 0.00356 89.3%
2.00 2.00 8 8 1846.922 0.11459 0.00464 52.2%

Yes 1.25 1.25 2 2 1856.771 0.11488 0.00359 86.7%
2.00 1.25 8 2 1853.601 0.11481 0.00393 70.9%
1.00 1.25 2 3 1856.222 0.11507 0.00358 89.1%
2.00 2.00 8 8 1859.261 0.11447 0.00501 58.3%

Table 7.4: Two-Dimensional LBB with Intensity function λ4(t) and R(t) = exp(−|t|)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.0 1.6 2 5 3559.368 0.05407 0.00115 72.6%
1.0 4.0 2 16 3753.267 0.05412 0.00172 56.1%
1.6 2.0 3 8 3573.271 0.05414 0.00120 38.4%
1.6 4.0 3 16 3578.571 0.05414 0.00162 38.7%

Yes 1.0 1.6 2 5 3572.319 0.05386 0.00133 93.2%
1.0 4.0 2 16 3572.690 0.05381 0.00182 69.3%
1.6 2.0 3 8 3571.011 0.05387 0.00140 83.3%
1.6 4.0 3 16 3572.810 0.05383 0.00196 64.6%

Table 7.5: Two-Dimensional LBB with Intensity function λ5(t) and R(t) = exp(−|t|)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.00 3 2 1587.845 0.09447 0.00263 58.3%
1.25 1.25 3 3 1583.023 0.09454 0.00272 55.8%
2.00 1.00 8 2 1582.945 0.09305 0.00259 40.1%
2.00 1.25 8 3 1579.912 0.09325 0.00291 37.5%

Yes 1.25 1.00 3 2 1573.039 0.09900 0.00270 98.2%
1.25 1.25 3 3 1572.671 0.09905 0.00292 92.7%
2.00 1.00 8 2 1571.596 0.09921 0.00274 93.7%
2.00 1.25 8 3 1574.156 0.09875 0.00311 78.5%
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Table 7.6: Two-Dimensional LBB with Intensity function λ1(t) and R(t) = exp(−|t|/3)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.25 2 2 668.056 0.10484 0.00467 91.9%
2.00 1.25 8 2 669.935 0.10512 0.00438 74.2%
1.00 1.25 2 3 670.256 0.10544 0.00472 95.9%
1.00 1.00 2 2 670.278 0.10504 0.00428 96.1%

Yes 1.25 1.25 2 2 679.286 0.10573 0.00485 93.6%
2.00 1.25 8 2 679.770 0.10575 0.00440 76.2%
1.00 1.25 2 3 677.376 0.10593 0.00485 94.9%
1.00 1.00 2 2 678.235 0.10581 0.00447 98.2%

Table 7.7: Two-Dimensional LBB with Intensity function λ2(t) and R(t) = exp(−|t|/3)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.25 2 2 2542.989 0.05309 0.00145 80.5%
2.00 1.25 8 2 2516.383 0.05046 0.00159 55.5%
1.00 1.25 2 3 2551.763 0.05314 0.00146 84.1%
1.00 1.00 2 2 2530.640 0.05353 0.00135 87.2%

Yes 1.25 1.25 2 2 2491.238 0.05493 0.00150 85.8%
2.00 1.25 8 2 2498.064 0.05473 0.00183 57.3%
1.00 1.25 2 3 2492.586 0.05482 0.00154 86.5%
1.00 1.00 2 2 2494.139 0.05480 0.00138 92.3%

Table 7.8: Two-Dimensional LBB with Intensity function λ3(t) and R(t) = exp(−|t|/3)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.25 2 2 1819.024 0.10271 0.00267 61.3%
2.00 1.25 8 2 1820.306 0.09246 0.00461 43.2%
1.00 1.25 2 3 1819.114 0.10265 0.00304 68.4%
2.00 2.00 8 8 1815.099 0.09336 0.00535 47.7%

Yes 1.25 1.25 2 2 1820.761 0.09950 0.00309 87.2%
2.00 1.25 8 2 1815.847 0.09943 0.00417 64.7%
1.00 1.25 2 3 1821.131 0.09951 0.00302 90.5%
2.00 2.00 8 8 1816.536 0.09917 0.00517 56.0%

Table 7.9: Two-Dimensional LBB with Intensity function λ4(t) and R(t) = exp(−|t|/3)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.0 1.6 2 5 3482.352 0.05699 0.00112 81.5%
1.0 4.0 2 16 3488.159 0.05831 0.00161 64.2%
1.6 2.0 3 8 3486.516 0.05876 0.00130 49.4%
1.6 4.0 3 16 3482.737 0.05888 0.00171 47.7%

Yes 1.0 1.6 2 5 3491.297 0.05624 0.00115 91.5%
1.0 4.0 2 16 3486.862 0.05619 0.00182 70.1%
1.6 2.0 3 8 3489.723 0.05624 0.00149 78.7%
1.6 4.0 3 16 3493.034 0.05619 0.00212 62.5%
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Table 7.10: Two-Dimensional LBB with Intensity function λ5(t) and R(t) = exp(−|t|/3)
Wrap? b1 b2 h1 h2 N Obs. CI Len. Mean CI Len. SD Cover %

No 1.25 1.00 3 2 1521.448 0.09553 0.00253 80.4%
1.25 1.25 3 3 1524.086 0.09559 0.00274 77.2%
2.00 1.00 8 2 1519.078 0.09588 0.00270 72.3%
2.00 1.25 8 3 1514.525 0.09618 0.00304 74.6%

Yes 1.25 1.00 3 2 1528.350 0.09401 0.00257 93.2%
1.25 1.25 3 3 1525.531 0.09434 0.00268 93.1%
2.00 1.00 8 2 1528.590 0.09387 0.00257 92.5%
2.00 1.25 8 3 1527.644 0.09380 0.00290 79.2%
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7.6 Proofs

Proof of Lemma 7.4.12: The proof follows almost immediately from the proof of Lemma 4.4.10.

Again, we shall focus on the points since X(τi) = Op(1). Thus, we are left with an

integral over K with a product of terms in each dimension.

But since
∫
K

refers to

K1∫
0

K2∫
0

· · ·
Kd∫
0

, we can split the integrand into d single integrals and

use the results of Lemma 4.4.10 for each coordinate.

Thus, it follows that

N(K)∑
i=1

N(K)∑
k=1

O
 d∏
j=1

(
bj
hj

)
1{|τij−τkj |<b}

 = Op

 d∏
j=1

bjKj

,

since dividing through by
d∏
j=1

bjKj would give us constant values for the mean and the

variance.

But by Assumption A.7.1, we have that Λ(K) = O

 d∏
j=1

Kj

. Thus,

1
Λ(K)

N(K)∑
i=1

N(K)∑
k=1

O
 d∏
j=1

(
bj
hj

)
1{|τij−τkj |<b}

X(τi)X(τk) = Op

 d∏
j=1

b2j
hj


By Assumptions A.7.5 and A.7.6, we have that this tends to 0, completing the proof.

Proof of Lemma 7.4.13: The proof of (i) follows be exactly the same reasoning as in the proof of

Lemma 4.4.11(i) and the details are omitted.

Many of the steps of (ii) can be copied from the one-dimensional case. For example,

using Assumption A.7.1, we bound λ(t) by λmax to reduce the variance calculation to a double

integral over K of the covariance of X2(t) and X2(s).

One notable exception with the change to higher dimensions is the transformation to

reduce the double integral to a single integral. Namely, we have that∫
K

∫
K

∣∣Cov(X2(t), X2(s))
∣∣ dtds ≤ |K|∫ |R2(u)| |K ∩ (K − y)|

|K|
du

where K − y = {x− y : x ∈ K} and | · | denotes the Lebesgue measure (volume).

Lemma 3.2 in [30] gives us that
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lim
diam(K)→∞

|K ∩ (K − y)|
|K|

= 1

However, Lemma 4.4.12 (which we can apply because of Assumption A.7.2) gives us

the same bound on the covariance, R2(u), that we obtained in the one-dimensional case. Using

Assumption A.7.3, we have that the integral is finite, so we see that

V ar
[
R̂(0)

]
= O

(
1∏d

j=1Kj

)
,

which tends to 0 as diam(K)→∞.

Proof of Lemma 7.4.14: Again, we appeal to the results from the proof of Lemma 4.4.14. Just

as in the proof of Lemma 7.4.12, we recognize that
∫
K

refers to

K1∫
0

K2∫
0

· · ·
Kd∫
0

and so we can use

Lemma 4.4.14 on each of the d components of the formula.

Thus, we have that

E
[
θ̂2
]

= θ2 +O

(
1

b1b2...bd

)
and

V ar
[
θ̂2
]

= O

 d∏
j=1

b2j
Kj



Proof of Lemma 7.4.15: This follows immediately since Lemma 7.4.14 gives us that the first term

tends to θ2, Lemma 7.4.13 gives us that the second term tends to R(0) + µ2, and Lemma 7.4.12

gives us that the third term tends to 0.

Proof of Theorem 7.4.16: Similar to above, we appeal to the results from the one-dimensional

setting. The proof is nearly identical to the proof of Theorem 4.4.16 and so we omit the details

here. The key differences are that b is replaced with
∏d
j=1 bj and K is replaced with

∏d
j=1Kj .



Chapter 8

Conclusions

8.1 Overview

The objective of this work was to develop methods to resample inhomogeneous marked

point processes to construct confidence intervals for the mean. We limited our focus to the subset

of Poisson processes and considered how we could adapt existing methods.

In the case of a one-dimensional Poisson process, we can estimate its intensity function

and transform the data to a homogeneous Poisson process with rate 1. From there, we can

resample the data using a block bootstrap technique to obtained the desired confidence intervals

for simulated data.

We saw that a small choice for block size (b = 2) and a moderate choice for local window

size (w = 10) produced the best results (with around 90% coverage). As we noted, though, future

work will involve the determination of b and w from the data itself. As the block size increased,

there was a notable difference in coverage when the dependence of the marks was increased.

We also considered using a local block bootstrap approach as an alternative method

which does not require us to estimate the intensity function. However, we are required to provide

a second parameter, h, which is similar in nature to the local window size w used to estimate

the intensity. Similar to the homogeneous setting in the existing literature, we establish the

asymptotically normality of our estimators and construct confidence intervals for the mean of

the simulated data.

Again, we observed that a small block size led to the best results. Also, increasing h led

to a reduction in coverage. This is to be expected, as a large h reduces our local block bootstrap

to a regular block bootstrap, which is likely to lose information regarding changes in intensities.

When considering torodial wrapping and no wrapping, we see that there is a slight improvement

when not wrapping the data. This is likely due to edge effects.

When comparing the two approaches, we see that the local block bootstrap consistently
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performs as well, if not better than the transformation methods. In fact, for a few models, the

coverage using the transformation method was upwards of 60% worse!

We note that the local block bootstrap had mean confidence interval lengths similar

to those of the transformed methods, but the standard deviation was ten times smaller. This

suggests that our algorithm is more stable than the transformation method. This could explain

some of the observed differences, but will be a source of future study.

Finally, we applied the local block bootstrap method to higher dimensional data. In

this setting, a transformation to a homogeneous Poisson process would not be feasible unless we

make unrealistically strong assumptions on the measure. For that reason, our method is the only

method currently available to resample such data.

Similar to the one-dimensional case, we observed that smaller block sizes (in each di-

mension) led to greater coverage, in general. However, unlike the one-dimensional case, torodial

wrapping produced significantly higher coverage than non-wrapping. Part of the difference is

likely due to the small windows under consideration, but the difference was greater than antici-

pated. Also, the coverage seemed to be quite sensitive to changes in parameters. This suggests

a need for good estimates for bi and hi so that our methods can perform as well as possible.

8.2 Future Work

The subtle differences surrounding X̃K and X̄K need to be explored further so that a

satisfactory resolution may be found. This will bring closure to the contradictory results in the

existing literature.

There are many possible extensions for this work. First and foremost, a data-driven

method for selecting b needs to be well-defined. It should be possible to modify the methods

used in [28]. Second, simulations should be carried out with increasing intervals to assess how

well the finite sample variance compares with the asymptotic variance. This would allow us to

estimate the error involved with using our sample variance in calculations.

Moreover, we may drop the requirement of stationarity of the marks. Instead, we might

consider local stationarity (see [11] and [12]) of the marks. This would permit a slowly changing

mean over time, for example. Since we fill blocks “close” to their original block, our method

should be robust enough to preserve the local stationarity.

Implicit in our proofs was the independence of the point process and the associated

marks. There are many situations in nature where this is not the case. For example, in a

forest the distribution of trees and their associated heights are likely to be correlated. The

independence assumption allowed us to establish asymptotic normality of our estimators. Again,

since the resampled data preserves local structure, it is quite plausible that our method would

accurately resample such data.
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We may consider relaxing the Poisson assumption. In its place we could include an

assumption on maximal correlation mixing as was considered in [60].

At the defense of this thesis, it was brought up that Brillinger [5] considered the problem

of estimating the variance of X̄K . His results have been included in Chapter 3 to strengthen the

arguments for the asymptotic normality of X̄K . His work is based upon assumptions of cumulants

while we make assumptions on α-mixing. Work remains to verify that our assumptions are enough

to establish the theorems.

Brillinger also includes an approximation to the variance that can serve as an alternative

method for computing coverage probabilities for the models considered in Chapter 2. Early

results are inconclusive and will be a source of further study.



Appendix A

Code for Simulations

The following R code was used to generate the numerical results contained in the text.

Code for Chapter 5 is not included, as it is precisely the same code used in Chapter 2 and

Chapter 4, with the outputs combined to allow for easy comparisons between the methods.

Also, the function calls are not provided, but should be fairly clear from the context on

the individual tables as to what parameters were used.

A.1 Chapter 2 Code

###################################################################
####### Generate One-Dimensional Inhomogeneous Poisson Data #######
###################################################################

generate_one_dim_inhom_pp = function(lambda, lambda_max = lambda, T = 1000) {
# initialize
t = 0;
i = 0;
N = NULL;
while(t < T) {
U1 = runif(1);
t = t - log(U1)/lambda_max;
if(t > T){break};

U2 = runif(1);
if(U2 <= lambda(t)/lambda_max) {
i = i + 1;
N[i] = t;

}
}
return(N);

}
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#########################################
####### Generate Stationary Marks #######
#########################################

cov_func = function(t) {
R = exp(-abs(t))
return(R);

}

stationary_process = function(pts) {

# A stationary process can be generated by
# creating a multivariate normal distribution with mean 0
# and covariance struction given by R(t) = exp(-abs(t))

# We begin by initializing a covariance matrix of 0s

len = length(pts);
cov = matrix(rep(0,len^2),len);

# Next, we populate the entries based upon R(t)

for(i in 1:len) {
for(j in i:len) {
cov[i,j] = cov_func(pts[i] - pts[j]);
cov[j,i] = cov[i, j];

}
}

# We find the square root of the covariance matrix

e = eigen(cov);
V = e$vectors;
B = V %*% diag(sqrt(e$values)) %*% t(V);

# Next, we generate a vector of standard normal R.V.s

Z = rnorm(len);

# Finally, we create our marks, X(t)

X = B %*% Z;

return(X);
}

#############################################
####### Resample Using Transformation #######
#############################################
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# Next, we compare the above results with those from using a block
# bootstrap on transformed data

# That is, we estimate the intensity function (or use the actual intensity)
# and transform the points from an inhomogeneous Poisson process to a
# homogeneous Poisson process with rate 1

# Estimate the intensity function by using piecewise constant functions

estimate_intensity = function(points, T, win) {

Counts = NULL;

for(j in 1:(T/win)) {

start_loc = (j-1)*win + 0.00000001;
end_loc = start_loc + win;

# Determine the indices in the original data that will be captured in
# this block
start_index = which(points == min(points[(points - start_loc) >= 0]));
end_index = which(points == max(points[(points - end_loc) <= 0]));

if(length(start_index) == 0 || length(end_index) == 0) {
Counts[j] = 0;

} else {
Counts[j] = (end_index - start_index +1)/win;

}
}
return(Counts);

}

# Transform our inhomogeneous data to homogeneous data by using the fact
# that by plugging in our points into \Lambda(t) = int_0^t {\lambda(s)ds}
# we will have a Poisson(1) process

# The output is a list of original and transformed points

transform_data_via_piecewise_linear = function(points, T, win) {

intensities = estimate_intensity(points, T, win);
Mapped = NULL;

for(i in 1:length(points)) {
value_int = floor(points[i]/win);
value_rem = points[i] - win*value_int;
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if (value_int == 0) {
Mapped[i] = intensities[1]*value_rem;

} else {
Mapped[i] = win*sum(intensities[1:value_int])

+ intensities[(value_int+1)]*value_rem;
}

}
correspondence = matrix(c(points, Mapped), nrow=length(points),ncol=2,

dimnames=list(NULL,c("Orig","Trans")));
return(correspondence);

}

# If there is a need to "invert" \Lambda(t), we can use the follow to restore
# the original points

restore_original = function(corresp, list) {

Original_List = NULL;

for(i in 1:length(list)) {
Original_List[i] = corresp[which(corresp[,2]==list[i]),1];

}
return(Original_List);

}

# We can estimate \lambda(t) a second way
# First, we make a fine grid, cast a "net" of size h on either side
# (or until we hit a boundary) to estimate the intensity on that interval
# This gives us point estimates for \lambda(t) at each point along the grid
# We can then sum the areas under the curve to estimate \Lambda(t) for each
# of our datapoints

estimate_intensity2 = function(points, T, win, step) {

# Make a grid of points
seq = seq(from = 0, to = T, by = step);
lambda_est = NULL;

# Next, cast a net of length h in both directions, but be mindful of
# boundaries (which shrinks the net’s size)
for(i in 1:length(seq)) {
l_bd = max(0, seq[i] - win/2);
u_bd = min(T, seq[i] + win/2);
count = 0;
for(j in 1:length(points)) {
if(points[j] > l_bd && points[j] < u_bd) {
count = count + 1;

}
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}
lambda_est[i] = count/(u_bd - l_bd);
}
output = matrix(c(seq, lambda_est), nrow = length(seq), ncol = 2,

dimnames = list(NULL,c("seq","lamba_est")));
return(output);

}

# Transform our inhomogeneous data to homogeneous data by using the fact
# that by plugging in our points into \Lambda(t) = int_0^t {\lambda(s)ds}
# we will have a Poisson(1) process

# The output is a list of original and transformed points

transform_data_via_estimation = function(points, T, win, step) {

intensities = estimate_intensity2(points, T, win, step)[,2];
Mapped = NULL;

for(i in 1:length(points)) {
value_int = floor(points[i]/step);
value_rem = points[i] - step*value_int;
if (value_int == 0) {
Mapped[i] = intensities[1]*value_rem;

} else {
Mapped[i] = step*sum(intensities[1:value_int])

+ intensities[(value_int+1)]*value_rem;
}

}
correspondence = matrix(c(points, Mapped),

nrow=length(points),
ncol=2,dimnames=list(NULL,c("Orig","Trans")));

return(correspondence);
}

#############################################
####### Resample Homogeneous MPP Code #######
#############################################

# Resample the mpp for a particular block (called in run_circular_bootstrap())

resample_homogeneous_block = function(mpp, j, T, b) {

# Determine how much to shift the block from the starting point, j*b
shift = runif(1, 0, T);

# Determine starting and ending block locations (on the real line)
block_start_loc = (j*b + shift) %% T;
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block_end_loc = (block_start_loc + b) %% T;

points = mpp[,2];
block_data = NULL;

for(i in 1:length(points)) {
if (block_start_loc < block_end_loc) {
if (points[i] >= block_start_loc && points[i] <= block_end_loc) {
block_data = rbind(block_data,mpp[i,]);

}
} else {
if (points[i] >= block_start_loc || points[i] <= block_end_loc) {
block_data = rbind(block_data,mpp[i,]);

}
}

}
# Return the points and marks for the particular resampled block
return(block_data);

}

# Call the "circular" bootstrap function to generate one replicant of data

run_circular_bootstrap = function(mpp, T, b) {
# initialize the resampled data vectors
resample_orig = NULL;
resample_trans = NULL;
resample_marks = NULL;

# Define the number of blocks to resample over
L = T/b;

# run a loop over all of the L blocks
for(j in 0:(L-1)) {
# resample the jth block
resampled_block = resample_homogeneous_block(mpp, j, T, b);

# determine the points and marks corresponding to that resampling
resample_orig = c(resample_orig, resampled_block[,1]);
resample_trans = c(resample_trans, resampled_block[,2]);
resample_marks = c(resample_marks, resampled_block[,3]);

}

# combine the points and marks to make a new mpp matrix
resampled_mpp = matrix(c(resample_orig, resample_trans, resample_marks),

nrow=length(resample_orig),
ncol=3,dimnames=list(NULL,c("Orig", "Trans", "Marks")))

# sort the data in ascending order and return the value
return(resampled_mpp[sort.list(resampled_mpp[,1]), ])

}
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gen_95_CI_em = function(mpp, model, num_resamp, T, b, win) {
# Set the count equal to zero to begin with
count = 0;

# initialize a vector for CI length
CI_length = NULL;
Num = NULL;

# Run a loop over all of the times we wish to resample
for(j in 1:num_resamp) {
values = run_circular_bootstrap(mpp, T, b)[,ncol(mpp)];
m = mean(values);
sd = sd(values);
n = length(values);
error = qt(0.975, df = n - 1)*sd/sqrt(n);
lower = m - error;
upper = m + error;

CI_length[j] = upper - lower;
Num[j] = n;

if((lower < 0) && (upper > 0)) {
count = count + 1;

}
}

outputs = matrix(c(model, b, win, mean(Num), mean(CI_length), sd(CI_length),
100*count/num_resamp), nrow=1,
dimnames=list(NULL,c("Model", "b", "win", "N Obs (avg)",
"CI Len Mean", "CI Len SD", "Cover %")));

# Return the percentage of confidence intervals that contain 0,
# the mean CI length, and the standard deviation of CI lengths
return(outputs);

}

A.2 Chapter 4 Code

The code used to generate the inhomogeneous Poisson process is the same as in Chapter 2.

The main difference here is with the use of the local block bootstrap to resample the data.

###################################################################
####### Generate One-Dimensional Inhomogeneous Poisson Data #######
###################################################################
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generate_one_dim_inhom_pp = function(lambda, lambda_max = lambda, T = 1000) {
# initialize
t = 0;
i = 0;
N = NULL;
while(t < T) {
U1 = runif(1);
t = t - log(U1)/lambda_max;
if(t > T){break};

U2 = runif(1);
if(U2 <= lambda(t)/lambda_max) {
i = i + 1;
N[i] = t;

}
}
return(N);

}

#########################################
####### Generate Stationary Marks #######
#########################################

cov_func = function(t) {
R = exp(-abs(t))
return(R);

}

stationary_process = function(pts) {

# A stationary process can be generated by
# creating a multivariate normal distribution with mean 0
# and covariance struction given by R(t) = exp(-abs(t))

# We begin by initializing a covariance matrix of 0s

len = length(pts);
cov = matrix(rep(0,len^2),len);

# Next, we populate the entries based upon R(t)

for(i in 1:len) {
for(j in i:len) {
cov[i,j] = cov_func(pts[i] - pts[j]);
cov[j,i] = cov[i, j];

}
}

# We find the square root of the covariance matrix
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e = eigen(cov);
V = e$vectors;
B = V %*% diag(sqrt(e$values)) %*% t(V);

# Next, we generate a vector of standard normal R.V.s

Z = rnorm(len);

# Finally, we create our marks, X(t)

X = B %*% Z;

return(X);
}

#####################################################
####### Local Block Bootstrap Resampling Code #######
#####################################################

# Resample the mpp for a particular block (used as part of run_lbb())
# Note: Wrap = 1 uses torodial wrapping while Wrap = 0 does not wrap
# and instead shrinks the bandwidth near the boundaries

resample_block = function(mpp, j, T, b, h, wrap) {

# Determine how much to shift the block from the starting point, j*b
if (wrap == 0) {
shift_left = max(-j*b, -h);
shift_right = min(T - (j+1)*b, h);
shift = runif(1, shift_left, shift_right);

} else {
shift = runif(1, -h, h);

}

# Determine starting and ending block locations (on the real line)
block_start_loc = (j*b + shift) %% T;
block_end_loc = (block_start_loc + b) %% T;

points = mpp[,1];
block_data = NULL;

for(i in 1:length(points)) {
if (block_start_loc < block_end_loc) {
if (points[i] >= block_start_loc && points[i] <= block_end_loc) {
block_data = rbind(block_data,mpp[i,]);

}
} else {
if (points[i] >= block_start_loc || points[i] <= block_end_loc) {
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block_data = rbind(block_data,mpp[i,]);
}

}
}

# Return the points and marks for the particular resampled block
return(block_data);

}

# call the local block bootstrap function to generate one replicant of data

run_lbb = function(mpp, T, b, h, wrap) {
# initialize the resampled data vectors
resample_points = NULL;
resample_marks = NULL;

# Define the number of blocks to resample over
L = T/b;

# run a loop over all of the L blocks
for(j in 0:(L-1)) {
# resample the jth block
resampled_block = resample_block(mpp, j, T, b, h, wrap);

# determine the points and marks corresponding to that resampling
resample_points = c(resample_points, resampled_block[,1]);
resample_marks = c(resample_marks, resampled_block[,2]);

}

# combine the points and marks to make a new mpp matrix
resampled_mpp = matrix(c(resample_points, resample_marks),

nrow=length(resample_points), ncol=2,
dimnames=list(NULL,c("Points","Marks")))

# sort the data in ascending order (based on the observed points) and
# return the value
return(resampled_mpp[sort.list(resampled_mpp[,1]), ])

}

# Generate 95% confidence intervals and return the percentage that contain 0
gen_95_CI = function(mpp, model, num_resamp, T, b, h, wrap) {
# Set the count equal to zero to begin with
count = 0;

# initialize a vector for CI length
CI_length = NULL;
Num = NULL;

# Run a loop over all of the times we wish to resample
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for(j in 1:num_resamp) {
values = run_lbb(mpp, T, b, h, wrap)[,ncol(mpp)];
m = mean(values);
sd = sd(values);
n = length(values);
error = qt(0.975, df = n - 1)*sd/sqrt(n);
lower = m - error;
upper = m + error;

CI_length[j] = upper - lower;
Num[j] = n;

if((lower < 0) && (upper > 0)) {
count = count + 1;

}
}

outputs = matrix(c(model, wrap, b, h, mean(Num), mean(CI_length),
sd(CI_length), 100*count/num_resamp), nrow=1,
dimnames=list(NULL,c("Model", "Wrapped?", "b", "h",
"N Obs (avg)", "CI Len Mean", "CI Len SD", "Cover %")));

# Return the percentage of confidence intervals that contain 0, the mean CI
# length, and the standard deviation of CI lengths
return(outputs);

}

A.3 Chapter 7 Code

We modify the algorithm from Chapter 4 to allow for two-dimensional data.

###################################################################
####### Generate Two-Dimensional Inhomogeneous Poisson Data #######
###################################################################

generate_one_dim_hom_pp = function(lambda, T) {
# initialize
t = 0;
i = 0;
N = NULL;
while(t < T) {
U1 = runif(1);
t = t - log(U1)/lambda;
if(t > T){break};
i = i + 1;
N[i] = t;
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}
return(N);

}

generate_two_dim_inhom_pp = function(lambda, lambda_max = lambda, T1, T2) {

# First, we generate points for a one-dimensional homogeneous Poisson
# process with rate lambda_max*T2 on [0, T1]

X = generate_one_dim_hom_pp(lambda_max*T2, T1);

# Second, we generate Y_1, Y_2, ..., as independent, uniformly distributed
# random variables on [0, T2]

Y = NULL;
for (i in 1:length(X)) {
Y[i] = runif(1, 0, T2);

}

# Putting these together, we have a two-dimensional homogeneous Poisson
# process with rate lambda_max

two_dim_hom_pp = matrix(c(X, Y), nrow=length(X),ncol=2,
dimnames=list(NULL,c("X","Y")));

# Next, we thin the process to arrive at our two-dimensional inhomogeneous
# Poisson process

k = 0;
X_final = NULL;
Y_final = NULL;

for (i in 1:length(X)) {
U1 = runif(1);
if (U1 <= lambda(X[i], Y[i])/lambda_max) {
k = k + 1;
X_final[k] = X[i];
Y_final[k] = Y[i];

}
}
return(matrix(c(X_final, Y_final), nrow=length(X_final),ncol=2,

dimnames=list(NULL,c("X","Y"))));
}

#########################################
####### Generate Stationary Marks #######
#########################################

cov_func_two_dim = function(t) {
val = 0;
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for(i in 1:length(t)) {
val = val - abs(t[i]);

}
R = exp(val);
return(R);

}

stationary_process_two_dim = function(pts) {

# A stationary process can be generated by
# creating a multivariate normal distribution with mean 0
# and covariance struction given by R(t) = exp(-abs(t))

# We begin by initializing a covariance matrix of 0s

len = nrow(pts);
cov = matrix(rep(0,len^2),len);

# Next, we populate the entries based upon R(t)

for(i in 1:len) {
for(j in i:len) {
cov[i,j] = cov_func_two_dim(pts[i] - pts[j]);
cov[j,i] = cov[i, j];

}
}

# We find the square root of the covariance matrix

e = eigen(cov);
V = e$vectors;
B = V %*% diag(sqrt(e$values)) %*% t(V);

# Next, we generate a vector of standard normal R.V.s

Z = rnorm(len);

# Finally, we create our marks, X(t)

X = B %*% Z;

return(X);
}

#####################################################
####### Begin Two-Dimensional Resampling Code #######
#####################################################
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# Resample the mpp for a particular block (used as part of run_lbb())
# Note: Wrap = 1 uses torodial wrapping while Wrap = 0 does not wrap
# and instead shrinks the bandwidth near the boundaries

resample_block_two_dim = function(mpp, j, T1, T2, b1, b2, h1, h2, wrap) {

# First, we determine the coordinates of the start of the block

L1 = T1/b1;
L2 = T2/b2;

d = floor(j/L1);
r = j - d*L1;

j_block_start_loc1 = r*b1;
j_block_start_loc2 = d*b2;

# Determine how much to shift the block from the starting point (the
# lower left corner of the block)
if (wrap == 0) {
shift_left = max(-r*b1, -h1);
shift_right = min(T1 - (r+1)*b1, h1);
shift_down = max(-d*b2, -h2);
shift_up = min(T2 - (d+1)*b2, h2);
shift1 = runif(1, shift_left, shift_right);
shift2 = runif(1, shift_down, shift_up);

} else {
shift1 = runif(1, -h1, h1);
shift2 = runif(1, -h2, h2);

}

# Determine starting and ending block locations
block_start_loc1 = (j_block_start_loc1 + shift1) %% T1;
block_start_loc2 = (j_block_start_loc2 + shift2) %% T2;
block_end_loc1 = (block_start_loc1 + b1) %% T1;
block_end_loc2 = (block_start_loc2 + b2) %% T2;

points = mpp[,1:2];
block_data = NULL;

for(i in 1:nrow(points)) {
if(block_start_loc1 > block_end_loc1) {
if(block_start_loc2 > block_end_loc2) { # This is the upper right corner
if((points[i,1] >= block_start_loc1 || points[i,1] <= block_end_loc1)
&& (points[i,2] >= block_start_loc2 || points[i,2] <= block_end_loc2)){
block_data = rbind(block_data,mpp[i,]);

}
} else { # This is along the right-side
if((points[i,1] >= block_start_loc1 || points[i,1] <= block_end_loc1)
&& (points[i,2] >= block_start_loc2 && points[i,2] <= block_end_loc2)){
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block_data = rbind(block_data,mpp[i,]);
}

}
} else {
if(block_start_loc2 > block_end_loc2) { # This is along the top
if((points[i,1] >= block_start_loc1 && points[i,1] <= block_end_loc1)
&& (points[i,2] >= block_start_loc2 || points[i,2] <= block_end_loc2)){
block_data = rbind(block_data,mpp[i,]);

}
} else { # Middle blocks
if((points[i,1] >= block_start_loc1 && points[i,1] <= block_end_loc1)
&& (points[i,2] >= block_start_loc2 && points[i,2] <= block_end_loc2)){
block_data = rbind(block_data,mpp[i,]);

}
}

}
}

# Return the points and marks for the particular resampled block
return(block_data);

}

# call the local block bootstrap function to generate one replicant of data

run_lbb_two_dim = function(mpp, T1, T2, b1, b2, h1, h2, wrap) {
# initialize the resampled data vectors
resample_points1 = NULL;
resample_points2 = NULL;
resample_marks = NULL;

# Define the number of blocks to resample over
L = (T1/b1)*(T2/b2);

# run a loop over all of the L blocks
for(j in 0:(L-1)) {
# resample the jth block
r_block = resample_block_two_dim(mpp, j, T1, T2, b1, b2, h1, h2, wrap);

# determine the points and marks corresponding to that resampling
resample_points1 = c(resample_points1, r_block[,1]);
resample_points2 = c(resample_points2, r_block[,2]);
resample_marks = c(resample_marks, r_block[,3]);

}

# combine the points and marks to make a new mpp matrix
resampled_mpp = matrix(c(resample_points1, resample_points2, resample_marks),

nrow=length(resample_points1),ncol=3,
dimnames=list(NULL,c("Points1", "Points2", "Marks")));
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# sort the data in ascending order (based on the observed points)
# and return the value
return(resampled_mpp[sort.list(resampled_mpp[,1]), ])

}

# Generate 95% confidence intervals and return the percentage that contain 0
gen_95_CI_two_dim = function(mpp, model, num_resamp, T1, T2, b1, b2, h1, h2,

wrap) {
# Set the count equal to zero to begin with
count = 0;

# initialize a vector for CI length
CI_length = NULL;
Num = NULL;

# Run a loop over all of the times we wish to resample
for(j in 1:num_resamp) {
values = run_lbb_two_dim(mpp, T1, T2, b1, b2, h1, h2, wrap)[,ncol(mpp)];
m = mean(values);
sd = sd(values);
n = length(values);
error = qt(0.975, df = n - 1)*sd/sqrt(n);
lower = m - error;
upper = m + error;

CI_length[j] = upper - lower;
Num[j] = n;

if((lower < 0) && (upper > 0)) {
count = count + 1;

}
}

outputs = matrix(c(model, wrap, b1, b2, h1, h2, mean(Num), mean(CI_length),
sd(CI_length), 100*count/num_resamp), nrow=1,
dimnames=list(NULL,c("Model", "Wrapped?", "b1", "b2",
"h1", "h2", "N Obs (avg)", "CI Len Mean", "CI Len SD",
"Cover %")));

# Return the percentage of confidence intervals that contain 0,
# the mean CI length, and the standard deviation of CI lengths
return(outputs);

}
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