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Abstract 
 
 

Synthesis, Surface Modification, and Photophysical Properties of Plasmonic 

Metal, Metal oxide Nanoparticles, and Semiconductor Quantum Dots 

 
Sara Bonabi Naghadeh 

 

 

 Nanomaterials including metals, metal oxide, and semiconductors have been 

studied as powerful tools for various applications including photovoltaic, 

photocatalyst, biomedical therapeutics, sensing, energy storage, wastewater treatment 

and so many more. Based on the specific application, these nanomaterials can be tuned 

and optimized to achieve their best performance. These modifications can be in the 

form of altering size, shape, crystal structure, surface passivation, surface morphology, 

and doping. In this dissertation, the effect of size and surface modification on optical, 

photophysical and photocatalytic properties of perovskite nanocrystals, CdS based 

nanocomposites, and hollow gold nanoparticles are investigated.  

In chapter 1, a comprehensive literature review was done on photophysical 

properties and improved stability of organic-inorganic perovskite nanomaterials by 

surface passivation. In this chapter, it is discussed how by changing the capping ligand 

and surface passivation strategies, the size, shape and crystal structure of these 

nanomaterials were controlled to produce high quality nanostructured and bulk film 

perovskites. The degradation mechanism and surface passivation approaches to address 

the instability issue toward environmental factors were also highlighted. This 
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information emphasizes the importance of defect passivation and surface modification 

in achieving high performance in photovoltaic applications. 

In chapter 2, a new surface passivation strategy was developed using peptide 

molecules with amine and carboxylic functional groups to synthesize 

methylammonium lead bromide (CH3NH3PbBr3) perovskite nanocrystals (PNCs) with 

excellent optical properties. It was demonstrated in this work that well-passivated 

PNCs can only be obtained when both amino and carboxylic groups were involved, 

and this is attributed to the protonation reaction between –NH2 and –COOH. In addition 

to their improved optical properties, using peptide as capping ligand resulted in 

increasing the product yield up to ~44%. This is due to the polar nature of peptides, 

which cause aggregation and precipitation of peptide-passivated PNCs from nonpolar 

toluene solvent. PNCs size was also controlled by adjusting the concentration of the 

peptide, resulting in tunable optical properties due to the quantum confinement effect. 

Furthermore, generality and versatility of this strategy were shown by passivating 

different types of PNCs such as CsPbBr3. 

     In chapter 3, three differently sized (3.1, 5.7, and 9.3 nm) methylammonium 

lead bromide (CH3NH3PbBr3) perovskite nanocrystals (PNCs) were synthesized using 

(3-Aminopropyl) triethoxysilane (APTES) and oleic acid (OA) as capping ligands. The 

size dependence of charge carrier dynamics was studied to decipher the radiative and 

non-radiative components. These PNCs showed size-dependent absorption and 

photoluminescence (PL), with the middle-sized PNCs exhibiting the highest PL 

quantum yield (~91%). The effect of size on the exciton/charge carrier dynamic of 
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PNCs was studied using transient absorption spectroscopy (TA) and time resolved 

photoluminescence (TRPL). The middle-sized PNCs (PNC35_APTES) showed slower 

early time recombination compared to that of the larger and smaller PNCs, suggesting 

optimized passivation of surface trap states. However, the radiative lifetime was found 

to decrease with decreasing PNC size, which seems to be primarily determined by the 

PNC core, while the non-radiative lifetime is longest for the middle-sized PNCs, which 

is strongly influenced by the presence of bandgap states that depend on surface 

passivation. A kinetic model is proposed to explain the observed dynamics results, 

including the size dependence. This study demonstrates the competing effect between 

size and surface properties in determining the dynamics and optical properties of PNCs. 

 In chapter 4, the same three differently sized methylammonium lead bromide 

(CH3NH3PbBr3) perovskite nanocrystals (PNCs) were studied using UV-Vis, 

photoluminescence (PL), temperature dependent PL, temperature dependent time 

resolved PL (TRPL), cryo-XRD, and cryo-EM to investigate crystal phase stability of 

the PNCs as a function of size at different temperatures ranging from 20 K to 300 K. 

The preliminary results showed spectral blue shift of the PL peak by decreasing the 

temperature, which is the opposite of what was observed for large and middle-sized 

particles. The lifetime of the smaller PNCs also decreased by increasing the 

temperature. These results can be possibly due to crystal phase transition in the small 

particles. Future work is suggested to further investigate the phase transition possibility 

using cryo-XRD at slow scanning rate and temperature dependent Raman 

spectroscopy. 
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 In chapter 5, different compositions of CdS nanowires with MoS2, NiS, NiS2, 

Ni3S2, and NiCo2S4 nanoparticles composites were synthesized and the photocatalytic 

activities of them in hydrogen evolution reaction (HER) was investigated. These 

hierarchical structures provide high activation potentials for HER and suppresses the 

photo corrosion of CdS. The results indicated there is an optimal amount of 

nanoparticles decorated on the CdS surface for optimized performance. This optimum 

nanoparticle ratio will provide uniform coverage of the CdS surface resulting in 

efficient charge transfer. While the higher ratios form aggregate structures, which act 

as carrier trap states. To gain deeper insight into the mechanism behind the enhanced 

performance, ultrafast transient absorption (TA) techniques was used to probe the 

charge carrier dynamics of these CdS-based heterostructures. At the for each 

nanocomposite, mechanism of charge transfer between components were proposed. 

 In chapter 6, the effect of targeting on photothermal therapy (PTT) efficiency 

of hollow gold nanoparticles (HGNs) was investigated. HGNs are class of plasmonic 

nanomaterials which showed great potential for biomedical applications and 

specifically PTT. These HGNs can be easily modified on the surface and be conjugated 

to various targeting ligands including antibody, peptide and other small molecules such 

as folate. In this chapter, HGNs with an average outer diameter of 40 nm were 

synthesized and conjugated to anti_EGFR antibody and GE-11 peptide, which both 

target EGF receptors on cancer cells. The conjugated HGNs were characterized using 

UV-Vis, photoluminescence (PL), Inductively coupled plasma-optical emission 

spectrometry (ICP_OES), bicinchoninic acid assay (BCA), fluorescence microscopy, 
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and confocal microscopy. The preliminary results showed significantly higher cell 

death with peptide conjugated HGNs (91%) compared to antibody-conjugated HGNs 

(54%). Different hypotheses were discussed as possible explanation for this enhanced 

PTT efficiency including possible particle internalization, better binding to receptors 

due to small ligand size, and most importantly closer proximity of HGNs to the cell 

surface resulting in more efficient heath transfer. 
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Chapter One 

 
 

1 Photophysical Properties and Improved Stability of Organic-

inorganic Perovskite by Surface Passivation 

 

 
1.1 Abstract  

Organic-Inorganic perovskite materials in form of nanocrystals and thin films 

have received enormous attention recently because of their unique optoelectronic 

properties such as high absorption coefficient, narrow and tunable emission bandwidth, 

high photoluminescence (PL) quantum yield, long exciton lifetime, and balanced 

charge transport properties. These properties have found applications in a number of 

important fields, including photovoltaic (PV) solar cells, light emitting diodes (LEDs), 

photodetectors, sensors, and lasers. However, the stability of the materials and devices 

are strongly affected by several factors such as water moisture, light, oxygen, 

temperature, solvent, and other materials in contact such as metal oxides used in 

devices. Defects, particularly those related to surface states, play a critical role in the 

stability as well as performance of the perovskites. Various surface modification and 

defect passivation strategies have been developed to enhance stability and improve 

performance. In this chapter, we review some recent progress in the development of 

synthetic approaches to produce high quality nanostructured and bulk film perovskites 

with controlled properties and functionalities. we also highlight the degradation 
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mechanism and surface passivation approaches to address the issue of instability. To 

help gain deeper fundamental insight into mechanisms behind degradation and surface 

passivation, relevant properties, including structural, optical, electronic, and dynamic, 

are discussed and illustrated with proposed models. 

 

1.2 Introduction 

Because of the ever-increasing energy demands and environmental impact of 

our current major sources of energy such as fossil fuels, research in renewable energy 

is crucial to achieving environmental sustainability. Solar power is arguably the 

cleanest and most abundant source of energy and can be harvested and converted into 

electricity using photovoltaic (PV) cells. The first generation of solar cells was based 

on silicon crystals as the predominant semiconductor for PV technology.1 However, 

high cost and multi-step manufacturing processes requiring high temperature 

(>1000°C) limit their large scale applications, and it is therefore important to develop 

alternatives.2  

Organic-inorganic metal halide (OMH) perovskites are an interesting class of 

materials with interesting properties and promising applications and have drawn 

significant attention in recent years. “Perovskite” generally refers to a broad group of 

materials with the same structure as CaTiO3, first discovered in 19th century.3 The 

general formula for perovskite is ABX3 with A and B being large and small cations, 

respectively and X as anion. Hybrid organic-inorganic perovskites are a subclass of the 

perovskite family with inorganic cations including cesium (Cs+), rubidium (Rb+) and 

organic components such as methylammonium (MA:CH3NH3+) and formamidinium 
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(FA:CH(NH2)2+) in the A site, which offer opportunities to tune the properties and 

functionalities of the perovskites.4 The X site can also be varied from a single halide 

(Cl-, Br-, I-) or mixed halides to other molecules such as borohydride (BH4-), azide (N3-

), and cyanide (CN-).5-6 Furthermore, perovskites can be doped with other elements to 

rationally alter their electronic and optical properties. The flexibility in composition 

variation, in conjunction with easy and low cost processing, tunable bandgap, large 

absorption coefficient, long exciton lifetime, and large charge carrier mobility,7-9 

makes them outstanding candidates for various applications, such as PV solar cells, 

light emitting diodes (LEDs), photodetectors, sensors, lasers and photoelectrochemical 

cells.10-14 

The first PV cell based on OMH perovskite as visible light sensitizer was 

reported in 2009 with power conversion efficiency (PCE) of ~3.8%.15 Since then, 

significant progress has been made in terms of both understanding the fundamental 

properties of the materials and improving the solar cell structure for higher efficiency. 

The PCE was increased to 9.7% with nanostructuring techniques such as depositing 

MAPbI3 nanocrystals (NCs) on crystalline TiO2 surface.7 In 2013, Liu et al. reported 

~15% PCE with MAPbI3 as the sole light absorber only by modifying device structure 

to planar heterojunction under simulated sunlight condition.16 This achievement proved 

the great potential of OMH perovskites to perform as both light absorber and active 

layer. In 2015, Yang et al. achieved PCE exceeding 20% with high quality FAPbI3 

films.8 Most recently, the PCE was pushed to over 25% in a tandem configuration with 

silicon17, which is comparable to their commercialized counterparts. The narrow 
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emission bandwidth, high photoluminescence (PL) quantum yield (QY), and 

broadband color tunability of the perovskite NCs or quantum dots (QDs) also makes 

them promising for other applications such as light emitting diode (LED) devices 

besides PV applications.12, 18-19 

Despite the great promise for various applications, there are still some issues 

that limit large scale applications of these OMH perovskites. The most important issue 

is likely their instability toward environmental factors such as UV light, humidity, 

oxygen, solvent, temperature, and other materials in contact in devices.20-23 Another 

potential issue is the toxic lead in the material, which promoted active search for 

replacement.24 Studies have shown that the material instability is at least partly related 

to surface properties of the materials, especially defects.25-26 Therefore, due to their 

large surface to volume (S/V) ratio, perovskite nanocrystals (PNCs) or perovskite QDs 

(PQDs) have been used as good model systems to study the issue of instability and for 

developing strategies for stabilization.22 Accordingly, different approaches have been 

reported on surface modification and passivation, including the use of molecular 

capping ligands, metal oxide shells, and organic polymers.27-29 There has also been 

significant effort in exploring the use of other metals to replace Pb, e.g.  Sn, Ge, Sb, 

and Bi, which all have shown PV performance inferior to Pb to date.24, 30 

In this chapter, we review recent progress in the development of different 

synthesis approaches to produce high quality OMH perovskites and to control their 

structural and photophysical properties.  A major emphasis is given on approaches 

involving surface passivation or capping ligands used to enhance their functionalities 
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and improve their stability towards different environmental factors such as water 

moisture, oxygen, light, solvent and other materials in contact. New fundamental 

insights into the issue of stability and related surface passivation are provided based on 

detailed characterizations of the perovskites using a combination of structural, optical 

and ultrafast dynamics studies. 

 

1.3 Synthesis and Structural and Optical Properties of Perovskites 

 
Controlling the structure is very important for semiconductor nanocrystals, 

since their shape and size can significantly affect their chemical and physical 

properties. In recent years, different strategies have been developed to control the PNC 

structure, mainly by varying experimental conditions. Even though there are significant 

differences in optical and electronic properties of PNCs and bulk material, such as 

faster charge transport and higher PL quantum yield in bulk versus higher surface-to-

volume ratio, easier processability and functionalization in PNCs, various capping 

ligands with different molecular structure has been used to control nucleation and 

growth of PNCs as well as perovskite bulk films. The surface ligands also serve to 

passivate surface defects and improve stability and properties such as PL of the 

perovskites. In the following, we discuss different surface passivation approaches for 

PNCs and bulk films. 

 
 
1.3.1 Synthesis and Ligand Optimization for Organic-inorganic PNCs 
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 The colloidal organic-inorganic MAPbBr3 PNCs was pioneered by Schmidt et 

al., who employed straight alkyl ammonium bromide as capping ligands to stabilize 

MAPbBr3 via a solvent induced precipitation method.31 These capping ligands help to 

terminate the growth process,  resulting in MAPbBr3 PNCs with 20% PL QY. A year 

later, the same group reported improved PL QY up to ~83% using the same capping 

ligands just by optimizing the ratio of octylammonium bromide:MABr:PbBr2 (Figure 

1a).32 The large enhancement of PL QY was attributed to the passivation of 

uncoordinated bromide and lead ions by octylammonium and octadecene, thereby 

reducing nonradiative recombination. Actually, it was later demonstrated that 

octadecene can be effectively removed, indicating the weak interaction between 

octadecene and PNCs.33 It was also found that some rectangular NCs coexist in the 

products (Figure 1a), which were later shown to be 2D MAPbBr3 perovskite 

nanoplatelets (PNPs) with different layers (Figure 1b).34 Alkyl ammonium salt, such as 

octylammonium bromide, functions as a soft-template, which induces the formation of 

both spherical-like NCs and NPs. 
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Figure 1-1-a) Image of the MAPbBr3 PNCs dispersed in toluene under UV-laser pointer 
excitation (left) and TEM image of MAPbBr3 PNCs (right). (b) Schematic illustration of 2D 
PNPs (left) and TEM image of purified MAPbBr3 NPs. c) Schematic illustration of LARP 
technique (left), pictures of MAPbX3 PNCs under room light and UV light and PL emission 
spectra of MAPbX3 PNCs. d) Photograph of MAPbBr3 PNCs suspensions with different 
dilutions under UV light. e) Scheme of colloidal synthesis of lead halide PNCs using benzoyl 
halides as halide precursors.  

 
Uniform MAPbX3 PNCs with high PL QY (~70%) was developed by Zhang et 

al. via a ligand-assisted reprecipitation (LARP) approach, in which N,N-

dimethylformamide (DMF) and toluene were regarded as solvent and anti-solvent, 

respectively (Figure 1c).18 Unlike single alkyl ammonium bromide, both octylamine 

and oleic acid were utilized as capping ligand, resulting in well-passivated PNCs with 

good dispersibility. The strong PL stems from increased exciton binding energy, small 

sized particles, and proper surface passivation. Moreover, the emission of MAPbX3 

PNCs can be tuned through the entire visible range by varying the halogen ratio (Figure 
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1c).18Although the product yield of PNCs is low, this approach is simple and produces 

PNCs with excellent optical properties. As another example, MAPbX3 PNPs with 

layer-dependent optical properties were produced using the LARP method and by 

varying the ratio between octylammonium and MA.35 Li et al. extended this method to 

the synthesis of all-inorganic CsPbX3 PNCs36. It should be noted that MAPbX3 PNCs 

produced this way without purification tend to suffer from agglomeration, 

decomposition, or further structural change. Even simple dilution can induce 

transformation from PNCs to PNPs due to excess amine and osmotic swelling (Figure 

1d).37 Also,  capping ligands binding to the PNCs are highly dynamic,33 and, therefore, 

the PNCs can degrade or change because of the loss of ligands during purification. 

As a common method for synthesizing all-inorganic CsPbX3, hot-injection is 

also versatile for making hybrid MAPbX3 PNCs.38-40 For instance, MAPbX3 PNCs with 

15-50% PL QY were obtained by Vybornyi et al. via hot-injection method.38 Although 

no polar solvent was involved, the MAPbX3 PNCs still decomposed or aggregated in 

weeks, similar to MAPbX3 PNCs prepared via an emulsion method.41 This shows that 

organic-inorganic hybrid MAPbX3 perovskites are much more labile than that of all 

inorganic CsPbX3 due to the lower formation energy of MAPbX3 and volatile 

constituents like CH3NH2 and HX.41 As ternary compounds, MAPbX3 and CsPbX3 are 

usually prepared with two precursors such as MABr/CsBr/Cs oleate+PbBr2, which 

limits the variation of composition to some degree. On the basis of the method proposed 

by Wei et al.,42 Imran et al. demonstrated an alternative “three-precursors approach” 

(Figure 1e) in which CH3NH3+ and Pb2+ were dissolved in fatty acid followed by the 
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injection of a benzoyl halide precursor.39 MAPbX3 PNCs with fine morphology, 

controllable size distribution and excellent photonic properties were obtained due to 

the high boiling point of benzoyl halide and controllable release of the halide ions. 

More importantly, this strategy can be extended to the synthesis of CsPbX3 and 

FAPbX3 PNCs with minor modification. In addition, several other techniques have 

shown good potential for fast and large-scale synthesis and structural control, e.g. 

template method,43-44 ultrasound,45-46 pulsed laser irradiation,47 ligand-mediated 

transport48 and electrospray.49  

Given the chemical instability of MAPbX3, FAPbX3 has recently attracted 

considerable attention due to its high thermal stability, broad color tunability and long 

lived hot carriers.50-57 Perumal et al. synthesized FAPbX3 PNCs via the LARP method 

using common oleic acid and octylamine ligands. However, the obtained FAPbBr3 

PNCs show a wide size distribution (1-30 nm). Similar broad size distribution was 

found by Kovalenko et al. using synthesis conditions adopted from that for CsPbBr3 

PNCs.53 The broad distribution is attributed to deprotonation of FA+ caused by 

oleylamine. By substituting unprotonated oleylamine with oleylammonium bromide, 

monodisperse FAPbBr3 PNCs with 5% standard size deviation were obtained using a 

hot-injection method, in which the average size could be tuned from 5 to 50 nm via 

altering the amount of oleylammonium bromide and reaction temperature.53 Later, 

FAPbI3 PNCs with high QYs (>70%) and dispersibility were synthesized by the same 

group.58 In striking contrast with the limited chemical durability of MAPbI3 and phase 

transformation of CsPbI3, FAPbI3 PNCs with nearly cubic structure exhibit much better 
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stability for several months. Furthermore, by using a droplet-based microfluidic 

platform, the Kovalenko’s group studied the FAPbX3 PNCs growth conditions, shape 

evolution, and halide ion segregation.59-60 In related studies, Wang et al. demonstrated 

the controlled synthesis of FA+-Cs+ double cation perovskite nanowires and nanosheets 

by introducing bis(2-ethylhexyl)-amine for morphological modulation.61 The synthesis 

of FAPbX3 PNCs via LARP method at room temperature has also been reported.56, 62  

Overall, due to the larger ionic radius and higher tolerance factor, compared to MA+ 

and Cs+, FA+-based lead halide perovskites show some advantages in terms of thermal 

stability and wide tunability over the red-infrared regions. 

 

1.3.2 Size and Structural Control 

For inorganic semiconductor nanocrystals (NCs), their optical and electronic 

properties depend strongly on size, especially when the size is smaller than the Bohr 

exciton radius, due to quantum confinement effect,35 and, to a lesser degree, on shape. 

Size and shape can thus be used to alter their properties and functionalities for different 

applications. Structural control can usually be achieved by varying the experimental 

conditions to alter the nucleation and growth processes of the NCs.  

For PNCs, while the synthesis is often relatively simple using templating 

strategies,43 the removal of templates used for structural control remains a challenge. 

The template approach is also ineffective for continuous size control of PNCs with 

respect to that of liquid-phase synthesis. For hybrid organic-inorganic MAPbX3 PNCs, 

LARP strategy affords advantages including large-scale synthesis, open environment, 
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and room temperature.18 MAPbBr3 PNCs with different size and high PL QY (93%) 

were achieved by Huang et al. through controlling the temperature of anti-solvent 

toluene (Figure 2a).63 With the lower temperature of anti-solvent, smaller PNCs were 

obtained due to the slower growth processes, resulting in blue-shifted PL. Similar 

results was achieved by varying the concentration of organic capping ligands. Since the 

chain structure of ligands creates steric hindrance for the delivery of monomers, the 

growth rate for each crystal facet will be affected with varying the amount of capping 

ligands.64  

 

 

Figure 1-2 - Figure 2 Organic-inorganic MAPbX3 PNCs with tunable size prepared though 
varying the reactive temperature and concentration of capping ligands. a) Image of MAPbX3 
PNCs with tunable size under UV light. b) UV-vis and PL spectra of MAPbX3 PNCs prepared 
with different concentration of APTES. c) Pictures of MAPbX3 PNCs synthesized with different 
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concentration of amino acid. d) Schematic illustration of crosslinked 
NH2C4H9COOH(MAPbBr3)n (n=2)  

 

In a different approach, branched capping ligand (3-aminopropyl) 

triethoxysilane (APTES) and polyhedral oligomeric silsesquioxane (POSS) 

PSS[3(2aminoethyl)amino]propylheptaisobutyl substituted (NH2-POSS) have been 

demonstrated as excellent passivating ligand and stabilizers by our group.21 The size of 

MAPbBr3 PNCs with high uniformity can be precisely tuned from hundreds of 

nanometers to several nanometers, owing to their strong steric hindrance (Figure 2b). 

In contrast, dot, sheet and belt-like PNCs always coexist when  straight capping ligands 

are used.21, 65-66 Additionally, bidentate amino acid have also been utilized as capping 

ligands to tune the particle size and layer thickness of MAPbBr3 (Figure 2c).67 Because 

of the protonation reaction between –NH2 and –COOH, –NH3+ end groups can act as 

CH3NH3+ while COO– functions as Br– in terms of passivation of surface defect sites 

(Figure 2d). Therefore, amino acids can function as a capping ligand and linker to tune 

the particle size and layers of MAPbBr3.67-68 Similarly, 1D perovskite nanowires, 

perovskite nanorods and 2D perovskite PNPs can also been prepared by tuning the 

concentration of amino and carboxylate ligands.69-70 

 

1.3.3 Surface Passivation Mechanism 

The surface of NCs or QDs, including PNCs or PQDs, plays a critical role in 

their stability and other properties and functionalities. Surface passivation is a common 

strategy used to stabilization and functionalization.  PNCs are particularly challenging 
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for surface passivation due to the presence of three components, e.g. MA+, Pb2+, and 

X-, each of which likely requires a different ligand for proper passivation, as shown in 

Figure 3. Therefore, multiple ligands are needed for PNC passivation. Also, given the 

equilibrium of 𝐶𝐻$𝑁𝐻$& ⇄ 	𝐶𝐻$𝑁𝐻) + 𝐻& any factor that can cause deprotonation of 

the CH3NH3+ will shift the equilibrium to the right, likely causing degradation since 

the product CH3NH2 is no longer attracted by the halide anions in the crystal. 

 

Figure 1-3- Schematic illustration of multiple ligands required for proper passivation of the 
ternary perovskite. 

 

In order to understand the interaction between the PNCs and surface ligands, 

Roo et al. pioneered the study of CsPbBr3 PNCs surface chemistry using nuclear 

Magnetic Resonance (NMR) spectroscopy.33 The loss of surface ligands during the 

purification procedures was attributed to the highly dynamic ligands binding to the 

PNCs (Figure 4a), which has also been confirmed by others.71 By adding excess amine, 

the interplay between PNCs surface and oleic acid can be enhanced due to the formation 

of alklammonium oleate. Therefore, adding small amounts of excess amine and 

carboxylic acid ligands before purification could help to maintain the colloidal integrity 
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and PL of the PNCs because of the acid-base equilibrium achieved. Through 

experimental and computational approach, Ravi et al. unveiled that oleylammonium 

binds to the PNCs by substituting surface Cs+ sites via the formation of H···Br 

hydrogen bond, which is thermodynamically favored due to the reduced surface 

rumpling (Figure 4b).72 Moreover, oleic acid or oleate was not bound to the PNCs 

surface based on nuclear Overhauser effect spectroscopy (NOESY), but necessary for 

the stability of PNCs in the washed sample. Similarly, Almeida et al. found that the 

phase and morphology control of CsPbBr3 PNCs can be achieved via altering the 

concentration and ratio of amino/carboxylic ligands due to the large effect of acid-base 

equilibrium on the solubility of PbBr2.73 These studies suggest that the combination of 

amino and carboxylic acid is critical to the surface passivation, good dispersibility, 

morphology and phase of PNCs. However, the interaction between ligands and surface 

of PNCs seems to be generally weak, and ligands with stronger interaction are likely 

better for stability and need to be explored.  
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Figure 1-4- a) Schematic representation of the dynamic surface stabilization by amino and 
carboxylic acid. b) Schematic illustration of the possible binding of oleyammonium to CsPbBr3 
by forming hydrogen bonds with Br−.  

 
 
1.3.4 Perovskite Film Fabrication Techniques and Effect of Surface Passivation 

Fabricating high quality perovskite bulk films is crucial for different 

applications. Film thickness, morphology and grain size of the resultant perovskite film 

can significantly affect the charge dissociation rate, diffusion length, charge carrier 

dynamic and other properties.74-76 There are several factors contributing to perovskite 

film quality such as deposition method, film thickness, maximized coverage on 

substrate, environmental conditions (light, moisture, oxygen), annealing temperature, 

phase purity, and solvent.77 However, considering the fact that film morphology and 

grain sizes are mainly controlled by the crystallization method, understanding and 

optimization of the crystallization process have been a great interest.77 One important 

character of bulk films is the density and distribution of defects that can critically affect 

their properties and functionality. Similar to PNCs, surface passivation has been used 

to remove or reduce surface defects, based on ligands such as thiophene and pyridine 

as Lewis bases78, carbon material (fullerenes, graphene oxide, and carbon nanotubes)79-
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80, and additional iodide ions.8 Here, we briefly discuss a few examples of deposition 

techniques and related approaches for surface passivation.  

 

1.3.4.1 Film Fabrication Techniques  

Several techniques developed for perovskite film fabrication are summarized in 

Figure 5. Among them, solution processing is the most common as it is simple and low-

cost. There are two main approaches with this technique. The first approach involves a 

“one step” route, also called solvent engineering method, in which the pre-mixed 

precursor solution is deposited on the substrate by spin coating.81 Initially, Lee et al. 

successfully fabricated a perovskite film by mixing methyl ammonium halide powder 

with lead halide in 3:1 stoichiometry ratio in DMF.82 Later on, other groups 

investigated the effect of different processing parameters such as precursor 

stoichiometry83, other solvents and addition of an anti-solvent to promote fast 

crystallization, and annealing temperature on perovskite film quality.84-85  

The second approach is a “two-step” crystallization method that involves 

sequential deposition. In this approach, the precursor layers are deposited separately 

and react on the substrate to make the film. This was first reported for MAPbI3 film.86 

PbI2 is first spun-coated on a mesoporous TiO2 film and then soaked in CH3NH3I 

solution of isopropanol. This method was subsequently improved by solvent 

annealing87 or changing the solvent from DMF to dimethyl sulfoxide (DMSO).88 

Although the two step method is more versatile than the one-step approach, 
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reproducibility is a major challenge since so many factors, such as immersion time, 

temperature, and solution concentration, can affect the outcome.  

 

Figure 1-5- Perovskite film fabrication techniques. a) One-step solution process based on the 
mixture of PbI2 and MAI. b) sequential coating of PbI2 and MAI. c) Dual source co-
evaporation using PbCl2 and MAI source. d) Vapor-assisted solution process using the MAI 
organic vapor to react with the PbI2 film. 

 

Even though solution processing techniques dominated the perovskite film 

fabrication field, vapor deposition showed considerable success in producing high 

quality uniform films. The technique consists of co-evaporation or sequential 

evaporation of precursors followed by their deposition on a substrate. This was first 

developed to make CH3PbI3-xClx perovskite film by co-evaporation of MAI and PbCl2 

at 120०C and 350०C respectively in an N2 rich environment under high vacuum.16 They 

deposited the vaporized precursor on a c-TiO2 laminated FTO glass followed by 

annealing of the perovskite film for better crystallization. Although the resulting film 
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has lower concentration of pinholes and smoother surface, choice of substrate was 

found to affect the crystallization of the perovskite film. MAI, particularly showed 

lower affinity toward deposition on some substrates causing film decomposition.89 Tao 

et al. addressed this issue by applying a fullerene intermediate layer that improved the 

physisorption of MAI on the substrate.90 Another concern about this technique is the 

cost associated with high vacuum required for thermal evaporation. Yang et al. 

demonstrated lower temperature hybrid deposition technique called vapor-assisted 

solution process (VASP).91 With this method, they deposited PbI2 precursor by solution 

processing and then vaporized MAI by heating it in a petri dish at lower temperature 

(Figure 5d).91 This method resulted in fabrication of smooth, uniform MAPbI3 film 

with micrometer sized grains. Figure 6 shows scanning electron microscopy (SEM) 

images of perovskite films fabricated by this hybrid technique.16 Later on, yang et al. 

identified formation of MA2Pb3I8(DMSO)2 intermediate phase during the annealing 

process as the key step in improving film quality and achieving higher efficiency.92 In 

general, compared to solution process, the films prepared by vapor deposition show 

better surface coverage on substrate, higher uniformity, slightly larger grain size, less 

pinholes and better control on film thickness.  
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Figure 1-6- Perovskite film morphology: SEM of a) vapor deposited perovskite b) Solution 
processed perovskite c) transactional view of device fabricated with vapor deposited perovskite 
d) transactional view of device fabricated with solution processed perovskite.   

 

1.3.4.2 Effect of Surface Passivation 

Since surface defects have been suggested and identified as a major contributor 

to instability of perovskites, different strategies have developed to address this issue, 

often using surface passivation with organic or inorganic molecules. For example, 

Yang et al. showed that by introducing excess amount of iodide ions into the cation 

solution, the density of deep defects significantly decreased with concurrent increase 

in PCE to 22.1%.8 In another study, the CH3NH3PbI3–xClx surface was treated with 

Lewis bases, thiophene and pyridine, that are suggested to bind to the under-

coordinated Pb ions in the perovskite crystal and passivate the defects (Figure 7a and 

b).78 However, most of these molecules used for surface passivation limit the charge 
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transfer properties of the material. Tan et al. used chlorine-capped TiO2 colloidal NC 

film to improve surface binding at low temperature while mitigating interfacial 

recombination.93  

 

 
Figure 1-7- Possible nature of trap sites and proposed passivation mechanism. (a) Loss of 
iodine at the surface of the perovskite leads to vacancy sites (hollow boxes) and a resulting net 
positive charge residing on the Pb atom (shown in green). (b) Thiophene or p pyridine 
molecules can donate electron density to the Pb and form a coordinate or dative covalent bond, 
effectively neutralizing the excess positive charge in the crystal. c) Photographs of perovskite 
films during crystallization at 100 °C. d) SEM top‐view images pristine perovskite and e) 
perovskite/N‐RGO hybrid films. f) Mechanism of perovskite grain growth on PC71BM and 
PC61BM layers with different wettability. g) a schematic of in situ passivation of halide-induced 
deep trap: PCBM adsorbs on Pb-I antisite defective grain boundary during perovskite self-
assembly.  
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Another passivation approach is to use graphene derivatives. For example, 

amphiphilic graphene oxide (GO) was used as an insulating buffer layer between the 

hole transport layer (HTL) and perovskite to decelerate charge recombination.94 

Hadadian et al. incorporated N-doped reduced graphene oxide (N-RGO) nanosheets on 

perovskite and observed simultaneous surface passivation and improved morphology 

at the interface which, significantly enhanced optical properties.95Addition of N-RGO 

to perovskite film, slowed down the crystallization process and increased the perovskite 

grain size leading to higher current and fill factor (FF) (Figure 7c-e).95  

Due to the unique electronic, thermo-stability and versatility of the carbon 

materials, the other members of this family, e.g., fullerene, carbon, and carbon 

nanotubes (CNTs), can also serve as passivating ligands for increased efficiency, 

reduced hysteresis, and improved stability. For instance, Shao et al. applied a double 

fullerene layer (PC61BM/C60) onto an MAPbI3 film.96 Thermal admittance 

spectroscopy (TAS) analysis confirmed two orders of magnitude less in density of trap 

states after interfacial layer passivation on the perovskite film, when compared to the 

device without the interfacial layers. The increased surface passivation effect of [6,6]-

phenyl-C61-butyric acid methyl ester (PC61BM) on MAPbI3 was observed as a blue-

shift in PL spectra of the films and eventually led to reduced recombination at the 

interface, increased carrier lifetime and mobility, thus resulting a high PCE of around 

15%.96-97 Zhong and co-workers also demonstrated a novel electron-transporting 

material (ETM) based on mesostructured fullerene which is crystalline, hydro-phobic, 

and cross-linked, rendering it solvent and heat resistant for successive PSC 
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fabrication.98 The resulting mesostructured n−i−p solar cells exhibited reduced 

recombination and hysteresis, and a PCE above 15%, surpassing the performance of 

similar devices prepared using mesoporous TiO2 and well above the performance of 

planar heterojunction devices on amorphous or crystalline PCBM (Figure 7g).98 A 

hierarchical dual scaffolds of a quasi‐mesoscopic inorganic (TiO2) layer and a 

percolating PC61BM also reported to improve the charge separation and electron 

transport in bulk perovskite.99 Another cross-linkable fullerene derivatives as charge 

collection layers in n−i−p planar junction PSCs was introduced by Wojciechowski et 

al.100 The cross-linked fullerene layers are insolubilized and deliver improved 

performance in solar cells enabled by a controllable film thickness. There may be long-

term stability benefits due to cross-linking of these materials which is inhibiting 

morphological changes and crystallization of the fullerene layer.100 The solar cell 

device performance was even further improved by using PC71BM ETL (Figure 7f).79 

Upama et al. reported a simple method for achieving a low-temperature, hysteresis-

free, solution processed PSCs, using fullerene electron transport layer (ETL).79  The 

underlying mechanisms of superior performance of devices with PC71BM ETL were 

correlated with fullerene surface wettability and perovskite grain size. PC71BM 

fullerene ETL had lower wettability with perovskite precursor solution, assisting the 

growth of large size perovskite grain. As a result, the PC71BM/perovskite film had 

lower bulk and interface defects leading to better solar cell device performance.79 The 

diffusion of ions/molecules within PSCs is an important degradation process in the 

device. Bi et al. designed a nanostructured carbon layer to suppress the diffusion and 
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improve the stability.101 This nanocarbon layer benefited the diffusion of electron 

charge carriers to enable a high-energy conversion efficiency.101 

Carbon nanotubes with excellent properties have also been extensively used in 

perovskite based solar cells. For instance, Shapter et al. reported major enhancement 

in the stability  and efficiency of PSCs by using single-walled carbon nanotubes 

(SWCNTs) in the mesoporous photoelectrode.80 Presence of SWCNTs in the TiO2 

nanoparticles-based photoelectrode, suppressed the hysteresis and therefore enhanced 

both the light and long-term storage stability of PSCs.79 In another study, Snaith and 

co-workers demonstrated a well-designed approach to mitigating thermal degradation 

by embedding functionalized single-walled CNTs in an insulating polymer matrix, 

resulting in long-term stability in high-efficiency PSCs.102 

1.4 Origin of Instability and Strategies for Stabilization of Perovskites 

As mentioned earlier, instability of organic-inorganic perovskites is a major 

obstacle to their practical applications. Environmental factors, such as light, oxygen 

and humidity, play a critical role in material and device stability. Recent studies have 

started to shed light on the origin and mechanism of perovskite degradation, and 

strategies have been developed to stabilize them, involving encapsulation and surface 

passivation using capping ligand. 

 

1.4.1 Perovskite Degradation Mechanism  

Among the factors that affect perovskite stability, light is particularly important 

for PV applications. The interaction between light and perovskite is found to be 
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dependent on other environmental factors. For example, the presence of oxygen or a 

rise in temperature can cause degradation of perovskite in conjunction with light, while 

light in inert atmosphere does not seem to degrade the perovskite.20, 103-105 In particular, 

light with oxygen can lead to the formation of superoxide free radicals that in turn cause 

deprotonation of the ammonium molecule, forming water and highly volatile 

methylamine (CH3NH2) molecules that evaporate, leaving behind solid PbI2 film.20-103 

Equations 1 and 2 illustrate the proposed degradation mechanism.  

𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$ 	⇄ 	𝑃𝑏𝐼) 	+ 𝐶𝐻$𝑁𝐻$𝐼																												(1) 

2𝐶𝐻$𝑁𝐻$𝐼	 +	
1
2𝑂) 	

34
56	2𝐶𝐻$𝑁𝐻) + 𝐻)𝑂 +	𝐼)										(2) 

In addition, the degradation can also originate from the photo-oxidative nature of the 

halide anion (𝐼7).20 With light in ambient atmosphere, the iodide anion oxidizes by 

donating an electron to the surrounding 𝑂) molecules, transforming it to superoxide 

free radical (O)7) and producing iodine atom (I) that eventually leads to iodine molecule 

(𝐼)) formation.20 The superoxide free radical can degrade perovskite. 

      Another factor that could degrade perovskite together with light is heat or elevated 

temperature.105 Abdelmageed et al., found that perovskite subjected to intense light (~ 

3.5 suns) in inert atmosphere at 75ºC degraded into a mixture of lead iodide and 

metallic lead.105 It was proposed that the combination of the light and heat led to the 

dissociation of the Pb-I bonds as in equation 3.105 To confirm that hypothesis, films of 

pure PbI2 were subjected to the same conditions and results indicated the conversion to 

metallic lead.105 
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𝑃𝑏𝐼)(𝑠) :,∆56	[𝑃𝑏
)& + 2𝐼7 → 𝑃𝑏 + 2𝑒7 + 2𝐼7]

:,∆
56 	𝑃𝑏(𝑠) + 2𝐼(𝑔)      (3) 

      Furthermore, the role of humidity on the stability of perovskites has been 

investigated by several studies.106-107 Yang et al. proposed that humidity could break 

down the structure of the hybrid perovskite by creating hydrate intermediate compound 

that contained an isolated octahedral lead iodide (PbIEF7) and a solid PbI2 as in equation 

4.106 This phase separation in the metal halide segment of the perovskite prevents the 

reversibility of the damage.106 Other studies confirmed that phase separation and the 

hydrate intermediate compound formation.108-109 

4𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$ +	2𝐻)𝑂 → (𝐶𝐻$𝑁𝐻$)F𝑃𝑏𝐼E 	 · 	2𝐻)𝑂 + 3𝑃𝑏𝐼)											(4) 

However, other studies reported that the damages of humidity could be reversible in 

some cases but irreversible in other cases.107, 109 According to Zhao et al., an 

intermediate monohydrated CH3NH3PbI3·H2O was discovered after subjecting the 

perovskite to humidity, with no phase separation in the lead iodide part, as 

demonstrated in equations 5 and 6.107 After taken the films out from moisture, the 

perovskite samples recovered to their initial state to a good extent.106 

𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$ +	𝐻)𝑂 ↔ 𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$ 	 · 	𝐻)𝑂               (5) 

𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$ 	 · 	𝐻)𝑂 ↔ 𝐶𝐻$𝑁𝐻$𝐼+	𝑃𝑏𝐼) +	𝐻)𝑂          (6) 

Moreover, Leguy et al. proposed that the exposure time to moisture determines the 

reversibility of the degradation process.109 The suggested explanation was that the 

degradation process starts with the reversible formation of CH3NH3PbI3·H2O followed 

by the irreversible formation of (CH3NH3)4PbI6·2H2O with extended exposure time.109 
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      To study thermal decomposition, films of MAPbI3 were heated at temperatures up 

to 600°C and the degradation products were observed by using thermal analytical 

techniques such as thermal gravimetric analysis (TGA) and differential thermal 

analysis (DTA) coupled with a mass spectrometer.110 Results indicated that, as the 

perovskite degraded, gasses of NH3 and CH3I were observed, indicating that the 

organic cations break down and escape the perovskite structure, leaving only the solid 

inorganic metal halide PbI2.110 The proposed degradation mechanism is given in 

equation 7.110 

𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$(𝑠)
∆
→	𝑁𝐻$(𝑔) + 𝐶𝐻$𝐼(𝑔) +	𝑃𝑏𝐼)(𝑠)     (7) 

Nevertheless, a more recent study showed that not only the temperature range dictate 

the degradation pathway and the nature of the gas released, but also the effusion rate 

conditions.111 Results showed that within the temperature range (140-240 °C) under 

high effusion rate conditions, gaseous HI and CH3NH2 were released as the perovskite 

degrade as in equation 8.111 On the other hand, at higher temperatures (around 400°C) 

and lower effusion rate conditions, equation 8 applies.111 

𝐶𝐻$𝑁𝐻$𝑃𝑏𝐼$(𝑠)
∆
→	𝐶𝐻$𝑁𝐻)(𝑔) + 𝐻𝐼(𝑔) +	𝑃𝑏𝐼)(𝑠)       (8) 

      In addition to the environmental factors, surface defects play a significant role in 

the stability of perovskites. For example, Mosconi et al. investigated the role of surface 

defects in the moisture-induced degradation of MAPbI3 surfaces by carrying out ab 

initio molecular dynamics simulations on atomistic level at the perovskite/water 

interface.112 The MAI terminated perovskite surfaces were found to be more inclined 

to degradation with humidity due to the nucleophile substitution of iodine with water 
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molecules, while PbI2 terminated perovskite surfaces showed resistance towards 

humidity (Figure 8). However, in the case of defective PbI2 facets, surface lead iodide 

defects such as (PbI2)n vacancies were found to initiate the facial solvation of the 

perovskite, by producing solvated [PbI(H2O)5]+ and [PbI2(H2O)4] species, that spread 

afterwards causing degradation to the whole bulk of the perovskite material.112  

 

 

Figure 1-8- Schematic representation of the hydration process of MAI-, PbI2- and defective 
PbI2- perovskite surfaces.  

 

A similar study was carried out on the interaction of surfaces of CH3NH3PbI3 and 

CH3NH3PbBr3 with hydroxyl radicals and hydroxide ions.113 The desorption of surface 

CH3NH2 is the main step in the degradation process due to the lower activation energy 

of surface atoms.113 Hence, PNCs are more prone to experience degradation than bulk 

or films owing to their higher surface/volume ratio.114 
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1.4.2 Improving Stability of PNCs by Surface Modification 

Surface passivation of PNCs using capping ligands can substantially improve 

their stability again factors that often cause degradation. For instance, didodecyl 

dimethylammonium sulfide was used as a capping ligand to enhance the stability of 

cesium lead bromide NCs.115 The passivated nanocrystals exhibited stability for up to 

4 months under ambient conditions (60±5% RH), compared with only 2 hours of 

stability for the control samples. Other studies investigated the role of other 

hydrophobic surface passivation treatments to improve air and humidity tolerances of 

PNCs. For example, poly(methyl methacrylate) PMMA was used to protect 

methylammonium lead bromide nanocrystals from water in a recent study performed 

by Li and coworkers.116 The carbonyl groups of PMMA anchored to the Pb+ cations 

from the perovskite via polymer ligand-assisted re-precipitation (PLAR), as shown in 

Figure 9a, inhibiting the diffusion of water into the perovskite molecules by full coating 

surface Pb ions.116 Films were prepared using the polymer treated perovskite 

nanocrystals through cotton swap painting on glass substrates as shown in Figure 9b, 

and their stability was tested in two different methods: by immersing the films in 

deionized water at room temperature for 90 days (Figure 9c), and by dipping the films 

in deionized water at 90°C for few minutes (Figure 9d). The polymer treatment led to 

improved surface defects and better water and heat stability.116 Polyvinylidene fluoride 

(PVDF) was another polymer matrix used for embedding PNCs in its hydrophobic and 

thermally stable matrix. Embedded PNCs exhibited 94.6% PL QY and improved 
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stability against water and UV radiation owing to the interaction between MA+ and -

CF2-.117 

  

 

Figure 1-9- (a) Schematic illustration of the anchoring interaction between PMMA and the 
Pb+ from the PNCs. (b) Schematic illustration of the PMMA/ films preparation steps. (c) 
Images of PLAR films immersed in deionized water at room temperature for 90 days. (d) I 
Images of PLAR films subjected to nearly boiling water for 10 minutes.  

 
Another water resisting molecule like polyhedral oligomeric silsesquioxane 

(POSS) has been used to passivate CsPbBr3 PNCs, which prevented anion exchange 

and showed great water resistance, resulting in strong green light emitting after ten 

weeks.29 Organic acids such as phosphonic acid were also proposed as capping ligand 

since it can strongly bind to surface Pb2+ ions in addition to its strong hydrogen bonding 

with surface halide ions.28 In a similar approach, octylphosphonic acid (OPA) 

dramatically enhances the CsPbX3 stability.118 Owing to a strong interaction between 

(a) (b)

(c) (d)
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OPA and lead atoms, the OPA-capped CsPbX3 NCs not only preserve their high PL 

QY (>90%) but also achieved a high-quality dispersion in solvents after multiple 

purification processes.118  

PNCs passivated by these methods were relatively stabilized to air, however, 

the instability in polar solvents was still remaining and limiting the perovskite 

application in biological sensing and solution processing. This instability is usually 

caused by deprotonation of amino capping ligand by nucleophilic solvent molecules 

leading to decomposition of PNCs. One of the common methods to overcome this 

challenge was coating PNCs with silica.119-121 The first report on embedding PNCs in 

silica shell used tetramethylorthosilicate (TMOS) as a silica source and the resulting 

PNC/SiO2 core–shell particles exhibit improved photostability in both solution and 

powder forms under illumination for 100 h (Figure 10a).26 It was suggested that SiO2 

prevent moisture and oxygen penetration. The stability of PNCs embedded in silica 

shell even further improved by changing silica source to (3-aminopropyl) 

triethoxysilane (APTES) since the amine groups can also passivate the surface defects 

on PNCs.122 Compared to oleyamine as capping ligand, the PL quantum yield of the 

CsPbBr3 PNCs capped with APTES dropped only 5% after three months (Figure 

10b).122 
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Figure 1-10- a) Schematic of the SiO2 formation process with increasing stirring time by using 
TMOS. b) Photographs of red CsPb(Br/I)3 PNCs/SiO2 powder (passivated by APTES) and red 
CsPb(Br/I)3 PNC film (passivated by oleylamine) under UV light.  

 
1.4.3 Improved Stability Improvement of Perovskite Thin Film by Surface 

Modification 

Similar to PNCs, surface passivation has been used to stabilize bulk films of 

perovskites. For example, Marinova et al. introduced hindered amine light stabilizers 

(HALS) such as 2,2,6,6-tetramethylpiperidinyl-4-amonium iodide to suppress 

degradation of MAPbI3 films.104 The addition of HALS, mainly on the surface, 

inhibited the oxidation of 𝐼7	to 𝐼) by  interacting with the atmospheric oxygen to form 

nitroxide radicals, which minimized the interaction of the perovskite with oxygen and 

acted as a free radical scavenger for superoxide radicals if formed.104 In addition, 

surface passivation with a hydrophobic molecule shields perovskite from humidity.123-

126 For instance, oleic acid (OA) was used as a surface passivating agent to significantly 
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improve the stability of MAPbI3 films and solar cells with humidity (Figures 11a, b).123 

The carboxyl group (-COO-) of OA passivate the surface defects of the perovskite by 

linking to surface Pb2+ and/or CH3NH3+.123 Furthermore, the surface passivation with 

OA slightly improved the overall performance of the PSCs as the large alkyl molecules 

of the OA reduced the recombination rate across the hole transport layer (HTL) 

interface.123 In another study, engineering of a graded 3D-2D (MAPbI3‐PEA2Pb2I4) 

perovskite interface demonstrated advantages with synergistically improved ambient 

stability and reduced charge recombination.127 Likewise for the thermal stability, 

surface treatment with 4-dimethylaminobenzoic acid (4-DMABA) for MAPbI3 films 

improved their thermal and hygroscopic stability (Figures 11c, d). The carboxyl group 

of 4-DMABA passivated surface traps (Pb2+ sites) of the film, and the longer amino 

chains protected the perovskite surface.128 Similarly, carbon nanoparticles (CNPs) was 

used to significantly enhance the thermal stability of the perovskite that might be due 

to the changed film morphology.129  
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Figure 1-11- Surface passivation of perovskite films and solar cell to enhance stability. (a) 
Schematic illustrations of PSCs structure with and without surface treatment with oleic acid 
(OA). (b) Photographs of PSCs with OA (1b) and without OA (2b) after continuous exposure 
to humidity of 75%RH for 4 months. (c) Schematic graph of surface treatment of perovskite 
with 4-DMABA molecules. (d) Photographs of perovskite with and without 4-DMABA before 
and after few hours of aging.  

 

 When we compared the passivation strategies between PNCs and bulk films, 

we realized that the detailed structure of the passivating ligands plays an important role. 

For example, combination of bulky APTES and linear oleic acid molecule resulted in 

a very well passivated PNCs with improved stability. However, the same combination 

does work for bulk film due to steric hindrance between molecules on the surface. On 

the other hand the stability of bulk film improved significantly using just essentially 
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linear oleic acid for passivation, which is not effective for PNCs.123 These findings 

clearly show the importance of ligand structure in the effectiveness of surface. Figure 

12 illustrates the different passivation strategies for PNCs vs bulk films, where bulky 

headed ligands are effective for PNCs and not bulk while linear ligands are effective 

for bulk films and not PNCs. 

 

Figure 1-12- Schematic illustration of different passivation schemes for PNCs and bulk films. 

 

1.5 Charge Carrier Dynamic in Organic-Inorganic Metal Halide Perovskites  

Study of exciton dynamics of perovskites helps to provide deeper insight into 

some of the fundamental photophysical and photochemical processes important for 

applications.130-132 Two commonly used time resolved techniques are transient 

absorption (TA) and time resolved photoluminescence (TRPL) spectroscopy. TA is a 

pump-probe technique used to monitor the ultrafast dynamic of photoinduced short-

lived species in molecules or solids, such as free charge carriers, excitons, and polarons. 
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In this case, the probe pulse monitors the change in absorption following excitation of 

the pump pulse. In TRPL spectroscopy, the sample is excited with a pulsed laser and 

the PL intensity is measured as a function of time. The PL is proportional to the 

population of the emitting states and reports directly on the dynamics of photogenerated 

species in the material. The dynamics measured are often strongly dependent of the 

material characteristics, including particle size, shape, crystallinity, morphology, and 

surface passivation, in the case of NCs or bulk films. 

 
 
1.5.1 Effect of Surface Modification on Charge Carrier Dynamic in PNCs  

 
The capping ligands of PNCs are important for both their stability and their 

properties including exciton and charge carrier dynamics.67, 133 In particular, the 

capping ligands control surface states that critically affect exciton or charge carrier 

dynamics including trapping and recombination. For example, the exciton dynamics of 

green emitted PNCs could be affected by the capping ligands with different chain 

length.134 The shorter octylammonium bromide (OABr) capped PNCs exhibit overall 

lower density of trap states, longer average lifetime of excitons and higher PL QY than 

PNCs capped with octadecylammonium bromide (ODABr) due to the better solubility 

of OABr in the medium during synthesis and thus better surface passivation, as shown 

in Figure 13. 
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Figure 1-13- Schematic illustration of the energy band structure and proposed assignment of 
lifetimes of various excitonic processes for (a) OABr capped PNCs and (b) ODABr capped 
PNCs based on the TA and TRPL investigations.  

 

Other studies also demonstrate that the exciton dynamics of PNCs is strongly 

related to their surface properties. For instance, Maity et al. studied the charge carrier 

dynamics of CsPbBr3 QD/4,5-dibromofluorescein (DBF) composite.135 The interfacial 

hole and electron transfer processes were observed within the time scale at 1-1.25 ps 

and ~100 fs, which reveals the potential of CsPbBr3 QD/DBF composite for PV 

applications. In addition, the interactions between tetracyanoethylene (TCNE) and 

PNCs were studied by monitoring the exciton dynamics.136 Through the control of the 

morphology of PNC, the spherical shape of PNCs showed the highest interfacial charge 

transfer rate compared to that of platelets and cube shapes when mixed with TCNE, 

attributed to favorable band offsets between spherical PNCs and TCNE. Furthermore, 

the photoinduced electron transfer at the interface between FAPbBr3 PNCs and C60 has 

been demonstrated.52 Similarly, the significant interfacial charge transfer can occur in 

MAPbBr3/p-g-C3N4 nanocomposites.137 Upon the analysis of TRPL results, the 
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photoexcited electrons can be transferred into the conduction band (CB) of p-g-C3N4 

from the CB and shallow-trap states of MAPbBr3, and the photoexcited holes could 

accumulate on the valence band of MAPbBr3, as shown in Figure 14. The significant 

charge separation of MAPbBr3/p-g-C3N4 nanocomposites shows potential in the 

photodegradation of organic pollutant, p-nitrophenol. 

 

 

Figure 1-14- Three-dimensional TRPL spectra of (a) MAPbBr3 NP and (b) MAPbBr3/p-g-C3N4 
nanocomposite. (c) TRPL spectra of MAPbBr3 NPs and MAPbBr3/p-g-C3N4 nanocomposite 
with different composition at their maximum of PL peaks. (d) Schematic illustration of the band 
structure and proposed assignment of lifetimes and rate constants of various charge carrier 
recombination and interfacial transfer processes for MAPbBr3/p-g-C3N4 nanocomposite based 
on the charge carrier dynamics studies.  
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  In addition, capping ligand can also affect the phase stability in PNCs. We 

recently found a correlation among surface property, phase transition, and exciton 

dynamics for MAPbBr3 NCs capped with APTES and octylammoniumbromide 

(OABr).138 Using static and time-resolved PL spectroscopy, a higher energy band is 

observed in the PL spectra (Figure 15a-d), indicating structural phase transition from 

tetragonal to orthorhombic at 140 K for PNCs capped with OABr. However, PNCs 

capped with APTES did not show any structural change even at 20 K. This is attributed 

to difference in surface energy contribution to their Gibbs free energy, which modifies 

the crystal phase diagram to an energetically stable cubic phase. This capping ligand-

dependent phase transition also decreased the PL lifetime associated with phase 

transition in the PNCs capped with OABr (Figure 15e-f).138  

 



39 
 

 

Figure 1-15- PL intensity mapped with the emission wavelength and temperature for (a) P-
OABr and (b) P-APTES. Line cuts of the same maps at 40 K for (c) P-OABr and (d) P-APTES. 
Time-resolved PL curves for (e) P-OABr and (f) P-APTES as functions of temperature.  

 

The same trend was observed previously for perovskite thin films in which long 

recombination lifetime in tetragonal phase decreased an order of magnitude following 

transition to orthorhombic phase at lower temperature. Sarang et al. attributed this 

behavior to crossover from free carriers to exciton-dominated radiative 

recombination.139 On the other hand, Li et al.  reported a significant PL lifetime 

increase of inorganic CsPbBr3 NCs by increasing the temperature up to 300 K, and then 

a sudden decrease in the lifetime by furtherer increasing the temperature over 300 K, 

suggesting thermal instability in inorganic PNCs.140 These findings suggest that the 

phase stabilization and transition in PNCs depend on surface properties. 
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1.5.2 Effect of Surface Modification on Charge Carrier Dynamics in Perovskite 

Bulk Films 

There are a number of studies of exciton/charge carrier dynamics in thin films 

of organic-inorganic metal halide perovskites, especially MAPbI3. However, there are 

still some challenges in experiment conduction and data interpretation. For instance, 

charge transfer in perovskite films is strongly dependent on film morphology and 

surface properties. Preparing a uniform film with smooth surface, good coverage, and 

few pin holes is not trivial. In addition, environmental factors, such as humidity, light 

and oxygen, can also affect the photophysical properties of the films, including charge 

carrier dynamics. Generally, organic-inorganic perovskites are known for having long 

diffusion length for both electron and hole, from hundred nanometers to micrometers, 

depending on the thin film quality.132, 141 Ponesca et al. suggested due to low exciton 

binding energy (EB<25 meV) in these perovskites, free charge carriers will be generated 

upon photoexcitation at room temperature rather than bound excitons.142 The 

photogenerated charge carriers usually relax to band edge quickly because of electron-

phonon coupling.143 The electron-phonon coupling is weak in perovskites as reported 

previously.144 Wu et al. demonstrated that charge carriers can be trapped due to 

electron-phonon coupling, mostly located on the surface or at interfaces.145 For single 

crystal MAPbI3 and MAPbBr3, the density of trap states is extremely low (~1010 cm-3) 

and comparable to high quality crystalline silicon.146-147 But for polycrystalline films, 

this number was measured to be 1015 and 1016 cm-3 for deep and shallow traps, 

respectively.146-147 The dependence of PL lifetime on trap state densities has been also 
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systematically investigated.148 The difference in trap densities of single crystal and 

polycrystalline perovskites suggests high potential for further improving the surface 

properties of the polycrystalline perovskite films and passivating defects in order to 

further improve the optical properties. 

In this regard, various chemical modifications and surface passivation strategies 

have been suggested to improve the charge transfer properties. For instance, a new 

precursor system of Pb(CH3CO2)2·3H2O, PbCl2, and CH3NH3I was developed to obtain 

pinhole-free, highly crystallized perovskite films using a one-step spin-coating 

method.149 Uncoordinated iodine ions within the perovskite are suggested to be 

responsible for charge accumulation and consequent recombination losses in PSCs.150 

Supramolecular halogen bond complexation was used to successfully passivate these 

sites and as a result, the hole recombination time increased from 300 ns in untreated 

sample to approximately 900 ns after treatment.150 In a similar approach, trap states on 

the surface and grain boundaries of the perovskite were demonstrated to be the origin 

of photocurrent hysteresis.96 Fullerenes were deposited on top of the perovskite and 

reduced the trap density by two orders of magnitude. As a result, surface charge 

recombination lifetime (τsurface) increased about three times in whole-bias range after 

surface passivation with PCBM as shown in Figures 16a, b. However, the surface 

passivation did not affect the bulk charge recombination lifetime significantly.96  
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Figure 1-16- a) Schematic of the surface recombination reduction by passivating the trap 
states. b) surface recombination time with different PCBM passivation conditions under 
different applied bias.  c) Transient photoluminescence of hybrid films with increasing PCBM 
ratio progressively (orange, pink, red and black) compared with control film on glass (blue), 
showing the enhanced electron extraction.  

 

The first perovskite PCBM hybrid film was also synthesized by Xu et al.151 in 

this hybrid structure, PCBM passivates the key PbI3− antisite defects during the 

perovskite self-assembly and time-resolved PL spectroscopy proved that the PCBM 

phase promotes electron extraction (Figure 16c).151 There are also studies on 

controllable self-induced passivation techniques in which excess amount of PbI2 was 

used in perovskite grain boundaries and interfaces to passivate the defects and caused 

substantial enhancement in device performance.152-153 Time-resolved PL spectroscopy 

was used to measure the carrier lifetime and elucidate the mechanism of improved 
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performance. Appearance of PbI2 phase in perovskite structure after annealing, 

prolonged the PL lifetime from ~3 ns to ~100 ns, indicating reduced recombination in 

the film. However, increasing the annealing time and amount of PbI2 did not affect the 

lifetime significantly. A proposed mechanism for PbI2 passivation in CH3NH3PbI3 film 

is shown in Figure 17.154 

 

Figure 1-17- The coexistence of PbI2 and perovskite in the film shows a type I alignment of the 
band edge, with the band gap of 2.3 and 1.5 eV, respectively. The schematic p−i−n structure 
is shown in the bottom left. The interface (I) of perovskite/TiO2 is shown on the top right; and 
the recombination of electron from TiO2 and holes from perovskite is reduced by the 
introduction of PbI2. The interface (II) of perovskite/HTM is described on the bottom right; the 
presence of PbI2 changes the grain to grain boundary bending from downward to upward, 
which helps to reduce the recombination between the electrons from perovskite and holes from 
HTM. 

 

Overall, the trap states related to defects in perovskite films can significantly 

affect their optical properties, carrier dynamics, and device performance. Proper 
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strategies to control and passivate the surface defects are promising for improving the 

material properties and their performance in PV and other applications.  

 
 
1.6 Summary and Outlook 

OMH perovskites in the form of NCs or thin films have shown great potential 

for a broad range of applications including PV solar cells, LEDs, photodetectors, 

sensors and lasers, owing to their attractive electronic and optical properties. Despite 

the outstanding progress achieved to date, there are still challenges to overcome. In 

particular, materials instability, with respect to factors such as oxygen, water moisture 

and UV light, and high temperature, and in relation to defects, specifically those on the 

surface, presents a major obstacle to their practical use. Proper surface passivation of 

surface defects is critical to obtaining high quality NCs and films with good stability 

and improved properties. Table 1 provides brief summary of some of the similarities 

and differences between perovskite bulk films and NCs.  Most of the differences are 

due to the extremely large surface-to-volume ratio of the PNCs and associated surface 

defects that can affect electronic and optical properties. 
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Table 1-1- Summary of some similarities and differences between perovskite bulk films and 
nanocrystals. 

PROPERTIES NANOCRYSTALS BULK MATERIAL 
Optical Property Tunable Not tunable 
Charge Transport Limited Fast 
Surface/Volume Ratio Extremely large Small 
Surface Functionalization Versatile More restricted 
Processability Convenient Involved 
Synthesis Multiple approaches Less options 
Density of defects High Low 
Exciton/chargecarrier 
dynamics 

Complex Simple 

Doping Yes Yes 
 

 

In this review, we focused on size and structural control with variation of 

capping ligands and how they affect properties of the perovskites. We have also 

reviewed the degradation mechanism and some of the proposed surface passivation 

approaches to address instability toward environmental factors. In order to get deeper 

insight on some of the important photophysical processes in OMH perovskites, their 

exciton/charge carrier dynamics is also discussed, especially in relation to surface 

properties. 

As for future directions, it is very important to further investigate the origin of 

instability in these perovskites at the molecular and atomic scale. For instance, X-ray 

and time resolved spectroscopy could be used to help gain better understanding of the 

degradation mechanism and identify short-lived reaction intermediates. While some 

passivation strategies may work for both nanostructures and bulk films, their difference 

in structure requires different strategies in other situations   Further theoretical and 
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computational work is also needed to help corroborate and guide experimental studies, 

in terms of computing both static as well as dynamic properties. 

Lastly, environmental concerns regarding the presence of lead in perovskites 

needs to be addressed. Even though synthesis of Sn, Sb and Bi based perovskites has 

been reported, their properties and performance are so far mostly inferior to that of 

lead-based perovskites. Therefore, search continues in finding a proper substitute for 

lead. 
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Chapter Two 

2 Peptide-passivated Lead Halide Perovskite Nanocrystals Based 

on Synergistic Effect between Amino and Carboxylic Functional 

Groups 

 

 

2.1 Abstract 

We have developed a new strategy using peptides with amino and carboxylic 

functional groups as passivating ligands to produce methyl ammonium lead bromide 

(CH3NH3PbBr3) perovskite nanocrystals (PNCs) with excellent optical properties. The 

well-passivated PNCs can only be obtained when both amino and carboxylic groups 

were involved, and this is attributed to the protonation reaction between –NH2 and –

COOH that is essential for successful passivation of the PNCs. To better understand 

this synergistic effect, peptides with different lengths have been studied and compared. 

Due to the polar nature of peptides, peptide-passivated PNCs (denoted as PNCspeptide) 

aggregate and precipitate from nonpolar toluene solvent, resulting in a high product 

yield (~44%). Furthermore, the size of PNCspeptide can be varied from ~3.9 to 8.6 nm 

by adjusting the concentration of the peptide, resulting in tunable optical properties due 

to the quantum confinement effect. In addition, CsPbBr3 PNCs were also synthesized 

with peptides as capping ligands, further demonstrating the generality and versatility 

of this strategy, which is important for generating high quality PNCs for photonics 

applications including LEDs, optical sensing, and imaging. 
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2.2 Introduction 

Luminescent semiconductor nanocrystals (NCs) conjugated with functional 

biological materials, including enzymes, proteins, peptides and oligonucleotides have 

been widely used for biosensing and bioimaging applications through their interactions 

with the target analyte.1-3 Many of these applications demand NCs with a high 

photoluminescence (PL) quantum yield (QY), size-tunable emission, and excited state 

lifetime.  

Lead halide perovskite nanocrystals (PNCs) have been the main focus of light-

emitting diodes (LEDs) due to their broad tunable emission window (~400-780 nm), 

high PLQY (~90%), and long PL lifetime (~10-100 ns).4-17 These properties are also 

attractive for biological applications such as optical sensing and imaging. However, the 

instability or high sensitivity of PNCs towards polar solvents hinders their biological 

applications that often involve polar media such as water.  

  Several capping ligands, including strain chair ammonium bromide 

(CnH2n+1NH3Br),18, 19, octylamine plus HBr,20 oleic acid with octylamine,6, 21, 22 oleic 

acid with oleylamine,4, 9, 23-25 and oleic acid with CnH2n+1NH3Br,26-28 have been 

successfully applied to the synthesis of PNCs. The commonality of these capping 

ligands is the –NH2/NH3+ terminal groups. In principle, the surface defect sites of the 

PNCs passivated by –NH2 or NH3+ terminals should have different electric charges. For 

CH3NH3PbBr3 PNCs, it has been reported that the molar ratio of surface atoms (Br–

/Pb2+) is around 3.5, which is higher than the stoichiometric ratio of 3.0 for 

CH3NH3PbBr3 bulk materials, indicating a Br-rich and Pb-poor surface of PNCs.6, 14 
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Therefore, we hypothesize that the final form of the effective capping ligand should be 

R’-NH3+ (R’ = alkyl chain) after passivation, and the role of oleic acid or HBr, when 

used, is to protonate the main amino capping ligand, R’-NH2, and convert it into 

ammonium R’-NH3+, in the process of surface passivation of PNCs.  

To date, most of the capping ligands used in the synthesis of PNCs are 

hydrophobic, due to the instability of PNCs in polar environments.29 Therefore, it is 

very challenging to modify PNCs with polar capping ligands. Peptides consisting of 

two or more amino acids have been recently utilized to improve the hydrophilicity of 

CdSe quantum dots (QD) for biosensing and bioimaging applications.30 We 

hypothesized that peptides containing both amino and carboxylic groups may be 

effective capping ligands for passivating PNCs. In contrast to the use of separate 

individual amino and carboxylic capping ligands, a single molecular ligand with both 

functional groups can substantially simplify the synthesis and improve the applicability 

of the PNCs produced. Moreover, peptide-functionalized PNCs can be potentially used 

for biological applications due to their salient optical properties and good compatibility 

with biological samples. 

In this work, we have demonstrated, for the first time to our best knowledge, that 

well-passivated PNCs can be obtained only when both amino and carboxylic functional 

groups were present at the same time, and this can be accomplished using single peptide 

molecules. The ammonium moieties, R’-NH3+, generated due to the synergistic effect 

between amino and carboxylic groups, are most effective for passivating surface 

defects due to halide ions on the PNCs surface. This strategy was shown to work for 
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several peptides with different lengths for CH3NH3PbBr3 as well as CsPbBr3 PNCs. 

PNCspeptide with tunable size (~3.9 to 8.6 nm) prepared by adjusting the concentration 

of the peptide show size-dependent optical properties due to quantum confinement 

effect. This strategy is general and versatile and can be easily applied to the synthesis 

of other NCs for different applications. 

 

2.3 Results and discussion 

2.3.1 Synergistic effect between amino and carboxylic functional groups 

For the synthesis of both CH3NH3PbX3 and CsPbX3 (X=Cl, Br, I) PNCs in 

previous work, several amino capping ligands including straight chain octylamine, 

oleyamine and branched (3-aminopropyl)triethoxysilane (APTES) have been 

successfully used, demonstrating the generality of amino capping ligands for the 

passivation of PNCs.6,23,31 It was found that presence of oleic acid improves the 

outcome of the synthesis with amino ligands.6,14 This improvement in capping 

efficiency is possibly due to synergistic effect between amino and carboxylic functional 

groups.  

In order to demonstrate this synergistic effect, combinations of APTES and 

benzoic acid/oleic acid/acetic acid were used in this work. Figure 1 shows the UV-Vis 

absorption and PL spectra of CH3NH3PbBr3 PNCs synthesized using various 

combinations of APTES and different carboxylic capping ligands such as oleic acid, 

benzoic acid and acetic acid. A weak PL emission band peaked at 530 nm was observed 

without any capping ligands, which can be attributed to bulk CH3NH3PbBr3.8 The PL 
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intensity was enhanced by ~10 or 60 times after adding a certain concentration of oleic 

acid or APTES capping ligands, respectively. However, the overall PL QY was still 

low (＜1%), suggesting the poor passivation of PNCs by a single ligand. In contrast, 

PNCs with significantly higher QY (~32-55%) were obtained when both amino 

(APTES) and carboxylic ligands (oleic acid, benzoic acid or acetic acid) were used 

together in the synthesis, clearly showing some synergistic effect between the two 

ligands used.  
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Figure 2-1- UV-Vis absorption (blue) and PL spectra (red, λex = 365 nm) of CH3NH3PbBr3 
PNCs synthesized using different amino (APTES, 0.06 mmol/mL) and carboxylic capping 
ligands (oleic acid/benzoic acid/acetic acid, 0.16 mmol/mL). Inset: photographs of the PNCs 
under UV lamp irradiation. All the solutions were prepared by injecting 4 µL of the precursor 
solution into 4 mL toluene. The PL spectra of PNCs synthesized without capping ligands, with 
oleic acid or with APTES are magnified by 1000, 500 and 125, respectively. The sharp peak 
centered at 410 nm is from toluene.  

When only oleic acid was used in the synthesis, the PL enhancement of 

CH3NH3PbBr3 PNCs is attributed to the passivation of surface Pb2+ defects by R-COO– 

(R = alkyl chain), which has been previously used to passivate the Pb2+ defects of PbS 
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QDs.[32] However, due to the low density of Pb2+ surface defects and small equilibrium 

constant of oleic acid, the PL enhancement of CH3NH3PbBr3 PNCs was very limited. 

Alternatively, when APTES was used as the capping ligand, the PL enhancement was 

larger than that of oleic acid, which may be a result of the protonation of APTES by 

CH3NH3Br. In addition, because of the dominant Br– surface defects in PNCs, the PL 

enhancement is more sensitive to the amount of R’-NH3+ than that of R-COO– as the 

former should passivate the Br– defect sites. Therefore, the enhancement by APTES is 

larger even with lower concentration. It can be seen from the PL spectra in Figure 1 

that the peak position of the main emission band shifts a lot when different carboxylic 

acids are used, which may be due to different degrees of steric hindrance from the 

carboxylic capping ligands.33 Well-passivated PNCs with much higher PL QY (~32%-

55%) were obtained when both amino (APTES) and carboxylic capping ligands were 

used in tandem. This may be attributed to the protonation reaction between amino and 

carboxylic capping ligands, as shown in Equation 1:  

    (1) 

As illustrated in Figure 2a, the protonation process can generate a large amount 

of R-COO– and R’-NH3+, which can passivate both Pb2+ and Br– defects, respectively, 

leading to the formation of well-passivated and colloidally dispersible PNCs in non-

polar solvents.29 Note that R’-NH3+Br– can also be applied as a passivating ligand to 

passivate PNCs due to the dominant Br– surface defects of PNCs. However, the 

dispersibility and PL QY of PNCs are weaker than that of PNCs capped simultaneously 

with both amino and carboxylic ligands.18   
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Figure 2-2- (a) A schematic diagram illustrating the surface passivation mechanism of Br and 
Pb surface defects. (b) UV-Vis electronic absorption (solid lines) and PL spectra (dashed lines, 
λex = 365 nm) of PNCs prepared with different concentrations of oleic acid and 0.06 mmol/mL 
APTES. 

 
 Based on Equation 1, a high concentration of R-COOH will push the reaction to 

the right hand side and produce more R’-NH3+ and R-COO—, resulting in the formation 

of smaller nanoparticles because of the relatively slower delivery rate of perovskite 

monomers relative to the higher concentration of R’-NH3+.31 The UV-Vis absorption 

and PL spectra of the PNCs synthesized using different concentrations of oleic acid and 

0.06 mmol/mL APTES shown in Figure 2b supports this notation. With increasing the 

concentration of oleic acid, both the absorption onset and emission band blue-shifted, 

indicating the formation of smaller PNCs. 

 

2.3.2 Synthesis of PNCs capped with peptides 
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Based on the above results, well-passivated PNCs can be obtained as long as both 

amino and carboxylic groups are present at the same time in the synthesis. This led us 

to hypothesize that a single peptide containing both amino and carboxylic acid 

functional groups may be effective in passivating PNCs, which is simpler than using 

two separate ligand molecules.  

To demonstrate this, the peptide (12-aminododecanoic acid, 12-AA) was used as a 

capping ligand in the synthesis of PNCs. A dissolution-precipitation strategy was 

adopted to synthesize PNCspeptide, which is widely used to prepare CH3NH3PbBr3 

PNCs.6,8,18,31 Figure 3a shows the photograph of the synthesized PNCspeptide under room 

light. As it can be seen, the color of PNCspeptide powders shifted from orange to pale 

yellow depending on the concentration of 12-AA used. More importantly, the product 

yield of PNCspeptide can reach up to ~44%, which is much higher than that of PNCs 

capped with octylamine and oleic acid because a large number of large particles was 

formed and then discarded during the precipitation procedure.5,6 
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Figure 2-3- (a) Room light photograph and (b) XRD patterns of PNCpeptide synthesized with 
0.025, 0.05, 0.1, 0.15 mmol/L 12-AA. (c) FT-IR spectrum of PNCpeptide prepared with 0.15 
mmol/mL 12-AA. 

 

  To determine the crystal structure of as prepared products, XRD was carried out, with 

results shown in Figure 3b. The XRD peaks centered at 14.94°, 21.15°, 30.13°, 33.72°, 

37.04°, 43.16°, 45.94°, 48.54°, 53.48°, 55.90° and 58.15° can be assigned to cubic 

phase of CH3NH3PbBr3 perovskite (a = 5.9334 Å, space group = Pm-3m), 

demonstrating that the prepared samples are indeed CH3NH3PbBr3 perovskite. 

Furthermore, with increasing amount of 12-AA, the XRD peaks of PNCpeptide became 

broader, which indicates the formation of smaller PNCs. However, some peaks at 

22.58° and 38.39° appear when the concentration of peptide is larger than 0.1 



72 
 

mmol/mL, which can be attributed to 12-AA, suggesting the inhomogeneous reaction 

between peptide and PNCs at higher concentration of peptide. 

  In addition, FT-IR spectroscopy was also used to reveal the existence of 12-AA as 

capping ligands, with representative spectra shown in Figure 3c. The evident absorption 

peaks at 2845 and 2922 cm-1 were assigned to the symmetric and asymmetric C-H 

stretching mode, respectively.14,34 The existence of 12-AA on the PNCs surface was 

confirmed by the stretching mode of C=O (1704 cm-1),34 indicating that 12-AA is 

involved in the passivation reaction. 

  Figure 4 shows the typical TEM images of PNCpeptide prepared with different 

concentrations of 12-AA. As seen in Figure 4a, many nanoparticles with an average 

diameter ~8.4 nm were embedded in the micron-scaled particles for 0.025 mmol/L 12-

AA. With increasing the concentration to 0.05 mmol/L, the average size of PNCpeptide 

decreased to 7.8±2.6 nm (Figure 4b). The size of nanoparticles can be further decreased 

to 3.9±0.6 nm (Figure 4d) when 0.15 mmol/L 12-AA was used in the synthesis. The 

trend of decreasing size is consistent with the XRD results. In order to analyze the phase 

structure of these PNCs, HRTEM was used and a representative image is shown in 

Figure 4e. The lattice space of 0.3 nm corresponding to the (002) crystal face of cubic 

CH3NH3PbBr3 can be easily identified.[27] The amorphous materials (red dashed line in 

the TEM images) surrounding the PNCs are considered to be the network of peptides. 

When the peptide was dissolved in DMF precursor solution, both protonation reaction 

and peptide bond formation reaction between –NH2 and –COOH will happen within 

and between peptide molecules. When DMF precursor solution was injected into 
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toluene, peptide molecules will be attached on the surface defects and restrict the 

growth of crystal nuclei. However, due to the polar nature of peptides, PNCs capped 

with peptides will aggregate and precipitate from toluene, as shown in Figure 4f, 

micron-scaled particles with smooth surface can be found, attributed to the aggregation 

of peptides. 
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Figure 2-4- TEM images of PNCpeptide capped with different amount of 12-AA. (a) 0.025 
mmol/L, (b) 0.05 mmol/L, (c) 0.1 mmol/L, and (d) 0.15 mmol/L. HRTEM (e) and SEM images 
(f) of PNCpeptide prepared with 0.15 mmol/L of 12-AA. 

 

  We further characterized the surface properties of PNCpeptide and bulk materials using 

XPS spectroscopy as shown in Figure 5, the XPS peaks of CH3NH3PbBr3 bulk 

materials located at 137.7 and 142.6 eV can be assigned to Pb 4f7/2 and Pb 4f5/2, 
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respectively.35 The peak positions shifted by ~0.9 eV, towards high binding energy 

(BE), when peptide was used to prepare PNCpeptide, attributed to the passivation by –

COO–. The Br 3d5/2 and Br 3d3/2 peaks were observed at 67.6 and 68.5 eV for bulk 

materials.36,37 Similar peak shifts (~0.8 eV), towards higher BE, was also be observed 

for PNCpeptide, indicative of successful passivation of the surface Br– defect sites by –

NH3+ in the peptide. Furthermore, the surface atom ratio (Br–/Pb2+) increased from 3.1 

to 3.4 when peptides were used as capping ligands (Table 1), as an indication of Br– 

rich surface for PNC, which is in agreement with other studies.6,14   

 

Figure 2-5- Pb 4f and (b) Br 3d XPS spectra of CH3NH3PbBr3 bulk materials and PNCpeptide 
prepared with 0.05 mmol/L 12-AA. 
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Table 2-1- XPS Pb 4f and Br 3d peak ratio for CH3NH3PbBr3 bulk materials and PNCpeptide 

 Core level Area Br:Pb ratio 

CH3NH3PbBr3 
bulk materials 

Pb 4f 469.8 
3.1 

Br 3d 1469.3 

CH3NH3PbBr3 
PNCpeptide 

Pb 4f 484.8 
3.4 

Br 3d 1652.9 

 
 

2.3.3 Optical properties of PNCpeptide 

  Proper surface passivation of NCs or QDs usually results in an enhanced PL emission 

desired for many applications.7,33,38 The optical properties of PNCpeptide were 

determined using UV-Vis and PL spectroscopy. The UV-Vis spectrum of PNCpeptide 

shown in Figure 6a exhibits a sharp rise around 560 nm with a saturation at 518 nm 

when 0.025 mmol/L peptide was used. The absorption onset blue-shifted to ~550, 516 

and 481 nm for 0.05, 0.1 and 0.15 mmol/L of peptide, respectively, because of the 

decrease in size of PNCpeptide. Correspondingly, the emission bands of PNCpeptide peaked 

at 531, 517, 469 and 449 nm when applying 0.025, 0.05, 0.1 and 0.15 mmol/L of 

peptide, respectively. However, the fluorescence intensity decreased dramatically 

when increasing the concentration of peptide to 0.15 mmol/L, which may result from 

the higher density of surface defects for smaller nanoparticles. Figure 6c presents the 

photograph of PNCpeptide under UV light. It can be clearly seen that the fluorescence 

changes from green to blue, consistent with the PL spectrum results.  
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Figure 2-6- (a) UV-Vis absorption, (b) PL spectra (ex = 365 nm) and (c) UV light (ex = 365 
nm) photographs of PNCpeptide prepared with 0.025, 0.05, 0.1, 0.15 mmol/L 12-AA. 

  

  In order to demonstrate the versatility of this method, different lengths of peptides 

were used for the synthesis of PNCs. The UV-Vis absorption and PL spectra of PNCs 

prepared with peptides are shown in Figure 7a and b, respectively. A sharp rise of 

absorption spectra around 550 nm with a saturation at ~505 nm can be observed for 

each sample. Correspondingly, a narrow and symmetric PL emission band with a 

maximum at ~516 nm can be easily identified when 6-aminohexanoic acid (6-AA), 8-

aminooctanoic acid (8-AA) or 12-AA was used as capping ligand, respectively. We 

have also attempted to use natural peptides, such as glycine. However, it was not 

successful since the peptide does not dissolve in DMF even with some heating.  
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To show generality of the approach, CsPbBr3 PNCs was also synthesized with 

peptides as capping ligands. As shown in Figure 7c, the sharp rise in UV-Vis absorption 

and narrow PL emission band indicate the successful formation of CsPbBr3 PNCs. We 

expect that this strategy can be applied to other PNCs with different metal ions, halides, 

or organic constituent. 
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Figure 2-7- (a) UV-Vis absorption and (b) PL spectra (ex=365 nm) of CH3NH3PbBr3 PNCpeptide 
prepared with 0.05 mmol/L 6-AA, 8-AA or 12-AA, respectively. (c) UV-Vis absorption and PL 
spectra (ex = 365 nm) of CsPbBr3 PNCpeptide prepared with 0.05 mmol/L 12-AA. 
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2.4 Experimental Section 

Materials: All the chemicals were used as received without further purification, 

including toluene (Spectroscopic grade, Fisher Scientific), N,N-dimethylformamide 

(DMF, spectroscopic grade, Fisher Scientific), oleic acid (90%, Alfa Aesar), (3-

aminopropyl)triethoxysilane (99%, Sigma Aldrich), PbBr2 (99.99%, Alfa Aesar), CsBr 

(99.9%, Strem Chemicals), 6-aminohexanoic acid (98.5%, Sigma Aldrich), 8-

aminooctanoic acid (99%, Sigma Aldrich), 12-aminododecanoic acid (95%, Sigma 

Aldrich), benzoic acid (99.5%, Sigma-Aldrich) and acetic acid (99.85%, Sigma-

Aldrich). 

CH3NH3PbBr3 PNCs prepared with APTES and different carboxylic acids: The 

CH3NH3PbBr3 PNCs were synthesized following a method reported previously.[26, 31] 

5 mL precursor solution of PNCs was prepared by dissolving 0.16 mmol CH3NH3Br, 

0.2 mmol PbBr2, 0.3 mmol APTES and 0.8 mmol oleic acid/benzoic acid/acetic acid in 

DMF solvent and sonicated until the solution became transparent. 4 μL of the precursor 

solution then was injected slowly into 4 ml toluene for spectrum analysis. 

CH3NH3PbBr3/CsPbBr3 PNCs prepared with peptides: The precursor solutions for 

CH3NH3PbBr3 PNCs passivated by peptides were prepared by mixing 0.16 mmol 

CH3NH3Br, 0.2 mmol PbBr2 with different amounts (0.025, 0.05, 0.1, 0.15 mmol/L) of 

3 different lengths of peptide (6-AA/8-AA/12-AA) and dissolving them in 2 ml DMF 

solvent followed by heating the solution on hot plates until a transparent solution was 

formed. All the precursor solution was injected into 50 ml toluene and the solid 



81 
 

precipitate was collected by centrifugation (5000 rpm, 5 min) followed by washing 

with toluene three times. The collected solid product was dried under vacuum overnight 

for further analysis. CsPbBr3 PNCs were synthesized similarly by dissolving 0.08 

mmol CsBr, 0.1 mmol of PbBr2 and 0.10 mmol of 12-AA in 2 ml DMF and then heating 

the precursor solution until it was clear. The purifying procedures for CsPbBr3 PNCs 

were same to that of CH3NH3PbBr3 PNCs. 

CH3NH3PbBr3 bulk materials: The CH3NH3PbBr3 bulk materials was obtained by 

injecting 2 mL DMF precursor solution without any capping ligands into 50 mL 

toluene. The purifying procedure was the same as that of CH3NH3PbBr3 PNCs. 

Characterization: UV-Vis diffuse reflectance spectra were collected with a Perkin 

Elmer Lambda 35 spectrometer. X-ray photoelectron spectra (XPS) were recorded with 

a PHI 5400/XPS instrument equipped with an Al Kα source operated at 350 W and 

10−9 Torr. The Fourier transform infrared (FT-IR) measurements were carried out with 

a Perkin Elmer FT-IR spectrometer (Spectrum One, spectral resolution 4 cm-1), where 

the samples were prepared by dropping the PNCs solutions onto a KBr substrate. X-

Ray diffraction (XRD, Rigaku Americas Miniflex Plus powder diffractometer) analysis 

was used to obtain the crystalline phase at a voltage of 40 kV and current of 30 mA. 

The scanning angle range was 10-60o (2θ) with a rate of 3o/min. Scanning electron 

microscopy (SEM, FEI Quanta 3D Dual beam microscopy) and transmission electron 

microscopy (TEM, Hitachi H-9500) were carried out to obtain the morphology and 

interlayer spacing of samples at an accelerating voltage of 300 kV.  
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2.5  Conclusion  

  In summary, we have demonstrated that synergy between amino and carboxylic 

groups in the same peptide molecules as capping ligands allows generation of well-

passivated PNCs, as exemplified by both CH3NH3PbBr3 and CsPbBr3. Furthermore, 

the size (~3.9-8.6 nm) and optical properties of the CH3NH3PbBr3 PNCs can be easily 

tuned by adjusting the concentration of the peptide. Such PNCs with peptides 

conjugated on their surface have potential applications in biomedicine including optical 

sensing and imaging. 
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Chapter Three 

3 Size Dependence of Charge Carrier Dynamic in Organometal 

Halide Perovskite Nanocrystals: Deciphering the Radiative vs 

Non-radiative Components 

 
 
 
3.1 Abstract  

 

In this work, we have successfully synthesized and characterized three 

differently sized (3.1, 5.7, and 9.3 nm) methyl ammonium lead bromide 

(CH3NH3PbBr3) perovskite nanocrystals (PNCs) passivated using (3-Aminopropyl) 

triethoxysilane (APTES) and oleic acid (OA) as capping ligands. These PNCs show 

size-dependent absorption (440 nm-520 nm) and photoluminescence (PL) (470 to 530 

nm), with the middle-sized PNCs exhibiting the highest PL quantum yield (~91%). The 

effect of size on the exciton/charge carrier dynamic of PNCs is studied using transient 

absorption spectroscopy (TA) and time resolved photoluminescence (TRPL). The 

middle-sized PNCs (PNC35_APTES) show slower early time recombination compared to 

that of the larger and smaller PNCs, suggesting optimized passivation of surface trap 

states. The observed PL lifetime and QY are analyzed to determine the size dependence 

of the radiative and non-radiative decay components. The radiative lifetime is found to 

decrease with decreasing PNC size, which seems to be primarily determined by the 

PNC core, while the non-radiative lifetime is longest for the middle-sized PNCs, which 
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is strongly influenced by the presence of bandgap states that depend on surface 

passivation. A kinetic model is proposed to explain the observed dynamics results, 

including the size dependence. This study demonstrates the competing effect between 

size and surface properties in determining the dynamics and optical properties of PNCs.  

 

3.2 Introduction 

Organometal halide perovskites (OMHP) have been widely studied in recent 

years due to their promising applications in the field of photonics, especially 

photovoltaics (PV). Their novel optical and electrical properties include high 

absorption coefficients, tunable and narrow emission, long exciton lifetimes, and fast 

charge carrier diffusion (8-33 cm2 V-1 s-1).1,2,3 When combined with easy and low cost 

processing, they demonstrate strong potential for applications beyond PV, such as light 

emitting diodes (LEDs), photodetectors, sensors, lasers, and photoelectrochemical 

cells.4,5,6,7,8 Since the first reported power conversion efficiency (PCE) of ~3.8% for a 

perovskite-based PV cells in 2009,9 significant progress has been made in 

understanding the fundamental properties of the materials and improving solar cell 

structures for higher efficiency. Recently, a PCE exceeding 25% has been reported for 

a tandem silicon-OMHP solar cell.10  

Despite significant potential, there are challenges limiting large-scale 

application of OMHPs. Instability toward environmental factors such as UV light, 

humidity, oxygen, solvent and temperature are some of the most challenging issues. 

Several studies have correlated these instabilities to OMHP surface properties such as 
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the presence of defects.11,12 These defects, which can be formed as a result of chemical 

and structural changes in the material,13 are also a detrimental factor impacting device 

performance as they provide recombination channels for photogenerated charge 

carriers.11,14,15 Therefore, various strategies for surface modification and defect 

passivation, including addition of molecular capping ligands, organic polymers, and 

metal oxide shells, have been used in order to improve the chemical and physical 

stability that is critical for maintaining device performance over time.16,17,18,19  

Because perovskite nanocrystals (PNCs) or perovskite quantum dots (PQDs) 

have a large surface-to-volume (S/V) ratio, they are considered to be great models for 

developing stabilization and passivation strategies.20 In addition, PNCs possess tunable 

energy levels and optical properties due to the quantum confinement effects, especially 

when their size is smaller than the Bohr exciton radius.21 This can be used to control 

the functionalities of the materials for different applications. For instance, PNCs with 

diameters of <10 nm show strongly blue shifted PL, high exciton binding energy (Eb), 

low exciton diffusion length (LD), and higher PL quantum yield (PLQY), compared to 

larger particles and bulk material.22,23,24 This potentially enables complex device 

designs based on cascade energy transfer using these PNCs.25 Additionally, one-photon 

linear absorption cross section of CsPbBr3 PNCs was found to strongly depend on 

size.26 For CsPbBr3 PNCs with edge length above ∼7 nm, spectral signatures are mostly 

similar to that of bulk material, though some new kinetic processes emerge at high 

fluence in nanometer sized crystals.27 However, for smaller PNCs (∼4 nm) strong 

quantum confinement effects manifest in their spectral dynamics, resulting in discrete 
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energy states, enhanced bandgap renormalization energy, and departure from a 

Boltzmann statistical carrier cooling.27  

Ultrafast spectroscopy techniques such as transient absorption (TA) and time 

resolved PL (TRPL) have been employed as powerful tools for probing exciton and 

charge carrier dynamics, including charge transfer and recombination, which are highly 

relevant to application in solar cell and LEDs. To date, most time-resolved dynamics 

studies of perovskites have focused on the photophysical properties of 2D 

structures28,29,30,31,32 or mechanisms of carrier generation and transfer between PNCs 

and electron/hole acceptors28,33,34,35. There are also a few studies on the effects of 

capping ligands on the charge carrier dynamics of PNCs.16,36 However, there is still a 

lack of understanding of the effect of NC size and associated surface passivation on 

charge carrier dynamics. Determining the size dependence of dynamics as well as 

optical properties of PNCs can lead to their optimized design and development for PV 

and other applications.  

In this work, we synthesized methylammonium lead bromide (CH3NH3PbBr3) 

NCs using a combination of APTES and OA as capping ligand for proper passivation. 

The concentration of APTES was varied to control the size of PNCs. Characterization 

techniques such as UV-Vis absorption, photoluminescence (PL), powder X-ray 

diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), 

ultrafast transient absorption (TA), and time-resolved PL (TRPL) were used to 

determine the photophysical properties of the materials and their dependence on 

particle size and extent of surface passivation.  
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3.3 Materials and Methods 

 
3.3.1 Materials  

All chemicals were used as received without further purification: Toluene 

(spectroscopic grade, Fisher Scientific), N,N-dimethylformamide (DMF, spectroscopic 

grade, Fisher Scientific), Methylammonium bromide (Greatcell Solar Australia Pty 

Ltd), Lead bromide (98+%, Alfa Aesar), oleic acid (90%, Alfa Aesar), (3-Aminopropyl) 

triethoxysilane (99%, Sigma-Aldrich). 

3.3.2 Synthesis 

A ligand-assisted reprecipitation method was used to synthesize the 

CH3NH3PbBr3 NCs. Briefly, 0.157 mmol of methylammonium bromide (MABr) and 

0.200 mmol of lead bromide (PbBr2) were dissolved in 400 µL N,N-

dimethylformamide (DMF) and sonicated until clear. 100 µL of oleic acid and varying 

amounts of (3-Aminopropyl) triethoxysilane (APTES) (20 µL, 35 µL, and 50 µL) were 

added to separate solutions to control the particle size. The precursor solution was 

further sonicated to reach a homogeneous solution and then injected into 5 mL toluene 

to precipitate and collect the nanocrystals. The resultant nanocrystals were centrifuged 

at 6000 rpm for 5 minutes and washed with toluene 2 times to remove unreacted 

precursors. A portion of the collected precipitate was dried for powder XRD 

characterization and the rest was re-dispersed in toluene for film fabrication.  

 

3.3.3 Characterization and Instruments 
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UV–Vis and fluorescence spectra of the prepared nanocrystal films were 

collected on an Agilent Technologies Cary 60 and FluoroMax-3, respectively. XRD 

was used to obtain the crystalline phase at a voltage of 40 kV and current of 30 mA 

using a Rigaku America Miniflex Plus powder diffractometer at the home institution. 

The scanning angle range was 10–60° (2θ) with a rate of 3° min−1. Transmission 

electron microscopy (TEM) and high-resolution TEM (HRTEM) were carried out to 

investigate the size, morphology, and lattice spacing of the PNCs. The TEM study was 

carried out using a FEI UT Tecnai HRTEM microscope operated at a 200 kV 

accelerating voltage.  

3.3.3.1 Femtosecond Transient Absorption (TA) Spectroscopy 

The femtosecond transient absorption measurements were carried out using a 

Quantronix laser system consisting of an Er-doped fiber oscillator, regenerative 

amplifier, and diode-pumped Nd:YLF pump laser (527 nm) described previously.37 In 

this system, the amplified beam splits in a 1:9 ratio to generate a white light continuum 

(WLC) probe pulse (450–750 nm) and feed an optical parametric amplifier 

respectively. To study power dependence, all samples were photoexcited using a 

390 nm beam with various pulse energies (750, 323 and 190 nJ/pulse). The pump and 

probe were overlapped on the sample spatially and temporally. The transient absorption 

data was collected using a charge-coupled device (CCD) detector over a temporal delay 

interval of 0–1000 ps between the pump and probe pulses. The transient absorption data 

was plotted in 3D using MATLAB and the single wavelength decay of the absorption 

overtime was fitted using either triple or double exponential decay functions. 
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3.3.3.2 Time-resolved Photoluminescence 

Time-correlated single photon counting (TCSPC) was carried out on a home-

built apparatus. The excitation source was a pulsed Super K EXTREME (NKT 

Photonics) supercontinuum laser coupled to a Super K SELECT (NKT Photonics) 

acousto-optic filter and external RF driver (NKT Photonics) to select the wavelength 

of the excitation pulse. Measurements were carried out at a 19.4 MHz pulse repetition 

rate. The sample was excited by vertically polarized light, with emission collected 

under magic angle conditions. Emitted light was collimated and refocused by a set of 

achromatic doublets (Thorlabs). Long pass filters were used to minimize the influence 

of the reflected excitation beam. Emission wavelengths were selected by an Acton 

Spectra Pro SP-2300 monochromator (Princeton Instruments), on which two detectors 

were mounted for steady-state and time-resolved measurements. An air-cooled PIXIS 

100 CCD (Princeton Instruments) was used to record the steady-state spectra on the 

fly. A hybrid PMT with minimal after-pulsing (Becker and Hickl) was used to record 

the time-resolved fluorescence decay. An SPC-130 photon counting module (Becker 

and Hickl) coupled to a Simple-Tau 130 table top TCSPC system was used for photon 

counting. Collection was carried out until approximately 10,000 counts (ranging from 

12s - 100s, depending on sample fluorescence yield of the sample) were reached in the 

main channel. Measurements were repeated multiple times and averaged. 

 

 

3.4 Results and Discussion 
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3.4.1 Structural Characterization of PNCs by XRD and TEM 

CH3NH3PbBr3 NCs were synthesized using a dissolution-precipitation method 

as reported previously38, and size control was achieved by varying the amount of 

APTES capping ligand used in synthesis. Structural properties of PNCs were 

characterized using XRD and TEM as shown in Figure 1(a-d). For 20, 35 and 50 µL of 

APTES, spherical PNCs with average sizes of 9.3± 0.7, 5.7± 0.2 nm, and 3.1± 0.2 nm 

were obtained, respectively. Corresponding to the amount of APTES used (20, 35, and 

50 µL), these samples are labeled PNC20_APTES, PNC35_APTES, and PNC50_APTES, 

respectively. As expected, increasing the concentration of APTES decreased the size 

of the resultant PNCs. This trend may be attributed to the coordinating effect of capping 

ligands which slows down the rate of monomer transfer to the PNCs surface and 

thereby limits growth.39 The relative uniformity of all sizes is due to the strong steric 

hindrance of branched APTES ligands, as reported previously.38 Interlayer spacing of 

2.6 Å and 2.9 Å ,shown in the inset HRTEM images, could be assigned to the (0 2 1) 

and (0 0 2) planes of cubic CH3NH3PbBr3, as reported in previous studies.40 The XRD 

patterns shown in Figure 1d were used to determine the crystal structure of the PNCs. 

The peaks centered at 14.80°, 21.03°, 29.98°, 33.55°, 36.93°, 42.83°, and 45.69° can 

be indexed to cubic phase CH3NH3Br3 perovskite, indicating sample crystallinity and 

purity.40 When the amount of APTES was increased, significant broadening in XRD 

peaks was observed, due to the presence of smaller PNCs and amorphous silica as a 

result of higher concertation of APTES on the samples.41 Further increase of APTES 

concentration resulted in the formation of bulk material instead of PNCs. 
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Figure 3-1- TEM images of a) PNC20_APTES b) PNC35_APTES, and c) PNC50_APTES. (Insets: HRTEM 
images of PNC20_APTES, PNC35_APTES, and amorphous matrix of APTES. d) XRD pattern of 
PNC20_APTES, PNC35_APTES, and PNC50_APTES. e) UV-Vis and PL spectra (λex=360 nm) of 
PNC20_APTES, PNC35_APTES, and PNC50_APTES spin coated on glass substrate at 4500 rpm. (Insets 
are digital pictures of the PNCAPTES films under UV light). f) Schematic representation of 
competing effect between proper defect passivation of the PNCs and steric hindrance as a 
function of capping ligand concentration. 

 
3.4.2 Band Edge Absorption and Steady State PL 

For each sample, uniform films were prepared by spin coating to further study 

the optical properties of the material and assess the dependence on PNC size. Figure 1e 

shows the band edge absorption and steady state photoluminescence spectra of the 
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prepared films. Because the Bohr radius of CH3NH3Br3 perovskites is 2.0 nm, the 

synthesized PNCs, specially (PNC50_APTES), may exhibit quantum confinement effects 

due to their small size and proximity to Bohr radius.42 As shown in Figure 1e, the UV-

Vis spectra of PNC20_APTES exhibits an excitonic absorption peak at 520 nm with an 

extended tail at lower energies due to the scattering of the relatively larger particles. 

However, in films of PNCs made with 35 µL and 50 µL of APTES the absorption onset 

is blue-shifted to 490 nm and 440 nm, respectively, due to the decrease in PNC size. A 

similar blue shift was observed for the narrow and symmetric PL emission bands, 

moving from 530 nm for PNC20_APTES to 470 nm for PNC50_APTES after excitation at 360 

nm (lex). The narrow emission peaks and the small full width at half maximum 

(FWHM) corroborates the uniformity in particle size and morphology shown in the 

TEM images in Figure 1. In addition, larger a Stokes shift (~41 meV) was observed as 

the PNC size decreased from 9.3 nm to 3.1 nm. This size-dependent Stokes shift has 

been reported previously for CdSe QDs as well as all-inorganic PNCs such as 

CsPbBr3.43 Theoretical calculations have revealed the presence of an inherent, size-

dependent confined hole state above the valence band for CsPbBr3 NCs between the 

sizes of 2-5 nm. This hole state is proposed to be dark in absorption but bright in 

emission due to its low population density, which explains the size-dependent Stokes 

shift.43 Since, cesium orbitals didn’t contribute to this identified confined hole state, 

this size-dependent stokes shift can be assumed to be a general feature in other PNCs 

similar to what we observed here for CH3NH3PbBr3 PNCs.  
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Absolute PLQY of each sample was measured and all three-sized PNCs 

exhibited high PLQY similar to what was reported in a previous study using a 

combination of APTES and OA capping ligands.44 This is attributed to a proton transfer 

reaction between the carboxylic group of OA and the amine group of APTES, resulting 

in carboxylate anion and ammonium cation moieties that can simultaneously passivate 

the Pb2+ or MA+ and Br- charge defects on the PNCs surface.44 In addition, APTES is 

also unique in that its cone-shaped structure can promote steric hindrance and prevent 

solvent or other molecules such as oxygen or water from reaching the PNCs surface. 

Furthermore, through hydrolysis, it may produce a silica layer that further stabilizes the 

PNCs surface.38 However, our result demonstrate that the defect passivation efficiency 

of APTES is size-dependent. The absolute PLQY of PNC20_APTES, PNC35_APTES, and 

PNC50_APTES are measured to be 54%, 91%, and 76%, respectively. 

A comparison of the PLQY for the different sizes demonstrates the competing 

effect between proper passivation of surface defects and steric hindrance of capping 

ligands. For instance, steric hindrance between large, cone-shaped capping ligands may 

prevent them from efficient passivation. On the other hand, due to the small amount of 

capping ligand used in the synthesis of larger particles the passivation may be relatively 

incomplete. Therefore, the middle-sized PNCs made with 35µL APTES exhibit optimal 

combination of passivation considerations, resulting in 91% PLQY. Figure 1f 

schematically represents the effect of capping ligand concentration and PNCs size on 

surface passivation efficiency. The disparity between the particles in passivation 
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efficiency as a function of size and capping ligand concentration is expected to 

significantly affect the charge carrier dynamics in these PNCs.  

 
3.4.3 Charge Carrier Dynamic Study via Ultrafast Transient Absorption 

Spectroscopy 

Femtosecond transient absorption (TA) spectra of PNC films were recorded by 

exciting at 390 nm (above band edge) and the band edge absorption of each PNC (data 

available in SI) probing with a white light (450-700 nm) as a function of time delay 

between the pump and probe pulses. While analyzing the decay of transient 

absorption/bleach signal can provide very useful information about the charge carrier 

dynamics in PNCs, the possibility of  non-linear processes such as Auger 

recombination or exciton-exciton annihilation can make the interpretation of the data 

more complicated.45 To avoid such processes interfering with data analysis, each 

sample was pumped with multiple pulse energies (190, 85, 50, and 20 nJ/pulse) to 

investigate power-dependence in the recombination dynamics. Similar to what has been 

reported previously for different types of PNCs, a power dependence was observed 

when higher pulse energies were used for excitation (Figure 2a-c).45,36,46 This is 

suggested to be the result of doubly excited PNCs which are referred to as biexcitons. 

The relative amplitude of the fast component increases as the probability of more than 

one excitation occupying each particle escalates. Makarov et al. proposed multiexciton 

states in CsPbX3 PNCs and reported a deviation in the size-dependent biexciton Auger 

lifetimes from what had been previously observed in other NCs systems.47 This 

excitation energy dependence of the TA dynamics also indicates the shallow nature of 
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trap states which are mainly located near band edge.46 Most importantly, when the 

power increased from 50 to 190 nJ/pulse, the larger particles exhibited a greater power-

dependence. This arises from the difference in the number of atoms per particle, 

resulting in larger particles absorbing more photons per pulse.45 In addition, further 

increasing the amount of capping ligand to make smaller particles, isolates the 

individual PNCs, confining the charge carriers within a single particle, limiting the 

bimolecular recombination and eventually resulting in excitation energy-independent 

decay dynamics.48 Below 190 nJ/pulse, samples were in a linear regime with excitation 

energy and data from 85 nJ/pulse excitation was used for the dynamics studies. 

 

 

Figure 3-2- Transient bleach spectra of different sizes of PNCAPTES a) PNC20_APTES, b) 
PNC35_APTES, and c) PNC50_APTES excited with 390 nm beam with 190, 85, 50, and 20 nJ/pulse 
energies. 

 

Figure 3 shows 3D (a-c) and 2D (d-f) representation of transient absorption data 

as a function of wavelength and delay time between pump and probe pulses. 
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Assignment of the transitions to different probed species and identifying the nature of 

these species is not trivial without proper knowledge of the electronic band structure. 

However, a combination of confinement in space and the delocalized nature of 

conduction and valence band in addition to the short time scale investigated, suggest 

that the probed species are mostly excitons at early times but these excitons can 

dissociate to electron and holes over time.49 As is shown in Figure 3a, for PNC20_APTES 

a transient absorption (TA, excited-state absorption) signal at 500 nm and a relatively 

broad transient bleach (TB, ground-state depletion) signal at 530 nm was observed. 

Similar features were also observed for PNC35_APTES with a shift in signal positions to 

450 nm (TA) and 480 nm (TB) (Figure 3b). However, for the PNC50_APTES sample, the 

TA signal fell out of the detection limit of our instrument and was not detectable while 

the TB signal observed at 455 nm (Figure 3c). For this reason, the TB signal in all 

samples was used for the comparison of carrier dynamics. The TB signals were 

attributed to the depopulation of the ground state since the peak position matches with 

the first excitonic absorption of each sample shown in UV-Vis spectra (Figure 1e).36,46 

There is also a possibility of small stimulated emission contributing to this bleach 

signal.50 Considering the fact that 390 nm excitation generates excitons above the band 

edge, some intra-band cooling (cooling of hot excitons to the band edge excitonic state) 

might also happen.51 Because our pump wavelength is above the bandgap and larger 

than the kinetic energy of electron itself, the signals most probably originate from 

higher energy levels within the valence and conduction band.49 The short lived signal 

(<~1ps) at 500nm (dark green spectra), observed in Figure 3d for PNC20_APTES, can be 
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attributed to this intra-band cooling of  hot electrons, while the same signal was not 

observed for the smaller sizes, which might be due to their larger bandgap resulting in 

lower energy of the transitions.  

 

 

Figure 3-3- Three-dimensional (top) and two-dimensional (bottom) plots of transient 
absorption profiles after excitation with a 390 nm pump (85 nJ/pulse) as a function of probe 
wavelength (450-700nm) and delay time (0-1000ps) for different sizes of PNCAPTES films 
prepared with different amount of APTES. 

 
Figure 4 shows the normalized single wavelength TB signal of each sample 

from 0-1000 ps and 0-200 ps (inset). The probe wavelength for each sample 

corresponds to the wavelength of maximum TB amplitude. The recovery of these TB 
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signals was fit with a triple exponential function and the corresponding fitting 

parameters are reported in Table 1. 

 

Figure 3-4- Normalized ultrafast transient bleach decay profile of different sizes of PNCAPTES 
(markers) from 0-1000 ps and inset is from 0-100 ps. The decay profiles are fitted using a triple 
exponential function (solid line). 

 
As demonstrated in Figure 4, there is a significant difference in the charge 

carrier lifetime of the three PNCAPTES samples. The average recovery lifetime of these 

three sizes of PNCs was calculated to be 874 ps, 1316 ps, and 1177 ps for PNC20_APTES, 

PNC35_APTES, and PNC50_APTES respectively, using the following equation:  

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝜏 = RSTSU&RUTUU&RVTVU

RSTS&RUTU&RVTV
   (1) 
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It should be noted that the transient signal does not fully recover during the time 

window studied (1000 ps). Also, because the last time constant (τ3) is greater than the 

time window allowed by our delay stage, it cannot be verified. Although this induces 

uncertainty in our determination of average lifetime, the resultant values serve as 

helpful estimations of the lifetime of our PNCs. 

 

Table 3-1- Fitting parameters of single wavelength (λmax) transient bleach recovery of 
PNCAPTES films fitted with triple exponential function. 

 

The recovery of the TB signal represents the photogenerated electrons and holes 

disappearing through charge recombination and trapping processes. The observed multi 

exponential nature of this recovery is due to the combination of radiative and non-

radiative (trapping) processes. As reported previously, TB recovery is very sensitive to 

degree of surface passivation.52 As shown in Table 1, we observed fast, medium and 

slow decay processes for each sample. The fast and medium decays are attributed to 

charge trapping in shallow and deep trap states, respectively and the slow decay is 

consistent with bimolecular electron-hole recombination. 53 However, by increasing the 
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concentration of capping ligand in small PNCs, individuals PNCs are isolated by their 

capping ligands and there is no electronic communication between them. Thus, 

photogenerated charges ultimately recombine via geminate processes.48 

Incorporation of capping ligands for defect passivation has been shown to 

suppress the rapid (<1 ps) trapping of charge carriers in bulk materials.53 The 

passivation of surface defects also resulted in a significant increase of PL intensity, 

pointing to the role of these defects in nonradiative recombination. It has been recently 

reported that well-passivated CH3NH3PbBr3 NCs exhibit a PLQY close to unity, similar 

to what we observed for PNC35_APTES.54 As discussed previously, there is a competing 

effect between proper defect passivation and steric hindrance as a function of capping 

ligand concentration. The middle-sized particles with diameter of 5.7 nm and 35 μL of 

APTES as capping ligand are expected to have enough capping ligand to effectively 

passivate the trap states, but the particle size is not so small that steric hindrance begin 

to dominate, and the ligands cannot fully passivate the surface. The TB fitting 

parameters in Table 1 show that the initial time constant (τ1) for PNC35_APTES (6.30 ps) 

is significantly larger than that for PNC20_APTES and PNC50_APTES (3.57 ps and 4.06 ps, 

respectively). Considering that fast early decay lifetimes correspond to charge carrier 

trapping in shallow trap states53,36, this result suggests a lower density of shallow traps 

(near the surface) in PNC35_APTES as a result of proper passivation. 

The proper passivation in the middle size PNCs (PNC35_APTES) is further 

confirmed by analysis of the second time constant (τ2) in the decay process. The second 

time constant is related to carrier recombination in deeper trap states.53 By comparing 
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the τ2 values for these three samples, it can be concluded that there are higher density 

of shallow traps in PNC20_APTES while the small particles (PNC50_APTES) bandgap is 

more dominated by deeper trap states. The last time component also corresponds to 

non-trap-assisted recombination of the charge carriers including either bimolecular or 

geminate electron-hole recombination.  

In order to better understand the physical processes associated with the exciton 

and charge carrier dynamics of these three-sized PNCs, we used a kinetic model (Figure 

S1) to fit the TA/TB signals, similar to what has been done previously.55 Briefly, the 

proposed model involves five different states including CB, CBedge, ST, DT, and VB. 

The rate constant for each transition is adjusted iteratively and chosen based on which 

one best fit the experimental results. Detailed explanation of the model is given in SI. 

By using this model, we were able to assign time constants to the corresponding 

physical processes such as band edge cooling of hot electrons in larger particles, 

trapping into and decaying from shallow and deep trap states (Table S1). This kinetic 

modeling provides us a possible scenario for the relaxation processes involved, which 

will be discussed later. 

 

3.4.4 Time-resolved Photoluminescence 

In NCs, PL can be a combination of emission from both band edge and trap 

states.15 Controlling the surface properties by passivating trap states, can significantly 

increase the ratio of band edge over trap state emission and the PLQY, respectively. 

Usually, when exciting NCs at energies above bandgap, after hot carriers cool to the 
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band edge, they go through trapping in shallow and deep trap states. Following the 

charge carrier trapping in shallow and deep trap states, they can undergo radiative or 

non-radiative recombination. Depending on the nature and density of trap states, 

timescales for trap-assisted recombination can vary from a few ps to ns.15 Here, time-

resolved PL was used to investigate the excited-state radiative relaxation dynamics.  

Figure 5 shows the PL decay traces of prepared films of the three samples 

excited at the band edge of each samples, and the emission was collected at 530 nm, 

500 nm, and 470 nm for PNC20_APTES, PNC35_APTES, and PNC50_APTES, respectively. The 

PL decay were fitted using a double exponential function and the fitting parameters are 

reported in Table 2. Similar to TA measurements, PL dynamics are also a combination 

of trap-assisted (faster early time recombination) and non-trap-assisted (longer time 

constants) charge-carrier recombinations.53 The early lifetime of the samples is similar 

to what was observed in the TA study with middle-sized particles (PNC35_APTES), which 

had a time constant ~2 times longer than larger and smaller particles. Considering that 

the PL lifetime can also be correlated with the density of trap states in the material, it 

is reasonable to conclude that the slower early-time recombination in PNC35_APTES (3.9 

ns) relative to PNC20_APTES (2.1 ns) and PNC50_APTES (1.5 ns) is due to better passivation 

of trap states. This further confirms the higher density of shallow and deep traps in 

large and small particles as shown with the TA study. On the other hand, the slower 

component of the PL decay (τ2) is attributed to non-trap assisted electron-hole 

recombination pathways. The longer time component (τ2) and respectively, average 

lifetime drastically decreased as the PNC size got smaller. The average lifetime of each 
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sample, from large to small particle size, was calculated to be 19 ns, 7.5 ns, and 4.7 ns 

using Equation 1 described previously. A similar trend of decrease in PL lifetime was 

observed previously when going from bulk material to particle sizes in the strong 

quantum confinement regime.48 Even though the PL dynamics of middle-sized PNCs 

(PNC35_APTES) indicates lower density of trap states, which agrees with TA data, the 

average PL lifetime of larger particles still surpasses it due to higher amplitude of slow 

decay component. This result indicates the synergistic effect of size and surface 

properties on PL decay dynamics. For example, by changing the size and respectively 

the bandgap in PNCs, the relative position of trap states to band edge and their coupling 

is changing which may result in availability of different decay pathways. On the other 

hand, due to the presence of relatively more traps in the large PNCs, there is a higher 

possibility for charge carriers to go through multi-step non-radiative decay. This 

information in addition to measured PLQY was used to further complete the proposed 

model on the effect of size and capping ligand concentration on charge carrier dynamics 

and deciphering the competing effect between size and surface properties on radiative 

and non-radiative decay processes. 
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Figure 3-5- PL decay traces of PNCAPTES films prepared with different concentrations of 
APTES; 20𝜇L(red) {λex=520nm, λem=530nm, 35𝜇L(green) {λex=490nm, λem=500nm} and 
50𝜇L(blue) {λex=440nm λem=470nm}. 

 

Table 3-2- Fitting parameters of time-resolved PL decay of PNCAPTES films 

 
 
 
3.4.5 Mechanism of Exciton/Charge Carrier Recombination 
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Charge carrier dynamics in PNCs are usually more complex compared to the 

bulk material due to the presence of multiple states, such as shallow and deep traps, 

within the bandgap. Due to the shorter timescale of TA study in ps time regime, the 

measurement provides information about the faster transitions such as hot electrons 

cooling to band edge and charge carriers trapping in shallow and deep trap states near 

the band edge. However, further decaying from these trap states usually happens in ns 

timescale and can be studied using TRPL. Using the experimental TA and TRPL data 

and kinetic modeling (available in SI), we propose a simple mechanism to help explain 

the possible relaxation processes involved in the different sized PNCAPTES, as shown in 

Figure 6 (a-c). The proposed exciton/charge carrier relaxation processes of PNCAPTES 

samples involve the conduction band (CB), conduction band edge (CBedge), shallow 

trap (ST) states, deep trap (DT) states, and valance band (VB) as shown in the Figure 

S1. In these PNCs, an exciton is generated after excitation with energy above the 

bandgap. In tens of femtoseconds the exciton dissociates into electron and hole. 

Depending on the bandgap and its energy difference with excitation wavelength and 

the excess kinetic energy of the charge carriers, the charge carriers will go through 

intra-band cooling and relax back to the band edge (CBedge) through electron-phonon 

interaction.56 Due to the larger difference in bandgap and excitation energy, this process 

is only observed for the larger particles (PNC20_APTES) which had the smallest bandgap. 

Even though this process can occur for the other particle sizes as well, it was not 

detected with our instrument resolution. After charge carriers relax to the band edge, 

they can go through multiple pathways, however due to energy gap between the states, 
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some of them are kinetically more favorable than others. Our proposed model based on 

the extracted information from the dynamics studies demonstrates that due to low 

concentration of capping ligand in large particles, there is a high density of non-

passivated shallow trap states near the band edge that can cause faster recombination 

in early times. Furthermore, while higher concentration of capping ligand in 

PNC50_APTES passivated more surface defects, steric hindrance caused by bulky capping 

ligand (APTES) acted as a detrimental factor. Meanwhile the middle-sized particles 

presented an optimum combination of ligand concentration and surface passivation 

without facing steric hindrance which significantly lowered the density of shallow 

traps. 

 

 

Figure 3-6- Schematic illustration of proposed band structure and various dynamic processes 
and lifetimes for a) PNC20_APTES, b) PNC35_APTES, and c) PNC50_APTES. 

 
The rate of charge carrier transfer between different states is calculated using 

the kinetic model and summarized in Table S1. After charge carriers relax to the band 
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edge or shallow trap states, they can further go through radiative and non-radiative 

recombination. These following transitions happen in ns timescale and depending on 

the density of trap states in the PNCs, the ratio of these radiative and non-radiative 

transitions might be different as shown in equation 2. 

                          

W
XYZ[
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+ W
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                                          (2) 

 

Where (τobs), (τr), and (τnr) are the average PL lifetime, radiative lifetime, and non-

radiative lifetime, respectively. The PLQY provides a measure of the radiative vs non-

radiative processes. The change in density of trap states as a result of changing size and 

passivation efficiency can alter the recombination pathway and lifetime for a 

photogenerated charge carrier, thereby affecting the PLQY. The relationship between 

observed PL lifetime (τobs), radiative lifetime (τr), and PLQY is shown in equation 3.  

 

                                            𝜏^ =
XYZ[
_`ab

                                           (3) 

 

Using the average observed lifetime and the measured PLQY for these different 

sized PNCs, the τr and τnr calculated for each particle and reported in Table 3. 
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Table 3-3- Calculated radiative and non-radiative lifetime for PNCAPTES at different sizes. 

 

 

Calculated values for τr and τnr are summarized in Table 3. The τr significantly 

decreased by reducing the PNCs size, going from 35 ns for PNC20_APTES to 6.2 ns for 

PNC50_APTES. This descending trend is similar to what observed for the average PL 

lifetime (τobs).  Though this is not in agreement with the trend we observed for PLQY 

and early time recombination lifetime measured by TA spectroscopy, it is not quite 

unexpected. Theoretical and experimental studies previously reported on various QD 

systems indicate the strong size dependence of τr,57,58,59 which decreases dramatically 

by decreasing the diameter of NCs, mostly attributed to quantum confinement effect.59 

On the other hand, the τnr is calculated to be the longest (83 ns) for the middle-sized 

PNCs and to decrease significantly for the smaller and larger sizes. It has been shown 

previously that higher density of trap states result in higher possibility of non-radiative 

recombination, resulting in shorter τnr.60 Therefore, the longest τnr observed for 

PNC35_APTES confirms lower density of trap states leading the recombination processes 

towards spontaneous emission.. These results also confirmed by high PLQY (91%) 

measured for PNC35_APTES, which can also be attributed to defect passivation efficiency. 

Considering each one of these radiative and non-radiative lifetimes are factor of both 
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NCs size and surface properties, the calculated lifetimes are suggesting competing 

effect between these factors. This result suggests that effect of surface properties is 

more dominant on τnr, while the core size effect is more pronounced in τr. This 

information derived from experimental and calculated values resulted in achieving a 

more detailed model on effect of size on charge carrier dynamic and elucidating the 

mechanism behind the high PL efficiency in the middle-sized particles.  

 

3.5 Conclusion  

In summary, we have synthesized three different sized CH3NH3PbBr3 PNCs, 

ranging from 9.3 nm to 3.1 nm, by changing the amount of APTES used as capping 

ligands. By decreasing the size, absorption and emission spectra of the PNCs blue 

shifted, which is due to the strong quantum confinement effect, especially for the 

smaller PNCs with diameter less than the Bohr radius. The PLQY measured to be 

significantly higher (91%) for the middle-sized PNCs (PNC35_APTES) compared to the 

smaller and larger ones. Similar non-linear trend with respect to size observed in early 

time recombination lifetime measured by TA study. Using the experimental data and 

kinetic modeling, we assigned observed time constants to corresponding physical 

processes involved in the PNCAPTES samples and correlated some of them to size effect. 

The fast and medium time constant in TA signal decay, attributed to shallow and deep 

trap states recombination, were measured to be ~2 times longer in PNC35_APTES than 

those for the other sizes. Similarly, the extracted rate of charge carrier transfer from 

CBedge to ST in the kinetic model was smaller for middle-sized PNCs than the other 
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sizes. These results suggested more efficient passivation of surface traps in the middle-

sized PNCs. We suggest that the middle-sized PNCs have an optimal amount of 

capping ligand which mitigate steric hindrance of the large cone-shaped APTES, while 

properly passivating the defects. On the other hand, the observed PL lifetime (τobs) 

descended by decreasing the size. Using τobs and measured PLQY, radiative (τr) and 

non-radiative (τnr) components of the PL lifetime are determined to understand the size 

effect. Interestingly, τr exhibited strong dependence to PNCs core size, as it decreased 

drastically by decreasing PNC size. However, τnr was mainly dominated by effect of 

surface properties, since it was longest for the well-passivated middle-sized PNCs 

(PNC35_APTES). Considering both of these lifetimes are dependent on size and surface 

properties, the results demonstrate the competing effect between these two factors. 

Based on all the results, we proposed a model of the band structure to explain the 

various dynamic processes and lifetimes.  

 

Supporting Information 
 
 
 
Kinetic Modeling of Charge Carrier Dynamics 

 In order to better understand the physical processes associated with the exciton 

dynamics of the PNCAPTES, we use a kinetic model to fit the observed TA/TB signals 

obtained at the lowest pump power. The proposed exciton relaxation processes of 

PNCAPTES samples involve the conduction band (CB), conduction band edge (CBedge), 

shallow trap (ST) state, deep trap (DT) state, and valance band (VB) as shown in the 
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Figure S1. The rate constants were adjusted iteratively and finally chosen based on best 

fit to the experimental results. Table S1 shows a summary of the rate constants from 

each state to the TA/TB signals that provide the best fit to the experimental results for 

the PNCAPTES. 

 

 

Figure S1. Proposed kinetic model and energy levels to explain the dynamics of PNCAPTES. 
 

Table S1. Summary of rate constants used in the kinetic model that provides the best fit the 
exciton or charge carrier dynamics of the PNCAPTES. 
 

 

Several assumptions are made with regard to the modeling in order to properly 

compare with the experimental results. First, the absorption cross section of each state 
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is assumed to be the same. This is for simplicity since it is not currently easy to 

determine the absorption cross section for each state, especially the excited states. 

Consequently, the modeled signal is only proportional to the carrier concentration (or 

population). Second, the backward rate constants are approximately an order of 

magnitude smaller than forward rate constants. This is because the carriers are expected 

to relax more quickly from a higher energy state to a lower energy state than other way 

around. Finally, the initial state was assumed to have a positive signal value ([CB]0=1), 

the CB edge, two bandgap states and VB have zero signal ([CB edge]0=0, [ST]0=0 and 

[DA]0=0, [VB]0= 0). The chosen rate constants are used to generate the modeled data 

by the following equations: 

 

𝑑[CB]
𝑑𝑡 = −𝑘W[CB] + 𝑘)[CB	edge] 

𝑑[CB	edge]
𝑑𝑡 = 𝑘W[CB] − 𝑘)[CB	edge] − 𝑘$[CB	edge] + 𝑘F[ST]

− 𝑘E[CB	edge]– 𝑘o[CB	edge] 

𝑑[ST]
𝑑𝑡 = 𝑘$[CB	edge] − 𝑘F[ST] − 𝑘p[ST] 

𝑑[DT]
𝑑𝑡 = 𝑘p[ST] + 𝑘E[CB	edge]– 𝑘r[DT] 

𝑑[VB]
𝑑𝑡 = 𝑘r[DT] + 𝑘o[CB] 
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For each individual state, we generated a plot that represents the population over time, 

including the [VB], [CB], [CB edge], [ST] and [DT], for PNCAPTES, as shown in Figure 

S2. The CB population curve shows an exponential decay. As the CB population 

decays, the CBedge and ST population increases. Subsequent to the ST population 

increase, the electron relaxes into the DT, which represents as a simultaneous decrease 

in ST population and increase in DT population. At last, as the DT population decrease, 

the VB population increases. 

 

 

Figure S2. Populations of individual states as a function of time of PNCAPTES samples. 
 

Since the TA/TB signal contains contributions from different states, we need to 

account for that by summing up the modeled signals from relevant states to fit the 

exciton relaxation from CB and VB. By combining the contribution of 65% from the 

[CB], 25% from the [CB edge] and 10% contribution of the [ST], a curve could be 

generated that fit the observed TA signal at 500 nm of PNC20_APTES in Figure S3. As 
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shown in Figure S4, by combining the contribution of 20% from both of the [CB edge] 

,  20% contribution of the [ST], 20% contribution of the [DT] states and subtracting the  

[VB] with 40% contribution, a curve could be generated that fit the observed TB signal 

of PNC20_APTES samples. When the negative contribution of 30% from the [VB] and 

the positive contribution of 20% from the [CB edge], 25% from the both of [ST] and 

[DT] states, a curve could be generated that fit the TB recovery of PNC35_APTES 

samples. As summarized the 20% contribution of [CB edge], 15% contribution of [ST] 

and 15% contribution of [DT] states, and then subtract 50% contribution of [VB], a 

curve could be generated that fit the observed TB recovery of PNC50_APTES samples. 

we believe that the time constants give the right order of magnitude for the lifetimes of 

the key physical process and the modeling does provide some further insight into the 

dynamics than simple mathematical fittings that are usually done.  

 

 

Figure S3. Experiment data vs. modeled data of PNC20_APTES samples for TA decay. 
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Figure S4. Experiment data vs. modeled data of PNCAPTES samples for TB recovery. 
 

Using this kinetic model, we were able to assign time constants to 

corresponding physical processes happening in PNCAPTES. For PNC20_APTES, due to the 

larger energy of excitation compared to band gap, we were able to observe the transition 

from CB to CB edge which is happening in 1.2 ps. Following transition of charge 

carriers to the CB edge they decay to ST states and time constant for this transition was 

calculated to be 3 ps, from ST to DT was 23 ps, from CB to DT was 45 ps, from DT to 

VB was 50 ps, and from CB to VB was 1111 ps, respectively. These time constants for 

the same transitions calculated to be 6 ps, 33 ps, 120 ps, 200 ps, and 1250 ps for 

PNC35_APTES. While, for PNC50_APTES the time constants were 4 ps, 33 ps, 27 ps, 100 ps, 
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and 1000 ps, respectively. Even though these time constants might be somewhat off, 

because of several assumptions made in this modeling, we still believe they can provide 

further insight on kinetic of key physical processes happening in PNCAPTES samples. 

This information helped proposing a clearer model of the bandgap, demonstrated in the 

manuscript. 

 

Transient Absorption of PNCAPTES Samples Excited at the Band edge Absorption 

In addition, to have better comparison between these different-sized PNCs, the 

transient absorption measurements were also carried by exciting the PNCs at their 

optical band gap. For this purpose, PNC20_APTES, PNC35_APTES, and PNC50_APTES were 

excited at 510 nm, 480 nm and 430 nm, respectively. Figure S5 shows 3D 

representation of transient absorption data as a function of wavelength and delay time 

between pump and probe pulses. Similar to what observed after excitation with 390 nm 

beam, for PNC20_APTES a transient absorption (TA, excited-state absorption) signal at 

500 nm and a relatively broad transient bleach (TB, ground-state depletion) signal at 

530 nm was observed. Similar features were also observed for PNC35_APTES with a shift 

in signal positions to 450 nm (TA) and 480 nm (TB). However, for the PNC50_APTES 

sample, the TA signal fell out of the detection limit of our instrument and was not 

detectable while the TB signal observed at 455 nm.  

 



123 
 

 

Figure S5. Three-dimensional plots of transient absorption profiles after excitation with of 
PNC20_APTES, PNC35_APTES, and PNC50_APTES with 510 nm, 480 nm, and 430 nm pump, 
respectively as a function of probe wavelength (450-700nm) and delay time (0-1000ps).  

 

In order to compare the dependence of the charge carrier dynamics on excitation 

wavelength in these PNCAPTES samples, we analyzed the normalized single wavelength 

TB signal of PNC20_APTES sample excited at 390 nm (above band edge absorption) and 

510 nm (band edge absorption). Figure S6 shows the normalized single wavelength TB 

signal from 0-1000 ps. The probe wavelength for each sample corresponds to the 

wavelength of maximum TB amplitude. The recovery of these TB signals was fit with 

a triple exponential function and the corresponding fitting parameters are reported in 

Table 1.  

 



124 
 

 

Figure S6. Normalized ultrafast transient bleach decay profile of PNC20_APTES excited at 390 
nm and 510 nm, from 0-1000 ps. The decay profiles are fitted using a triple exponential function 
(solid line). 

 

 In order to test reproducibility of the data, the 390 nm excitation was also 

repeated with a new sample. As it is shown in figure S6, the decay dynamic in these 

three experiments have significant overlap and the small difference observed is within 

the noise range. Specially the data collected at 510 nm excitation is noisier due the 

interference of the excitation beam and the signal which is shown in figure S5. The 

detailed fitting parameters for these experiments is reported in table S2. This data 

shows no significant dependence of charge carrier dynamic to excitation wavelength in 

these different sized PNCAPTES samples. 
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Table S2. Fitting parameters and average lifetime of single wavelength (λmax) transient bleach 
recovery of PNCAPTES films fitted with triple exponential function. 

 

 

As discussed in the manuscript and reported previously1, recovery of TB signal 

is very sensitive to degree of surface passivation. For these PNCs, which are excited at 

their band edge absorption, we observed fast, medium and slow decay processes. The 

fast and medium decays are attributed to charge trapping in shallow and deep trap 

states, respectively and the slow decay is consistent with bimolecular electron-hole 

recombination.2 The decay dynamic of PNCs excited at 510 nm is similar to what 

observed after 390 nm excitation. The time constants of (τ1=3.57 ps, τ2=43.07 ps, and 

τ3=1108 ps) after 390 nm excitation are very close to resulted time constants (τ1=4.02 

ps, τ2=52 ps, and τ3=988 ps) after 510 nm excitation for larger particles (PNC20_APTES). 

This result confirms no excitation wavelength dependence of the dynamic in these 

PNCAPTES samples.  
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Chapter Four 
 

 

4 Size-dependent Crystalline Phase Stability of Hybrid Perovskite 

Nanocrystals at Different Temperatures 

 

4.1 Abstract 

 In recent years organic-inorganic perovskite nanocrystals (PNCs) have been 

studied extensively because of their great optical and photophysical properties. 

Perovskite showed significant potential to substitute expensive silicon in the 

photovoltaic and LEDs applications. However, perovskites commercialization is 

hindered by their instability toward environmental factors such as oxygen, light, 

humidity, and temperature. Thermal instability is specifically important since it thermal 

induced variation in crystal phase structure can affect materials optimal performance 

in devices. In this work, we studied effect of particles size controlled by varying the 

APTES capping ligand concentration on thermal stability of the MAPbBr3 NCs. The 

structural and optical properties of the PNCs were investigated at different temperatures 

using UV-Vis, photoluminescence (PL), temperature dependent PL, temperature 

dependent time resolved PL (TRPL), cryo-XRD, and cryo-EM. The preliminary results 

showed spectral blue shift of the PL peak by decreasing the temperature from 300 K to 

20 K, which is opposite of what was observed for large and middle-sized particles. The 

lifetime of the smaller PNCs also decreased by increasing the temperature. These 
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results can be possibly due to crystal phase transition in the small particles. 

Understanding the correlation of particle size and capping ligand concentration with 

thermal phase stability can help with optimizing PNCs for better device performance. 

 

4.2 Introduction 

 Organic-inorganic metal halide perovskite nanocrystals have attracted 

significant attention in recent years as a potential alternative for high cost silicon in 

photovoltaic applications. Perovskite nanomaterials with ABX3 formula (where A is 

organic/inorganic cation, B is metal cation such as Pb or Sn, and X is a halide anion 

such as Cl, Br, and I) offers flexibility in composition variation which can tune their 

optical and structural properties. In addition, easy and low-cost processing, tunable 

bandgap, large absorption coefficient, long exciton lifetime, and large charge carrier 

mobility1–3 makes them outstanding candidates for various applications, such as PV 

solar cells, light-emitting diodes (LEDs), photodetectors, sensors, lasers, and 

photoelectrochemical cells.4–8 However, the rapid degradation of material9,10, 

Hysteresis11,12 and their instability toward environmental factors such as light, oxygen, 

humidity and temperature9,13,14 hinder their commercialization. Several studies have 

correlated these instabilities to surface properties such as the presence of 

defects.15,16 These defects, which can be formed as a result of chemical and structural 

changes in the material, are also a detrimental factor impacting device performance as 

they provide recombination channels for photogenerated charge carriers.17,18 Therefore, 

various strategies for surface modification and defect passivation, including addition 
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of molecular capping ligands, organic polymers, and metal-oxide shells, have been 

used in order to improve the chemical and physical stability that is critical for 

maintaining device performance over time.19–24 Perovskite nanocrystals (PNCs) 

because of their large surface to volume ratio are considered as good models to design 

these passivation strategies. Furthermore, crystal phase plays an important role in 

perovskite stability and device performance. For example, substitution of 

methylammonium (MA) with formamidinium (FA) significantly enhances chemical 

stability, but FA based perovskite crystals have a phase transition to the yellow non 

perovskite polymorph (δ -phase), very close to photovoltaic operational temperatures, 

making the device performance unpredictable.25 Perovskite in general have unit cells 

composed of five atoms in a cubic structure (α phase), where cation B has six nearest 

neighbor anions X and cation A has twelve.26 However, maintaining this high symmetry 

cubic structure is very difficult. Therefore, perovskite can only stay in α-cubic at 

temperatures higher than 330° C.27 It is also reported that bromide-based perovskite 

crystals do exist in a pseudo cubic phase at room temperature due to the difference in 

the ionic radii of Br− and I−, with the smaller Br− helping in stabilizing the cubic 

lattice.28 Interestingly, the phase diagram is also tunable by crystal size, as evident from 

the fact that iodide based PQDs exist in the cubic phase at room temperature.29 In 

addition to optimizing the composition, capping ligand can also affect the phase 

stability in PNCs. It was previously observed for perovskite thin films that the long 

recombination lifetime in the tetragonal phase decreased an order of magnitude 

following the transition to the orthorhombic phase at lower temperature. The same 
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trend was Sarang et al. attributed this behavior to crossover from free carriers to 

exciton-dominated radiative recombination.30 On the contrary, Li et al. reported a 

significant PL lifetime increase of inorganic CsPbBr3 NCs by increasing the 

temperature to 300 K and then a sudden decrease in the lifetime by further increasing 

the temperature over 300 K, suggesting thermal instability in inorganic PNCs.31 We 

recently found a correlation among surface property, phase transition, and exciton 

dynamics for MAPbBr3 NCs capped with APTES and OABr.32 In this study, a higher 

energy band observed in the PL spectra, indicating a structural phase transition from 

tetragonal to orthorhombic at 140 K for PNCs capped with OABr. However, PNCs 

capped with APTES did not show any structural change even at 20 K. This is attributed 

to the difference in surface energy contribution to their Gibbs free energy, which 

modifies the crystal phase diagram to an energetically stable cubic phase. This capping 

ligand-dependent phase transition also decreased the PL lifetime associated with phase 

transition in the PNCs capped with OABr.32 Our group previously studied the effect of 

size and APTES concentration as capping ligand on charge carrier dynamics in 

MAPbBr3 PNCs. Here in this chapter, we studied the affect of PNC size and APTES 

concentration on crystal phase stability and its dependence to temperature. We used 

UV-Vis, photoluminescence (PL), temperature dependent PL, temperature dependent 

time resolved PL (TRPL), cryo-XRD, and cryo-EM to study the phase structure at 

different temperatures. Our preliminary results show the reverse trend in PL peak 

position shift at lower temperatures compared to middle and larger size. On the other 

hand, the lifetime of the smaller PNCs decreased by increasing the temperature, which 



139 
 

is the opposite of the larger sizes. These results can be due to crystal lattice expansion 

or phase transition in the small particles. Understanding the effect of particle size and 

capping ligand concentration on thermal phase stability will eventually help in 

designing materials with better device performance. 

 

4.3 Experimental 

4.3.1 Materials 

All chemicals were used as received without further purification: toluene 

(spectroscopic grade, Fisher Scientific), N,N-dimethylformamide (DMF, spectroscopic 

grade, Fisher Scientific), methylammonium bromide (MABr) (Greatcell Solar 

Australia Pty Ltd), lead bromide (98+%, Alfa Aesar), OA (90%, Alfa Aesar), and 

APTES (99%, Sigma-Aldrich). 

4.3.2 Synthesis 

A ligand-assisted reprecipitation method was used to synthesize the 

CH3NH3PbBr3 NCs. Briefly, 0.157 mmol of MABr and 0.200 mmol of lead bromide 

(PbBr2) were dissolved in 400 μL DMF and sonicated until clear. 100 μL of OA and 

varying amounts of APTES (20, 35, and 50 μL) were added to separate solutions to 

control the particle size. The precursor solution was further sonicated to reach a 

homogeneous solution and then injected into 5 mL toluene to precipitate and collect 

the nanocrystals. The resultant nanocrystals were centrifuged at 6000 rpm for 5 min 

and washed with toluene twice to remove unreacted precursors. A portion of the 
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collected precipitate was dried for powder XRD characterization and the rest was 

redispersed in toluene for film fabrication. 

4.3.3 Characterization and Instruments 

UV–vis and fluorescence spectra of the prepared nanocrystal films were 

collected on Agilent Technologies Cary 60 and FluoroMax-3, respectively. XRD was 

used to obtain the crystalline phase at a voltage of 40 kV and a current of 30 mA using 

a Rigaku America Miniflex Plus powder diffractometer. The scanning angle range was 

10–60° (2θ) with a rate of 3° min–1. TEM and HRTEM were carried out to investigate 

the size, morphology, and lattice spacing of the PNCs. The TEM study was carried out 

using a FEI UT Tecnai HRTEM microscope operated at a 200 kV accelerating voltage. 

The PL data were taken using an Acton 300i spectrometer and then dispersed onto a 

thermoelectrically cooled charge-coupled device (CCD) with a spectral resolution of 

0.18 nm. For time-resolved PL measurements, we used a time-correlated single-photon 

counting (TCSPC) system (Picoquant) in conjunction with the pulsed source. The 

temperature-dependent measurements were done in a cryo free system from Advanced 

Research Systems with a base temperature of 10 K. 

4.4 Results and Discussion 

4.4.1 TEM, UV-Vis and PL Spectroscopy 

 Controlling the particle sizes was achieved using different concentration of 

APTES as capping ligand in the dissolution–precipitation synthesis method similar to 

what reported previously.33 TEM images in Fig. 1 (a-c) shows formation of spherical 

and uniform particles, with average sizes of 9.2 ± 0.5, 5.1 ± 0.3, and 3.1 ± 0.2 nm when 
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20, 35, and 50 μL of APTES was used in the synthesis. These samples are labeled 

PNC20_APTES, PNC35_APTES, and PNC50_APTES, respectively. As shown in TEM images, 

the size of resultant PNCs was decreased by increasing the APTES concentration. This 

trend is due to the coordinating effect of capping ligands which slows down the rate of 

monomer transfer to the PNC surface and thereby limits growth. The relative 

uniformity of all sizes is due to the strong steric hindrance of branched APTES ligands, 

as reported previously.33  UV-Vis and steady state PL spectroscopy was also used to 

study their optical properties as shown in Fig. 1(d-f). These optical characterizations 

were performed on thin films of each sample deposited on glass substrate by spin 

coating. As shown in Fig 1 (d-f) the UV–vis spectra of PNC20_APTES exhibit an excitonic 

absorption peak at 520 nm with an extended tail at lower energies due to the scattering 

of the relatively larger particles. However, the absorption onset of PNC35_APTES and 

PNC50_APTES is blue-shifted to 490 and 440 nm, respectively. This spectral shift is due 

to the decrease in PNC size as reported previously.34–36 after excitation at 360 nm (λex), 

similar blue shift was observed for the narrow and symmetric PL emission bands, 

moving from 530 nm for PNC20_APTES to 470 nm for PNC50_APTES . These narrow 

emission peaks and the small full width at half-maximum indicates the uniform 

distribution in particle size as shown in the TEM images in Fig. 1 (d-f). In addition, a 

larger Stokes shift (∼41 meV) was observed as the PNC size decreased from 9.2 to 3.1 

nm. This size-dependent Stokes shift has been reported previously for CdSe QDs as 

well as all-inorganic PNCs such as CsPbBr3.37 Theoretical calculations have revealed 

the presence of an inherent, size-dependent confined hole state above the valence band 
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(VB) for CsPbBr3 NCs between the sizes of 2–5 nm. This hole state is proposed to be 

dark in absorption but bright in emission due to its low population density, which 

explains the size-dependent Stokes shift.37 Because cesium orbitals did not contribute 

to this identified confined hole state, this size-dependent stokes shift can be assumed 

to be a general feature in other PNCs similar to what we observed here for 

CH3NH3PbBr3 PNCs.  

 

Figure 4-1- TEM images of (a) PNC20_APTES, (b) PNC35_APTES, and (c) PNC50_APTES. (d) UV–vis 
and PL spectra (λex = 360 nm) of PNC20_APTES, (e) PNC35_APTES, and (f) PNC50_APTES spin-coated 
on the glass substrate at 4500 rpm. 

 
4.4.2 Temperature Dependent PL 

 Generally, in semiconductor nanomaterials the band gap energy 

increases as temperature decrease. This change in band structure with temperature is 
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due to the temperature induced lattice dilatation and electron–lattice interaction.38 The 

renormalization of the band energies due to electron-lattice interaction consists of two 

terms: The Debye-Waller (DW) and the self-energy (SE) corrections. Usually, for the 

semiconductor nanomaterials with direct band gaps both terms decrease by increasing 

the temperature.38,39 The thermal lattice expansion is mostly due to a positive 

hydrostatic pressure coefficient of the gaps, while the gap reduction arising from 

electron-phonon interaction is proportional to the Bose-Einstein phonon occupation 

number.38 However, Perovskite showed atypical dependence of band gap energy to 

temperature, which is attributed to its reverse band structure.27,10,40,41 Fig. 2 (a-c) shows 

PL intensity of differently sized PNCs mapped with the emission wavelength and 

temperature. As shown in Fig 2a and 2c, large and middle-sized particles with the 

diameter of 9.2 and 5.1 nm showed obvious red shift in PL spectra as the temperature 

decreased from 300 K to 20 K. This is similar to what was reported previously for 

various different perovskite nanocrystals. 32,40,41 As discussed before, this spectral red 

shift happens as a result of thermal lattice expansion and electron-lattice interaction in 

the materials with reverse band gap such as perovskite. In Fig. 2 d and e, the line cuts 

of the same maps are represented at 20, 100, 200, and 290 K. It is clearly showed that 

the PL spectra maximum of PNC20_APTES shifted from 530 nm at room temperature 

(RT) to 552 nm at 20K. similarly for PNC35_APTES the spectra shifted from 490 nm at 

RT to 505 nm at 20 K. in addition to the spectral shift, the full width half maximum 

(FWHM) decreased significantly by lowering the temperature. This can be simply 

related to the Varshni effect.42  The PL spectra in general is formed by emission from 
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different localized states at the same time which results in larger FWHM at RT.  At 

higher temperatures (up to 300 K) the thermal activation energy enables the carriers in 

the lower energy levels to hop and occupy the higher energy levels of the strongly 

localized states, which leads to the blueshift of the peak energy and the increase of the 

FWHM.43 The change in line shape observed for PNCs20_APTES and PNCs35_APTES at 

lower temperatures is also consistent with the lower thermal energy, which reduces 

homogeneous broadening.42  
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Figure 4-2- PL intensity mapped with the emission wavelength and temperature for (a) P-OABr 
and (b) P-APTMS (a) PNC20_APTMS, (b) PNC35_APTMS, and (c) PNC50_APTMS. Line cuts of the same 
maps at 20, 150, and 290 K for (d) PNC20_APTMS, (e) PNC35_APTMS, and (f) PNC50_APTMS. 

 

However, the PL spectra of the smallest PNCs (PNC50_APTES) with diameter of 

3.1 nm showed an opposite trend and slightly blue shifted with decreasing the 

temperature. Similar spectral blue shift was reported previously for MAPbI3 and 

MAPbBr3 perovskite nanomaterial and was attributed to crystal phase change.40,41,44,45 

The spectral shift onset started at ~160 K which is the temperature that was reported as 
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phase transition region from tetragonal to orthorhombic.44 In some other studies,  it has 

been shown that this phase change and spectral shift is significantly dependent on 

halide size. Saran et al. investigated the PL of (CsPbX3, where X is Cl, Br, or I) NC 

perovskites.46 They reported a wide broadening of the excitonic linewidth in these NCs, 

which arises from strong exciton–phonon coupling. CsPbBr3 and CsPbI3 NCs displayed 

a general redshift of their emission energy peak with reducing temperature. However, 

the CsPbCl3 NCs with smaller halide in the structure displayed a blueshift and 

underwent a structural phase transition at ≈ 175–200 K. This temperature-dependent 

change from an initial blueshift to a redshift is attributed to a phase change in the crystal 

structure.46 

 

4.4.3 Temperature Dependent TRPL 

 Structural phase transition in PNCs is accompanied by changes in charge carrier 

behavior, including both the type of carriers that dominate recombination (bimolecular 

or excitonic) as well the associated time scales. To study the effect of size and capping 

ligand concentration on the charge carrier lifetime as a function of temperature, we 

measured low-temperature time-resolved PL of all three samples (PNC20_APTES, 

PNC35_APTES, and PNC50_APTES) between 290 and 20 K. The average lifetimes of exciton 

decay for all PNCAPTES samples were calculated by fitting the data in Fig. 3 to a 

stretched exponential fit to account for continuous higher-order recombinations.47 The 

values of these recombination times, extracted from fits, are plotted in bottom plots of 

figure 3 for PNC35_APTES and PNC50_APTES. All the particles showed average lifetime of 
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2-3 ns. However, even without the benefit of quantitative analysis, a difference between 

the trends with temperature is clearly visible. For large and middle sized PNCS 

(PNC20_APTES and PNC35_APTES), the time-resolved curves show a continuous and 

gradual decrease of exciton lifetime with temperature. Based on previous reports, this 

reduction in charge carrier lifetime with lowering temperature arises from the 

interactions of free and trapped excitons with surface states or localized states as 

relaxation pathways.31,48–51  However, the lifetime of smaller PNCs (PNC50_APTES) 

showed reverse behavior compared to large and medium sized PNCs and decreased by 

increasing the temperature. Similar behavior in PL lifetime was previously observed 

when CsPbI3, CsPbBr3, and CsPbCl3 were compared.52  But it is not clear yet if this is 

trap-related recombination which cause this reverse lifetime trend. 
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Figure 4-3- Time-resolved PL curves for (a) PNC20_APTES, (b) PNC35_APTES, and (c) PNC50_APTES 
as functions of temperature. Recombination lifetimes extracted from stretched exponential fits 
for PNC35_APTES and PNC50_APTES are plotted in (d) and (e). 

 
4.4.4 Cryo XRD 

 In order to understand the reason behind the atypical behavior of the 

PNC50_APTES and investigate the possibility of phase change in these NCs, cryo XRD 

measurements were performed. XRD peaks of all three samples at temperatures 

ranging from 15 K to 300 K is shown in Fig 4. 
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Figure 4-4- XRD peaks of (a) PNC20_APTES, (b) PNC35_APTES, and (c) PNC50_APTES at temperatures 
ranging from 15 K to 300 K. The bottom panels are zoomed in peaks of (d) PNC20_APTES, (e) 
PNC35_APTES, and (f) PNC50_APTES from 43 to 45 degree. 

 

The XRD patterns shown in Fig.4 were used to determine the crystal structure 

of the PNCs. The peaks centered at 14.80°, 21.03°, 29.98°, 33.55°, 36.93°, 42.83°, and 

45.69° can be indexed to the cubic phase CH3NH3Br3 perovskite, indicating sample 

crystallinity and purity.53 When the amount of APTES was increased, significant 

broadening in XRD peaks was observed because of the presence of smaller PNCs and 

amorphous silica as a result of higher concentration of APTES on the 

samples.54 Further increase of APTES concentration resulted in the formation of the 

bulk material instead of PNCs. As shown in Fig 4 (d-f) all the peaks shifted toward 

large diffraction angles as the temperature decreased due change in cell parameters 

caused by lattice contraction.40 
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In these cryo XRD patterns no appearance of new peak or peak splitting was 

observed. However, by lowering the temperature from 300 K to 20 K, the peak 

observed at 14.8 degree got narrower and its intensity increased significantly in 

PNC20_APTES. While, the same peak was observed initially for PNC50_APTES at room 

temperature, but completely disappeared as the temperature went down to 15 K. This 

result can probably indicate the transition from cubic phase at lower temperatures for 

PNC50_APTES. However, since the peak intensities are low and within the noise range, it 

is difficult to draw solid conclusion. Therefore, new samples were prepared for cryo-

XRD at lower scanning rate to intensify the peaks.  

 

4.4.5 Cryo TEM 

It was discussed previously that lowering the temperature can cause change in 

cell parameters and lattice contraction in the PNCs, consequently. In order to study this 

lattice parameter change, high resolution TEM images were collected for PNC20_APTES, 

PNC35_APTES, and, PNC50_APTES at 300 K and 96 K. Fig. 5 represent the HR-TEM 

images of PNC35_APTES at 96 K and 300 K and the d-spacing in the lattice was measured 

for six different particles at both temperatures. The resultant d-spacing and the average 

is reported in Table 1. As it can be seen in Table 1, aside from small differences, the 

average d-spacing for the PNCs didn’t changed at different temperatures. This might 

mostly be due to rotation of PNCs under the microscope which is a common 

phenomenon. This rotation eventually results in inaccurate measurement of the lattice 

parameters. Even though this lattice contraction and expansion was reported in 
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previous literatures for PNCs and was confirmed by peak shift in temperature 

dependent PL and shift in XRD peaks, it was not clearly observed in this measurement. 

 

Figure 4-5- HR-TEM images of PNC35_APTES at 96 K and 300 K. 

 

Table 4-1- d-spacing of 6 different PNC35_APTES at 96 K and 300 K. 

 

4.5 Conclusion and Future Work 
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 Recent researches showed importance of optimizing surface of perovskite 

nanocrystals for improving their optical and photophysical properties. The surface 

defects are reported to be responsible for materials instability toward environmental 

factors including light, oxygen, humidity and temperature. Among these factors, 

temperature can specifically alter materials properties and therefore hinder their 

performance in device. Selection of capping ligand was also shown to be important for 

proper passivation of surface defects. In this work, various concentration of APTES as 

a branched and efficient capping ligand was used to control the particle size and 

investigate their optical and structural properties as a function of temperature. HR-TEM 

was used to determine the particle sizes to be 9.2, 5.1, and 3.1 nm with 20, 35, 50 μL 

of APTES was used, respectively. Room temperature steady state UV-Vis and PL 

showed size dependence spectral shift. Additionally, the temperature dependent PL was 

measured for all three particles and PNC35_APTES showed slight blue shift in the PL 

spectra which is opposite of what was observed for large and middle-sized PNCs. This 

blue shift at low temperature was suggested to be an indication of phase transition from 

tetragonal to orthorhombic. Since the phase transition can affect the charge carrier 

dynamics and recombination lifetime, the TRPL measurement was done to investigate 

the decay profile of these different sized PNCs. Interestingly, the small PNCs showed 

increase in lifetime with lowering the temperature, which is contradictory to the trend 

observed for large and small particles. The cryo-XRD was also done to investigate the 

possibility of phase transition, however, due to low peak intensity didn’t result in solid 

conclusion. For the future work, it is planned to do cryo-XRD at lower scanning rate to 
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achieve higher peak resolution. Temperature dependent Raman is also suggested as a 

powerful tool to detect phase transition in these NCs. 
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Chapter Five 

 
5 Improved Photocatalytic Activities and Charge Carrier 

Dynamics of CdS-based Heterostructures 

 
 
 
 
5.1 Abstract 

 
 In recent years, semiconductor photocatalysts has been widely studied as 

photon absorbers in artificial light driven water splitting for hydrogen evolution 

reaction (HER). Among them, CdS has attracted extensive attention due to its narrow 

bandgap for efficient absorption of visible-light and negative potential of its conduction 

band edge for the reduction of protons. However, Pure CdS has low activity and rapid 

photo corrosion which makes it unfavorable for hydrogen evolution reaction (HER). In 

Pure CdS photogenerated electron and hole pairs cannot be efficiently separated and 

transferred, therefore loading cocatalysts on CdS surface add more functionality or 

flexibility compared to Pure CdS. These hierarchical structures provide high activation 

potentials for HER and suppresses the photo corrosion of CdS. Moreover, charge 

injection from the narrow bandgap to the adjacent material leads to efficient charge 

separation and prolongs the electron lifetime by the elimination of the charge carrier 

recombination probability. Here we synthesized 1D CdS nanowires decorated with 

various nanomaterials including MoS2 nanosheets, NiS, NiS2, Ni3S2, and NiCo2S4 

nanoparticles on the surface and studied their improved photocatalytic activity. To gain 
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deeper insight into the mechanism behind the enhanced performance, ultrafast transient 

absorption (TA) techniques was used to probe the charge carrier dynamics. The results 

indicated the importance of optimizing molar ratio of the components in the 

heterostructure to achieve efficient performance. 

 

5.2 Introduction 

 Among the potential renewable energy resources, hydrogen is highly attractive 

owing to its highest specific energy of combustion and no production of harmful by-

product.1,2 Hydrogen production by photocatalytic water splitting using solar light is 

better than traditional electrochemical and thermochemical technologies that require 

electric or thermal energies.3–6 To date, good progress has been made in developing 

visible light-driven semiconductor photocatalysts for H2 evolution from water splitting, 

including metal oxides,7–10 sulfides,11–17 metal-organic frameworks (MOFs),18 and 

carbon nitrides (C3N4).19–21 Among them, CdS is extensively studied due to its 

absorption of visible light and appropriate band positions for watersplitting.22,23 

However, pristine CdS shows poor photostability and inefficient photogenerated 

electron-hole pair separation.24,25 Therefore, it is highly desired to explore strategies to 

improve the stability and charge carrier separation of CdS. One approach is to construct 

CdS-based heterojunction or nanocomposite materials.4,26–28 For example, metal 

sulfides such as MoS2 can enhance the photocatalytic activity of CdS in heterojunction 

systems.29–34 One dimensional (1D) CdS/MoS2 core-shell heterostructures exhibited 

enhanced visible light activity for H2 production.30 Similarly, WS2/CdS nanocomposite 
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also displayed more effective photocatalytic hydrogen evolution and better 

photostability than pure CdS nanoparticles.31 Other transition metal sulfides, such as 

NiS33,35and Ag2S,34 have also shown excellent performance as cocatalysts for 

photocatalytic H2 evolution. Nonetheless, several problems still exist with these 

approaches. First, interfacial charge transfer between photocatalyst and cocatalyst is 

limited by their small contact surface area. Second, charge transport is inefficient due 

to low conductivity. Third, the Gibbs free energy is not optimal for H2 evolution. Nickel 

sulfide (Ni3S2), a low-cost and abundance transition metal sulfide, is considered a good 

substitute for noble metals in hydrogen evolution reactions (HERs) and 

electrocatalysis. Recently, CNT/Ni3S2 hierarchical structures have demonstrated high 

efficiency photocatalytic H2 evolution, with ultrathin Ni3S2 nanosheets as cocatalyst 

facilitating the transfer of photogenerated electrons.36 Ni3S2 NWs decorated with CdS 

NPs have also shown significantly enhanced photocatalytic H2 evolution with visible 

light.12 In section 5.4.1 of this chapter, we discuss fabrication of CdS NWs with Ni3S2 

NPs to construct Ni3S2/CdS nanocomposites through a facile two-step solvothermal 

technique. The photocatalytic H2 production activity of the as-prepared catalysts was 

evaluated utilizing lactic acid as sacrificial reagent in aqueous solution under visible 

light irradiation (λ≥400nm). All results showed that the binary Ni3S2/CdS hybrids 

displayed much higher photocatalytic H2 production activity than bare CdS NWs, with 

optimal H2 evolution rate of 21.98 mmol h−1g−1. Transient absorption (TA) studies 

revealed that the carrier lifetime in 10%-Ni3S2/CdS was about four times shorter than 
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that of pristine CdS NWs, indicating efficient charge transfer from CdS to Ni3S2, 

consistent with the photocatalytic results. 

Molybdenum disulfide (MoS2), with a layered structure composed of three 

stacked atom layers (S–Mo–S), has also been extensively investigated as an excellent 

cocatalyst for facilitating separation of photoinduced carriers and reducing 

photocorrosion. Li et al. first reported that the activity of producing H2 for 0.2 wt% 

MoS2/CdS was enhanced 36 times compared to pristine CdS, which was even higher 

than 0.2 wt% Pt/CdS under the same reaction conditions.29,37 Following this work, 

MoS2/CdS nanocomposites with different physical dimensions have been constructed 

and applied to HER.30,31,38–41 Among them, one-dimension (1D) CdS nanostructures 

have attracted considerable interests due to their large aspect ratio, high electron 

mobility and fast electron transport with short radial distances.30,42 MoS2 has three 

phases:1T, 2H and 3R. Among them, metallic 1T-MoS2 has attracted more attention in 

improving HER performance, due to the large exposure of edge sites, excellent 

electronic conductivity and high density of trap states and vacancies. Therefore, 

coupling 1D CdS with 1T-MoS2 would seem to be a promising approach to achieve 

high efficiency for solar H2 evolution. In part 5.4.2 of this chapter, we discus fabrication 

of MoS2/CdS nanocomposite structures with the optimized amount of 1T-MoS2 for 

PEC and photocatalytic HER applications. Enhanced PEC activity for HER with 

optimal amount of 1T-MoS2 is attributed to improved charge separation and transfer in 

CdS facilitated by MoS2. 
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As another potential material for these heterostructures, nickel sulfide (NiS), a 

p-type semiconductor, has attracted attention because of its low-cost, good electrical 

properties, and other unique property such as high electrocatalytic effect toward the 

polysulfide reaction.37,38 For example, Zhang et al. prepared NiS modified TiO2 using 

solvothermal method for the photocatalytic H2 production with an evolution rate of 0.7 

mmol h−1g−1.31 Chen et al. also synthesized g-C3N4/NiS hybrid photocatalysts through 

in situ template-free ion-exchange process with H2 production rate of 0.45 mmol 

h−1g−1.39 Furthermore, Xu et al. found that NiS can be employed as cocatalyst of CdS 

for photocatalytic water splitting from lactic sacrificial solution via a simple 

hydrothermal method, and the H2 evolution rate reached 2.8 mmol h−1.40 Yu et al. 

developed NiS nanoparticle decorated CdS nanorods photocatalysts using a convenient 

two-step hydrothermal approach, with an H2 evolution rate of 1.13 mmol h−1g−1.30 As 

far as we know, 1D NiS/CdS nanowire composite has yet to be applied to HER. In the 

meantime, the water-splitting process is inherently unfavorable thermodynamically, 

and rapid reaction between O2 and H2 produced limited hydrogen production. To 

address this issue, one approach is to put in sacrificial agents to expend the oxygen-

derived groups generated, preventing subsequent O2 production and its reverse reaction 

with H2. Besides, the sacrificial agents serve as hole scavengers, increasing the 

separation efficiency of electrons and holes. One ideal scenario to address these issues 

is by photo reforming of alcohols in the photocatalytic HER. The photo reforming of 

alcohols, for example methanol,42,43 ethanol44 or glycerol,45 has been completely 

investigated over the past decade. These alcohols are classified the first generation of 
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biofuels, as they are derived from biomass, such as starches, sugars, or vegetable oils. 

However, the consumption of these substances as a hydrogen precursor prevents their 

application in food industry. Therefore, the lignocellulosic biomass has been used as 

second generation of biofuels, since they can be planted in combination with crop or 

on barren soil. Lignocellulose contains three main biopolymers, that is lignin (15–

20%), hemicellulose (25–35%) and cellulose (40–50%).46 Lignin is the most stubborn 

of the three components of lignocellulosic biomass. Therefore, if lignin could also serve 

as sacrificial agents (hole scavengers) to reduce the rate of charge carrier 

recombination, the photocatalytic method for degradation of lignin can be used in 

conjunction with the production of hydrogen from water splitting. Nevertheless, this 

approach has not been extensively investigated previously. In section 5.4.3 of this 

chapter, we fabricated 1D NiS/CdS nanocomposites using a two-step solvothermal 

method. The nanocomposite shows obvious enhanced HER activity compared to pure 

CdS nanowires (NWs). The H2 evolution rate obtained using the optimized 

photocatalyst is up to 147.7 μmol h−1g−1(λ≥400 nm) and the apparent quantum 

efficiency (AQE) was 44.9% from aqueous solution of lignin and lactic acid. The 

stronger light absorption and more efficient electron transfer of the nanocomposites are 

confirmed by UV–vis spectroscopy and the photo-electrochemical properties, which 

could lead to the enhanced photo-catalytic water splitting ability in comparison with 

that of pristine CdS. Furthermore, the effect of the NiS loading on charge carrier 

dynamics has been researched using femtosecond transient absorption (TA) 

spectroscopy, which offers information about charge separation and transfer from CdS 
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to NiS. These results also prove that the appropriate amount of NiS can substantially 

enhance charge carrier separation and transfer, correlating with significant 

enhancement in the photocurrent density. This work demonstrates the potential of 

NiS/CdS nanocomposite as an effective photocatalyst for hydrogen evolution utilizing 

lignocellulosic biomass. 

NiS2 is another type of nanoparticles that has been used as an efficient noble-

metal-free cocatalyst to improve the photocatalytic H2 evolution of CdLa2S4 47 and C3N4 

48,49 due to its good electrical and optical properties.50 To our knowledge, there have 

been no reports of 1D CdS NWs decorated by NiS2 cocatalyst for improving 

photocatalytic H2 evolution. Although photocatalytic water splitting has been 

demonstrated a few decades ago, it is still a challenge for photocatalysts to efficiently 

produce hydrogen from pure water without sacrificial agents.51,52 In most cases, the 

photocatalytic HER from water is carried out with an excess of sacrificial reagent such 

as alcohols, sugars and organic acids.51,53 From a practical and economic point of view, 

hydrogen production would not involve such valuable chemicals as sacrificial agents. 

Cellulosic material, as the most abundant component of biomass, is considered as a 

promising renewable resource for sustainable hydrogen generation. Cellulosic biomass 

can be converted into hydrogen and other valuable products through several 

thermochemical processes such as hydrolysis by acids or enzymes. However, because 

of the rigid intra- and inter-molecular hydrogen bonds in cellulose, the conversion of 

cellulose to liquid fuels and high value chemicals requires extremely harsh reaction 

conditions. On the other hand, the separation and purification of the valuable bio-
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products from the reaction medium is rather difficult, which is still an issue to be 

resolved for the practical application. If cellulose could be photocatalytically 

decomposed into the bio-products, it is possible to obtain hydrogen using generated 

intermediates as the sacrificial electron donors during the cellulose decomposition 

process. The hydrogen production assisted by the cellulose decomposition may also be 

more practical and feasible compared to the photocatalytic water splitting. Only a few 

researches about the photocatalytic cellulose degradation have been reported, but the 

degradation of cellulose with the simultaneous generation of hydrogen is limited. In 

section 5.4.4 of this chapter, using NiS2 as cocatalyst for boosting the photocatalytic 

H2 evolution activity of CdS NWs is reported. The binary NiS2/CdS nanocomposites 

with different compositions were successfully prepared by a facile two-step 

solvothermal method. The photocatalytic H2 evolution activity of the as-prepared 

samples was tested using lactic acid as sacrifical agent under visible light. All results 

indicated that the binary NiS2/CdS nanocomposites exhibited much better 

photocatalytic H2 evolution activity than pure CdS NWs or NiS2 NPs, with optimal H2 

evolution rate of 14.49 mmol h-1 g-1. Photoelectrochemical (PEC) and transient 

absorption (TA) studies revealed the high efficiency charge transfer from CdS to NiS2, 

consistent with the photocatalytic results. Meanwhile, hydrogen generation from 

cellulose solution was carried out under UV-Vis light irradiation, which demonstrated 

the potential of NiS2/CdS nanocomposite as an effective photocatalyst for hydrogen 

evolution utilizing biomass. 
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Recently, metallic sulfides, especially Ni-Co sulfide, have been found to exhibit 

strong electrochemical performance due to their small bandgap energy and high 

conductivity.54,55 Moreover, binary Ni-Co sulfide can provide rich redox reactions than 

single metal sulfides such as NiS and Co9S8,56,57 owing to the combined effect from 

both the nickel and cobalt ions with different valence states.35,57–60 For instance, ternary 

NiCo2S4 has been applied as an advanced electrode material for high-efficiency 

supercapacitors and electrocatalysts in water splitting.61,62 To date, NiCo2S4 has not 

been utilized in conjunction with CdS for photocatalysis applications. In section 5.4.5 

synthesis of composite structures composed of 1D CdS nanowires (NWs) and NiCo2S4 

nanoparticles (NPs) fabricated in an aqueous phase through a hydrothermal method is 

discussed. Compared to pristine CdS NWs, the heterostructure composites show 

improved hydrogen evolution reaction (HER) activity from water splitting with visible-

light-driven. The enhancement can be ascribed to the formation of the Schottky 

junction that enhanced the separation and transfer of photoinduced charge carriers. In 

addition, the composites show good stability with the use appropriate hole scavengers. 

 
5.3 Experimental 

 
5.3.1 CdS Nanowires Synthesis 

In a typical process, cadmium diethyldithiocarbamate (Cd(S2CNEt2)2), 

prepared by sediment from a stoichiometric precursor mixture of cadmium chloride 

(0.01 mol) and sodium diethyldithiocarbamate trihydrate (0.01 mol) in 50 mL of 

deionized water, was transferred to a Teflon-lined stainless steel autoclave with. Then, 
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the autoclave was filled with 40 mL of ethylenediamine. The autoclave was heated at 

180 °C for 24 h and then cooled down to room temperature. The pale yellow sediment 

was collected and washed several times with absolute ethanol and deionized water. The 

final products were dried in a vacuum oven at 60 °C for 12 h. 

5.3.2 Nanocomposites Synthesis 

 The Ni3S2/CdS nanocomposites were synthesized using a typical solvothermal 

method. Briefly, a certain amount of the as-prepared CdS NWs (1.445 g) were 

suspended in 30 mL absolute alcohol and stirred vigorously for 30 min. Then a known 

amount of NiCl6·6H2O and CH4N2S were dissolved in the above prepared suspension 

under strong magnetic agitation. After stirring for another 30 min, it was transferred 

into a Teflon-lined autoclave with 50 mL capacity followed by solvothermal treatment 

at 180°C for 12 h. After cooling down to room temperature naturally, the obtained 

precipitate was filtered via centrifugation, rinsed using alcohol and deionized water for 

several times, respectively, and then dried in vacuum at 60°C overnight. The prepared 

photocatalysts with different contents of Ni3S2 on CdS NWs were abbreviated as x%-

Ni3S2/CdS (x was the molar ratio of Ni3S2 to CdS NWs), and x was referred as 5, 10, 

20 and 30, respectively. 

 For the MoS2/CdS nanocomposites, a certain amount of thioacetamide 

(C2H5NS) and sodium molybdate (Na2MoO4·2H2O) (the molar ratio of S and Mo is 

2.0) were dissolved into 36 mL of deionized water and stirred until the transparent 

solution was formed. Then, 0.72 g of as-prepared CdS NWs was added into the above 
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transparent solution. The theoretical molar ratio of MoS2 and CdS (1.0, 2.0, 5.0, 10.0, 

15.0 and 20.0) was varied by adjusting the MoS2 amount.  

The 1D NiS/CdS nanocomposites were also assembled by a similar template-

free and mild two-step solvothermal method. The molar ratio of NiS and CdS was 

varied (0.1, 0.2, 0.4, 0.6, 0.8 and 1.0) by adjusting the CdS amount. 

 For synthesizing NiS2/CdS Nanocomposites, a certain amount of 

Ni(NO3)2·6H2O and Na2S2O3 were dissolved in the CdS suspension under further 

magnetic agitation. Then, 20 mL ethylene glycol [(CH2OH)2] and 1.2 mL 0.5 mol·L-1 

oxalic acid (H2C2O4) solution were slowly added into the above mixture. After stirred 

for another 0.5 h, it was transferred into a Teflon-lined autoclave with 50 mL capacity 

followed by solvothermal treatment at 180 oC for 12 h. The prepared samples with 

different contents of NiS2 on CdS NWs were abbreviated as x %NiS2/CdS (x was the 

molar ratio of NiS2 to CdS NWs), and x was referred as 5, 10, 20, 40, 60, 80 and 100, 

respectively.   

Fabrication of NiCo2S4/CdS nanowires with different molar addition ratios of 

NiCo2S4 NPs. Specifically, a certain amount of the CdS NWs (1.445 g) was sonicated 

thoroughly in 30 mL DI water for 5 min and then continuously stirred for 15 min. Next, 

a given amount of NiCl6·6H2O, CoCl6·6H2O, thiourea (TU), and 8ml of NH3·H2O were 

added into the CdS NWs dispersion under vigorous stirring for 20 min. Then, the 

mixture was transferred into a 50 mL stainless steel autoclave with a Teflon liner and 

kept at 180 °C for 12 h. The obtained precipitates were collected, washed thoroughly 

with deionized water and ethanol, and finally dried in an oven at 60 °C overnight. The 
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precipitates of CdS NWs–NiCo2S4 NPs composites with different molar addition ratios 

of NiCo2S4 NPs were obtained. The specific molar addition ratios of NiCo2S4 NPs in 

the CdS NWs–NiCo2S4 NPs composites were respectively controlled to be 0.05, 0.1, 

0.2 and 0.3, denoted as 5%-NiCo2S4/CdS, 10%-NiCo2S4/CdS, 20%-NiCo2S4/CdS, 

30%-NiCo2S4/CdS.  

 
5.3.3 Ultrafast Transient Absorption Spectroscopy 

 
 The femtosecond transient absorption (TA) measurements were carried out 

using a Quantronix laser system as described previously.44 The system consists of an 

Er-doped fiber oscillator, regenerative amplifier and diode-pumped Nd: YLF pump 

laser (527 nm). The seed beam after amplification splits to a white light continuum 

probe pulse (450−750 nm) and feed an optical parametric amplifier with 1:9 ratio, 

respectively. The output of optical parametric amplifier was tuned to 390 nm and used 

to excite the samples, which were prepared as thin films using spin coating technique, 

with various pulse energies (750, 323 and 190 nJ per pulse) to study power dependence. 

After overlapping pump and probe on the sample spatially and temporally, the TA data 

was collected using a charge-coupled device (CCD) detector over a temporal delay 

interval of 0–1000 ps between the pump and probe pulses. 

 

5.4 Results and Discussion 

5.4.1 Ni3S2/CdS Nanocomposites 
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5.4.1.1 Photocatalytic Activity and Transient Absorption Study of Ni3S2/CdS 

Nanocomposites 

 
 The photocatalytic H2 production of CdS NWs and Ni3S2/CdS nanocomposites 

was evaluated under visible-light irradiation (λ ≥ 400 nm) with 2 vol% lactic acid as 

sacrificial reagent. H2 production over the Ni3S2/CdS nanocomposites with different 

Ni3S2 content showed an obvious increase in the whole photocatalytic reaction 

process.63 All the Ni3S2/CdS nanocomposites exhibited much higher rates of 

H2 production than that of pure CdS NWs, indicating the Ni3S2 NPs loading facilitates 

H2 production. However, the H2 production rates of Ni3S2/CdS nanocomposites first 

increases and then decreases with increasing Ni3S2 loading. The optimal molar ratio of 

Ni3S2 and CdS for Ni3S2/CdS nanocomposites was determined to be about 10 mol%, 

which shows the highest H2 evolution rate of 22.0 mmol h−1 g−1, much higher than that 

of pure CdS NWs (0.03 mmol h−1 g−1).63 These results demonstrated that loading 

suitable amount of Ni3S2 NPs on the surface of CdS NWs could increase the visible 

light absorption and facilitate charge separation, thus accelerating H2 evolution.  

Ultrafast TA measurements were used to probe the charge carrier dynamics and 

gain deeper insight into the origin of improved photocatalytic performance. Three 

samples, including pure CdS NWs, 10%-Ni3S2/CdS nanocomposites, and 30%-

Ni3S2/CdS nanocomposites, were deposited on a glass substrate using spin coating. The 

prepared films were excited with 400 nm pump pulses at different pulse energies (615, 

310, 170 nJ/pulse) to investigate the excitation energy dependence of the dynamics due 

to possible non-linear processes such as exciton-exciton annihilation and Auger 
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recombination. Here we present data in the linear regime to avoid complication due to 

non-linear processes. Hence, data collected with 615 nJ/pulse excitation energy were 

used to compare the samples due to their large signal to noise ratio (S/N). The 3D TA 

data are shown in Fig 1(a-c) as a function of probe wavelength and time delay between 

pump and probe pulses. 

 

 

Figure 5-1- 3D representation of transient absorption (TA) and transient bleach (TB) profile 
of a) CdS NWs, b) 10%-Ni3S2/CdS nanocomposites, and c) 30%-Ni3S2/CdS nanocomposites, 
excited at 400 nm with pulse energy of 615 nJ/pulse 

 
As shown in Fig. 1, each of these samples exhibits a TA signal leaked at 475 

nm attributed to absorption of excited state electrons in CdS NWs and a broad transient 

bleach (TB) signal from 500 nm to 700 nm, attributed to depletion of ground state 

electrons in CdS NWs as reported previously.33,64 With deposition of Ni3S2 NPs to the 

surface of CdS NWs, the TA/TB peaks positions did not change, as the amount added 

is small. Analyzing the decay of these signals, attributed primarily to electron and hole 
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recombination, provides information about the charge carrier dynamic and charge 

transfer from CdS to Ni3S2. 

Fig. 2 shows the single wavelength decay traces of TA signal for CdS NWs, 

10%-Ni3S2/CdS, and 30%-Ni3S2/CdS nanocomposites. There is a significant difference 

among these samples in their decay dynamics and corresponding lifetimes. The decays 

are fitted using a double exponential function and the fitting parameters are reported 

in Table 1. 

 

 

Figure 5-2- Normalized TA decay profile of CdS NWs (blue), 10%-Ni3S2/CdS (green), and 
30%-Ni3S2/CdS (yellow) nanocomposites. The TA decay over time was fitted using double 
exponential function. 
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Table 5-1- Fitting parameters of TA signal recovery of CdS NWs, 10%-Ni3S2/CdS 
nanocomposites, and 30%-Ni3S2/CdS nanocomposites fitted with double exponential function. 

 

 

Based on the fitting parameters on Table 1, each sample has two decay time constants. 

In the case of pure CdS, the excitons generated after photoexcitation can recombine 

through multiple possible pathways. Some of the excitons recombine through shallow 

and deep trap states via trap state-mediated recombination. Since this process usually 

happens on the tens of ps timescale, the faster time component of the decay is attributed 

to recombination mediated by trap states.44 The longer time constant observed in the 

TA signal decay is attributed to recombination between the conduction band (CB) 

electron and valence band (VB) hole.65 To help extract the charge transfer rate from 

CdS to Ni3S2, we calculate the average lifetime as follows. 

 

𝜏tuv =
RSXS	U &	RUXU	U

RSXS&RUXU
     (1) 

 

The average lifetime (τave) for the pure CdS NWs is calculated to be 686 ps. However, 

by addition of 10% Ni3S2, τave significantly decreased to 185 ps. This decrease in 

lifetime is attributed to electron transfer from the CB of CdS to Ni3S2.66,67 Assuming 
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the electron in Ni3S2 has no or weaker absorption of the probe light than in CdS, the 

electron transfer from CdS to Ni3S2 would result in shorter lifetime, as observed. On 

the other hand, in a similar study, using Pt as cocatalyst on the surface of CdS nanorods, 

it has been shown that photoexcited holes can be delocalized to the surface of CdS. 

Therefore, the close proximity between the delocalized holes and electrons transferred 

to Pt NPs results in a faster recombination rate and shorter lifetime.67 Due to 

resemblance between the Pt/CdS system and Ni3S2/CdS nanocomposites studied here, 

the shorter lifetime observed may be due to a similar reason, i.e. delocalization of 

photogenerated hole to the surface of CdS and thereby faster recombination with the 

electron transferred to Ni3S2. While this shorter lifetime might seem to contradict the 

higher photocatalytic efficiency observed for this 10%-Ni3S2/CdS nanocomposites, it 

should be noted that in the photocatalytic H2 evolution measurements, lactic acid was 

present in the solution as a hole scavenger which reduces electron-hole recombination. 

No hole scavenger was present in the TA measurements, so one may not be able to 

directly correlate the two experimental results. 

Further increasing the amount of Ni3S2 in 30%-Ni3S2/CdS resulted in a lifetime of 461 

ps, which is longer than 185 ps in 10%-Ni3S2/CdS. As shown in TEM images, addition 

of 10% Ni3S2 resulted in formation of a thin and uniform layer of Ni3S2 on CdS NWs. 

This uniform layer provides intimate contact and an efficient interaction at the interface 

that can promote charge transfer from CdS NWs to Ni3S2 NPs. However, by further 

increasing the amount of Ni3S2 to 30%, the Ni3S2 NPs grow as flocculant structures 
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that actually lead to reduced surface coverage or interaction with CdS, and thereby 

slower charge transfer. 

 

Further increasing the amount of Ni3S2 in 30%-Ni3S2/CdS resulted in a lifetime of 461 

ps, which is longer than 185 ps in 10%-Ni3S2/CdS. As shown in TEM images63, 

addition of 10% Ni3S2 resulted in formation of a thin and uniform layer of Ni3S2 on 

CdS NWs. This uniform layer provides intimate contact and an efficient interaction at 

the interface that can promote charge transfer from CdS NWs to Ni3S2 NPs. However, 

by further increasing the amount of Ni3S2 to 30%, the Ni3S2 NPs grow as flocculant 

structures that actually lead to reduced surface coverage or interaction with CdS, and 

thereby slower charge transfer. The electron transfer rate constant (kET) from CdS NWs 

to Ni3S2 NPs can be calculated using the following equation: 

 

𝑘wx =
W

Xyz{(|}V~U/��~)
− W

Xyz{(��~)
          (2) 

 

The kET calculated to be 3.9 × 109 s−1 and 7.1 × 108 s−1 for 10%-Ni3S2/CdS and 30%-

Ni3S2/CdS nanocomposites, respectively. This smaller electron transfer rate for 30%-

Ni3S2/CdS is consistent with decreased photocatalytic activity of the 30%-Ni3S2/CdS 

nanocomposites compared to 10%-Ni3S2/CdS with larger kET. This suggests the 

importance of optimizing the amount of cocatalyst (Ni3S2) on the CdS surface for 

achieving efficient photocatalytic activity in the material. 
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5.4.1.2 Photocatalytic mechanism of Ni3S2/CdS nanocomposites 

We propose a possible HER mechanism for photocatalytic H2 production and 

interfacial charge transfer in Ni3S2/CdS nanocomposites under illumination of visible 

light, as illustrated in Fig. 10. In this system, CdS is the primary light absorber, and 

upon photoexcitation, photoinduced electrons are generated in the valence band (VB) 

and holes in the conduction band (CB). These photogenerated charge carriers can go 

through multiple pathways, including shallow and deep trap states or direct 

recombination.66 Only a small fraction of photogenerated electrons can participate in 

photocatalytic reaction and reduce H+ ions to H2, due to the fast recombination of 

photoinduced electron and hole pairs in pure CdS NWs, leading to low H2 production.  

The addition of Ni3S2 NPs to the surface of CdS NWs can significantly improve 

the H2 production. The major photocatalytic HER process on Ni3S2/CdS 

nanocomposites are summarized in Eqs. (3-6). Followed by absorbing the photons, CdS 

NWs generate electron and hole pairs (Eq. 3). By loading Ni3S2 NPs on the CdS NWs, 

the photogenerated electrons in the CB of CdS NWs can be transferred to Ni3S2 NPs. 

This electron transfer is also thermodynamically favorable due to the appropriate work 

function of Ni3S2 with respect to CB of CdS. The charge carrier dynamics study using 

TA spectroscopy also confirmed this efficient transfer as manifested in significantly 

shorter lifetime in Ni3S2/CdS nanocomposites compared to pure CdS NWs. The Ni3S2 

NPs serve as a capture site of electrons generated in CdS and effectively improve the 

separation of photoexcited electron-hole pairs. At the same time, lactic acid in the 

solution acts as a sacrificial reagent, being oxidized by holes (hole scavenger), to 
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further prevent electron-hole recombination and improves the chance for electrons to 

participate in the photocatalytic H2 evolution reaction on the surface of Ni3S2 NPs. In 

acid solutions, three principal reactions are assumed to predominate when H2 is 

evolved, showed as Eqs. (3-6).68 

 

CdS	 + 	hν	 → 	CdS	(e7 + ℎ&)                              (3) 

𝑁𝑖$𝑆2 	+ 	e7 	+	𝐻$𝑂& 	→ 	𝑁𝑖$𝑆2 − 𝐻t�� + 𝐻)O	                 (4) 

𝑁𝑖$𝑆2 − 𝐻t�� 	+	e7 	+	𝐻$𝑂& 	→ 	𝑁𝑖$𝑆2 +	𝐻2 	+ 𝐻)𝑂         (5) 

𝑁𝑖$𝑆2 − 𝐻t�� 	+	𝑁𝑖$𝑆2 − 𝐻t�� 	→ 	2𝑁𝑖$𝑆2 +	𝐻2 	+ 𝐻)𝑂    (6) 

 

 

 

Figure 5-3- Proposed mechanism for photocatalytic H2 production and charge transfer for the 
photocatalysts of Ni3S2/CdS nanocomposites under visible light irradiation. 

 
5.4.2 MoS2/CdS Nanocomposites 
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5.4.2.1 Photocatalytic Activity and Transient Absorption Study of MoS2/CdS 

Nanocomposites 

 
 Photocatalytic hydrogen evolution over CdS, MoS2 and MoS2/CdS 

nanocomposites were evaluated under visible light irradiation (λ ≥ 400 nm) in aqueous 

solution containing glucose and lactic acid or lactic acid alone as hole scavengers. Pure 

CdS showed a very low photocatalytic activity during the reaction process, which is 

attributed to fast recombination of photogenerated charge carriers and less active sites 

in CdS NWs. Loading MoS2 on the surface of CdS NWs significantly enhances the 

average rates of H2 evolution. When the theoretical molar ratio of MoS2 and CdS is 

5%, the H2 production rate reaches an optimal value, which is approximately 86.3 or 

56.7 times higher than that of pure CdS NWs using glucose and lactic acid or lactic 

acid as sacrificial agent, respectively. However, further increasing amount of MoS2 in 

the nanocomposites leads to a decrease of H2 evolution activity, which may be 

attributed to excessive MoS2 that competes with CdS for light absorption.  

Ultrafast TA spectroscopy was used to study the charge carrier separation and 

transfer through the system. CdS NWs, 5%-MoS2/CdS and 20%-MoS2/CdS were 

excited with 390 nm pump laser pulses. Fig. 4(a–c) show 3D and 2D representation of 

TA data as a function of probe wavelength and delay time between pump and probe 

pulses.  
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Figure 5-4- 3D(top) and 2D(bottom) representation of the transient absorption of a) CdS 
nanowires; b) 5%-MoS2/CdS; c) 20%-MoS2/CdS excited with 390 nm pump (750 nJ/pulse) 

 

As it is shown in Fig. 4, a transient bleach (TB) feature at 480 nm and a broad 

TA feature from 500 to 700 nm was observed for CdS nanowires. As reported 

previously the transient bleach signal can be attributed to absorption of photogenerated 

carriers.69,70 No significant difference was observed in spectral profile of CdS upon 

addition of MoS2 even at 20%; however, the charge carrier lifetime changed 

dramatically. Analyzing the decay of transient bleach/absorption signal can provide 

useful information about charge carrier dynamic of CdS with MoS2 addition. However, 

some non-linear dynamic processes such as exciton-exciton annihilation or Auger 

recombination can interfere with data interpretation. Three pulse energies (750, 323 
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and 190 nJ per pulse) were used to study power-dependent dynamics of the 

nanocomposites. Because no power dependence was observed in the sample’s 

dynamics, we analyzed the data with the highest signal to noise ratio at 750 nJ per 

pulse. Fig. 5 (a–c) show the normalized single wavelength TB (480 nm) and TA (510 

nm) signal of CdS nanowires, 5%-MoS2/CdS and 20%-MoS2/CdS nanocomposites, 

respectively, from 0 to 1,000 ps. For better comparison, transient bleach signal of all 3 

samples were plotted together in Fig. 5d. The recovery of signals was fit with double 

exponential function and the fitting parameters are reported in Table 2.  

 

 

Figure 5-5- Normalized ultrafast transient bleach/absorption decay profile of a) CdS nanowire 
b) 5%-MoS2/CdS c)20%-MoS2/CdS and d) transient bleach recovery of all 3 samples. The 
decay profiles are fitted using a double exponential function. 
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Table 5-2- Fitting parameters of transient bleach recovery of CdS, 5%-MoS2/CdS and 20%-
MoS2/CdS fitted with double exponential function and calculated average lifetime <τ>. 

 

 

The average recovery lifetime of CdS nanowires, 5%- MoS2/CdS and 20%-

MoS2/CdS are calculated to be 837 ps, 50 ps and 257 ps respectively, using Equation 

1. As demonstrated in Fig. 5d and average lifetimes, there is significant difference in 

charge carrier dynamic of CdS in the presence of MoS2 on the surface. Decorating 5% 

MoS2 on CdS nanowire shortened the average life time of CdS by factor of 

approximately 17, attributed to efficient electron transfer from CdS to MoS2.71 This 

fast electron transfer will prevent undesirable recombination of electron-hole, promote 

better charge separation and improve the catalytic activity of nanocomposite for the 

HER reaction. One may expect that higher concentration of MoS2 on CdS surface 

should shorten the charge carrier lifetime and improve the charge carrier separation 

even further. However, upon further addition of MoS2 to 20%, the average lifetime now 

increased by factor of 5, compared to 5%-MoS2/CdS, while the photocatalytic activity 

also decreased at the same time. SEM images of the MoS2/CdS nanocomposites at 
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different ratios may help to explain this behavior. As shown in TEM images64, a thin 

and uniform layer of MoS2 was coated on the surface of CdS nanowires at 5% molar 

ratio, providing intimate contact for charge transfer at the heterointerface. However, by 

increasing the MoS2 concentration up to 20%, the growth of flocculent structures may 

lead to reduced surface contact and charge transfer. 

 

5.4.2.2 Schematic mechanism for enhanced photocatalytic H2 evolution activity 

of MoS2/CdS nanocomposites  

A possible mechanism for enhanced photocatalytic H2 evolution from water 

using MoS2/CdS nanocomposites is proposed as shown in Fig. 6. Under visible light 

irradiation, electron-hole pairs generated in CdS NWs are quickly recombined, leading 

to low photoactivity. For MoS2/CdS nanocomposite, the photogenerated electrons in 

the conduction band (CB) of CdS can be transferred to MoS2 due to the lower energy 

level of MoS2 than the CB edge of CdS. Importantly, the large and intimate interfacial 

contact between CdS and MoS2 should facilitate the electron transfer from CdS to 

MoS2. The electrons transferred to MoS2 react with H2O to generate H2 (2H2O + 2e− 

→ H2 + 2OH−). Meanwhile, the photoinduced holes in the VB of CdS can oxidize hole 

sacrificial agents, as described by the pathway I/II in Fig. 6. When the lactic acid is 

used as only hole scavenger, the reaction products are CO2 and H2O (pathway I). When 

glucose and lactic acid are used as sacrificial agents together, the photogenerated holes 

in CdS can react with OH−, producing OH• radicals. The OH• radicals then react rapidly 

with glucose, which leads to the formation of carboxylic acid (H−COOH) and finally 
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CO2 and H+.72 In this process, the OH• radicals are consumed, and protons are produced 

simultaneously, resulting in a higher H2 production (pathway II).73,74 The overall 

reaction of oxidation could be depicted by C6H12O6 + 6H2O → 6CO2↑+ 12H2↑. 

 

 

 

 

Figure 5-6- Scheme for the photocatalytic hydrogen production over MoS2/CdS 
nanocomposites under visible light. 

 
5.4.3 NiS/CdS Nanocomposites 

5.4.3.1 Photocatalytic Activity and Transient Absorption Study of NiS/CdS 

Nanocomposites 
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 Photocatalytic hydrogen production over pure CdS NWs and NiS/ CdS 

nanocomposites were evaluated under visible light irradiation using mixed solution 

containing lactic acid alone or lignin and lactic acid as hole scavenger. Pure CdS NWs 

showed a relatively negative photocatalytic activity during the reaction process, which 

is attributed to rapid recombination of photoinduced charge carriers and small number 

of active sites in CdS NWs. Loading NiS on the surface of CdS significantly enhanced 

the average rates of H2 production. Notably, when the molar ratio of NiS and CdS is 

0.2, the H2 production rate obtains an optimal value, which is approximately 5041 or 

31 times than that of CdS NWs in lignin and lactic acid or lactic acid aqueous solution, 

respectively. However, further increasing the amount of NiS in the nanocomposites led 

to a yield decrease of H2 production, which may derive from the masking effect of NiS 

where the facilitated light absorption of NiS reduced the light absorption of CdS.53,75. 

To obtain further insight on charge carrier separation and transfer processes of 

the NiS/CdS nanocomposites, ultrafast transient absorption (TA) spectroscopy was 

used to explore the charge carrier dynamics in CdS NWs and their dependence on the 

NiS content. Fig. 7(a–c) shows the TA data of pure CdS, 0.2-NiS/CdS and 1.0-

NiS/CdS, excited with 390 nm pump laser pulses, as a function of probe wavelength 

and delay time between the pump and probe pulses. The spectral profile of pure CdS 

and the CdS/NiS nanocomposites are mostly similar, which is due to small amount of 

NiS in the nanocomposite compared to CdS. The TA feature observed at 460–500 nm 

can be ascribed to absorption of photogenerated electrons in conduction band (CB) of 

CdS. The strong and broad transient bleach (TB) feature spanned from 500 to 750 nm 
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can also be ascribed to hole absorption in the valence band (VB) of CdS as reported 

before.44 The decay observed in the TB signal is ascribed to electron and hole 

recombination. Analyzing the decay of TB signal can provide useful insight about the 

behavior of the CdS with or without the NiS decorated on the surface. However, some 

high-order kinetic processes for instance exciton-exciton annihilation or Auger 

recombination can happen and interfere with correct interpretation of the data.69,76 In 

order to refrain these non-linear dynamic processes, we performed pump power 

dependence study (750, 323 and 190 nJ/pulse) and observed slight power dependence 

in earlier recombination time with high pump energy (750 nJ/pulse). Because of the 

power dependence at high pump power, we chose to analyze data with pump energy of 

323 nJ/pulse for comparing these three samples, which do not involve non-linear effect 

and have good signal to noise (S/N) ratio.  
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Figure 5-7- 3 and 2-dimensional representation of the TA of a) CdS nanowires; b) 0.2-
NiS/CdS; c) 1.0-NiS/CdS after excitation with 390 nm pump (323 nJ/pulse). 

 
Fig. 8 shows the normalized, single wavelength ultrafast TB signals of CdS, 

0.2-NiS/CdS and 1.0-NiS/CdS nanocomposites on the 0-1000 and 0-100 ps time scales. 

The TB signal recovery was fit with double exponential function and the fitting 

variables are reported in Table 3. 
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Figure 5-8- Normalized ultrafast transient bleach decay profile of CdS nanowire (black), 0.2-
NiS/CdS (blue) and 1.0-NiS/CdS (purple). The decay profiles are fitted using a double 
exponential function. 

Table 5-3- Fitting parameters of transient bleach recovery of CdS, 0.2-NiS/CdS and 1.0-
NiS/CdS fitted with double exponential function and calculated average lifetime (τ). 

 

 Based on the resultant time constants, the recovery lifetime for CdS nanowires 

are 8.8 ± 0.4 ps and 3.6 ± 0.1 ps, for 0.2-NiS/CdS are 20 ± 1 ps and 879 ± 17 ps and 

for 1.0-NiS/CdS are 3.5 ± 0.1 ps and 117 ± 9 ps. According to previous studies, usually 

the fast time component of the decay is attributed to exciton relaxation due to presence 

of shallow trap states in semiconductor materials while the slower component is due to 

charge carrier recombination mediated by deeper traps.65 The average charge carrier 

lifetime of the samples also calculated using equation 1 for better comparison. The 

average lifetime calculated to be 8 ps, 776 ps and 76 ps for CdS, 0.2-NiS/CdS and 1.0-
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NiS/CdS, respectively. Based on these results, the overall charge carrier recombination 

is faster in CdS nanowires than 1.0-NiS/CdS and 0.2-NiS/CdS nanocomposites, 

respectively (CdS < 1.0-NiS/CdS < 0.2-NiS/CdS), which is in agreement with the 

performance of the material for HER. Longer charge carrier lifetime is expected to lead 

to better performance of the photocatalyst as the charge carriers are more likely to 

participate in redox reactions rather than recombining. However, increasing the molar 

ratio of NiS from 0.2 to 1.0 caused faster recombination in earlier time regime. From 

the structural characterizations such as TEM images,33 we know that higher ratio of 

NiS will form aggregations on the surface of CdS NWs. Therefore, this earlier fast 

recombination in the 1.0-NiS/CdS nanocomposite is possibly due to charge carrier 

trapping by the NiS aggregates. The dynamics results seem to indicate that NiS 

presence on CdS NWs can improve the charge separation. However, there is an optimal 

ratio for efficient separation (0.2-NiS/CdS) and beyond that point, NiS aggregates will 

cause faster recombination and thereby poorer photocatalytic performance of the 

NiS/CdS nanocomposites.  

 

5.4.3.2 Mechanism for the photocatalytic hydrogen evolution  

Based on all the above discussion, a model is putted forward to explain the 

mechanism of the overall HER reactions, as shown in Fig. 9. Electrons and holes are 

first generated in CdS when it is excited with light (λ ≥ 400 nm). Although the CB edge 

of CdS is more negative than the reduction potential of H+/H2, the rate of hydrogen 

evolution is low over pure CdS because of the fast recombination of photoinduced 
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charge carriers. When NiS nanoparticles are loaded on the surface of CdS, due to the 

less negative CB of NiS than that of CdS, the photogenerated electrons in the CB of 

CdS can be transferred to NiS nanoparticles. More importantly, the intimate interfacial 

junction between NiS and CdS plays an essential role in facilitating electron transmit 

from CdS to NiS. The NiS also acts as active sites because unsaturated sulfide ions of 

NiS possess strong affinity for H+ in the solution and can thus enhance the 

photocatalytic performance. The photoinduced holes in the VB of CdS can oxidize hole 

scavengers, described by the pathway I/II in Fig. 9. When only the lactic acid acts as 

sacrificial agent, the holes can be just consumed by the one substance (pathway I). 

While taking the lignin as an additional hole scavenger, it will produce methanol, 

ethanol, formaldehyde, formic acid and oxalic acid during the HER process, which 

provides an extra pathway for reaction of the holes (pathway II). The fast consumption 

of the holes can greatly inhibit recombination of the electron and hole, thereby 

suppressing the photocorrosion of CdS and enhancing the H2 evolution rate. The results 

suggest that reaction of the hole is a rate limiting step in the overall photocatalytic 

reactions. 
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Figure 5-9- Scheme for the photocatalytic hydrogen production over NiS/CdS nanocomposites 
under visible light. 

 
5.4.4 NiS2/CdS Nanocomposites 

5.4.4.1 Photocatalytic Activity and Transient Absorption Study of NiS2/CdS 

Nanocomposites 

  
 The photocatalytic H2 production of as-prepared samples was evaluated. Time-

dependent H2 production over the NiS2/CdS nanocomposites with different NiS2 

content showed an obvious increase in the whole photocatalytic reaction process under 

visible light irradiation (λ ≥ 400 nm). All the NiS2/CdS nanocomposites exhibited much 

higher rates of H2 production than that of pure CdS and NiS2, indicating the loading of 

NiS2 on the CdS surface facilitates H2 production. The H2 production rates of NiS2/CdS 

nanocomposites first increases and then decreases with increasing NiS2 content. The 
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decrease may be ascribed to light shielding and scattering effects or NiS2 competing for 

absorption of light with CdS.63 The optimal molar ratio of NiS2 and CdS for NiS2/CdS 

nanocomposites was determined to be around 40 mol%, which shows the highest H2 

evolution rate of 14.49 mmol h-1 g-1. These results demonstrated that loading suitable 

amount of NiS2 on the surface of CdS could increase the visible light absorption and 

facilitate charge separation, thus accelerating H2 evolution. Photocatalytic H2 

production activity over the 40%-NiS2/CdS nanocomposite was evaluated in the 

presence of single 10 g·L-1 cellulose as sacrificial agent under UV-Vis light irradiation. 

When the photocatalytic reaction time exceeded 60 min, the H2 production started. The 

40%-NiS2/CdS nanocomposite obtained a hydrogen evolution rate of 52.88 µmol·h-1·g-

1, which demonstrated the potential application of H2 evolution utilizing cellulosic 

biomass for NiS2/CdS nanocomposites. 

 In order to study the origin of the enhancement in photocatalytic activity of the 

NiS2/CdS nanocomposites, charge carrier dynamics in these samples were studied 

using transient absorption spectroscopy. For this measurement, four samples including 

CdS, 10%-NiS2/CdS, 40%-NiS2/CdS, and 100%-NiS2/CdS nanocomposites were 

deposited on a glass substrate and excited with 400 nm laser pulses. These samples 

were excited with different pulse energies, and no energy dependence of the dynamics 

was observed. This result eliminates the possibility of nonlinear processes such as 

exciton-exciton annihilation and Auger recombination. Data obtained at 600 nJ/pulse 

had higher signal to noise ratio, therefore it was used to further analyze the charge 

carrier decay dynamics. The differential absorption of the samples as a function of the 
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probe wavelength and the time delay between pump and probe pulses is shown in 

Figure 10 (a-d). 

 

 

Figure 5-10- 3D representation of TA and transient bleach (TB) profile of a) CdS, b)10%-
NiS2/CdS, c) 40%-NiS2/CdS, and d) 100%-NiS2/CdS excited at 400nm with pulse energy of 
615 nJ/pulse. 

 
The sharp TA signal at 475 nm which was observed for all samples in figure 10 

is attributed to absorption of photoexcited electrons in conduction band (CB) of CdS. 

The other relatively broad TB signal in 500-700 nm can also be attributed to the 

absorption of hole in valence band (VB) of CdS as reported previously.56,77 Studying 

the decay of these signals, which is due to electron-hole recombination over time 

provides information about the charge carrier dynamic and charge transfer between 

CdS and NiS2. Therefore, normalized single wavelength decay of TA signal at 475 nm 

for CdS, 10%-NiS2/CdS, 40%-NiS2/CdS, and 100%-NiS2/CdS nanocomposites from 

0-1000 ps is demonstrated in Figure 11. The decay profile of these samples was fit 

using a double exponential function and fitting parameters are reported in table 4. 
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Figure 5-11- Normalized ultrafast transient absorption decay profile of CdS (black), 10%-
NiS2/CdS (blue), 40%-NiS2/CdS (green), and 100%-NiS2/CdS (orange). The TA decay over 
time was fitted using double exponential function. 

Table 5-4- Fitting parameters of TA signal recovery of CdS, 10%-NiS2/CdS, 40%-NiS2/CdS, 
and 100%-NiS2/CdS fitted with double exponential function. 

 

Since photoexcited charge carriers can recombine through various pathways, 

two different time constants were extracted from the signal decay of each sample. The 

shorter time constant which is reported as τ1 in Table 1 is attributed to trap state-

mediated recombination, which usually occurs within tens of ps. On the other hand, the 

longer time constant (𝜏)), is attributed to recombination of CB electron and VB hole. 
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However, addition of NiS2 to the CdS surface introduce a new pathway for charge 

transfer between these two materials at the interface. By calculating the average 

lifetime	(𝜏tuv) using equation 1 the rate of this charge transfer can be obtained. As 

shown in Table 4 the 𝜏tuv is calculated to be 778, 486, 220, and 562 ps for CdS, 10%-

NiS2/CdS, 40%-NiS2/CdS, and 100%-NiS2/CdS, respectively. The average lifetime 

significantly decreased initially by addition of NiS2 nanoparticles to the CdS surface, 

which is due to electron transfer from CB of CdS to NiS2.52,78 It was also reported 

previously that photoexcited holes in CdS can be delocalized to the surface, which 

increase the proximity of transferred electrons to holes.79 This result in faster electron-

hole recombination and shorter lifetime consequently. Considering photogenerated 

charge carriers participate in the hydrogen evolution reaction, the shorter 𝜏tuv	in 40%-

NiS2/CdS seems contradictory with its efficient photocatalytic performance. However, 

it should be noted that lactic acid was present as a hole scavenger in the reaction, which 

inhibits electron-hole recombination. Since TA measurements were performed on a 

film without lactic acid, there is no direct correlation between these two experimental 

results. 

The 𝜏tuv increased from 220 ps to 562 ps by further increasing the NiS2 molar 

ratio to 100%. This is due to agglomeration of NiS2 nanoparticles on the surface as 

shown in TEM images. Formation of these flocculant constructions reduces the surface 

coverage and decreases effective interaction and charge transfer between two materials 

consequently. However, addition of 40% NiS2 resulted in formation of uniform thin 

layer on the surface, which accelerate the charge transfer at the interface. The rate of 
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charge transfer (kET) for different molar ratios of cocatalyst can be calculated using 

equation 2. The kET calculated to be 7.7´108 s-1, 3.2´109 s-1, and 4.9´108 s-1 for 10%-

NiS2/CdS, 40%- NiS2/CdS, and 100%-NiS2/CdS nanocomposites, respectively. The 

higher kET for 40%- NiS2/CdS is consistent with its high photocatalytic activity. This 

result emphasizes on importance of optimizing the ratio of cocatalyst to achieve 

efficient photocatalytic activity at the heterojunctions. 

 

5.4.4.2 Photocatalytic mechanism of NiS2/CdS nanocomposites 

Based on the discussion above, the possible photocatalytic mechanism of 

NiS2/CdS nanocomposite is shown in Fig. 12. Under illumination, photogenerated 

electrons in valence band (VB) of CdS will be transited to conduction band (CB) and 

the holes are left in VB of CdS. These electrons have several ways to be consumed. 

They can recombine with the holes inside the material and the species on the particle 

surface or react with protons to produce H2.12 Therefore, if the recombination could be 

efficiently prohibited, the H2 evolution rate would be improved because more electrons 

were used to produce H2. When NiS2 was loaded on the surface of CdS, the electron 

transferred from CdS to NiS2 was efficiently improved due to the appropriate work 

function of NiS2 as compared to CB of CdS. PEC and TA studies confirmed the 

efficient charge transfer in NiS2/CdS nanocomposites compared to pure CdS. The NiS2 

serves as an acceptor of the electrons generated in CdS and effectively improve the 

separation of photogenerated electron-hole pairs. Meanwhile, the holes can be 

consumed by the sacrificial agent, which prevent the electron-hole recombination, thus 
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improving the chance for electrons to participate in the photocatalytic H2 evolution. 

The major chemical reaction pertaining to the photocatalytic process may be followed 

as Eqs. (7-9). During the photocatalytic reaction process, CdS absorbs the incident 

photons and generates electron-hole pairs (Eq. 7). Then the photogenerated electrons 

transfer from CdS to NiS2, where H+ is reduced to atomic H and then evolves as H2 

(Eqs. 8-9).  

 

CdS + hν	 → CdS	(e7 	+	h&)                (7) 

NiS) +	𝑒7 + 𝐻& 	→ 𝐻𝑁𝑖𝑆)                   (8) 

HNiS) +	𝑒7 + 𝐻& 	→ 𝑁𝑖𝑆) +	𝐻)          (9) 

 

 

 

Figure 5-12- Scheme for the photocatalytic hydrogen production over NiCo2S4/CdS 
nanocomposites under visible light. 
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5.4.5 NiCo2S4/CdS Nanocomposites 

5.4.5.1 Photocatalytic Activity and Transient Absorption Study of NiCo2S4/CdS 

Nanocomposites 

hydrogen evolution from photocatalytic water splitting over pure CdS NWs and 

NiCo2S4/CdS heterojunctions were evaluated under visible light irradiation (λ ≥ 400 

nm) utilizing aqueous solution containing lactic acid as hole scavenger. Pure CdS NWs 

showed a quite low HER activity, which is mainly caused to fast recombination of 

photogenerated electron-hole pairs and small quantity of active sites. Loading NiCo2S4 

on the surface of CdS NWs obviously improved the average rates of H2 formation. 

When the molar ratio of NiCo2S4 and CdS is 10%, the H2 evolution rate has a highest 

value of 20.0 mmol·h-1·g-1. However, further increasing the content of NiCo2S4 led to 

a decrease of H2 evolution activity, which may originate from the aggregation of 

NiCo2S4 where the increased light absorption of NiCo2S4 but decreased the light 

absorption of CdS.  

Using ultrafast transient absorption (TA) measurements helped to further study 

the charge carrier dynamics and elucidate the origin of the enhanced photocatalytic 

performance. In this experiment, CdS NWs, 10%-NiCo2S4/CdS, 20%-NiCo2S4/CdS 

and 30%-NiCo2S4/CdS heterojunctions deposited on a glass slide substrate and were 

excited with 400 nm laser pulses. Since some non-linear dynamic processes including 

exciton-exciton annihilation and Auger recombination can interfere with proper data 

analysis and understanding the materials behavior, pulse energy dependence 

experiment was also done. For this experiment all the samples were pumped with three 
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pulse energies (615, 310, 170 nJ/pulse) and no power dependence in charge carrier 

dynamics was observed for the samples. Therefore, the data obtained with 615 nJ/pulse 

energies was used to analyze the dynamics due to higher signal to noise ratio. Figs. 

13(a-d) show the differential absorption of the samples as a function of the probe 

wavelength and the time delay between pump and probe pulses.  

 

 

Figure 5-13- 3D representation of TA and transient bleach (TB) profile of a) CdS, b)10%-
NiCo2S4/CdS, c)20%-NiCo2S4/CdS, and d) 30%-NiCo2S4/CdS excited at 400nm with pulse 
energy of 615 nJ/pulse. 

 
As demonstrated in Fig. 13, a sharp TA signal at 480 nm and a relatively broad TB 

signal spanning from 500-700 nm were observed. The process of absorption of 

photogenerated electrons in CB of CdS generates the TA signal; whereas, the TB 

feature can be attributed to the absorption of hole in valence band (VB) of CdS as 

reported previously by us and other groups.25,48Information about the charge carrier 

dynamic and charge transfer from CdS to NiCo2S4 can be obtained from studying the 

observed decay of these features which are due to electron-hole recombination over 

time. 
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Fig. 14 displays the normalized single wavelength decay of the TA signal at 480 nm 

for 10%-NiCo2S4/CdS, 20%-NiCo2S4/CdS, 30%-NiCo2S4/CdS and bare CdS samples 

from 0-1000 ps. Double exponential function was used to fit these decay profiles and 

the fitting parameters are reported in Table 5. 

 

Figure 5-14- Normalized ultrafast transient absorption decay profile of 10%-NiCo2S4/CdS 
(green), 20%-NiCo2S4/CdS (yellow), 30%-NiCo2S4/CdS (purple) and CdS (red). The TA 
decay over time was fitted using double exponential function. 

Table 5-5- Fitting parameters of TA signal recovery of 10%-NiCo2S4/CdS, 20%-
NiCo2S4/CdS, 30%-NiCo2S4/CdS and CdS fitted with double exponential function. 

 

Two different time constants are reported for each sample in Table 5. These 

two-time constants can be attributed to different recombination pathways for 
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photoexcited charge carriers in CdS. Trap state-mediated recombination typically 

occurs within tens of ps, while recombination between the CB electron and VB hole 

occurs on a longer timescale.49,50  Therefore, the faster decay component, (𝜏W),  is 

ascribed to trap state-mediated recombination and the slower decay component, (𝜏)), 

is attributed to CB electron and VB hole recombination. However, by depositing 

NiCo2S4 NPs on the surface of CdS NWs, some charge carriers will be transferred at 

the interface. In order to find the rate of charge transfer from CdS to NiCo2S4 and proper 

comparison between the samples, the average lifetime	(𝜏tuv) can be calculated using 

equation 1. The 𝜏tuv for the pure CdS NWs is ca. 904 ps. However, addition of 10% 

NiCo2S4, remarkably decreased the 𝜏tuv to 30 ps. This dramatic change in lifetime is 

ascribed to electron transfer from the CB of CdS to NiCo2S4.51,52 Considering the TA 

signal arises only from absorption of CdS NWs, the electron transfer from CdS to 

NiCo2S4 would result in shorter lifetime, as observed. Additionally, as observed in 

another study of loading Pt on the surface of CdS NWs, photoexcited holes in CdS can 

be delocalized to the surface. Therefore, proximity between the delocalized holes of 

CdS and electrons transferred to deposited NPs will result faster rate of recombination 

and consequently shorter lifetime53,54 This shorter lifetime appears contradictory with 

the higher photocatalytic efficiency reported earlier for this 10%-NiCo2S4/CdS 

nanocomposites. However, the presence of lactic acid in the solution for the 

photocatalytic H2 evolution measurement serves as a hole scavenger, which inhibits 

electron-hole recombination. Since no hole scavenger was used in the TA 

measurements, there is no direct correlation between these two experimental results. 
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Further increasing the content of NiCo2S4 to 20 mol% and 30 mol% prolonged 

the average lifetime to 530 ps and 670 ps, respectively, which are longer than that of 

10%-NiCo2S4/CdS. The reason for this can be explained in TEM images. Addition of 

10% NiCo2S4 formed a uniform and thin layer of NiCo2S4 on CdS NWs which resulted 

in close contact and effective interaction at the interface. This efficient interaction can 

facilitate charge transfer from CdS NWs to NiCo2S4 NPs. However, further increasing 

the amount of NiCo2S4 to 30% will result in aggregation of the NiCo2S4 NPs and 

forming flocculant constructions. This will lead to decreased surface coverage or 

reduced interaction with CdS, thus slowing down charge transfer.  

The rate constant of electron transfer (kET) from CdS NWs to NiCo2S4 NPs can 

be obtained by employing equation 2. The kET calculated to be 3.3´1011 s-1, 7.1´109 s-

1, and 1.5´109 s-1 for 10%-NiCo2S4/CdS, 20%- NiCo2S4/CdS and 30%-NiCo2S4/CdS 

heterojunctions, respectively. In comparison to 10%-NiCo2S4/CdS with larger kET, this 

decreased electron transfer rate for 20%-NiCo2S4/CdS and 30%-NiCo2S4/CdS are in 

accordance with their decreased photocatalytic activity. This indicates the need to 

optimize the amount of cocatalyst (NiCo2S4) on the surface of CdS to achieve efficient 

photocatalytic activity at the heterojunctions. 

 

5.4.5.2 Photocatalytic Mechanism of NiCo2S4/CdS Nanocomposites 

On the basis of all the above experimental and theoretical results, the 

mechanism of the overall photocatalytic HER is proposed, as shown in Fig. 15. 

Electrons and holes are first generated in CdS with visible light excitation (λ ≥ 400 
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nm). Although the conduction band (CB) edge of CdS is more negative than the 

reduction potential of H+/H2, the activity of HER is still poor for pure CdS due to the 

low photogenerated charge separation efficiency. For NiCo2S4/CdS nanocomposite, the 

CB photogenerated electrons of CdS are transferred to metallic NiCo2S4 owing to the 

more positive work function of NiCo2S4 than that of CdS. Importantly, the Schottky 

junction forms between NiCo2S4 and CdS owing to their large and intimate interfacial 

contact, which facilitates electron transfer from CdS to NiCo2S4. The NiCo2S4 affords 

reduction active sites since its unsaturated sulfide ions have strong affinity for H+, thus 

enhancing the photocatalytic HER activity. The valence band (VB) holes left in CdS 

can oxidize hole scavengers, as illustrated in Fig. 15. The electron-hole recombination 

can effectively be prohibited as the fast consumption of the holes by lactic acid, thereby 

protecting CdS from the photocorrosion and increasing the H2 generation rate.  
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Figure 5-15- Proposed scheme for the photocatalytic HER over NiCo2S4/CdS nanocomposites 
under visible light. 

 

5.5 Conclusion 

 In summary, 1D Ni3S2/CdS, MoS2/CdS, NiS/CdS, NiS2/CdS, and NiCo2S4/CdS 

heterostructures have been successfully synthesized using a two-step hydrothermal 

strategy. In this chapter we showed loading optimal amount of nanostructures on the 

CdS NWs surface can significantly improve the photocatalytic activity of the 

heterostructure for hydrogen evolution reaction. This enhancement is mostly due to 

efficient charge transfer from CdS to the other nanostructure on the surface and 

inhibiting the electron-hole recombination, consequently. 

 Different molar ratios of each nanostructure have been studied and optimal 

amount of cocatalyst is investigated. This optimal amount determined to be 10%, 5%, 

20%, 40%, and 10% for Ni3S2/CdS, MoS2/CdS, NiS/CdS, NiS2/CdS, and 
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NiCo2S4/CdS, respectively. These studies show having less than these optimum 

amounts wouldn’t efficiently cover the surface. On the other hand, larger amount would 

result in aggregation in the surface and provide trap states for further charge 

recombination. However, TEM images demonstrated formation of thin and uniform 

layer of the nanostructures at their optimum concentrations, which will result in 

efficient charge transfer. These results demonstrated that loading suitable amount of 

NiS2 on the surface of CdS could increase the visible light absorption and facilitate 

charge separation, thus accelerating H2 evolution. 

Efficiency of charge transfer in these nanocomposites was studied using ultrafast 

transient absorption measurement and the rate of charge transfer at the interface was 

calculated. This charge transfer rate was calculated to be higher for the nanocomposites 

with the higher photocatalytic activity at each series as expected. The strategy 

developed in this work can further provide reference for other visible-light-driven 

photocatalysis systems to construct noble-metal-free nanocomposites. 
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Chapter 6 
 
 

6 Effect of Targeting Ligand on Photothermal Therapy Efficiency 

Using Hollow Gold Nanoparticles 

 

 

6.1 Abstract 

 Plasmonic nanoparticles in general have been studied extensively for various 

applications including photocatalysis, sensing, optoelectronic and nanomedicine due to 

their unique optical and structural properties. Among these plasmonic nanomaterials 

hollow gold nanoparticles (HGNs) attracted significant attention for bio applications 

such as photothermal therapy (PTT). These HGNs have inert and biocompatible 

properties and most importantly their size and surface plasmon resonance is tunable by 

controlling size and shell thickness. This provides the opportunity to tune the particle 

size suitable for penetrating through the cell membrane and absorb light at the NIR 

region which is known as biological window. These HGNs can be easily modified on 

the surface and be conjugated to various targeting ligands including antibody, peptide 

and other small molecules such as folate. Optimizing the targeting ligand is crucial 

factor for efficient PTT. Here in this study, we synthesized 40 nm HGNs and 

conjugated them to anti_EGFR antibody and GE-11 peptide, which both target EGF 

receptors on cancer cells. The conjugated HGNs were characterized using UV-Vis, 

photoluminescence (PL), Inductively coupled plasma-optical emission spectrometry 
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(ICP_OES), bicinchoninic acid assay (BCA), fluorescence microscopy, and confocal 

microscopy. The preliminary results showed significantly higher cell death with 

peptide conjugated HGNs (91%) compared to antibody-conjugated HGNs (54%). 

Different hypotheses was discussed as possible explanation for this enhanced PTT 

efficiency including possible particle internalization, better binding to receptors due to 

small ligand size, and most importantly closer proximity of HGNs to the cell surface 

resulting in more efficient heath transfer. 

 

6.2 Introduction 

 In recent years, plasmonic nanomaterials attracted significant attention in the 

field of photocatalysis,1–3 optoelectronics,4–7 solar energy conversion,1,8,9 sensing,10–12 

and nanomedicine1,13–15 because of their tunable optical and electronic properties and 

specially their surface plasmon resonance (SPR).4,16 The surface plasmon resonance is the 

resonant oscillation of conduction band electrons at the interface between negative and 

positive permittivity material stimulated by incident light that result in strong absorption 

and scattering at the oscillation frequency.17,18 Depending on the specific application, 

nanoparticles with higher absorption or scattering might be preferred. For Instance, for 

sensing applications nanoparticles with higher scattering to absorption ratio is 

favorable. However, in most biomedical applications the goal is to design nanoparticles 

with maximum absorption. In addition, the SPR in plasmonic nanoparticles in 

significantly dependent on size and structure. Therefore, their optical properties 

including the absorption/scattering ratio is highly tunable for any given application.19–
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24 In Biological applications such as photothermal therapy (PTT) in particular it is 

important to tune the SPR into near IR region (NIR) to be compatible with the 

transparency window of biological tissue called “biological window”.25,26 In PTT metal 

nanoparticles are delivered to cancerous cells using a targeting ligand and illuminated 

by light, which cause rapid particle heating, increasing the cellular temperature 

significantly, and inducing cell death, respectively.27–30 There are significant number 

of publications on synthesis of NIR plasmonic nanostructures such as nanorods, 

spherical nanoparticles, nanocages, and nanoshells.31–35 Among all these structures, 

spherical nanoparticles demonstrated the best performance in cellular uptake and 

photothermal conversion efficiency (PCE).36–39 Spherical solid gold nanoparticles 

seem to be a good candidate for PTT application, however, their SPR absorption is 

between 520-540 nm depending on their size.40,41 This absorption wavelength limits 

their application in PTT as it is below the biological window. It has been shown 

previously that the SPR can redshift by formation of aggregates, but the their spectral 

inhomogeneity and large size is not desirable for PTT application.42,43 

 Hollow gold nanoparticles (HGNs) have been introduced as potential candidate 

for many biological applications such as cancer cell imaging, detection, and 

therapy.27,44–50 These HGNs are uniform, nontoxic, biocompatible structures, which are 

highly tunable from visible to NIR region by controlling both diameter and shell 

thickness.31,51 They can be also easily functionalized for bioconjugation with various 

targeting ligands due to their native surface chemistry. Their symmetric and spherical 

shape is also suitable for easy cellular penetration. HGNs also have a single 
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homogeneously broadened SPR, which can provide strong absorbance for every 

particle in the system. In addition, the thin shell diameter facilitates rapid electron-

phonon coupling, allowing for more efficient conversion of absorbed photons to heat 

than solid gold particles.52,53  

For an efficient PTT, in addition to synthesizing the appropriate nanoparticles, 

it is important to design surface modification strategies for efficient cancer cell 

targeting and nanoparticle delivery. Ligand targeting allows selective delivery of 

therapeutic and imaging agents to cancer cells while avoiding collateral damage to 

healthy tissues. Various targeting ligands including antibodies54,55, aptamers56,57, 

small protein scaffolds58, peptides59–62 and low-molecular-weight non-peptidic 

ligands63–66 have been reported previously.  Antibody-conjugated drugs have already 

shown great success and two of them are in the market,67 and many more in clinical 

trials. However, the recent clinical development of multiple low-molecular-weight 

targeting ligands such as peptide suggests that these smaller targeted conjugates 

could be poised for similar success. Recent studies show, smaller ligand-targeted 

drugs are more advantageous in their pharmacokinetics62, antigenicity68 , in 

vivo and in vitro stability69, conjugation chemistry70,71, ease and cost of 

manufacturing72, and ability to penetrate solid tumours73–79 compared with their 

larger, more complex counterparts. 

In this chapter, we studied the effect of targeting ligand on PTT efficiency 

for oral cancer treatment using HGNs. A monoclonal anti-EGFR antibody and 

GE11 peptide were conjugated to the HGNs using a heterobifunctional 
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polyethylene glycol (PEG) molecule for targeting the epidermal growth factor 

receptors (EGFR) overexpressed on the cell membrane of oral squamous cell 

carcinoma (cell line A-431) and in vitro PTT experiments were performed. The 

nanoparticles conjugation, and delivery was investigated using various 

characterization techniques including UV-Vis, photoluminescence (PL), 

Inductively coupled plasma-optical emission spectrometry (ICP_OES), 

bicinchoninic acid assay (BCA), fluorescence microscopy, and confocal 

microscopy. The preliminary results show significantly higher cell death with 

peptide conjugated HGNs (91%) compared to antibody-conjugated NPs (54%). 

Based on these results we proposed three different hypotheses for this improved 

efficiency. Peptide because of its relatively small size should be able to link the 

HGN in closer proximity to the cancer cell, as depicted in Figure 1. This could 

result in an increase in the effective heat transferred from the HGN to the cell target, 

which may increase cell death efficacy. In addition, the smaller size of peptide may 

accelerate the particle internalization and result in more permanent damage to cell 

nuclei. In this Chapter, we investigated each hypothesis and studied the effect of 

targeting ligand on PTT efficiency.  
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Figure 6-1- Schematic of HGN-mediated PTT with antibody versus peptide linkers. 

 

6.3 Experimental 

6.3.1 HGNs Synthesis 

 Cobalt chloride hexahydrate (99.99%), trisodium citrate dehydrate (>99%), 

sodium borohydride (99%), citric acid (99%), and chloroauric acid trihydrate (ACS 

reagent grade), were obtained from Fisher Scientific. All water used in the syntheses 

was 18 MΩ Milli-Q filtered. 

Hollow gold nanoparticles used in this study were prepared by two different 

methods as reported previously.51,80 Briefly, the cobalt particle were synthesized using 

total of 100 μL of aqueous 0.4 M cobalt chloride (CoCl2) and 100 μL of 0.1 M aqueous 

sodium citrate added to 100 mL of water. The clear solution was pumped down for 5 

min then exposed to N2 to deoxygenate the solution. After ∼2 min under N2 gas, 400 

μL of freshly prepared 0.25 M sodium borohydride (NaBH4) was added to the solution. 

The solution was stirred until the color changed from clear to brown to gray, indicating 

the reduction of Co2+ ions in solution to Co0 nanoparticles. A total of 175 μL of 0.1 M 

aqueous citric acid was then injected and the solution as capping ligand to increase the 
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rate of sodium borohydride hydrolysis and to prevent aggregation. Finally, 30 mL of 

cobalt template solution was added to 10 mL of water containing 20 μL of 0.1 M 

aqueous chloroauric acid (HAuCl4) solution and mixed. After an immediate, slight 

color change from gray to blue-gray, the particles are exposed to air and swirled until 

the color change is complete to purple, blue, or green, depending on particle 

parameters. The gold shell forms within seconds onto the cobalt particle. If there is 

stoichiometrically less gold than cobalt a cobalt seed particle will remain within the 

gold shell. Upon exposure to oxygen, this cobalt core oxidizes and dissolves, revealing 

the true color of the HGNs solution. Resultant HGNs were centrifuged twice at 13000 

rpm for 3 minutes and resuspended in ultrapure water to a concentration of 4.0 OD. 

 

6.3.2 HGNs PEGylation 

Heterobifunctional polyethylene glycol functionalized with orthopyridyl 

disulfide and succinimidyl valerate (OPSS-PEG-SVA) was purchased from Laysan 

Bio, Inc.  

For PEGylation of HGNs, 100 μl of 1 mg/mL OPSS-PEG-SVA was added to 

500 μL of 4.0 OD HGNs and shaken overnight. The resultant HGNs-PEG solution was 

centrifuged once at 13000 rpm for 3 minutes to remove residual PEG and resuspended 

in ultrapure water. 

 

6.3.3 HGNs Bioconjugation 

 FITC-labeled anti-EGFR Rat monoclonal [ICR10] antibody (ab) was purchased 
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from Abcam Inc. FITC labeled and Lysin modified GE11 peptide was purchased from 

LifeTein LLC. Henry’s Balanced Salt Solution (HBSS) was purchased from Life 

Technologies Corporation, and human oral squamous cell carcinoma cell line (A-431) 

was purchased from ATCC. 

 As-prepared HGNs-PEG solutions were centrifuged once for 3 min at 13000 

rpm and resuspended in 500 μL of water. 100 μL of antibody was added to the HGNs-

PEG and shaken overnight. The resultant HGNs-PEG-ab solutions were centrifuged 

three times at 13000 rpm for 3 minutes to remove unbound antibody and resuspended 

in water to an OD of 4.0.  

Similarly, 100 μL of GE11 peptide dissolved in 500 μL of 1:4 ratio 

DMSO:water solution was added to 500 μL washed HGNs_PEG solution. The resultant 

HGNs-PEG-peptide solutions were centrifuged three times at 13000 rpm for 3 minutes 

to remove unbound peptide and resuspended in water to an OD of 4.0. The schematic 

presentation of the conjugation protocol is shown in Fig. 2. 
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Figure 6-2- Schematic representation of HGNs bioconjugation protocol 

6.3.4 HGNs Structure and Conjugation Characterization 

The synthesized HGNs characterized by UV-Vis spectroscopy. UV–vis spectra were 

recorded with an Agilent Technologies Cary 60 UV–vis spectrophotometer using a 700 μL 

quartz cuvette with 10 mm optical path length.  

Scanning electron microscopy (SEM) was performed on a FEI Quanta 3D field 

emission microscope operated at 10.00 kV acceleration voltage. HGN solutions were dropped 

onto a hexagonal, 400 mesh copper grid with a carbon support film of standard 5–6 nm 

thickness (Electron Microscopy Sciences).  

ICP-OES was performed on a Thermo iCAP 7400 ICP-OES. Gold standards at 0 ppm 

(blank), 2 ppm, 5 ppm, 10 ppm, and 20 ppm were prepared using HAuCl4 and ultrapure water. 

For sample preparation, 200 μL HGNs was added to 1800 μL blank to create a 1:10 dilution. 

Internal standardization was carried out with Sc and Y references. Two Au wavelengths 

(242.795 nm and 267.595 nm) and two Co wavelengths (238.892 nm and 237.862) were used 



231 
 

for analysis. For the samples containing cells, the ICP measurements were done after cell 

digestion. For digesting the cells, they were removed from the well plate using trypsin solution 

and then incubated with 100 μL of aqua regia and heated in a hot bath at 90 C for 1 hour. The 

digested cell solutions were further diluted with blank solution. 

 

6.3.5 in vitro PTT  

A-431 cells were cultured in HBSS according to previously published protocols 

and kept in a 37 °C, 5% CO2 humidified incubator. Cells were grown in 96-well tissue 

culture plates overnight. After removing the growth media, 25 μL of the 4.0 OD HGNs-

PEG-ab solutions were added to 75 μL HBSS and immediately transferred to the cells. 

After loading, the cells were incubated for 1 hour. For in vitro PTT treatment, the cells 

were exposed to a 795 nm NIR CW laser at 1.0 W/cm2 for 5 minutes and then returned 

to the incubator. Cell viability was determined 24 hours after treatment using cell 

counting and propidium iodide markers for cell damage. 

 

6.4 Results and Discussions 

6.4.1 HGNs Characterization 

 To study the structural properties of the synthesized HGNs, they were 

characterized using SEM and UV_Vis spectroscopy. Fig. 3a shows the SEM image of 

HGNs, revealing the outer diameter to be 39 ± 5 nm, which is appropriate size for 

potential cell penetration. Also, in another study in our lab, we investigated the effect 

of nanoparticle size on the PTT efficiency and the preliminary results indicated that 
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HGNs in the size regime between 30-55 nm are most efficient. The HGNs in this size 

will maximize the absorption component and could therefore maximize heat 

generation. The findings also reveal that 50 nm HGNs generate ~2 times the heat per 

μg gold as their 70 nm counterparts and ~1.5 times the heat per μg gold as their 30 nm 

counterparts.  

 

 

Figure 6-3- (a) SEM image of the HGNs, revealing an outer diameter of 39 nm with a shell (b) 
extinction spectra of the HGNs at 790 nm. 

Fig. 3b represent the extinction spectra of synthesized HGNs which has a strong 

and symmetric peak at 790 nm. This symmetric peak shows uniformity of the particles 

and good size distribution. In addition, these HGNs fall into appropriate wavelength 

for biological applications which blood and tissue have minimum absorption.  

 

6.4.2 Conjugation Characterization by UV- Vis  

After characterizing the synthesized HGNs, they were concentrated to OD=4 

for bioconjugation. As described in the experimental section, the concentrated HGNs 
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were incubated with 100 μL of Succinimidyl Valerate 

(SVA)_PEG_Orthopyridyldisulfate (OPSS) solution for PEGylation. The SVA-

PEG_OPSS molecule was attached to the surface of HGNs via the gold-thiolate 

chemistry, resulting in amine-reactive succinimidyl ester-terminated PEGylated HGNs 

(SVA-PEG-HGNs).81 It was previously reported that PEGylation of 

gold nanoparticles reduces nonspecific plasma protein binding and prolongs blood 

circulation time, which is a important for successful in vivo applications.82,83 It is 

expected that the PEGylation of HGNs would improve their biocompatibility as well 

as their pharmacokinetic properties in vivo. The next step would be binding the 

PEGylated HGNs to the antibody or peptide through succinimidyl valerate terminus of 

PEG.  HGNs-PEG conjugate was covalently bonded to EGF antibody and 

GE11peptide using through a reaction between SVA and amine groups in the sequence 

such as Lysin.84 The bioconjugation of HGNs were confirmed by UV-Vis 

spectroscopy. As shown in Fig. 4, the absorption spectra of the HGNs broaden and 

redshifts. This shift in the absorption spectra while maintaining the overall shape and 

intensity of the spectra indicating successful conjugation of the antibody/peptide to the 

HGNs surface. 
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Figure 6-4- Extinction spectra of HGNs before (black) and after bioconjugation (red) 

 
 This observed spectral redshift after binding antibody/peptide to the surface is 

a result of an increase in the local refractive index at the gold nanoparticle surface.85 

This feature is also used in label free biosensing application. 

 

6.4.3 Conjugation Characterization by PL 

 Since both antibody and peptide used in this study were tagged with fluorescein 

isothiocyanate (FITC) dye, we used fluorescence spectroscopy to further study the 

bioconjugation and quantify the amount of peptide/antibody on the HGNs surface. Fig. 

5 shows the fluorescence intensity of different samples before and after conjugation 

with antibody. Here pure HGNs was used as control and the antibody conjugated HGNs 

are represented as HGN_antibody. The pure HGNs showed no PL and unwashed 

HGN_antibody solution showed PL intensity of about ~63000.  
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Figure 6-5- PL intensity of different samples, including pure HGNs, HGN_antibody 
conjugates, and supernatants after multiple washes. (#refers to number of washes) 

  

 After washing the HGN_antibody conjugates for the first time, PL of 

supernatant was measured as well as the washed particles. The PL intensity of the 

washed particles was higher than pure HGNs, which indicates presence of antibody 

molecules on the surface. However, the supernatant solution showed higher PL 

intensity compared to what was initially measured before wash. This result suggests 

quenching of fluorescence in presence of metal nanoparticles as reported previously.86–

88 The HGN_antibody conjugates were washed four times and Pl intensity of both 

washed particles and supernatant solution was measured. Even though, this 

measurement confirmed presence of FITC tagged antibodies on the HGNs surface after 

four washes, but due to this PL quenching, these results didn’t help with quantifying 

the concentration of antibody/peptide on the particles.  
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6.4.4 Conjugation Characterization by BCA Assay 

The bicinchoninic acid assay (BCA assay) was used to quantify the protein 

concentration in the solution. The total protein concentration is exhibited by a color 

change of the sample solution from green to purple in proportion to protein 

concentration, which can then be measured using colorimetric techniques. The BCA 

assay primarily relies on two reactions. First, the peptide bonds in 

protein reduce Cu2+ ions from the copper (II) sulfate to Cu+ (a temperature dependent 

reaction). The amount of Cu2+reduced is proportional to the concentration of protein 

present in the solution. then, two molecules of bicinchoninic acid chelate with each 

Cu+ ion, forming a purple-colored complex that strongly absorbs light at 

a wavelength of 562 nm. these bicinchoninic acid Cu+ complex is formed by reacting 

with cysteine/cystine, tyrosine, and tryptophan side chains. At higher temperatures (37 

to 60 °C), peptide bonds assist in the formation of the reaction complex.89 The amount 

of protein present in a solution can be quantified by measuring the absorption 

spectra and comparing with protein solutions of known concentration. Fig. 6 shows the 

BCA assay of HGN_antibody conjugates. 
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Figure 6-6- UV-Vis absorption spectra of standard BCA solutions and HGN-antibody 
conjugates in presence of BCA solution. 

 
 In this Assay, pure antibody stock solution with known concentration was used 

in presence of BCA solution to get the protein concentration calibration curve. The OD 

of each stock solution in the dilution series was measured at 562 nm and the extracted 

calibration curve is shown in Fig. 7. After making the calibration curve, the 

HGN_antibody conjugates after three washes and the supernatants after each wash 

were mixed with BCA solution and the absorption was measured at 562 nm. As it is 

shown in the inset of Fig. 6 the first supernatant has significant amount of protein in it. 

However, after each wash the absorption of the supernatant solution decreases 

significantly and finally after the 3rd wash no protein was observed in the supernatant. 
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On the other hand, noticeable amount of protein was measured in the HGN_antibody 

conjugates solution after three washes. These results indicate successful conjugation 

and strong binding of antibody on the HGNs surface after multiple washing. This also 

shows after three washes there are no free protein left in the solution.  

 

 

Figure 6-7- Antibody concentration calibration curve using BCA assay. 

 
 Using this calibration curve, we calculated the concentration of antibody left on 

the HGNs solution after three washes. Antibody Concentration on three times washed 

HGNs calculated to be 0.5 μg/ml. Considering the BCA results indicated all the protein 

left in the solution are bound to the HGN surface, we can quantify amount of antibody 

per HGN. This experiment was also performed with peptide conjugated HGNs and the 

results are shown in Fig. 8. However, the strong absorption of FITC shown in the 

UV_Vis spectra of the solution containing HGN_Peptide conjugates and BCA, 



239 
 

indicates dissociation of dye from the peptide. Therefore, this experiment should be 

repeated with fresh FITC labeled peptides for confident quantification of peptide 

concentration on HGNs. 

 

 

Figure 6-8- UV-Vis absorption spectra of standard BCA solutions and HGN-peptide 
conjugates in presence of BCA solution. 

 

6.4.5 Cell Binding Assessment by Microscopy Imaging 

 The bioconjugated HGNs were incubated with oral squamous cell carcinoma 

(cell line A-431) to investigate the photothermal efficiency of these particles. Oral 

squamous cell carcinoma represents ~95% of all cases and is great candidate for PPT 

because it is a surface cancer and the oral cavity is easily accessible to incident laser 

light. Since the anti-EGFR antibody and GE-11 peptide used as targeting ligands for 

bioconjugation of HGNs, they can specifically target anti-epidermal growth factor 

receptor overexpressed on the surface of these cancer cells.90 For the cell experiments, 
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HGNs-PEG-ab solutions were added to the cells cultured in a 96-well plate and 

incubated for 1 hour. After incubation, the cells were washed to remove free particles. 

The efficient targeting and delivery of these conjugates were investigated using 

confocal microscopy as shown in Fig. 9. The cell nuclei were stained with DAPI and 

represented as blue. Cell cytoskeletons are labeled with rhodamine phalloidin and 

shown in red and HGN_antibody conjugates are shown as green. Fig. 9a shows the oral 

squamous cells without particles and Fig. 9b shows the cells after incubation with 

HGN_antibody conjugates. The localization of the particles on the cells confirm 

successful targeting and delivery to the receptors. 

 

 

Figure 6-9- Confocal microscopy images of oral squamous cells (a) before and (b) after 
addition of HGN-PEG-ab. Cell nuclei are labeled with DAPI (shown in blue) and cell 
cytoskeleton is labeled with rhodamine-phalloidin (shown in red). The signal in green is 
associated with the presence of HGN_antibody conjugates. 

 
 Fluorescence microscopy is another technique we used to investigate particle 

delivery to the cells and efficient and specific targeting. In this imaging, the 
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fluorescence signal of FITC labels the location of HGNs and DAPI labels the cell 

nuclei. Fig. 10 shows cells stained with DAPI (red), FITC labeled antibody on HGN 

(pseudo-colored green), and the overlaid image. The resultant overlaid images show 

efficient binding of HGN_antibody to A431 cells which is represented by the strong 

fluorescence signal around the cell.  

 

 

Figure 6-10- Fluorescence microscopy imaging of the HGN_antibody binding to A431 cells: 
(a) FITC labeled antibody on HGN (pseudo-colored green), (b)cells stained with DAPI (red), 
(c) overlaid image. 

 
 In order to investigate the specific binding of the particles to EGF receptors on 

the surface, the HGN_antibody conjugates were incubated with two different cell lines 

including healthy cells and breast cancer cells. Fig. 11 shows the fluorescence 

microscopy images of these particles.  
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Figure 6-11- Fluorescence microscopy imaging of the HGN_antibody incubated with (a) 
A431 cells (b) Healthy HaCaT cells, and (c) MCF7 breast cancer cells. 

  

 As shown in Fig. 11, the HGN_antibody conjugates efficiently bound to the 

cells, while no particles were observed around the healthy HaCaT cells and MCF7 

breast cancer cells since they don’t overexpress specific EGF receptors. This result 

indicates specific binding and customized delivery of nanoparticles to the target cells. 

This is specifically important for cancer therapy without damaging healthy cells.  

 

6.4.6 Binding Affinity Assessment by ICP-OES 

 One of the goals in this study is to compare the binding affinity of antibody 

conjugated HGNs to their smaller counterpart, peptide conjugated HGNs. The 

hypothesis is that because of smaller size of peptide, larger number of them can be 

fitted on the HGNs surface. This will eventually result in more efficient binding to the 

receptors. For this purpose, the amount of gold initially added to the cells was measured 

using ICP-OES. After 1-hour incubation, the cells were washed two times, leaving only 

bound HGNs on the cells. The solution containing the cells, bound particles and the 
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buffer was digested as described before. The digested cells and HGNs solutions were 

measured again by ICP_OES to quantify how much gold is bound to the particles. Fig. 

12 shows calibration curve for standard concentration of gold prepared using the gold 

salt HAuCl4. Using this calibration curve the concentration of left-over gold on the cells 

was measured. All the concentrations are reported in Table 1. The measured Au 

concentration in initial HGNs adjusted at OD=4 and added to the cells was measured 

to be 5.4 ppm. The concentration of gold left on the cells and the gold washed in the 

supernatant was also measured to be 1.14 ppm and 0.41 ppm, respectively. Even though 

these numbers don’t add up the initial amount, it still shows higher concentration of 

gold on the cell compared to what was washed off. This might be due to losing some 

HGNs during the incubation and digestion process. 

 

Figure 6-12- ICP-OES calibration curve for standard concentrations of Au. 
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Table 6-1- Au concentration in different HGNs samples measured by ICP-OES. 

 

 As a control experiment we repeated this measurement using only pure HGNs 

and no targeting ligand. It was expected that particles wont bind to the cells and will 

mostly wash off. As expected, the concentration of gold in pure HGNs solution added 

to the cells was measured to be 3.5 ppm. However, only 0.23 ppm of it was left on the 

cells after washing and 1.29 ppm of it was removed in the supernatant solution. Similar 

measurements should be done using peptide conjugated HGNs in the future. 

 

6.4.7 in vitro PTT 

 After delivering the conjugated particles to the cells, in vitro PTT was carried 

out for cells incubated with HGN_antibody and HGN_peptide conjugates. The PTT 

was performed using 795 nm laser light at 1.0 Wcm-2 directly applied to the cells for 

5 min. The spot size was 7 mm in diameter to illuminate the entire well. The low laser 

power density and short treatment time was selected to avoid damage to the cells from 

the laser alone. Fluorescence microscopy was used before and after laser treatment for 

cell counting and determination of PTT efficacy. Fig. 13 shows the fluorescence 

microscopy images after treatment with laser. The cells were stained with propidium 

iodide (PI) (shown in pink), which is a DNA stain and is used to indicate cells that are 

dead or dying as it cannot pass the cell membrane of living cells.  
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Figure 6-13- Fluorescence microscopy images of PTT efficacy (a) cell only controls, and (b) 
HGN_antibody after laser treatment. Cell nuclei are labeled with DAPI (shown in blue) and 
damaged cells are labeled with PI (shown in pink). 

 
The significantly smaller number of PI markers in the cell only figure (Fig. 13a) 

clearly indicats that laser treatment alone is not harmful to the cells. The cell death 

happens only when combination of HGNs and laser treatment are applied. This 

experiment was repeated for peptide conjugated HGNs and results were significantly 

higher (91%) compared to HGN_antibody conjugates (54%). This dramatic difference 

might be due to multiple factors including closer proximity of HGNs to the cell surface, 

resulting in more efficient heat transfer and damage, consequently. More efficient 

targeting and possibility of particle internalization with the peptide targeting ligand is 

also considerable. 

 

6.5 Conclusion and Future Work  
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 In this work, the effect of targeting ligand on photothermal therapy (PTT) 

efficiency of hollow gold nanoparticles (HGNs) was investigated. The 40 nm HGNs 

were synthesized and bioconjugated to anti-EGF antibody and GE-11 peptide, which 

both target the epidermal growth factor receptors (EGFR) overexpressed on the surface 

of oral squamous cell carcinoma (cell line A-431). The structural and spectral 

properties of HGNs before and after conjugation was studied and the conjugation was 

confirmed using UV-Vis, PL spectroscopy and BCA assay. All these characterization 

techniques indicated proper surface modification and conjugation of HGNs. The 

conjugated HGNs were incubated with the cells and the specific binding and targeting 

of the cells was investigated by fluorescence and confocal microscopy. The binding 

affinity of the conjugated HGNs to the receptors was calculated by ICP-OES. Finally, 

the PTT efficacy of these particles was studied after laser treatment. The preliminary 

PTT results showed significantly higher cell death (91%) with peptide conjugated 

HGNs compared to HGN_antibody (54%). The possible explanations for this result 

were discussed including closer proximity to cell surface, internalization of the 

particles and more efficient binding to the receptors.  Most of the work done in this 

project include design and development of protocols for surface modifications, 

bioconjugation, cell experiment, treatment parameters and characterization processes. 

These parts are mostly done with antibody and only some of them were reported for 

peptide. All these processes should be replicated and modified for peptide as well to 

provide further information to confirm proposed hypotheses. In addition, further 
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modifying the targeting ligand in order to efficiently target the receptors on the nuclei 

or in the cytoplasm may result in permanent damage of DNA and improved efficiency. 
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