Lawrence Berkeley National Laboratory
Recent Work

Title
Collisional breakup in coulomb systems

Permalink
https://escholarship.org/uc/item/3xw67392

Author
McCurdy, C.W.

Publication Date
2003

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/3xw673g2
https://escholarship.org
http://www.cdlib.org/

Collisional Breakup in Coulomb Systems

T.N. Rescigno!? and C.W. McCurdy!+?

!Lawrence Berkeley National Laboratory
Computing Sciences

Berkeley, CA 94720, USA

?Lawrence Livermore National Laboratory
Physics and Advanced Technologies
Livermore, CA 94551, USA

3University of California, Davis
Department of Applied Science

Davis, CA 95616, USA

1 Introduction

Atomic collision theorists have struggled to understand the details of the
simplest problem in collisional ionization - the electron-impact ionization of
atomic hydrogen - since the formulation of the problem some forty years ago
by Peterkop [1] and by Rudge and Seaton [2]. In fact, it is only within the
last few years that this problem has been reduced to “practical computation”,
meaning one has a formalism and the associated numerical algorithms that
permit the calculation, with currently available computing capability, of the
relevant physical quantities to any accuracy that can be tested by experi-
ment. That fact has been demonstrated, for example, in a series of papers [3
8] applying the ideas of exterior complex scaling of electronic coordinates to
the electron-impact ionization of the hydrogen atom. Other methods includ-
ing convergent close-coupling[9-11], the R-matrix pseudostates method[12],
hyperspherical close-coupling[13,14], and time-dependent close-coupling[15]
have also been applied to aspects of this problem with great success. For
the related problem of double-photoionization of helium, the hyperspherical
R-matrix method[16] has used with great success.

The central difficulty that impeded progress on the problem of three-
body breakup in Coulomb systems, particularly for the collisional breakup or
“e,2e” problem (as opposed to double photoionization), is the cumbersome
asymptotic form of the scattering wave function that the formal theory of ion-
ization imposes. The appropriate boundary condition for ionization, deduced
by Peterkop [1] and Rudge and Seaton [2], is

P ; . T1,T9,Q
Wil (rr,r2) —y — fi(f1, 72, 0)4/ %QXP{Z[KP+ £, P )

p—o0

In(2rp)l},
(1)

where f; is the ionization amplitude and the hyperspherical coordinates are
defined by p = (r? +r3)"/? with a = tan~!(r, /72), and & is related to the total
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energy by E = £%/2. The most obvious difficulty in applying this boundary
condition is that the coefficient ((71, 72, a) of the logarithmic phase depends
on the distances and ejection angles of both electrons. However, worse yet is
the fact that Eq. (1) is not separable in spherical coordinates, and is therefore
much more cumbersome to apply to numerical calculations which are perforce
done in that coordinate system. As a consequence, no one has yet applied
Eq.(1) to the numerical solution of the Schrodinger equation for the ionization
problem.

The formal theory of ionization poses another challenge to computation
as well, and that is that the ordinary expression for evaluating the ampli-
tude, starting from the scattering wave function that solves the Schrodinger
equation, does not apply, because defined in the usual way it would have
an infinite phase associated with integrating an expression with logarithmic
phases over an infinite volume. Instead the amplitude is given by [1,2,17]

fky, ko) = —(2m)5/2 gt Ak kz) // UH(H — E)p(—k, z1)p(—ka, 22)drydry
(2)

with effective charges in the one-body Coulomb functions, ¢(—k, z) depend-
ing on both the energy and direction of ejection of each electron,

Z1 z9 1 1 1

e 3

ki ks ki ky |k, — k| ®)
and with

Ak, ko) = 2[(21/k1) In(k1/K) + (22/k2) In(k2/K)]. (4)

Both of these difficulties were ultimately overcome by the successful meth-
ods for treating the electron-impact ionization problem. The first of them, the
asymptotic form in Eq.(1), was the central issue addressed by the Exterior
Complex Scaling (ECS) method, which is the principal subject of this chap-
ter. The second of them, the Coulomb breakup amplitude formula in Eq.(2)
and its attendant numerical pathologies, required a reformulation and the
observation that numerical computations on a finite volume can be at most
affected by a finite overall phase that leaves physical observables unchanged.

2 Exterior Complex Scaling - Circumventing
Asymptotic Boundary Conditions

The ECS method owes its origins to the long history of complex scaling meth-
ods in atomic and molecular physics, which in turn is based on a very simple
observation about the behavior of solutions of the Schrédinger equation when
viewed as functions of complex variables. A purely outgoing wave, exp(ikr),
with k£ > 0, becomes exponentially decaying when the coordinate, r, is scaled
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into the upper half complex plane, exp(ikre!”) — 0 as r — oo. The first
step in the ECS formalism, therefore, is to isolate the outgoing or “scattered
wave” portion of the full scattering wave function. To that end, we partition
the full wave function into an initial unperturbed state, g, and a scattered
wave, Wy, which contains only outgoing waves in all channels:

v =, + &, (5)
For a two-electron, problem, e.g., electron-hydrogen atom scattering, &, can
be written, for singlet (upper sign) or triplet (lower sign) spin coupling,

1
v 2kq

where kg is the incident electron momentum, and ¢q is the initial state of
the atom. The scattered wave then satisfies the driven Schrédinger equation
for a particular initial condition,

by = (™01 g (rz) & €02 (ry)), (6)

(E — H)W,. = (H — E),. (7)

Complex scaling reduces the Coulomb boundary condition for breakup,
with its complicated logarithmic phases, to the trivial condition that W.(r1, 1)
vanish at infinity. The subtlety in the (e,2e) problem is that we must extract
the physics of breakup from W, in a region in which the coordinates on which
it depends are real, so we need to apply the complex scaling transformation
only when either of the coordinates of the two electrons are greater than some
radius, Rg. The ECS transformation that does this was invented and investi-
gated in the context of electron scattering resonances with only one electron
in the continuum [18,19]; its adaptation to the (e,2e) problem is shown in
Fig.(1). Specifically, under ECS, the radial coordinates of the electrons are
transformed under the mapping:

{r r < Ry,
r— . (8)
R0+(T—R0)€m r 2 Rg.
Because ¥, contains only outgoing waves, which decay exponentially on the
complex part of the exterior scaling contour, Eq.(7) can be solved by applying
only the boundary condition that ¥y, vanish at large distances. On the real
part of the contour, ¥, is the correct physical wave function from which all
scattering information can, in principle, be extracted, provided it is extracted
in the region of real coordinates.

There is one final subtlety: because Eq.(6) contains plane waves, which
diverge under complex scaling, interaction potentials must be truncated at
large distances, but only on the right hand side of Eq.(7) [20].
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Fig. 1. Left Panel: illustration of the ECS contour rotated into the upper-half of
the complex r-plane beyond Ry. Right Panel: Depiction of exterior complex scaling
for two radial coordinates.

3 Scattered-Wave Formalism - Options for Computing
the Wave Function

The method of exterior complex scaling and its applications have been de-
veloped in a series of papers [3 8,21 23], which from the outset divided the
solution of the problem of electron-impact ionization into two discrete steps:

1. Compute the scattering wave function without recourse to the explicit
three-body asymptotic form by applying exterior complex scaling to the
solution of a discretized representation of the Schrédinger equation.

2. Extract differential and total ionization cross sections from the wave func-
tion by either ”interrogating” it to compute the scattered flux, or using
it in an integral expression for the breakup amplitudes.

It is worth noting that these two problems, namely the computation of
the scattered wave function and the subsequent extraction of the scattering
information, are only distinct steps in approaches where the wave function
is computed by a method that is independent of the asymptotic matching
condition that defines the scattering amplitudes. In that sense, our approach
is similar to time-dependent methods which track a wavepacket through the
collision from initial to final states and then attempt to extract cross sections
by analyzing the exiting wavepacket. It is also the case with both approaches
that the extraction step, while far from being the most computationally in-
tensive part of the overall calculation, presents many formal difficulties, par-
ticularly in the case on multi-electron targets, and is the subject of much
current research.
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3.1 Time-Independent Approach - Linear Equations

To solve the scattered wave Schrodinger equation, Eq. (7), we must specify
the underlying representation. For all the ECS calculations to date, W, is
first expanded in coupled spherical harmonics of the angular coordinates of
the two electrons: Hl’;‘?b(fl,f@)

Wse(r1,12) = Z Wl (r1, ) Y00, (B, E2) (9)
Lyl

thereby allowing the conversion of Eq.(7), the driven Schrédinger equation, to
a set of coupled equations for the two-particle radial functions, Wlf‘h (ri,ra):

(E — Hy, () — Hy, (rQ)) Wi, (1, 72)

=Y (Lb||BI) L g (1, 72) = X1, (1, 72) (10)

1.1

where the radial coupling potentials, (l1l5]/lil5),, are obtained by taking
matrix elements of —— between two coupled spherical harmonics [6]. The

[r1—ra]
inhomogeneous terms, X1L112= arise from the partial-wave expansion of the
right-hand side of Eq.(7)

The set of coupled equations is converted to a system of linear equations
by choosing some discretization method for representing the exterior-scaled
radial functions. In our earlier studies of e-H ionization, the coupled radial
equations were solved on a complex two-dimensional grid using seven-point
finite difference approximations to the second derivatives. A typical calcula-
tion might have ~ 450 points in each radial dimension, and for a given total
angular momentum, L, have of the order of 24 (I;,l,) angular momentum
pairs. The time consuming step of the calculation, now a modest computa-
tion on a massively parallel supercomputer, is the solution of sparse linear
equations of the order of five million. To accomplish this, we used an iter-
ative algorithm specifically tailored to the problem at hand. The eigenvalue
spectrum of a complex-scaled Hamiltonian is such that no known iterative
algorithm will converge to solution without pre-conditioning. Therefore, find-
ing a suitable pre-conditioner for the coupled equations is a necessity. The
set of uncoupled radial equations, defined by setting (I11»||/175)r = 0 for all
(11,15) # (I1,12) in Eq. (10), have numerical properties similar to the coupled
equations, but require solving linear systems only as big as the total number
of radial grid points. We have found solutions of the uncoupled equations,
which can be obtained by using a direct sparse solver [24], to be a suitable
pre-conditioner for solving the coupled equations.

The coupled equations can be solved using discretization schemes that
are more efficient that high-order finite difference. In our current efforts, we
use a combined finite element and discrete variable representation (DVR),
which is the most efficient numerical representation developed to date[25].
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r, (units of a)

Fig. 2. Real part of a representative radial function for electron-hydrogen scattering
at 17.6 eV incident energy. Vertical axis is Re(¥) and the two horizontal axes are
r1 and 7o with origins at the rear left corner. WIEJQ (r1,72) is shown for singlet spin,
L=2andl; =l =1

In that representation a DVR using Lobatto shape functions is constructed
inside each finite element. Continuity of the wave function is enforced at the
boundaries of the finite elements, and one of those boundaries is always chosen
to lie at Rg. The finite-element DVR representation of the one-dimensional
kinetic energy, —%62/61“2, has a blocked structure, but the potentials, both
v(r) and V(r;,r;), are diagonal in the coordinates of each electron. Since
the underlying grid points are connected to a Gauss quadrature rule, the
total number of points required is considerably smaller than what would be
required with finite difference to achieve the same level of accuracy.

For the e-H problem, one of the many calculated radial functions con-
tributing to ¥s. is shown in Fig.(2). In that figure one can see the outgoing
flux in the discrete, inelastic channels going out near the axes, while the ion-
ization flux goes out for large 1 and ry in the structures resembling ripples
from a pebble dropped in a pond.

3.2 Time-Dependent Approach - Wavepacket Propagation

A straightforwad extension of the method outlined in the previous section to a
two-electron target atom, for example to the case of e-He ionization, would re-
quire the solution of coupled linear equations in three radial dimensions. The
most troublesome aspect of such an undertaking, aside from the computer re-
sources that would be required, is the fact that even the uncoupled equations
would likely require an iterative method of solution and finding a suitable
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pre-conditioner would be difficult. In contrast to time-independent methods,
explicit time-dependent methods, which involve propagating a wavepacket on
a multi-dimensional grid, have scaling properties that allow their application
to three-electron systems. We have recently described a step toward a com-
plete algorithm for solving the three-electron breakup problem by combining
the idea of time propagation with that of using exterior complex scaling to
solve a driven Schrddinger equation [26].

Exterior complex scaling had previously been explored as a method for
solving the time-dependent Schrédinger equation [27,28]. The critical obser-
vation in that work is that if the wave packet ¥(r;t) contains only outgoing
waves, then

Y(R(r);t) —— 0 (11)

00
on the complex contour for all times, ¢. Since the physical solution of the
driven Schrédinger equation in Eq.(7) has only outgoing waves, that point is
the key to the time-dependent formulation of the ECS method for the present
problem.

Formally, the solution of Eq.(7) we seek is

Wy (ry,12,...) = G (H — E)&o(r1,12,...), (12)

with G(*) being the Green’s function with outgoing wave boundary condi-
tions,

G = (E - H +ie)". (13)

We can also write G(*) formally as

G = l,/ooe“wf)te*i”tdt. (14)
tJo

Note that the r.h.s. of Eq.(7) satisfies

(H—E)¢0(r17r2,...)—)0 (15)

;i —>00

because @y is asymptotically an eigenfunction of H. In fact (H — E)®g has
the range of the interaction potential. In general, therefore, we can define a
square-integrable wave packet, x(r1,ra, ... ;t), by

X(r1, 1o, 5t) = e H(H — B)®o(r1,12,..). (16)

Now if we apply the exterior scaling transformation to this equation and
define the exterior scaled Hamiltonian by,

H — Hpes = H(R(r1), R(r2),....), (17)
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where the scaling applies only to the radial coordinates, the wave packet then
becomes

X(R(r1),R(r3),... ;t) = e Hecst(Hpog — E)

x®Po(R(ry1), R(ra),...). (18)
This packet has two important properties,
X(R(r1), R(ra),... ;t) P 0, (19)
and
X(R(r1), R(ra),... ;t) == 0, (20)

Therefore we can write W,, simply as the Fourier transform of the the wave
packet

1 [ .
U,e = _-/ elEtX(t)dtz (21)
0

and the +ie in Eq.(14) is unnecessary.

Eq.(21) provides a numerical representation of ¥s., provided we can prop-
agate x(0) = (H — E)®y on the ECS contour in two or three dimensions. In
numerical experiments we have found that the class of numerical propagators
that are unitary for hermitian Hamiltonians, i.e., before the ECS transfor-
mation is made, are generally stable for the corresponding exterior scaled
Hamiltonians. For example in one dimension it has been shown[28] that the
Cranck-Nicolson propagator, for time step At,

e HAL = (1 +iHAt/2)" (1 — iHAt/2) + O((At)®). (22)

works well as does the two-dimensional version of this propagator.

The motivation behind the time-dependent approach is the development
of a method that scales favorably with particle number, so it should not
involve solutions of linear equations representing multiple dimensions at each
time step. In our current work, we are using a simple version of the split
operator approach [29], in which we first write,

3

d d
H = ZH[)(T,) + Z V(T,j,?“j), (23)

where Hy(r) is the one-body Hamiltonian and V' (r;,7;) is the two-body in-
teraction potential, and then approximate the propagator by,

d
o iHAL o =i Y5 V(rir) At/2 [H efng(ri)At}efiij V(riry)At/2 (24)

i=1
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With either finite-difference or DVR, the potentials are diagonal in the co-
ordinates of each electron. The operators exp(—iHy(r;)At) can be repre-
sented by an N x N matrix, where N is the number of grid points in
one dimension, that need be computed only once. It is straightforward to
show [26] that, for a problem with d dimensions, the entire propagator re-
quires O(2N?) + O(dN %) operations per time step. The scaling advantage
of the time-dependent approach as outlined above is then that of N%*+! versus
N?? for the time-independent approach.

4 Extraction of Physical Cross Sections

With the scattering wave function in hand we are faced with the problem
of extracting the information it contains about elastic, discrete inelastic and
ionization channels. A complete theoretical treatment of electron-impact ion-
ization must necessarily include a prescription for calculating differential cross
sections that give detailed information about the energies and angles of ejec-
tion of both electrons. Unlike the representation of the wave function in an
ordinary atomic close-coupling calculation, its numerical representation in
this approach gives no immediate indication of how to separate those contri-
butions.

4.1 Flux-Operator Approach

The first ECS calculations on electron-impact ionization of hydrogen were
performed by simply computing a variant of the quantum mechanical flux
through a surface that lies within the volume of coordinate space where both
coordinates are real. The continuum of ionization final states is described by
flux through a hypersphere of radius pg in the limit py — oo. To this end, we

define a generalized, dimensionless flux fi.°™

f(iﬂn)(ajl,@) = Im [k‘,p (T1T2Wi§n(r171‘2))* X

PO
i (’I“] T'QW-+ (I‘] y 1'2)) ] ‘ (25)
dp o p=po

evaluated at a hyperradius pg. Since the hyperspherical angle « parametrizes
the momentum distribution between the two electrons as py — oo, we can
.. . . . (ion)
express the total ionization cross section as an integral of f,,
po — oo, over a and the angular coordinates of both electrons:

, in the limit

w/2
1 . . .
Tion = 73 / //fglogn)(oz,n,rz) drdryda (26)

0 47w 4n
pPo—>00
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Thus, the pg — oo limit of the flux leads directly to a differential cross section
for ionization. To compute the scattered flux, we assemble ¥ and %Lﬁ;g from
all its partial wave components:

foo (@, 71, 72) =

iQkip Y (1/1;7’;')* 4 (1, (yz{/?' (f‘17f‘2))*yz[‘oz (T4, 1) (27)
12 dp 162 1obo 1,02

L’,l’l,l’2

Ertnot2 p=pa

The flux operator approach, while conceptually straightforward, is com-
putationally difficult. For purely geometrical reasons, the calculation of the
asymptotic flux can require calculations well beyond the range of the poten-
tials, even in the case of short-ranged interactions. Indeed, by inserting the
asymptotic form for %! from Eq. (1) into Eq. (25) we find that the ionization

flux approaches its asymptotic limit as %, i.e. for large pg

£ (o i i) = 180 (0,71, 72) + O (pio) (28)
The calculated flux must therefore be numerically extrapolated to infinite pq
to obtain physical results.

A more serious problem, evident in the plot of the radial wave function
shown in Fig. (2), is that there are regions of space (near the axes) where the
“ionization wave” overlaps the discrete two-body channels. The fact that the
latter contaminate the ionization flux again forces one to employ grids large
enough to allow the physical region inhabited only by the ionization portion of
the scattered wave to be distinguishable from the parts that describe discrete
two-body channels. The angular range in a subtended by the flux due to a
discrete channel is sin~"(A/py) where A is the distance over which the target
state is appreciably different from zero. Thus as pg increases, contamination
of the ionization flux from discrete channels is confined to smaller regions
of a. In the true py — oo limit the discrete channels’ contributions to the
flux become delta functions at @ = 0 and o = 90° and equality in Eq. (28)
holds except for infinitesimally small regions near the edges. In practice, the
contamination of the ionization flux by discrete channels on finite grids limits
the flux-extrapolation procedure in its ability to describe ionization when a
single electron carries most of the available energy. Our early calculations of
singly differential cross sections(SDCS) [5] were limited to cases where one
electron carried no more than about 75% of the total energy.

The most detailed information about ionization is contained in the so-
called triply differential cross section(TDCS) which measures the energy and
angles of the two outgoing electrons. The calculated TDCS for electron-
hydrogen ionization at 17.6eV incident energy is compared with the absolute
experimental measurements of Roder et al. [30] in Fig.(3). The results are
shown for the coplanar symmetric experimental geometry (which means that
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Fig. 3. Equal-energy sharing, coplanar TDCS for electron-hydrogen ionization at
17.6 eV incident energy shown for geometries with 6,2 fixed. Experimental data
are absolute measurements of Roder et al with 40% error bars. Dark solid curves:
integral expression for breakup amplitude, Lighter curves: flux extrapolation.

the incident electron and both exiting electrons lie in a plane, and the two
exiting electrons have equal energy), with a fixed angle between the exiting
electrons. There has been some question about about the internormalization
of these measurements with others done by holding the direction of one exit-
ing electron fixed, but previously unpublished results in J. R6der’s thesis have
recently resolved that discrepancy [31]. From 19.6 eV to 30eV only relative
measurements are available, but excellent agreement with them is attained
in ECS calculations, as is demonstrated in Fig.(4).
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Fig. 4. TDCS for 25 eV incident energy. Normalization factor to convert measured
values of Roder et al. from arbitrary units is 0.16.

4.2 Formal Rearrangement Theory and Scattering Amplitudes
for Three-Body Breakup

While the straightforward evaluation of quantum mechanical flux has the
appeal that it corresponds to the most basic formal definition of the cross
sections, it is not as efficient, even for simple inelastic scattering, as the
calculation of scattering amplitudes via matrix elements that depend only
on the range of the interaction potential. It is therefore advantageous, both
computationally and theoretically, to confront the dilema posed by the formal
theory in Eqs.(2-4).

The question of how to formulate a procedure for extracting breakup am-
plitudes from a wave function that is only known numerically on a finite grid
was addressed in a series of recent papers [8,22,23]. In the first of these stud-
ies [22] we showed that, even in cases that involve only short-ranged poten-
tials, some formally correct integral expressions for the breakup amplitudes
can yield numerically unstable or poorly convergent results. For example, the
expression

f= <P1,P2|V|q/+) (29)

where the final state is just a product of plane waves, while providing a for-
mally correct breakup amplitude for short-ranged potentials, was found to be

360
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numerically unstable. The instability can be traced to ‘free-free’ overlap terms
that arise from discrete two-body channels in the scattered wave function.
On an infinite grid, these terms are proportional to momentum conserving
delta functions which therefore contribute nothing to the breakup amplitude,
but on a finite grid, they are a source of numerical error. A practical solution
was found by using formal rearrangement to express the amplitude in terms
of distorted waves. A series of formal manipulations, combined with Green’s
theorem, allows us to express the breakup amplitude as a surface integral:

1 .
f=5 [ - 0gvelol) - a8 (30)

where the functions gzﬁgj) are distorted waves derived from the one-body terms
in the interaction potential [22].

For Coulomb problems, the obvious extension is to employ Coulomb func-
tions as distorted waves in Eq. (30). This is, however, at odds with the formal
theory, which states that the integral expression in Eq. (30) will have a di-
vergent phase unless the Coulomb functions are chosen with effective charges
that satisfy Eq. (3). But the use of effective charges other than unity in the
Coulomb functions that define the final state have the unfortunate property
of destroying their orthogonality to the bound states of the hydrogen atom.
We showed in ref. [23] that, on a finite volume, the effect of using Coulomb
functions with Z = 1 in computing the ionization amplitudes is merely to
introduce an inconsequential overall phase that has no effect on the cross
section. It is the application of the integral formula, together with the ECS
method, to ionization of hydrogen that has given the most accurate descrip-
tion of the complete dynamics to date [8] and which does in fact “reduce
the problem to practical computation”. The TDCS results obtained from the
integral amplitudes, which are also shown in Figs. (3) and (4), attest to the
accaracy of approach and also validate the fundamental correctness of the
earlier flux extrapolation approach.

The magnitudes and shapes of the singly differential cross sections at low
energies give a particularly compelling demonstration of the ECS approach
and make a satisfying connection with the semiclassical theories that have
been applied to the threshold behavior of the ionization process. Fig.(5) com-
pares the SDCS computed by flux extrapolation and from integral amplitudes
at incident energies from 15.4 eV (only 2 eV above the ionization threshold)
to 54.4 eV. At lower energies the flux and integral formula methods for com-
puting the SDCS disagree by as much as 10%, because the extrapolation of
the flux becomes increasingly difficult as the energy is lowered. However no
such difficulty affects the integral expression in Eq.(30). At very low energies
the SDCS is almost flat and almost constant as a function of incident energy.
If it were flat and constant it would correspond to a linear threshold law for
the total cross section. In semiclassical calculations at the Wannier geometry
with electrons exiting in opposite directions, Rost [32] predicted qualitatively
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Fig. 5. Singly differential cross sections for e-H scattering at the collision energies
indicated. Individual components for singlet (dashed line) and triplet (dot-dash
line) are shown. Where applicable, results based on flux-extrapolation are shown
in light gray.

the subtle departures from flatness as the SDCS turns from a “smile” at high
energies to a nearly flat shape at energies near threshold.

5 Multi-Electron Targets

In electron-impact collisions involving more complicated atoms, even for a
two-electron target, there are ionization processses that cannot occur for a
one-electron atom: excitation-ionization, excitation-autoionization and dou-
ble ionization. In excitation-ionization, the atom is singly ionized and the
residual ion is left in an excited state. In excitation-autoionization, the tar-
get is first excited to an autoionizing state which can then decay into the
ionization continuum in a process that competes with direct ionization at
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the same energy. Double ionization is the (e,3e) process in which there are
three free electrons in the final state.

While we are still far from the goal of carrying out a fully ab initio treat-
ment of electron-impact ionization with a multi-electron target, there have
already been a few proof-of-principle demonstrations involving model prob-
lems [33,26] that treat ionization of atomic targets with “two active elec-
trons”. These preliminary studies have served to establish the fact that time-
dependent approaches certainly have the scaling properties that allow their
application to three-electron systems and signal the emergence of a new level
of sophistication in ionization studies that will go beyond currently avail-
able methods that treat multi-electron atoms with frozen-core, one-electron
models.

5.1 Asymptotic Projection

The extraction of ionization cross sections from a numerical representation
of the scattered wave on a finite grid is substantially more difficult with
a multi-electron target than with a one-electron target. If one attempts to
compute the ionization cross sections from an integral expression for the
breakup amplitudes, one finds that in contrast to the one-electron target
case, the use of distorted waves alone is not sufficient to eliminate numerical
instabilities caused by discrete two-body channel terms in the scattered wave
and additional steps are required to obtain a viable formula. To see why
this is the case, we need only consider the asymptotic form of the scattered
wave function for the case of a two-electron target at energies where both
single ionization and two-body channels are open. For simplicity, we consider
a case with no angular momentum. Asymptotically, there will be two-body
terms in the scattered wave of the form f,e™="1y,, (ry,r3), where x,(rs,73)
is a two-electron target bound state and f, is the corresponding excitation

amplitude, as well as an ionization term of the form f e*f12,, (r3)/\/p12,

where p1a = \/r? +r3 and ¢,, is a bound state of the residual ion.
Now suppose we attempt to compute the single ionization amplitude from
an expression

i) = [ (00060 12 (1) VO 1) =

Y72, 1)V, (1) (r2) (1)) - BidS

which is an obvious generaliztion of Eq. (30) for a two-electron target. Since
there is no orthogonality relation between the distorted waves and the two-
body bound states, the two-body terms in the scattered wave will again give
rise to overlaps between free functions in Eq. (31) which render it numerically
unstable. One way to remedy this is to first evaluate the two-body amplitudes
from the formula

fn = 2(sin(k,r1)xn(re,m3)|E —T — V1 |Ws,)

(31)

(32)
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since there are no formal or numerical problems associated with evaluation
of Eq. (32). We can then construct an “asymptotically projected” scattered
wave

chmj = g’sc - Z(fn/kn)eyknrl Xn(’I“Q,T‘g), (33)

n

which removes the two-body channels from the asymptotic scattered wave.
If we use WP in Eq. (31), then there is in principle no contamination of
the ionization amplitude from two-body channels and the surface integral
extracts the ionization amplitude just as it does in the case of a one-electron
target.

When the collision energy moves above the threshold for double ioniza-
tion, the asymptotic scattered wave will also contain a term proportional to
e®? /p where p = \/r? + r2 + r2 and E = K?/2. This term will again cause
difficulties in the integral expression for the single ionization amplitude. For-
tunately, the following integral can be used to compute the amplitude for
double ionization:
fouble (kl ko, k3) = (Qslm Gy ¢k3 |E -T-% |W§)CT‘O]>7 (34)

won

where E = k}/2+ k3 /2 + k3 /2. If the distorted waves are chosen to be eigen-
states of the one-body potential, then orthogonality between the distorted
waves and the one-body bound states ¢, prevents the asymptotic single-
ionization terms in WP from causing any numerical problems. One can
then extend the definition of WP7°/ to include the double ionization term,

!p.g):{)jl = !psc - Z(fn/kn)em"rl Xn(TQ: TS) o g){;:‘bleeiKp/p' (35)

n

before using Eq. (31) to compute the amplitudes for single ionization. By fol-
lowing these steps, we can, in principle, compute all the scattering amplitudes
of interest in the case of a two-electron target.

We have tested these ideas in a model 3-electron problem that involes
only exponentially bound one- and two-body potentials [26]. The potential
strengths were chosen so that the target ‘atom’ and ‘ion’ each bind a single
state, so the only channels possible are elastic scattering and breakup. The
scattered waves were computed on a three-dimensional radial grid by the
time-dependent version of ECS outlined in Sec. 3.2. Fig. 6 plots the real part
of the scattered wave for a fixed value of r3, before and after projection of
the elastic channel, at an incident energy of 11 eV. The elastic two-body
component, clearly visible in the unprojected scattered wave near the r; and
ro axes, are effectively removed by the asymptotic projection scheme adopted.
In Table 1, we show the elastic scattering cross sections together with the
total ionization cross sections computed by integrating the SDCS, the latter
computed from the asymptotically projected scattered wave. The sum of these
two quantities is the total cross section, which can be evaluated independently
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Fig. 6. Scattered wave, 1/)5‘2), for model 3D problem discussed in text, before (upper
plot) and after (lower plot) asymptotic projection of elastic channel. All plotted
quantities are in atomic units. The real part of 1/)5'2) is plotted as a function of r;
and rp with r3 fixed at .1 bohr. The incident electron energy is 11 eV.

Table 1. Integrated cross sections for model 3D problem discussed in text.

ZTLCldEﬂtEHETgy Oelastic Tion Oeclastic T Tion Toptical T fluz

7eV 17.238 3.173 20.411 19.681  20.237
9eV 11.578 2.592 14.170 14.144  14.330
11 eV 8.568 2176  10.744 10.708  10.883
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from the optical theorem or from the total flux. The difference bedtween
these quantities gives some indication of the overall numerical accuracy of
the results.

6 Conclusion

Theoretical and computational advances over the past few years have brought
us to a point where, for the simplest (e,2e) problems, it is accurate to say that
the problem has been “reduced to practical computation”. For such simple
systems, it will shortly become a routine matter to computationally explore
all aspects of collisional breakup, including noncoplanar geometries together
with unequal energy sharing only a few volts above threshold. Dispite this
progress, there are still questions to be answered, even in systems of only three
charged particles. One notable problem yet to be solved is that of positron
impact ionization where ionization competes with positronium formation. For
collisional ionization of multi-electron atoms, there are still many details to
be worked out and there are still open questions about what will ultimately
prove to be the best way to extract ionization cross sections from the wave
functions once they are available. Despite the challenges that remain, we are
confident that benchmark calculations on the electron-helium system, similar
to those that now exist for the electron-hydrogen system, will appear in the
next few years.
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