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Collisional Breakup in Coulomb SystemsT.N. Res
igno1;2 and C.W. M
Curdy1;31Lawren
e Berkeley National LaboratoryComputing S
ien
esBerkeley, CA 94720, USA2Lawren
e Livermore National LaboratoryPhysi
s and Advan
ed Te
hnologiesLivermore, CA 94551, USA3University of California, DavisDepartment of Applied S
ien
eDavis, CA 95616, USA1 Introdu
tionAtomi
 
ollision theorists have struggled to understand the details of thesimplest problem in 
ollisional ionization - the ele
tron-impa
t ionization ofatomi
 hydrogen - sin
e the formulation of the problem some forty years agoby Peterkop [1℄ and by Rudge and Seaton [2℄. In fa
t, it is only within thelast few years that this problem has been redu
ed to \pra
ti
al 
omputation",meaning one has a formalism and the asso
iated numeri
al algorithms thatpermit the 
al
ulation, with 
urrently available 
omputing 
apability, of therelevant physi
al quantities to any a

ura
y that 
an be tested by experi-ment. That fa
t has been demonstrated, for example, in a series of papers [3{8℄ applying the ideas of exterior 
omplex s
aling of ele
troni
 
oordinates tothe ele
tron-impa
t ionization of the hydrogen atom. Other methods in
lud-ing 
onvergent 
lose-
oupling[9{11℄, the R-matrix pseudostates method[12℄,hyperspheri
al 
lose-
oupling[13,14℄, and time-dependent 
lose-
oupling[15℄have also been applied to aspe
ts of this problem with great su

ess. Forthe related problem of double-photoionization of helium, the hyperspheri
alR-matrix method[16℄ has used with great su

ess.The 
entral diÆ
ulty that impeded progress on the problem of three-body breakup in Coulomb systems, parti
ularly for the 
ollisional breakup or\e,2e" problem (as opposed to double photoionization), is the 
umbersomeasymptoti
 form of the s
attering wave fun
tion that the formal theory of ion-ization imposes. The appropriate boundary 
ondition for ionization, dedu
edby Peterkop [1℄ and Rudge and Seaton [2℄, is	+ion(r1; r2) �!�!1 � fi(r̂1; r̂2; �)q i�3�5 expfi[��+ �(r̂1; r̂2; �)� ln(2��)℄g; (1)where fi is the ionization amplitude and the hyperspheri
al 
oordinates arede�ned by � = (r21+r22)1=2 with � = tan�1(r1=r2), and � is related to the total
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Curdyenergy by E = �2=2. The most obvious diÆ
ulty in applying this boundary
ondition is that the 
oeÆ
ient �(r̂1; r̂2; �) of the logarithmi
 phase dependson the distan
es and eje
tion angles of both ele
trons. However, worse yet isthe fa
t that Eq. (1) is not separable in spheri
al 
oordinates, and is thereforemu
h more 
umbersome to apply to numeri
al 
al
ulations whi
h are perfor
edone in that 
oordinate system. As a 
onsequen
e, no one has yet appliedEq.(1) to the numeri
al solution of the S
hr�odinger equation for the ionizationproblem.The formal theory of ionization poses another 
hallenge to 
omputationas well, and that is that the ordinary expression for evaluating the ampli-tude, starting from the s
attering wave fun
tion that solves the S
hr�odingerequation, does not apply, be
ause de�ned in the usual way it would havean in�nite phase asso
iated with integrating an expression with logarithmi
phases over an in�nite volume. Instead the amplitude is given by [1,2,17℄f(k1;k2) = �(2�)5=2ei�(k1;k2) ZZ 	+(H �E)�(�k1; z1)�(�k2; z2)dr1dr2(2)with e�e
tive 
harges in the one-body Coulomb fun
tions, �(�k; z) depend-ing on both the energy and dire
tion of eje
tion of ea
h ele
tron,z1k1 + z2k2 = 1k1 + 1k2 � 1jk1 � k2j ; (3)and with�(k1;k2) = 2[(z1=k1) ln(k1=�) + (z2=k2) ln(k2=�)℄: (4)Both of these diÆ
ulties were ultimately over
ome by the su

essful meth-ods for treating the ele
tron-impa
t ionization problem. The �rst of them, theasymptoti
 form in Eq.(1), was the 
entral issue addressed by the ExteriorComplex S
aling (ECS) method, whi
h is the prin
ipal subje
t of this 
hap-ter. The se
ond of them, the Coulomb breakup amplitude formula in Eq.(2)and its attendant numeri
al pathologies, required a reformulation and theobservation that numeri
al 
omputations on a �nite volume 
an be at mosta�e
ted by a �nite overall phase that leaves physi
al observables un
hanged.2 Exterior Complex S
aling - Cir
umventingAsymptoti
 Boundary ConditionsThe ECS method owes its origins to the long history of 
omplex s
aling meth-ods in atomi
 and mole
ular physi
s, whi
h in turn is based on a very simpleobservation about the behavior of solutions of the S
hr�odinger equation whenviewed as fun
tions of 
omplex variables. A purely outgoing wave, exp(ikr),with k > 0, be
omes exponentially de
aying when the 
oordinate, r, is s
aled



Collisional Breakup in Coulomb Systems 3into the upper half 
omplex plane, exp(ikrei�) ! 0 as r ! 1. The �rststep in the ECS formalism, therefore, is to isolate the outgoing or \s
atteredwave" portion of the full s
attering wave fun
tion. To that end, we partitionthe full wave fun
tion into an initial unperturbed state, �0, and a s
atteredwave, 	s
, whi
h 
ontains only outgoing waves in all 
hannels:	 (+) = 	s
 + �0: (5)For a two-ele
tron, problem, e.g., ele
tron-hydrogen atom s
attering, �0 
anbe written, for singlet (upper sign) or triplet (lower sign) spin 
oupling,�0 = 1p2k0 (eik0�r1'0(r2)� eik0�r2'0(r1)); (6)where k0 is the in
ident ele
tron momentum, and '0 is the initial state ofthe atom. The s
attered wave then satis�es the driven S
hr�odinger equationfor a parti
ular initial 
ondition,(E �H)	s
 = (H �E)�0: (7)Complex s
aling redu
es the Coulomb boundary 
ondition for breakup,with its 
ompli
ated logarithmi
 phases, to the trivial 
ondition that 	s
(r1; r2)vanish at in�nity. The subtlety in the (e,2e) problem is that we must extra
tthe physi
s of breakup from 	s
 in a region in whi
h the 
oordinates on whi
hit depends are real, so we need to apply the 
omplex s
aling transformationonly when either of the 
oordinates of the two ele
trons are greater than someradius, R0. The ECS transformation that does this was invented and investi-gated in the 
ontext of ele
tron s
attering resonan
es with only one ele
tronin the 
ontinuum [18,19℄; its adaptation to the (e,2e) problem is shown inFig.(1). Spe
i�
ally, under ECS, the radial 
oordinates of the ele
trons aretransformed under the mapping:r ! (r r < R0;R0 + (r �R0)ei� r � R0: (8)Be
ause 	s
 
ontains only outgoing waves, whi
h de
ay exponentially on the
omplex part of the exterior s
aling 
ontour, Eq.(7) 
an be solved by applyingonly the boundary 
ondition that 	s
 vanish at large distan
es. On the realpart of the 
ontour, 	s
 is the 
orre
t physi
al wave fun
tion from whi
h alls
attering information 
an, in prin
iple, be extra
ted, provided it is extra
tedin the region of real 
oordinates.There is one �nal subtlety: be
ause Eq.(6) 
ontains plane waves, whi
hdiverge under 
omplex s
aling, intera
tion potentials must be trun
ated atlarge distan
es, but only on the right hand side of Eq.(7) [20℄.
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Fig. 1. Left Panel: illustration of the ECS 
ontour rotated into the upper-half ofthe 
omplex r-plane beyond R0. Right Panel: Depi
tion of exterior 
omplex s
alingfor two radial 
oordinates.3 S
attered-Wave Formalism - Options for Computingthe Wave Fun
tionThe method of exterior 
omplex s
aling and its appli
ations have been de-veloped in a series of papers [3{8,21{23℄, whi
h from the outset divided thesolution of the problem of ele
tron-impa
t ionization into two dis
rete steps:1. Compute the s
attering wave fun
tion without re
ourse to the expli
itthree-body asymptoti
 form by applying exterior 
omplex s
aling to thesolution of a dis
retized representation of the S
hr�odinger equation.2. Extra
t di�erential and total ionization 
ross se
tions from the wave fun
-tion by either "interrogating" it to 
ompute the s
attered 
ux, or usingit in an integral expression for the breakup amplitudes.It is worth noting that these two problems, namely the 
omputation ofthe s
attered wave fun
tion and the subsequent extra
tion of the s
atteringinformation, are only distin
t steps in approa
hes where the wave fun
tionis 
omputed by a method that is independent of the asymptoti
 mat
hing
ondition that de�nes the s
attering amplitudes. In that sense, our approa
his similar to time-dependent methods whi
h tra
k a wavepa
ket through the
ollision from initial to �nal states and then attempt to extra
t 
ross se
tionsby analyzing the exiting wavepa
ket. It is also the 
ase with both approa
hesthat the extra
tion step, while far from being the most 
omputationally in-tensive part of the overall 
al
ulation, presents many formal diÆ
ulties, par-ti
ularly in the 
ase on multi-ele
tron targets, and is the subje
t of mu
h
urrent resear
h.



Collisional Breakup in Coulomb Systems 53.1 Time-Independent Approa
h - Linear EquationsTo solve the s
attered wave S
hr�odinger equation, Eq. (7), we must spe
ifythe underlying representation. For all the ECS 
al
ulations to date, 	s
 is�rst expanded in 
oupled spheri
al harmoni
s of the angular 
oordinates ofthe two ele
trons: YL0l1;l2(r̂1; r̂2)	s
(r1; r2) = XL;l1;l2 	Ll1;l2(r1; r2)YL0l1;l2(r̂1; r̂2) (9)thereby allowing the 
onversion of Eq.(7), the driven S
hr�odinger equation, toa set of 
oupled equations for the two-parti
le radial fun
tions, 	Ll1;l2(r1; r2):�E � Ĥl1(r1)� Ĥl2(r2)� Ll1l2(r1; r2)�Xl01;l02hl1l2jjl01l02iL Ll01;l02(r1; r2) = �Ll1l2(r1; r2) (10)where the radial 
oupling potentials, hl1l2jjl01l02iL, are obtained by takingmatrix elements of 1jr1�r2j between two 
oupled spheri
al harmoni
s [6℄. Theinhomogeneous terms, �Ll1l2 , arise from the partial-wave expansion of theright-hand side of Eq.(7)The set of 
oupled equations is 
onverted to a system of linear equationsby 
hoosing some dis
retization method for representing the exterior-s
aledradial fun
tions. In our earlier studies of e-H ionization, the 
oupled radialequations were solved on a 
omplex two-dimensional grid using seven-point�nite di�eren
e approximations to the se
ond derivatives. A typi
al 
al
ula-tion might have � 450 points in ea
h radial dimension, and for a given totalangular momentum, L, have of the order of 24 (l1; l2) angular momentumpairs. The time 
onsuming step of the 
al
ulation, now a modest 
omputa-tion on a massively parallel super
omputer, is the solution of sparse linearequations of the order of �ve million. To a

omplish this, we used an iter-ative algorithm spe
i�
ally tailored to the problem at hand. The eigenvaluespe
trum of a 
omplex-s
aled Hamiltonian is su
h that no known iterativealgorithm will 
onverge to solution without pre-
onditioning. Therefore, �nd-ing a suitable pre-
onditioner for the 
oupled equations is a ne
essity. Theset of un
oupled radial equations, de�ned by setting hl1l2jjl01l02iL = 0 for all(l01; l02) 6= (l1; l2) in Eq. (10), have numeri
al properties similar to the 
oupledequations, but require solving linear systems only as big as the total numberof radial grid points. We have found solutions of the un
oupled equations,whi
h 
an be obtained by using a dire
t sparse solver [24℄, to be a suitablepre-
onditioner for solving the 
oupled equations.The 
oupled equations 
an be solved using dis
retization s
hemes thatare more eÆ
ient that high-order �nite di�eren
e. In our 
urrent e�orts, weuse a 
ombined �nite element and dis
rete variable representation (DVR),whi
h is the most eÆ
ient numeri
al representation developed to date[25℄.
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Fig. 2. Real part of a representative radial fun
tion for ele
tron-hydrogen s
atteringat 17.6 eV in
ident energy. Verti
al axis is Re(	) and the two horizontal axes arer1 and r2 with origins at the rear left 
orner. 	Ll1;l2(r1; r2) is shown for singlet spin,L = 2 and l1 = l2 = 1In that representation a DVR using Lobatto shape fun
tions is 
onstru
tedinside ea
h �nite element. Continuity of the wave fun
tion is enfor
ed at theboundaries of the �nite elements, and one of those boundaries is always 
hosento lie at R0. The �nite-element DVR representation of the one-dimensionalkineti
 energy, � 12�2=�r2, has a blo
ked stru
ture, but the potentials, bothv(r) and V (ri; rj), are diagonal in the 
oordinates of ea
h ele
tron. Sin
ethe underlying grid points are 
onne
ted to a Gauss quadrature rule, thetotal number of points required is 
onsiderably smaller than what would berequired with �nite di�eren
e to a
hieve the same level of a

ura
y.For the e-H problem, one of the many 
al
ulated radial fun
tions 
on-tributing to 	s
 is shown in Fig.(2). In that �gure one 
an see the outgoing
ux in the dis
rete, inelasti
 
hannels going out near the axes, while the ion-ization 
ux goes out for large r1 and r2 in the stru
tures resembling ripplesfrom a pebble dropped in a pond.3.2 Time-Dependent Approa
h - Wavepa
ket PropagationA straightforwad extension of the method outlined in the previous se
tion to atwo-ele
tron target atom, for example to the 
ase of e-He ionization, would re-quire the solution of 
oupled linear equations in three radial dimensions. Themost troublesome aspe
t of su
h an undertaking, aside from the 
omputer re-sour
es that would be required, is the fa
t that even the un
oupled equationswould likely require an iterative method of solution and �nding a suitable
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onditioner would be diÆ
ult. In 
ontrast to time-independent methods,expli
it time-dependent methods, whi
h involve propagating a wavepa
ket ona multi-dimensional grid, have s
aling properties that allow their appli
ationto three-ele
tron systems. We have re
ently des
ribed a step toward a 
om-plete algorithm for solving the three-ele
tron breakup problem by 
ombiningthe idea of time propagation with that of using exterior 
omplex s
aling tosolve a driven S
hr�odinger equation [26℄.Exterior 
omplex s
aling had previously been explored as a method forsolving the time-dependent S
hr�odinger equation [27,28℄. The 
riti
al obser-vation in that work is that if the wave pa
ket 	(r; t) 
ontains only outgoingwaves, then	(R(r); t) ���!r!1 0 (11)on the 
omplex 
ontour for all times, t. Sin
e the physi
al solution of thedriven S
hr�odinger equation in Eq.(7) has only outgoing waves, that point isthe key to the time-dependent formulation of the ECS method for the presentproblem.Formally, the solution of Eq.(7) we seek is	s
(r1; r2; : : : ) = G(+)(H �E)�0(r1; r2; : : : ); (12)with G(+) being the Green's fun
tion with outgoing wave boundary 
ondi-tions,G(+) = (E �H + i�)�1: (13)We 
an also write G(+) formally asG(+) = 1i Z 10 ei(E+i�)te�iHtdt: (14)Note that the r.h.s. of Eq.(7) satis�es(H �E)�0(r1; r2; : : : ) ����!ri!1 0 (15)be
ause �0 is asymptoti
ally an eigenfun
tion of H. In fa
t (H � E)�0 hasthe range of the intera
tion potential. In general, therefore, we 
an de�ne asquare-integrable wave pa
ket, �(r1; r2; : : : ; t), by�(r1; r2; : : : ; t) = e�iHt(H �E)�0(r1; r2; : : : ): (16)Now if we apply the exterior s
aling transformation to this equation andde�ne the exterior s
aled Hamiltonian by,H ! HECS = H(R(r1); R(r2); : : : ); (17)



8 T.N. Res
igno and C.W. M
Curdywhere the s
aling applies only to the radial 
oordinates, the wave pa
ket thenbe
omes�(R(r1); R(r2); : : : ; t) = e�iHECSt(HECS �E)��0(R(r1); R(r2); : : : ): (18)This pa
ket has two important properties,�(R(r1); R(r2); : : : ; t) ����!ri!1 0; (19)and�(R(r1); R(r2); : : : ; t) ���!t!1 0; (20)Therefore we 
an write 	s
 simply as the Fourier transform of the the wavepa
ket	s
 = 1i Z 10 eiEt�(t)dt; (21)and the +i� in Eq.(14) is unne
essary.Eq.(21) provides a numeri
al representation of 	s
, provided we 
an prop-agate �(0) = (H � E)�0 on the ECS 
ontour in two or three dimensions. Innumeri
al experiments we have found that the 
lass of numeri
al propagatorsthat are unitary for hermitian Hamiltonians, i.e., before the ECS transfor-mation is made, are generally stable for the 
orresponding exterior s
aledHamiltonians. For example in one dimension it has been shown[28℄ that theCran
k-Ni
olson propagator, for time step �t,e�iH�t = (1 + iH�t=2)�1(1� iH�t=2) + O((�t)3): (22)works well as does the two-dimensional version of this propagator.The motivation behind the time-dependent approa
h is the developmentof a method that s
ales favorably with parti
le number, so it should notinvolve solutions of linear equations representing multiple dimensions at ea
htime step. In our 
urrent work, we are using a simple version of the splitoperator approa
h [29℄, in whi
h we �rst write,H = dXi=1H0(ri) + dXi>j=1 V (ri; rj); (23)where H0(r) is the one-body Hamiltonian and V (ri; rj) is the two-body in-tera
tion potential, and then approximate the propagator by,e�iH�t � e�iPi>j V (ri;rj)�t=2h dYi=1 e�iH0(ri)�tie�iPi>j V (ri;rj)�t=2: (24)



Collisional Breakup in Coulomb Systems 9With either �nite-di�eren
e or DVR, the potentials are diagonal in the 
o-ordinates of ea
h ele
tron. The operators exp(�iH0(ri)�t) 
an be repre-sented by an N � N matrix, where N is the number of grid points inone dimension, that need be 
omputed only on
e. It is straightforward toshow [26℄ that, for a problem with d dimensions, the entire propagator re-quires O(2Nd) + O(dNd+1) operations per time step. The s
aling advantageof the time-dependent approa
h as outlined above is then that of Nd+1 versusN2d for the time-independent approa
h.4 Extra
tion of Physi
al Cross Se
tionsWith the s
attering wave fun
tion in hand we are fa
ed with the problemof extra
ting the information it 
ontains about elasti
, dis
rete inelasti
 andionization 
hannels. A 
omplete theoreti
al treatment of ele
tron-impa
t ion-ization must ne
essarily in
lude a pres
ription for 
al
ulating di�erential 
rossse
tions that give detailed information about the energies and angles of eje
-tion of both ele
trons. Unlike the representation of the wave fun
tion in anordinary atomi
 
lose-
oupling 
al
ulation, its numeri
al representation inthis approa
h gives no immediate indi
ation of how to separate those 
ontri-butions.4.1 Flux-Operator Approa
hThe �rst ECS 
al
ulations on ele
tron-impa
t ionization of hydrogen wereperformed by simply 
omputing a variant of the quantum me
hani
al 
uxthrough a surfa
e that lies within the volume of 
oordinate spa
e where both
oordinates are real. The 
ontinuum of ionization �nal states is des
ribed by
ux through a hypersphere of radius �0 in the limit �0 !1. To this end, wede�ne a generalized, dimensionless 
ux f(ion)�0f(ion)�0 (�; r̂1; r̂2) � Imhki� �r1r2	+ion(r1; r2)�? �dd� �r1r2	+ion(r1; r2)� i����=�0 (25)evaluated at a hyperradius �0. Sin
e the hyperspheri
al angle � parametrizesthe momentum distribution between the two ele
trons as �0 ! 1, we 
anexpress the total ionization 
ross se
tion as an integral of f(ion)�0 , in the limit�0 !1, over � and the angular 
oordinates of both ele
trons:�ion = 1k2i �=2Z0 Z4� Z4� f(ion)�0 (�; r̂1; r̂2) dr̂1dr̂2d� ��������0!1 (26)



10 T.N. Res
igno and C.W. M
CurdyThus, the �0 !1 limit of the 
ux leads dire
tly to a di�erential 
ross se
tionfor ionization. To 
ompute the s
attered 
ux, we assemble 	+s
 and dd�	+s
 fromall its partial wave 
omponents:f�0(�; r̂1; r̂2) =i8>><>>:ki� XL0;l01;l02L;l1;l2 � L0l01l02�? dd� � Ll1l2� �YL00l01;l02(r̂1; r̂2)�? YL0l1;l2(r̂1; r̂2)9>>=>>;���������=�0(27)The 
ux operator approa
h, while 
on
eptually straightforward, is 
om-putationally diÆ
ult. For purely geometri
al reasons, the 
al
ulation of theasymptoti
 
ux 
an require 
al
ulations well beyond the range of the poten-tials, even in the 
ase of short-ranged intera
tions. Indeed, by inserting theasymptoti
 form for 	+ion from Eq. (1) into Eq. (25) we �nd that the ionization
ux approa
hes its asymptoti
 limit as 1� , i.e. for large �0f(ion)� (�; r̂1; r̂2) = f(ion)1 (�; r̂1; r̂2) +O� 1�0� (28)The 
al
ulated 
ux must therefore be numeri
ally extrapolated to in�nite �0to obtain physi
al results.A more serious problem, evident in the plot of the radial wave fun
tionshown in Fig. (2), is that there are regions of spa
e (near the axes) where the\ionization wave" overlaps the dis
rete two-body 
hannels. The fa
t that thelatter 
ontaminate the ionization 
ux again for
es one to employ grids largeenough to allow the physi
al region inhabited only by the ionization portion ofthe s
attered wave to be distinguishable from the parts that des
ribe dis
retetwo-body 
hannels. The angular range in � subtended by the 
ux due to adis
rete 
hannel is sin�1(�=�0) where � is the distan
e over whi
h the targetstate is appre
iably di�erent from zero. Thus as �0 in
reases, 
ontaminationof the ionization 
ux from dis
rete 
hannels is 
on�ned to smaller regionsof �. In the true �0 ! 1 limit the dis
rete 
hannels' 
ontributions to the
ux be
ome delta fun
tions at � = 0 and � = 90o and equality in Eq. (28)holds ex
ept for in�nitesimally small regions near the edges. In pra
ti
e, the
ontamination of the ionization 
ux by dis
rete 
hannels on �nite grids limitsthe 
ux-extrapolation pro
edure in its ability to des
ribe ionization when asingle ele
tron 
arries most of the available energy. Our early 
al
ulations ofsingly di�erential 
ross se
tions(SDCS) [5℄ were limited to 
ases where oneele
tron 
arried no more than about 75% of the total energy.The most detailed information about ionization is 
ontained in the so-
alled triply di�erential 
ross se
tion(TDCS) whi
h measures the energy andangles of the two outgoing ele
trons. The 
al
ulated TDCS for ele
tron-hydrogen ionization at 17.6eV in
ident energy is 
ompared with the absoluteexperimental measurements of R�oder et al. [30℄ in Fig.(3). The results areshown for the 
oplanar symmetri
 experimental geometry (whi
h means that
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tron-hydrogen ionization at17.6 eV in
ident energy shown for geometries with �12 �xed. Experimental dataare absolute measurements of R�oder et al with 40% error bars. Dark solid 
urves:integral expression for breakup amplitude, Lighter 
urves: 
ux extrapolation.the in
ident ele
tron and both exiting ele
trons lie in a plane, and the twoexiting ele
trons have equal energy), with a �xed angle between the exitingele
trons. There has been some question about about the internormalizationof these measurements with others done by holding the dire
tion of one exit-ing ele
tron �xed, but previously unpublished results in J. R�oder's thesis havere
ently resolved that dis
repan
y [31℄. From 19.6 eV to 30eV only relativemeasurements are available, but ex
ellent agreement with them is attainedin ECS 
al
ulations, as is demonstrated in Fig.(4).
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onvert measuredvalues of R�oder et al. from arbitrary units is 0.16.4.2 Formal Rearrangement Theory and S
attering Amplitudesfor Three-Body BreakupWhile the straightforward evaluation of quantum me
hani
al 
ux has theappeal that it 
orresponds to the most basi
 formal de�nition of the 
rossse
tions, it is not as eÆ
ient, even for simple inelasti
 s
attering, as the
al
ulation of s
attering amplitudes via matrix elements that depend onlyon the range of the intera
tion potential. It is therefore advantageous, both
omputationally and theoreti
ally, to 
onfront the dilema posed by the formaltheory in Eqs.(2-4).The question of how to formulate a pro
edure for extra
ting breakup am-plitudes from a wave fun
tion that is only known numeri
ally on a �nite gridwas addressed in a series of re
ent papers [8,22,23℄. In the �rst of these stud-ies [22℄ we showed that, even in 
ases that involve only short-ranged poten-tials, some formally 
orre
t integral expressions for the breakup amplitudes
an yield numeri
ally unstable or poorly 
onvergent results. For example, theexpressionf = hp1;p2jVj	+i (29)where the �nal state is just a produ
t of plane waves, while providing a for-mally 
orre
t breakup amplitude for short-ranged potentials, was found to be
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ally unstable. The instability 
an be tra
ed to `free-free' overlap termsthat arise from dis
rete two-body 
hannels in the s
attered wave fun
tion.On an in�nite grid, these terms are proportional to momentum 
onservingdelta fun
tions whi
h therefore 
ontribute nothing to the breakup amplitude,but on a �nite grid, they are a sour
e of numeri
al error. A pra
ti
al solutionwas found by using formal rearrangement to express the amplitude in termsof distorted waves. A series of formal manipulations, 
ombined with Green'stheorem, allows us to express the breakup amplitude as a surfa
e integral:f = 12 ZS(�(+)k1 �(+)k2 r	+s
 � 	+s
r�(+)k1 �(+)k2 ) � dŜ (30)where the fun
tions �(+)k are distorted waves derived from the one-body termsin the intera
tion potential [22℄.For Coulomb problems, the obvious extension is to employ Coulomb fun
-tions as distorted waves in Eq. (30). This is, however, at odds with the formaltheory, whi
h states that the integral expression in Eq. (30) will have a di-vergent phase unless the Coulomb fun
tions are 
hosen with e�e
tive 
hargesthat satisfy Eq. (3). But the use of e�e
tive 
harges other than unity in theCoulomb fun
tions that de�ne the �nal state have the unfortunate propertyof destroying their orthogonality to the bound states of the hydrogen atom.We showed in ref. [23℄ that, on a �nite volume, the e�e
t of using Coulombfun
tions with Z = 1 in 
omputing the ionization amplitudes is merely tointrodu
e an in
onsequential overall phase that has no e�e
t on the 
rossse
tion. It is the appli
ation of the integral formula, together with the ECSmethod, to ionization of hydrogen that has given the most a

urate des
rip-tion of the 
omplete dynami
s to date [8℄ and whi
h does in fa
t \redu
ethe problem to pra
ti
al 
omputation". The TDCS results obtained from theintegral amplitudes, whi
h are also shown in Figs. (3) and (4), attest to thea

ara
y of approa
h and also validate the fundamental 
orre
tness of theearlier 
ux extrapolation approa
h.The magnitudes and shapes of the singly di�erential 
ross se
tions at lowenergies give a parti
ularly 
ompelling demonstration of the ECS approa
hand make a satisfying 
onne
tion with the semi
lassi
al theories that havebeen applied to the threshold behavior of the ionization pro
ess. Fig.(5) 
om-pares the SDCS 
omputed by 
ux extrapolation and from integral amplitudesat in
ident energies from 15.4 eV (only 2 eV above the ionization threshold)to 54.4 eV. At lower energies the 
ux and integral formula methods for 
om-puting the SDCS disagree by as mu
h as 10%, be
ause the extrapolation ofthe 
ux be
omes in
reasingly diÆ
ult as the energy is lowered. However nosu
h diÆ
ulty a�e
ts the integral expression in Eq.(30). At very low energiesthe SDCS is almost 
at and almost 
onstant as a fun
tion of in
ident energy.If it were 
at and 
onstant it would 
orrespond to a linear threshold law forthe total 
ross se
tion. In semi
lassi
al 
al
ulations at the Wannier geometrywith ele
trons exiting in opposite dire
tions, Rost [32℄ predi
ted qualitatively
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able, results based on 
ux-extrapolation are shownin light gray.the subtle departures from 
atness as the SDCS turns from a \smile" at highenergies to a nearly 
at shape at energies near threshold.5 Multi-Ele
tron TargetsIn ele
tron-impa
t 
ollisions involving more 
ompli
ated atoms, even for atwo-ele
tron target, there are ionization pro
essses that 
annot o

ur for aone-ele
tron atom: ex
itation-ionization, ex
itation-autoionization and dou-ble ionization. In ex
itation-ionization, the atom is singly ionized and theresidual ion is left in an ex
ited state. In ex
itation-autoionization, the tar-get is �rst ex
ited to an autoionizing state whi
h 
an then de
ay into theionization 
ontinuum in a pro
ess that 
ompetes with dire
t ionization at



Collisional Breakup in Coulomb Systems 15the same energy. Double ionization is the (e,3e) pro
ess in whi
h there arethree free ele
trons in the �nal state.While we are still far from the goal of 
arrying out a fully ab initio treat-ment of ele
tron-impa
t ionization with a multi-ele
tron target, there havealready been a few proof-of-prin
iple demonstrations involving model prob-lems [33,26℄ that treat ionization of atomi
 targets with \two a
tive ele
-trons". These preliminary studies have served to establish the fa
t that time-dependent approa
hes 
ertainly have the s
aling properties that allow theirappli
ation to three-ele
tron systems and signal the emergen
e of a new levelof sophisti
ation in ionization studies that will go beyond 
urrently avail-able methods that treat multi-ele
tron atoms with frozen-
ore, one-ele
tronmodels.5.1 Asymptoti
 Proje
tionThe extra
tion of ionization 
ross se
tions from a numeri
al representationof the s
attered wave on a �nite grid is substantially more diÆ
ult witha multi-ele
tron target than with a one-ele
tron target. If one attempts to
ompute the ionization 
ross se
tions from an integral expression for thebreakup amplitudes, one �nds that in 
ontrast to the one-ele
tron target
ase, the use of distorted waves alone is not suÆ
ient to eliminate numeri
alinstabilities 
aused by dis
rete two-body 
hannel terms in the s
attered waveand additional steps are required to obtain a viable formula. To see whythis is the 
ase, we need only 
onsider the asymptoti
 form of the s
atteredwave fun
tion for the 
ase of a two-ele
tron target at energies where bothsingle ionization and two-body 
hannels are open. For simpli
ity, we 
onsidera 
ase with no angular momentum. Asymptoti
ally, there will be two-bodyterms in the s
attered wave of the form fneiknr1�n(r2; r3), where �n(r2; r3)is a two-ele
tron target bound state and fn is the 
orresponding ex
itationamplitude, as well as an ionization term of the form fmioneik�12'm(r3)=p�12,where �12 =pr21 + r22 and 'm is a bound state of the residual ion.Now suppose we attempt to 
ompute the single ionization amplitude froman expressionf(k1; k2) = ZS��k1(r1)�k2 (r2)'n(r3)r +s
(r1; r2; r3)� +s
(r1; r2; r3)r�k1 (r1)�k2(r2)'n(r3)� � n̂dS (31)whi
h is an obvious generaliztion of Eq. (30) for a two-ele
tron target. Sin
ethere is no orthogonality relation between the distorted waves and the two-body bound states, the two-body terms in the s
attered wave will again giverise to overlaps between free fun
tions in Eq. (31) whi
h render it numeri
allyunstable. One way to remedy this is to �rst evaluate the two-body amplitudesfrom the formulafn = 2hsin(knr1)�n(r2; r3)jE � T � V1j	s
i; (32)
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Curdysin
e there are no formal or numeri
al problems asso
iated with evaluationof Eq. (32). We 
an then 
onstru
t an \asymptoti
ally proje
ted" s
atteredwave	projs
 = 	s
 �Xn (fn=kn)eiknr1�n(r2; r3); (33)whi
h removes the two-body 
hannels from the asymptoti
 s
attered wave.If we use 	projs
 in Eq. (31), then there is in prin
iple no 
ontamination ofthe ionization amplitude from two-body 
hannels and the surfa
e integralextra
ts the ionization amplitude just as it does in the 
ase of a one-ele
trontarget.When the 
ollision energy moves above the threshold for double ioniza-tion, the asymptoti
 s
attered wave will also 
ontain a term proportional toeiK�=�, where � =pr21 + r22 + r23 and E = K2=2. This term will again 
ausediÆ
ulties in the integral expression for the single ionization amplitude. For-tunately, the following integral 
an be used to 
ompute the amplitude fordouble ionization:fdoubleion (k1; k2; k3) = h�k1�k2�k3 jE � T � V1j	projs
 i; (34)where E = k21=2+ k22=2+ k23=2. If the distorted waves are 
hosen to be eigen-states of the one-body potential, then orthogonality between the distortedwaves and the one-body bound states 'm prevents the asymptoti
 single-ionization terms in 	projs
 from 
ausing any numeri
al problems. One 
anthen extend the de�nition of 	projs
 to in
lude the double ionization term,	proj0s
 = 	s
 �Xn (fn=kn)eiknr1�n(r2; r3)� fdoubleion eiK�=�: (35)before using Eq. (31) to 
ompute the amplitudes for single ionization. By fol-lowing these steps, we 
an, in prin
iple, 
ompute all the s
attering amplitudesof interest in the 
ase of a two-ele
tron target.We have tested these ideas in a model 3-ele
tron problem that involesonly exponentially bound one- and two-body potentials [26℄. The potentialstrengths were 
hosen so that the target `atom' and `ion' ea
h bind a singlestate, so the only 
hannels possible are elasti
 s
attering and breakup. Thes
attered waves were 
omputed on a three-dimensional radial grid by thetime-dependent version of ECS outlined in Se
. 3.2. Fig. 6 plots the real partof the s
attered wave for a �xed value of r3, before and after proje
tion ofthe elasti
 
hannel, at an in
ident energy of 11 eV. The elasti
 two-body
omponent, 
learly visible in the unproje
ted s
attered wave near the r1 andr2 axes, are e�e
tively removed by the asymptoti
 proje
tion s
heme adopted.In Table 1, we show the elasti
 s
attering 
ross se
tions together with thetotal ionization 
ross se
tions 
omputed by integrating the SDCS, the latter
omputed from the asymptoti
ally proje
ted s
attered wave. The sum of thesetwo quantities is the total 
ross se
tion, whi
h 
an be evaluated independently
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tron energy is 11 eV.Table 1. Integrated 
ross se
tions for model 3D problem dis
ussed in text.in
identenergy �elasti
 �ion �elasti
 + �ion �opti
al �flux7 eV 17.238 3.173 20.411 19.681 20.2379 eV 11.578 2.592 14.170 14.144 14.33011 eV 8.568 2.176 10.744 10.708 10.883
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Curdyfrom the opti
al theorem or from the total 
ux. The di�eren
e bedtweenthese quantities gives some indi
ation of the overall numeri
al a

ura
y ofthe results.6 Con
lusionTheoreti
al and 
omputational advan
es over the past few years have broughtus to a point where, for the simplest (e,2e) problems, it is a

urate to say thatthe problem has been \redu
ed to pra
ti
al 
omputation". For su
h simplesystems, it will shortly be
ome a routine matter to 
omputationally exploreall aspe
ts of 
ollisional breakup, in
luding non
oplanar geometries togetherwith unequal energy sharing only a few volts above threshold. Dispite thisprogress, there are still questions to be answered, even in systems of only three
harged parti
les. One notable problem yet to be solved is that of positronimpa
t ionization where ionization 
ompetes with positronium formation. For
ollisional ionization of multi-ele
tron atoms, there are still many details tobe worked out and there are still open questions about what will ultimatelyprove to be the best way to extra
t ionization 
ross se
tions from the wavefun
tions on
e they are available. Despite the 
hallenges that remain, we are
on�dent that ben
hmark 
al
ulations on the ele
tron-helium system, similarto those that now exist for the ele
tron-hydrogen system, will appear in thenext few years.A
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