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A B S T R A C T   

Monitoring change is an important aspect of understanding variations in spatial–temporal processes. Recently, 
’big data’ on mobility, which are detailed across space and time, have become increasingly available from 
crowdsourced platforms. New methods are needed to best utilize the high spatial and temporal resolution of such 
data for monitoring purposes. These data can be considered mappable time series but are challenging to use 
owing to varying sampling rates and issues of temporal misalignment. We present a methodological framework 
for change detection from big data captured by crowdsourced fitness app Strava, which addresses misalignment 
issues in the underlying ridership patterns and maps temporal clusters of bicycling ridership change in the city of 
Phoenix, AZ between 2017 and 2018 at the street-segment level. Hourly and monthly changes were classified 
into four clusters for each time period - mapped along with crash density to highlight variations in bicycling 
ridership. Using spatially and temporally continuous data our study advances the existing approaches to mobility 
analysis, by using a functional data analysis approach. Our method is reproducible and can be used to expand 
studies in other cities for monitoring changes directly from crowdsourced ridership data thereby facilitating the 
decision-making process by practitioners to assess and plan safe bicycle infrastructure.   

Introduction 

Monitoring change from continuous time-series data is critical for 
city authorities to understand travel behavior and make targeted de-
cisions related to transportation infrastructure changes that can improve 
the overall safety of its residents. Through monitoring, policymakers are 
more prepared to meet rising infrastructure demands (Miranda-Moreno 
et al. 2013) and ensure accessibility to existing infrastructure more 
expeditiously (Boss et al., 2018a,b). Change detection is essential to 
characterize the impacts of sudden fluctuations on overall spatio- 
temporal processes (Alaya et al. 2020), particularly where we observe 
changes in the frequency and/or in the intensity across multiple scales. 
Detection of changes is thus an essential step before performing any 
descriptive or predictive analysis. 

Growth in the availability of crowdsourced GPS-data from smart-
phones has created an alternative source of high-resolution 

spatial–temporal data to enable researchers to understand mobility 
patterns. Although these datasets are biased towards a specific de-
mographic (males between 25 and 45 years of age), they can be used as 
an indicator of ridership once the bias is accounted for by including 
geographic covariates (Roy et al. 2019). Crowdsourced fitness apps like 
Strava (Strava Metro, 2017) have been collecting anonymized bicycling 
trip data at the minute level, and such data can be used for monitoring 
change. Such fine-grained trip data can be represented using a func-
tional form, as they are collected continuously over time. However, the 
major problem with using such data directly for change analysis is that 
they are often misaligned in time. These alignment issues, if not 
accounted for, may introduce errors in the analysis for getting accurate 
change estimates and introduce bias in policy decisions. Several studies 
in the remote sensing literature have highlighted that a direct pixel-to- 
pixel comparison from raster data for detecting changes can be chal-
lenging (White, 2006) often due to data misregistration issues arising 
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due to multiple platforms capturing the data (Knudsen and Olsen, 2003; 
Olsen, 2004). Previous studies (Townshend et al., 1992) have pointed 
out that the registration of data sets to a common framework is an 
essential precursor to monitoring change and can lead to reducing noise 
(Stow, 1999) caused due to misalignment. 

Initial research (Boss et al., 2018a,b; Nelson and Boots, 2008) has 
shown that it is possible to detect changes in bicycling ridership patterns 
between two time periods – and that the changes are representative of 
actual changes in infrastructure. Such studies quantify the spatial vari-
ations of change in ridership using two snapshots in time. Some studies 
(Yang et al. 2018) have looked at spatial change detection from GPS 
trajectories however, they ignored the temporal component, whereas 
other studies (Kang and Aldstadt, 2019) have addressed the scale issue 
in land-cover change and activity zone detection from social-media 
platforms (Liu et al. 2019). 

To utilize large volumes of raw time-series data, we must identify 
analytical methods that also account for patterns in changes across 
multiple scales, as the underlying data generating processes vary both in 
space and time. There is a lack of a well-defined framework for 
extracting actionable insights from such big time-series data for change 
monitoring across scales. To bridge this gap we propose a functional 
data analysis (FDA) (Ramsay and Silverman, 2005a,b) technique for 
mapping changes in bicycle ridership patterns. 

Functional data analysis (FDA) (Ramsay and Silverman, 2005a,b) is 
an approach towards modeling time-series data that has very recently 
started to gain attention. FDA has already found applications in several 
areas of research including ecology (Bourbonnais et al. 2017, Gurarie 
et al., 2009), epidemiology (Aston and Kirch, 2012), remote sensing 
(Bourbonnais et al. 2017), physical activity recognition (Choi et al. 
2018)), outlier detection in environmental applications (Torres et al., 
2011) and traffic volume forecasting (Wagner-Muns et al. 2017). The 
basic idea behind FDA is to quantify discrete observations arising from 
time series in the form of a function that represents the entire measured 
function as a single observation, and then to draw modeling and/or 
prediction information from a collection of functional data by applying 
statistical concepts from multivariate data analysis. Such an approach 
has the advantage of generating models that can be described by 
continuous smooth functions, which enables getting accurate estimates 
of bicycling ridership volumes for change analysis by tackling effective 
noise reduction in the data through curve smoothing, and irregularities 
in sampling schedules introduced during the data collection by several 
users via the Strava app. 

We hypothesize that changes in bicycle ridership patterns manifest a 
complex spatial–temporal phenomenon often emerging as a combined 
effect of several underlying factors involving route choice, built envi-
ronment characteristics, infrastructure availability and safety, which are 
best viewed as observations from a dynamical process. Hence, small 
changes in any of these factors that might lead to significant changes in 
ridership volumes due to inherent non-linearity of the observations. 
Consequently, causing non-linear effects (Anirudh et al., 2015) on the 
observed time-series of such big data (i.e. bicycling ridership volumes of 
all street segments in a city) often manifested as misaligned functions 
which can severely distort the distance metric between time series. 
Failure to account for these effects, increases the observation variance 
(Marron et al., 2015), thereby leading to erroneous results for variance- 
based analysis (like clustering). By removing the phase variations in 
ridership data through temporal alignment technique like the square 
root velocity function (SRVF) which we introduced in this study, we 
make the results of subsequent cluster-based analysis more stable. All 
cluster analysis is based on variance-based computation. For example, 
even the popular k-means clustering algorithm is defined based on 
minimizing variance within each cluster. For semantically similar time- 
series, if the time-series are affected by time-warp, then the standard 
Euclidean distance between them increases, causing a larger variance 
even between otherwise similar time-series. Any variance-based cluster 
analysis would necessarily be affected by factors that increases the 

underlying variance between samples. The SRVF framework reduces the 
component of variance (Grohs et al., 2020; Guo and Srivastava, 2020; 
Srivastava et al., 2005) that is attributable to time-warping. The novelty 
of our approach lies in developing a methodological framework for 
mapping street-network level change in bicycling ridership patterns 
categorically from crowdsourced timeseries data using functional data 
analysis tools. 

In this work, our goal is to demonstrate a method for detecting and 
mapping change in data collected continuously through time. To meet 
this goal we (1) quantify the change in bicycle ridership using a special 
case of elastic FDA known as the square-root velocity function (SRVF) 
representation and (2) visualize the temporal changes across hourly and 
monthly scales. We generate street-segment level maps for different time 
scales that enable practitioners to make targeted decisions regarding 
bicycle infrastructure planning. 

Data & study area 

Our study area is the City of Phoenix (Fig. 1), which lies within the 
state of Arizona in the USA. Phoenix is the largest metropolitan city in 
the county of Maricopa in Arizona with a population of 1,563,001 (US 
Census Bureau, 2015, City of Phoenix). Approximately 1.12 % of the 
population who commute to their workplace use bicycles as their 
preferred mode to work with the highest weekday ridership exceeding 
270 bicyclists per day (City of Phoenix, Bicycle Master Plan report, 
2015). Bias-corrected Strava ridership in Phoenix is representative of 
nearly 76 % of overall bicycling activities with bicyclist safety along 
with income and gender being the strongest indicators of overall rider-
ship (Nelson et al., 2021). The city has an entire street network spanning 
8,000 km, with approximately 1,140 km of total bicycle lanes that 
include 960 km of on-street bicycle facility and 190 km of off-street 
bicycle paths, 42 bicycle and pedestrian bridges/tunnels spanning the 
entire city (City of Phoenix, Bicycle Master Plan, 2015). The total 
number of bicycle trips increased from 52,976 to 74,191 between 2017 
and 2018 (Strava Metro, 2017). 

The City of Phoenix has gathered bicycle ridership from Strava Metro 
as part of a data acquisition effort by the Maricopa Association of 
Governments for estimating ridership estimates annually. Strava Metro 
provides information about anonymized bicycle trips recorded through 
the Strava fitness app. The data consists of activity counts (i.e. bicycle 
trips) per segment of transportation infrastructure in the Phoenix region, 
recorded every minute of the day. 

We chose the period between 2017 and 2018 as several minor/major 
changes took place in the bicycling infrastructure during this period, 
which enables monitoring how ridership patterns varied before and after 
the changes were put into effect. Table 1 shows the trip information and 
the number of total activities recorded in each year. Strava is commonly 
used by recreational bicyclists which introduces a bias in the overall 
sampling of bicycle counts, which can be adjusted using additional 
geographical covariates (Roy et al., 2019) but in dense urban areas 
correlates with all bicyclists (Boss et al., 2018a,b). The demographics of 
the Strava users in Phoenix are not representative of the general bicy-
cling population, there are differences in both gender (Table 1) and age. 
The trends in the Strava data used in this study are similar to age and 
gender trends of crowdsourced data used in other bicycling studies 
(Griffin and Jiao, 2015, Romanillos et al. 2016). We also use additional 
data from the City of Phoenix showing the bicycle crashes representative 
of the time period of study. 

Methods 

Our study can be broken into three main objectives – first, we convert 
Strava ridership volumes to time-series representing it as functional 
data, second, we then use a temporal alignment technique using square- 
root-velocity-function (SRVF) (Srivastava et al. 2011) to account for 
temporal variability and quantify change. Finally, a functional K-means 
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clustering of the change in ridership is used to group street segments into 
different clusters based on functional means of the change clusters. We 
further elaborate each step in the following sub sections 3.1 through 3.5. 

Converting raw Strava ridership to functional representation 

Before detecting changes, it is essential to construct a continuous 
timeseries from the discrete ridership data collected from Strava fitness 
app. We convert the raw counts of trips into hourly and monthly 
timeseries representations, which are referred to as the functional data 
for our analysis. 

The unique identifier of the street segments used in our analysis are 
typically obtained from OpenStreetMaps and are updated annually. 
Strava has internally matched these segments using their own map- 
matching algorithms and provided them for further analysis. We were 
able to run spatial joins and retain a total of 33,101matching street 
segments where data from both years 2017 and 2018 were available – 
missing data were removed prior to fitting SRVF algorithms to the data. 

We aggregated the Strava Metro data available at one-minute tem-
poral resolution for the years 2017 and 2018 to compute timeseries of 
average hourly and monthly trip counts (using weekday ridership data) 
for each of the 33,101 individual street segments spread throughout the 
city of Phoenix, which are referred to as “functional curves”. The spatial 
patterns of the total annual ridership (Fig. 1) appear similar across both 
years, hence we focus on a finer temporal resolution like hourly/ 
monthly to identify noticeable changes in ridership trends by trans-
forming them into timeseries in the functional space. 

Next, we normalized the mean of all the ridership variables to 
represent proportions of ridership in each time unit ranging between 
0 and 1 for both hourly and monthly period from the functional curves. 
The scaled ridership data were then used to for temporal alignment in 
the selected periods Table 2. 

Temporal alignment of Strava ridership volumes using SRVF 

The basic idea behind temporal alignment is to transpose the actual 
count data from the Euclidean space to a functional space such that the 
phase and amplitude of the functions (Tucker et al., 2012; Lee and Jung, 
2016), which are somewhat similar to signals from a sensor, are kept 
intact but are easier to compare as difference between curves. Ideally 
raw differences will only account for a discrete change at a single time 

Fig. 1. Map showing the spatial distribution of Strava riders across all traffic analysis zones along with bikeways in the City of Phoenix (2017–2018).  

Table 1 
Summary of Strava ridership in Phoenix from 2017 to 2018.  

Year No. of 
commute 
trips 

Total no. of 
activities 

No. of 
street 
segments 

% Male 
Strava 
riders 

%Female 
Strava 
riders 

2017 131,081 1.74 million 78,174  76.9 %  18.4 % 
2018 138,714 1.78 million 74,191  76.5 %  19.7 %  

Table 2 
Features for functional data analysis on Strava ridership between 2017 and 
2018.  

Name Operationalization Time 
Period 

Relevance 

Mean 
ridership 

The average number of 
bicycle trips at each 
temporal unit 

Daily, 
Monthly 

Understand hourly 
variability in 
ridership volumes ( 
Brum-Bastos et al, 
2019) 

Mean 
Weekday 
Ridership 

The average number of 
bicycle trips on weekdays at 
each temporal unit 

Daily, 
Monthly 

Weekday peak- 
period ridership 
helps identify 
commute patterns 
among riders & scale 
Strava data ( 
Dadashova and 
Griffin, 2020) 

Normalized 
Total 
Ridership 

The ratio of the total number 
of bicycle trips in individual 
temporal unit and sum of 
riders across all temporal 
units 

Daily, 
Monthly 

Represents the 
proportion of all 
activity counts that 
occurred within that 
period on each 
segment. (Boss et al., 
2018a,b)  
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point and not the entire time-series. The functions therefore need to be 
smoothed out prior to modeling. Although the changes of interest in 
Strava ridership may show similarities in feature-space (e.g. increase in 
ridership by 10 bicyclists versus increase by 100 bicyclists), signals may 
be temporally misaligned in the functional space due to variability in 
sampling rates, and temporal windowing operations as well. Due to 
these issues, we needed to more explicitly model temporal variability, 
before leveraging popular unsupervised statistical learning frameworks 
like K-means. We compare the results of quantifying change in ridership 
before and after temporal alignment to visualize the necessity of this 
approach. 

For temporal alignment, we adopted a square root velocity function 
(SRVF) representation of the normalized hourly and monthly Strava 
ridership counts that would rectify temporal misalignment in the 
ridership data (which is now considered a signal) by separating its phase 
and amplitude components. SRVF is a pre-processing method that takes 
a time-series as input and outputs another time-series, with some rate 
variations factored out. Unlike traditional feature extraction methods 
like wavelets, SRVF preserves all the information in the original time- 
series, merely decoupling the observed variation into an amplitude 
signal and a phase signal. Any further feature extraction method applied 
to these signals, thus not precluding the use of other methods. SRVF has 
been used as pre-processing step in previous studies in computer vision 
with wearable time-series data (Choi et al., 2018) but used Fourier 
features and machine learning methods like support vector machines for 
classification problems. The use of SRVF as a pre-processing step was 
shown to improve end-classifier performance. SRVF inspired operations 
have also been integrated as differentiable layers in end-to-end deep 
learning methods, where also we show that addition of SRVF-layers 
improves the performance of deep networks for human activity classi-
fication problems (Lohit et al., 2019) and in another related work SRVF 
was found to improve the estimation of clinically relevant features 
related to gait and movement (Amor et al., 2019). 

The SRVF method allows the development of proper Riemannian 
metrics (Srivastava et al. 2011) which are used to achieve a smoothing 
effect over time-series. It overcomes some limitations of Dynamic Time 
Warping such as the ‘pinching’ effect (Marron et al. 2015) which aligns 
completely different signals to each other by applying a warping func-
tion even though their phase and amplitude are not completely in syn-
chronization. We first computed hourly ridership volumes (i.e. the 
average number of bicycling trips along each street segment) from raw 
Strava Metro data. For ease of analysis, we defined these hourly rider-
ship volumes across a street segment as our function x. Then, x was 
converted into a corresponding SRVF representation to compute the 
Fréchet mean (Srivastava et al., 2011) for each street segment. We 
illustrate the temporal alignment procedure and change computation 
using in Algorithm 1. For each street segment, the original ridership 
function x was aligned using the estimated warping functions. The 
detailed warping functions are based on the Fischer-Rao metric and 
Fréchet means illustrated in details in Supplementary Materials S1.  

Algorithm 1. Steps for computing warped signals from Strava time-series for consecutive 
years. 

Input: Bicycling ridership time-series x1,x2,….,xn for ‘n’ street segments and their 
Frèchet means for hourly and monthly scales 

Output: Change in warped signals x̃1, x̃2, , …, x̃n, for years y2017 and y2018 with 
varying elasticity coefficient i 

1: for i = 0,0.1,0.2,….0.1.0 do 
2: for j = 1, 2, …, n do 
3: γ2017i,j = SRVF warp (x2017i,j) 
4: γ2018i,j = SRVF warp (x2018i,j) 
5: [x̃ 2017i,j] = [x2017i,j] ◦ γ2017i,j 
6: [x̃ 2018i,j] = [x2018i,j] ◦ γ2018i,j 
7: dist2017[i,j] = Euclidean distance([x 2017i,j], [x̃ 2017i,j]]) 
8: dist2018[i,j] = Euclidean distance([x 2018i,j], [x̃ 2018i,j]]) 
9: Temp_data2017[i,j] = [x̃ 2017i,j] 
10: Temp_data2018[i,j] = [x̃ 2018i,j] 
11: end 

(continued on next column)  

(continued ) 

Algorithm 1. Steps for computing warped signals from Strava time-series for consecutive 
years. 

12: Min_index2017[i] = min(dist2017[i,j]) 
13: Min_index2018[i] = min(dist2018[i,j]) 
14: Warped signals2017[i] = Temp_data2017[Min_index2017] 
15: Warped signals2018[i] = Temp_data2018[Min_index2018] 
16: Change[i] = Warped signals2018[i] – Warped signals2017[i-1] 
17: end  

For each street segment, the original ridership function x was aligned by 
composition with the estimated warping functions as shown in Equation 
(1). The detailed warping functions are based on the Fischer-Rao metric 
and Fréchet means discussed in the paper by Srivastava et al. (2010). 

[̃x] = [x]◦γ (1) 

Consequently, a new data set was created from which features could 
be extracted in a sliding window procedure (non-overlapping) with 
varying window lengths. We chose the warping function that resulted in 
the best fit. The warping function was computed by solving Equation (2) 

γ* = argmin
γ∈Γ

‖u − (q◦γ)√γ̇‖ (2) 

The γ is the warping function which is solved for using dynamic 
programming to get the optimal alignment of the curves (Srivastava 
et al., 2011), u is the Fréchet mean (Srivastava et al., 2011) obtained 
from the training phase, Γ is referred to as the warping group, and q is 
the SRVF representations of given functions defined as q(t) =

sign( ˙f(t))
̅̅̅̅̅̅̅̅̅̅̅
˙⃒

⃒
⃒ ˙f(t)

⃒
⃒
⃒

√

, where f is the original timeseries function. The warped 

function q̃t is given by equation (3). 

q̃t =
d
dt (f

◦γ)(t)
⃒̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⃒d

dt (f ◦γ)(t)
⃒
⃒

√ = (q◦γ)(t)
̅̅̅̅̅̅̅̅
γ̇(t)

√
= (q, γ) (3) 

We use the nonparametric form of the Fisher-Rao metric (Srivastava 
et al., 2011) for analyzing SRVFs. In order to align the functions, we 
define an elastic distance d between two curves representing the bicycle 
ridership for a street segment on the functional space S given by equa-
tion (4). The solution to the optimization over Γ can be solved using 
dynamic programming. 

d([q1], [q2] ) = inf γ∈Γ‖q1 − (q2, γ)‖ (4) 

The functional curves were aligned in order to remove unnecessary 
noise from the raw ridership data so the difference between the curves 
and the respective mean curve in each year could be compared without 
altering the phase and amplitude of the functional representations. 

We chose the warping function that resulted in the best fit using 
dynamic programming (Supplementary Materials S1) that minimized an 
elastic distance d between two curves representing the bicycle ridership 
for a street segment on the functional space S (Supplementary Materials 
S1). Finally, the functional curves were aligned in order to remove un-
necessary noise from the raw ridership data so the difference between 
the curves in consecutive years could be compared without altering the 
phase and amplitude of the functional representations. We repeated the 
alignment process by fitting functions using different values of the 
elasticity coefficient ‘λ’ ranging from 0 to 1 represented as ‘i’ in Algo-
rithm 1 which controls the amount of warping (Wu & Srivastava, 2011). 

Calculating the change in Strava ridership from aligned functions 

Once the alignment for both the years was completed using the 
Fréchet means of each curve, we calculated the functional change (Ci) in 
ridership patterns for consecutive years as shown in Equation (5) by 
calculating the difference of the aligned function of each street segment 
in a specific year from that of the previous year using different values of 
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‘λ’ as described in Algorithm 1. The process was repeated for all street 
segments in the study area to generate an N × M matrix where N rep-
resents each hour of the day and M represents the number of street 
segments. 

Once the alignment for both the years was completed using the 
Fréchet means of each curve, we generated a mean signature from the 
aligned data corresponding to the overall hourly and monthly ridership 
across all street segments for 2017. Next, we quantified the functional 
change in ridership patterns in consecutive years by calculating the 
difference of the aligned function of each street segment in a specific 
year from the functional mean curve for all street segments in the pre-
vious year as shown in Equation (5). 

Ci = γ*
i − μi− 1 (5) 

The design of the SRVF method in the ‘fdasrvf’ R package allows us 
only to get mean signatures from the group of curves in a single time 
period. The mean curve of the previous year was used as a baseline of the 
average ridership trend of all street segments with which to compare the 
functional difference in ridership volumes for the following year. If the 
functional shift was higher from the mean in the previous year, it 
highlighted a high amount of change and no deviation from the func-
tional mean indicated no significant change was observed. 

K-Means clustering of change in ridership to categorize street segments 

With the change (Ci) computed for each street segment, we ran a 
functional K-means clustering to group similar and dissimilar streets into 
‘k’ groups. We determined the optimal ‘k’ for grouping the street seg-
ments using the gap statistic method (Tibshirani et al., 2001), based on 
the within-cluster sum of squares that measures the variability of the 
observations in each cluster. Once the desired number of ‘k’ clusters 
were determined, we visualized these groupings to identify and cate-
gorize ridership patterns. The street segments were grouped based on 
the similarity in functional change ‘Ci’. The similarity is determined 
using a similarity index ‘ρ’ between two curves c1 and c2 (Supplementary 
Materials S1) which minimizes the within-cluster variance based on the 
functional change. We also calculated a silhouette score (ranging from 
− 1 to + 1) for different values of the elasticity coefficient ‘λ’ using the ‘k’ 
chosen clusters and retained the changes obtained with the optimal ‘λ’ 
that maximized the silhouette score (Algorithm 2). The silhouette score 
ensures that the SRVF alignment do not lead to overfitting of the func-
tions and only slight shifts in peaks are accounted for prior to change 
computation.  

Algorithm 2. Steps for clustering change in ridership using optimal ‘λ’ 

Input: Changes in SRVF aligned ridership functions X= {x1,x2,….,xn}for ‘n’ street 
segments 

Output: Silhouette score ‘s’ for ‘k’ clusters for varying elasticity coefficient ‘i’ 
1: for i = 0,0.1,0.2,….0.1.0 do 
2: k[i] = Kmeans_align (X,k, λ = i) 
3: s[i] = Silhouette(k[i]dist, k[i]labels) 
4: end 
5: S = Max (s[i])  

Mapping clusters to visualize changes 

The mean functional change was finally used to categorize street 
segments into ‘k’ groups. We calculated the mean and coefficient of 
variation of hourly, weekday, and total ridership along with the root 
mean squared of the functional change of the streets within each cluster. 
We then generated named categories based on the summarized cluster 
statistics and visualized the results of the K-Means clustering by color- 
coding each street segment by a unique color scheme corresponding to 
the category to which it belongs. Finally, we created a map for the entire 
city of Phoenix highlighting changes between 2017 and 2018 both at the 
hourly and monthly scale. To identify the potential causes for the change 

in ridership in each consecutive year we also incorporated an additional 
map layer indicating bicycle crash density in the City of Phoenix and 
infer the reason for changes by overlaying the results. The bicycle crash 
density was computed using a kernel density estimation technique in 
ArcGIS with a radius of 5 miles using data related to bicycling crash 
incidents from the Arizona Department of Transportation’s open data 
portal. We also quantify the bicyclist exposure per cluster as the ratio of 
the total number of crashes across street segments in each cluster and the 
average length of all the street segments in the same cluster. The bicy-
clist exposure further indicates the safety aspects associated with 
ridership change patterns at the street segment level. 

Results 

Temporal alignment of hourly Strava ridership with SRVF 

The functional curves of the hourly and monthly patterns of the raw 
ridership volumes are shown in Fig. 2. These curves were then aligned 
using SRVF to remove inconsistencies and mismatches in phase and 
amplitude of the functions. Fig. 2 shows the original temporal profiles of 
ridership for all street segments in our study area for 2017–2018 along 
with their aligned temporal profiles. Similar profiles have been gener-
ated from single bicycling counters (Miranda-Moreno et al. 2013), but 
using Strava allows much higher spatial resolution (every single 
segment within the city’s street network) along with the temporal 
richness (every hour of a day during the entire year). 

While Strava provides data based on only a sample of riders and 
there are demographic biases in the app users, research has shown the 
spatial patterns in this ridership data correlate with bicycle ridership 
volumes, especially in dense urban areas (Jestico et al. 2016, Boss et al., 
2018a,b). However, post SRVF alignment (Fig. 2) when the spikes are 
realigned in time and the noise is removed, we observe that there is an 
increase in peak-period trips between 6 and 8 am and then there is a 
slight decrease in trips between 8 and 9 am – which is more reasonable 
given the street has attracted more commuters in 2018 than in 2017. We 
also varied the elasticity coefficient to visualize the effects of warping on 
original ridership functions and list three scenarios in Fig. 3. As the value 
of ‘λ’ varies, the warping functions change -we repeated the process for 
ten different values of ‘λ’ from 0 to 1. 

The first plot shows the original average hourly ridership volumes 
represented as functional curves along all street segments. The warping 
functions (Fig. 3b) are generated by the SRVF algorithm (Algorithm 1) to 
realign the curves and remove additional noise using the Fisher-Rao 
metric. Finally, the temporally aligned warped data is generated 
(Fig. 3c) followed by the mean and standard deviations of both the 
original (Fig. 3d) and warped (Fig. 3e) functional curves. The final plot 
(Fig. 3f) shows the overall mean signature of all warped functional 
curves representing hourly ridership data across all street segments in a 
year in the city of Phoenix. 

Determining functional change in hourly and monthly ridership 

The changes in ridership were computed with varying the ‘λ’ coef-
ficient and calculating year wise functional differences from the aligned 
curves between 2017 and 2018 for all segments in the study area. Fig. 4 
shows the changes in ridership with λ = 0.2 before and after temporal 
alignment based on optimal choice of λ (Fig. 6). We chose four different 
street segments to show the individual functional changes along each of 
the segments before temporal alignment (Fig. 4a) as well as the warped 
functional curves (Fig. 4b) after SRVF alignment. 

Generating k-means clusters from aligned Strava ridership functions 

The changes in ridership curves after alignment were used to 
generate clusters that could be used as named categories. We varied the 
number of clusters as shown in Fig. 5 to choose 4 as the optimal value for 
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Fig. 2. Functional curves of actual Strava ridership in 2017 and 2018 at the (a) hourly and (b) monthly scales before and after SRVF alignment.  
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‘k’ based on the within cluster sum of squares using the ‘elbow’ method i. 
e. the point after which the within cluster sum of squares start 
decreasing in a linear fashion. Thus for the given data, we conclude that 
the optimal number of clusters for the data is 4. After finalizing the 
number of clusters we varied the elasticity coefficient as shown in Fig. 6 
to determine the maximum silhouette score to find the optimal elasticity 
coefficient. 

Using the maximum silhouette score of 0.056 that was obtained for 
the elasticity coefficient of 0.2 (Fig. 6), we generated change maps as 
well as cluster summaries reported in Fig. 7 and Table 3 respectively. 
The clusters with optimal elastic coefficient 0.2 are grouped into four 
categories of ‘high peak’, ‘low peak’, ‘high off-peak’, and ‘low off-peak’ 
ridership for the hourly changes. 

Similarly, for the monthly changes, they are grouped into ‘high 
summer’, ‘low summer’, ‘high winter’ and ‘low winter’ ridership cate-
gories based on seasonality. In Fig. 7, the grey lines indicate the 

Fig. 3. Functional curves of original and warped Strava ridership using optimal elasticity coefficient ‘λ’.  

Fig. 4. Functional changes in hourly Strava ridership between 2017 and 2018 using the elasticity coefficient λ = 0.2. Four different street segments are shown to 
highlight how the temporal alignment warps the peaks to remove noise and helps in calculating changes in hourly ridership. 

Fig. 5. Determining the optimal number of clusters using for different values 
of ‘k’. 

Fig. 6. Determining the optimal value of elasticity coefficient by varying the 
silhouette score for ‘k = 4′ clusters. 
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functional of the aligned hourly ridership in 2017 and the colored line 
indicates the overall cluster center of the functional curves in that 
cluster. 

The summary statistics of each cluster shown in Fig. 7 are listed in 
Table 3, which identifies the percentage of streets (n) in each cluster (k) 
and the highest, lowest and average daily ridership along with the mean 
change of ridership (ck) in each cluster ‘k’ calculated as the root mean 
square across all hours of the day and months of the year in each group. 
We also calculated the bicyclist exposure per cluster as the ratio of the 
number of crashes that occurred in the streets network and the total 
length of streets per cluster. 

We have also summarized the total hourly trips in a day and the total 
trips in a month for each cluster in Fig. 8. The peak period clusters show 
more variability in ridership volumes compared to the off-peak clusters 
for the hourly trips whereas for the monthly trips the high summer and 
low winter clusters show more variability. A possible explanation could 
be that more number of bicyclists ride during peak periods and the 
overall increase/decrease in ridership is comparatively higher across 
multiple years compared to off-peak ridership. For the seasonal scenario, 
the low change in winter and high change in summer. 

The categories were assigned based on the mean functional change in 
each class with the lowest 2 values indicating off-peak hourly ridership 
and highest 2 values indicating peak-period ridership. Similarly, for 
monthly ridership we used the lowest two values for low seasonal 
change and the highest two values for high seasonal change. The classes 
are subjective and we mapped the change clusters to further visually 

detect these categories. Existing literature (Brum-Bastos et al., 2019; 
Nelson et al., 2022) on classifying bicycling regions based on ridership 
patterns using clustering techniques are used to further support the 
categorization schemes based on temporal patterns. Further, differen-
tiating classes by magnitude of change was useful for an end goal of 
stratified sampling and identifying areas for future bike infrastructure 
planning. 

Mapping the change clusters in the Phoenix metropolitan area 

We show change maps that highlight the spatial distribution of the 
clusters based on the functional change in ridership at both hourly and 
monthly scales (Fig. 9). The different categories of ridership changes 
(Table 3) indicate higher changes during peak periods at the hourly scale 
were more prominent near the downtown area. At the monthly scale, 
more changes were observed in the summer months compared to the 
winter months. In Fig. 9, average crash density calculated as a kernel 
density estimate from the total bicyclist collisions data between 2015 
and 2017 provided by the City of Phoenix is overlain on maps to 
demonstrate the variations of ridership change in comparison with 
bicyclist exposure. The high crash density areas overlap with the high 
off-peak ridership changes at the hourly scale and high summer rider-
ship changes at the monthly scale (Fig. 9). 

To get a more detailed understanding of these changes at the indi-
vidual street level we gathered infrastructure data from the City of 
Phoenix and mapped the hourly and monthly changes for 2 specific 

Fig. 7. Clusters showing streets grouped by the functional change in ridership for hourly and monthly changes.  

Table 3 
Summary of Strava ridership in each of the 4 clusters shown in Fig. 7 based on the functional change in Strava ridership from 2017 to 2018.  

Time Period Cluster % of Segments Mean 
Functional Change 

Weekday ridership Daily/Annual Ridership Bicyclist 
Exposure 
(No. of crashes/ Road length) 

Category 

Mean C.V. Mean C.V. 

Hourly 1  31.15  0.04  3.59  1.13  42.16  2.24  0.51 High off-peak 
2  33.64  0.02  2.20  1.22  8.64  1.14  0.59 Low off-peak 
3  6.61  0.11  7.21  1.76  105.23  1.75  0.60 High peak-period 
4  28.60  0.05  4.66  0.92  82.95  1.80  0.35 Low peak-period 

Monthly 1  11.33  0.08  5.01  0.94  123.61  0.97  0.41 High Winter 
2  42.53  0.02  4.32  1.12  67.90  2.98  0.60 Low Summer 
3  19.87  0.06  5.03  1.03  105.43  2.02  0.40 High Summer 
4  26.27  0.05  4.88  0.99  118.60  2.11  0.49 Low Winter  
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segment zones where new bike lanes were introduced in 2017 as part of 
the bicycle lane improvement plan. Fig. 9 shows the high peak-period 
changes that occur around Baseline Road between 7th Avenue and 
19th Avenue (Fig. 10a) as well as along 24th Street between Baseline 
Road and Southern Avenue (Fig. 10b) where new bike lanes were 
introduced. Baseline Road experiences low change in ridership during 
the winter months (Fig. 10c) and high change during the summer 
months (Fig. 10d). 

Discussion 

The increase in popularity of health and fitness apps, such as Strava, 
has provided a novel source of high-resolution spatio-temporal big data. 
Strava data have been used to examine where cyclists ride and several 
studies have examined the use of Strava data as a proxy for ridership 
volumes (Griffin and Jiao, 2015, Jestico et al. 2016). Heesch and 
Langdon (2017) used heatmaps and counts of cyclists from Strava data 
to assess the impact of infrastructure change on bicycling behavior and 
Boss et al. (2018a,b) use spatial autocorrelation techniques to monitor 
annual changes in spatial patterns of ridership. 

In the current study, we advance change detection approaches by 
operationalizing an FDA approach which have been used in several 
other areas of research including ecology (Embling et al. 2012), envi-
ronmental monitoring (Lee et al. 2015), and climate science (Ballari 
et al. 2018). The study highlights the use of temporal alignment before 
detecting changes to account for elastic variations in the functional data 
(Srivastava et al. 2011). The SRVF technique used in this study can 
overcome the challenges faced by other methods such as wavelet anal-
ysis (Antoniadis et al. 2013) which have not considered real-world 
scenarios and alignment issues. The SRVF method allows development 

of proper Riemannian metrics over time-series data, avoids some limi-
tations of DTW-based methods such as the ‘pinching’ effect (Marron 
et al., 2015) and helps to tackle the issue of noisy signals in bicycling 
ridership volumes that helps to refine the spectra of similar signals 
which are more aligned to each other and lead to a better monitoring of 
changes in ridership patterns over time. 

We generated change maps of bicycling ridership for all street seg-
ments in the city of Phoenix post-alignment of the functional curves into 
4 categories for both hourly and monthly scales (Table 3). Our results 
indicate that nearly 32 % of the street segments in Phoenix show a high 
hourly change in ridership during the off-peak hours (Table 3). There are 
also 6.6 % of segments that account for high peak-period change in 
ridership (Table 3). These patterns indicated that improved infrastruc-
ture between 2017 and 2018 has led to a major increase in bicycling 
ridership which is probably due to increased sense of safety and comfort 
among bicyclists. However, further investigation is needed to better 
understand the specific infrastructure changes such as reduced speed 
limits, addition/removal of bike lanes and addition/removal of bicyclist 
signal at intersections that may lead to these changes. These results are 
consistent with previous studies (Akar and Clifton, 2009) which show 
that bicyclists tend to ride more in areas with a high density of bicycling 
infrastructure as they feel safe biking and have a higher sense of comfort 
(Teixeira et al. 2020) bicycling in these areas. The average number of 
bicyclists varies from 83 to 105 during the high and low hourly peak 
periods (Table 3) and from 9 to 42 bicyclists during off-peak hours 
(Table 3). The changes during peak-period hourly ridership occur mostly 
around downtown Phoenix. The reason being commuters use bike lanes 
and bike paths for their regular commutes around this area the most. The 
high change areas also overlap with regions of high crash density as 
more incidents occur owing to exposure to a high volume of motorized 

Fig. 8. Boxplots showing the variability of total ridership volumes across each cluster for the hourly and monthly time periods.  
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traffic interspersed with bicycle trips during peak periods in these areas 
which is consistent with the results of the study by Fournier et al. (2019) 
and Saha et al. (2018) which highlight that traffic volumes have a 
positive correlation with bicycle crashes. The bicyclist exposure for high 
change during peak periods is 0.60 and for off-peak hours is 0.51 
(Table 3) indicating a sharp increase in hourly ridership with lack of 
suitable infrastructure might lead to more crashes and effect bicyclist 
safety. Previous studies (Pucher and Buehler, 2016, Vanparijs et al. 
2020) have shown that North-American cities like Portland, Washington 
DC, and New York have already improved bicycling safety and 
increasing bicycling levels by greatly expanding their bicycling infra-
structure. Therefore, to reduce exposure in areas with a high change in 
ridership authorities need to provide more bicycling infrastructure. 

At the monthly scale, most of the changes that occur during the 
winter months which consist of 37.6 % of the street segments (Table 3) 
(including high and low changes in winter) located mostly on the out-
skirts of the city with recreational riders making more trips along trails 
and parks (Fig. 9). However, the changes in summer across the street 
segments in and around the downtown area (Fig. 9) are comparatively 
low as those areas are mostly used by commuters that have ridership 
patterns that are not as impacted by weather, a trend that is consistent 
with previous studies (Brandenburg et al. 2007, Miranda-Moreno and 
Nosal, 2011). The remainder of the streets which are used for recrea-
tional trips experienced a sharp dip in commutes owing to high 

temperatures in the summer season (Brandenburg et al., 2007). The high 
and low changes during summer overlap with high crash density areas as 
the crashes occur more frequently in and around the high traffic zones 
specifically near the city center. Surprisingly, 42.5 % of street segments 
with low change during summer months (Table 3) have a high exposure 
of 0.60 (Table 3) indicating that the overall risk of crashes in streets with 
bicycle commuters in and around the city center is typically high (Loidl 
et al. 2016) throughout the year. Hence, local authorities should invest 
more in introducing bicycle-friendly infrastructure that reduces expo-
sure in those areas even with a low change in monthly ridership. The 
monthly change in ridership indicates a total increase or decrease in 
ridership spanning both years – it may be linked to temperatures but 
there are additional factors to consider at the ground level – such as 
street-closures, roadwork, construction of new bike lanes, removal of 
existing bike lanes that also govern these ridership volumes. Hence it is a 
combined effect of all these factors that lead to the ultimate manifes-
tation of functional change in the summer/winter months. In the future 
work, we aim to integrate temperature data to further capture actual 
impacts of heat exposure, wind effects etc. on total ridership change. 
Previous studies (Prato, Kaplan, Rasmussen, & Hels, 2016) have found 
where there are more bicycling trips there are lower bicycle crash rates 
since bicyclists tend to choose safer routes and motor vehicle drivers are 
forced to pay attention to non-motorized travelers. Strava data have also 
been used in bicyclist safety studies to map exposure at finer spatial 

Fig. 9. Maps showing different clusters of the change in hourly and monthly ridership between 2017 and 2018 along with bicyclist crash density.  
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scales (Ferster et al., 2021) which highlighted that largest incident 
hotspots occurred outside of the central downtown area and the high 
exposure areas typically occur on multi-use paths where incidents are 
under-reported (Jestico et al., 2016). It has also been suggested in prior 
studies (Branion-Calles et al., 2019) ( that increasing the availability of 
bike infrastructure can increase perceptions of bicyclist safety in 
mid-sized North American cities. Fig. 9 shows high change clusters 
(which indicates a decrease/increase) in areas outside of downtown area 
that support previous results in this direction. 

The change maps shown in Fig. 6 are categorized based on the 
continuous temporal changes derived from our functional change 
(Table 3) technique that captures fine-grained changes during all hours 
of a day and each month of the year. Our results also highlight the 
importance of considering multi-scale temporal changes in bicycling 
when infrastructure changes in a city. Hourly changes can be useful to 
detect commute patterns (e.g., Heinen et al. 2011) throughout the day 

whereas monthly changes give a summary of seasonal ridership patterns 
(e.g., Jestico et al. 2016) in the city. Practitioners can use maps at both 
scales (Fig. 9) to identify regions that need improved infrastructure for 
tackling daily bicycle traffic as well as make long term plans for future 
interventions that assure bicyclist safety within a region to quantify the 
cumulative impact over time. 

Previous studies that have evaluated the mapped change in ridership 
focused on the comparison of two discrete snapshots in time (Boss et al., 
2018a,b). Snapshot approaches remove much of the temporal detail that 
could be valuable for understanding more nuanced changes. As well, the 
snapshot selected for evaluating change is often subjective. Our study 
overcomes the challenge of possible information loss by discrete snap-
shot approaches by combining the changes at hourly and monthly scales 
from continuous time-series data. The increasing availability of big data 
from urban sensing technologies such as Strava has enabled monitoring 
change from spatial-temporal processes such as bicycle ridership 

Fig. 10. Street-level change maps of hourly and monthly ridership along segments where new bike infrastructure was introduced by the City of Phoenix(In the street 
segments along (a) Baseline Road: 7th Avenue to 19th Avenue and along (b) 24th Street: Baseline Road to Southern Avenue, the City of Phoenix introduced new bike 
lanes which led to high changes in hourly peak and off-peak period ridership along that stretch. The monthly ridership changes along (c) Baseline Road: 7th Avenue 
to 19th Avenue is mixed with high summer and low winter ridership change and along (d) 24th Street: Baseline Road to Southern Avenue, experienced low change in 
ridership during summer and winter seasons.). 
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continuously across multiple scales utilizing the functional data analysis 
framework. We have developed the technique as a way for policymakers 
to visually represent change through maps and identify infrastructure 
needs of a city. Our method is a step forward towards easing the process 
of detecting changes from big data by policymakers using visual ap-
proaches using an FDA framework. The clusters shown in Fig. 8 are 
specific to the study area and will change in different geographic con-
texts but our method is broadly applicable and can be nuanced for any 
city using the change detection framework developed in this study based 
upon availability of good quality timeseries data. The results from this 
study would be a good starting point for planners to make informed 
decisions on investments for modifying an existing infrastructure or 
installing new infrastructure such as paved bike lanes, adding a new bike 
path, increasing width of lanes as well as reducing the number of motor 
vehicle lanes. 

Conclusion 

Big crowdsourced data pose numerous challenges ranging from the 
extraction of actionable information (Yang et al., 2017) to temporal 
misalignment (Choi et al. 2018) and bias on app usage (Roy et al. 2019). 
The need for more accurate and reliable understanding and predictions 
requires improvements to algorithms that can recognize data inaccura-
cies, sampling errors. Efficiently integrating big data from different 
spatial–temporal scales is critical for many research fields beyond 
transportation including earth system sciences (Deser et al., 2020). Our 
research opens a new avenue for using functional approaches to data 
preprocessing and analysis across multiple scales from big spatio- 
temporal data. Functional approaches help in identifying the latent 
spatial–temporal patterns, which cannot be observed directly, through a 
data-driven perspective. Inferring such pattern changes from a raw noisy 
stream of individual trips is a rather non-trivial task and an ongoing area 
of geographic information science research. Developing generalized 
techniques as outlined in our study, to automatically detect pattern 
changes from individual-level longitudinal spatial–temporal data, is 
therefore critical to developing behavior models that are adaptive over 
time. 

While using big spatio-temporal data it is essential to account for 
nonlinear warpings for proper alignment and co-registration of func-
tional curves. Our method highlights the use of square-root velocity 
functions to overcome such challenges and detect changes in hourly and 
monthly scales from functional data. From a broader perspective, this 
paper contributes to debates in time geography based on the theoretical 
foundation on how time and space constitute social life from the scale of 
individuals (Hägerstrand, 1985). Considering previous research (Kwan, 
2002, Miller, 2005, Long and Nelson, 2013, Kwan and Neutens, 2014) 
that highlight the role of underlying time and scale issues in geography, 
this paper builds a framework for analyzing change from real-world data 
at fine-grained scales and contributes to the field of urban analytics from 
a methodological perspective which can help policymakers. 
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