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RESEARCH ARTICLE Open Access

Nanog induced intermediate state in
regulating stem cell differentiation and
reprogramming
Peijia Yu1, Qing Nie2*, Chao Tang1,3* and Lei Zhang1,4*

Abstract

Background: Heterogeneous gene expressions of cells are widely observed in self-renewing pluripotent stem
cells, suggesting possible coexistence of multiple cellular states with distinct characteristics. Though the elements
regulating cellular states have been identified, the underlying dynamic mechanisms and the significance of such
cellular heterogeneity remain elusive.

Results: We present a gene regulatory network model to investigate the bimodal Nanog distribution in stem cells.
Our model reveals a novel role of dynamic conversion between the cellular states of high and low Nanog levels.
Model simulations demonstrate that the low-Nanog state benefits cell differentiation through serving as an
intermediate state to reduce the barrier of transition. Interestingly, the existence of low-Nanog state dynamically
slows down the reprogramming process, and additional Nanog activation is found to be essential to quickly
attaining the fully reprogrammed cell state.

Conclusions: Nanog has been recognized as a critical pluripotency gene in stem cell regulation. Our modeling
results quantitatively show a dual role of Nanog during stem cell differentiation and reprogramming, and the
importance of the intermediate state during cell state transitions. Our approach offers a general method for
analyzing key regulatory factors controlling cell differentiation and reprogramming.

Keywords: Gene network, Stem cells, Cell differentiation, iPS cell reprogramming, Intermediate cellular state, Nanog

Background
Phenotypic cell-to-cell heterogeneity has been viewed as an
important hallmark for both pluripotent embryonic stem
(ES) cells [1–4] and multipotent adult stem cells [5–7].
Such non-genetic heterogeneity within stem cell popula-
tions suggests the co-existence of multiple cellular states
manifested by transcriptome-wide gene expression patterns
[2, 5]. The dynamical interconversion among these gene
expression states is driven by various types of fluctuations,
including protein and RNA (mRNA, miRNA) expression
noise in gene regulatory networks for cell fate determin-
ation [8–10], the noise of external input signals [11], the re-

establishment of histone modification pattern on the chro-
matins of daughter cells after each cell division [12].
Nanog has been widely studied as one of the heteroge-

neously expressed genes in ES and induced pluripotent
stem (iPS) cell populations [13, 14]. It plays a central
role in maintaining the cellular self-renewal and pluripo-
tency [15–17]. In terms of the gene regulatory network
defining cellular potency, Nanog has direct mutual inter-
actions with two other core stem cell specific genes
Oct4 and Sox2. They occupy the core position of the
network, and link up most downstream genes control-
ling cellular stemness and cell fate specification [18–21].
Experimental data from mice ES cell lines indicate that

the Nanog expression level in cell population shows a
typical bimodal distribution: Approximately 80% cells
show a relatively high level of Nanog, while the rest of
20% cells keep a low level of Nanog which is close to the
Nanog expression level in differentiated cells [22–24].
This can be partly explained by cell differentiation due
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to some environmental factors in the experiments
[22, 24]. However, after sorting and purifying multiple
populations of ES cells with different Nanog expression
levels, and the subsequent self-renewal culture of these
“sub-populations”, the same bimodal Nanog distribution
can be eventually re-established from all sub-populations
with the scale of recovering time for about 10 days [22, 24].
These results suggest the co-existence of two cellular
“sub-states” within the pluripotent stem cell state: high-
Nanog sub-state and low-Nanog sub-state, rather than
one well-defined, homogenous pluripotent cellular state.
Furthermore, the two sub-states spontaneously go
through reversible interconversion toward a dynamical
equilibrium.
Very few studies have addressed the functional roles of

the bimodal heterogeneity of Nanog expression in the
differentiation and specification process of stem cells.
Previous experimental results have shown that the low-
Nanog stem cell sub-populations are more likely to dif-
ferentiate than high-Nanog sub-populations, under the
induction of differentiation signals [24–27]. One hypoth-
esis based on these results is: During the stem cell differ-
entiation process, the low-Nanog state of stem cell
functions as the “gate-keeper” state. The preparation of
the “gate-keeper” state of stem cells and the presence of
external signals are two necessary conditions for stem
cell differentiation [10, 26, 27].
Some previous modeling works have attempted to

study the Nanog bimodal distribution and the dynamical
interconversion between high/low-Nanog states based
on network topology and gene regulatory interactions,
including stochastic transition between the two states
driven by expression noise [25] and gene expression
oscillation [28, 29]. For instance, Glauche et al. modeled
a three-node network including Oct4, Nanog and one
unknown Nanog repressor based on bistable switch
mechanism or oscillatory mechanism [25]. The stochas-
tic bistable model often requires a high level of gene ex-
pression noise to fit the variation observed in the
experiment, and lacks the ability to explain different
variation levels for different genes. On the contrary, the
excitable model can have relatively large excitable excur-
sions in the phase space triggered by much smaller noise
to avoid such disadvantages. Excitation mechanism has
been utilized to explain bimodal distribution of gene ex-
pression and stochastic transitions among multiple
metastable cell fates [30–32]. In particular, Kalmar et al.
proposed a simplified two-dimensional Oct4-Nanog net-
work based on excitation mechanism to model bimodal
distribution of Nanog [24]. However, one limitation of
the previous models for Nanog heterogeneity is that all
lineage specification genes are neglected, thus the role of
Nanog stochasticity in stem cell differentiation and iPS
cell reprogramming cannot be quantitatively analyzed.

Here, we propose a mathematical model to investigate
the contrary roles of Nanog in stem cell differentiation
and iPS cell reprogramming. By introducing a five-node
stem cell gene regulatory network, we first verify the
Nanog bimodal distribution and high/low-Nanog state
interconversion, and then investigate the functional roles
of Nanog bimodality. For the role of Nanog in stem cell
differentiation, we show that the low-Nanog state serves
as an intermediate state in the differentiation process,
which is a stricter description than the “gate-keeper
state”. The differentiation process through the low-
Nanog intermediate has a lower barrier on the potential
landscape so that it is more prone to happen. While for
the iPS cell reprogramming, we demonstrate the exist-
ence of low-Nanog state dynamically leads to a negative
effect, and additional Nanog activation is necessary for
increasing reprogramming efficiency via preventing
reprogrammed iPS cell from trapping in the low-Nanog
state by over-activated Oct4/Sox2.

Results
The five-node stochastic gene regulatory network control-
ling cellular stemness
We first build a five-node gene regulatory network
model, including three pluripotent genes: Oct4, Sox2,
Nanog, and two mutually antagonistic lineage specifiers:
MEs (representing mesendoderm genes) and ECTs
(representing ectoderm genes) (Fig. 1a). The modeling of
interactions among Oct4, Sox2, MEs and ECTs is inher-
ited from the previous four-node “Seesaw” model for the
iPS cell reprogramming [33], including self-activation of
Oct4 and Sox2, mutual repression between MEs and
ECTs, and multiple interactions among pluripotent
genes and specifier genes. Both Oct4 & Sox2 and MEs &
ECTs are assumed to be symmetric for simplicity. In the
five-node network, we introduce an additional stem cell
gene: Nanog. The regulations among Oct4, Sox2 and
Nanog consist of self-activation of Nanog, activation of
Nanog to Oct4 and Sox2 [18, 34], and one negative feed-
back of combined Oct4-Sox2 to Nanog. For the negative
feedback, low concentration of Oct4-Sox2 weakly acti-
vates Nanog, while high concentration of Oct4-Sox2
strongly represses Nanog, which is supported by some
experimental evidence [18, 34]. Stochastic differential
equations are used to formulate this five-node network
(see Methods and Materials for model details and
Additional file 1: Table S1 for the choice of parameters).

Stochastic transition between high-Nanog state and low-
Nanog state
We performed simulations of the proposed model to
examine the dynamics of Nanog gene expression. The
computational results of trajectory density sampling in
the phase space produced four regions with relatively
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high sampling probability, implying stable or metastable
cellular states (Fig. 1b and c). Two of them represent the
differentiated cellular states: ME state & ECT state,
where one of the MEs or ECTs gene groups is highly
expressed, and Oct4, Sox2, Nanog are low expressed for
both two states (Additional file 2: Figure S1). The other
two states correspond to the high-Nanog and low-
Nanog cell subpopulations within the heterogeneous
pluripotent cellular state (both of them with high Oct4/
Sox2 level) (Fig. 1d). The negative feedback loop be-
tween Nanog and Oct4/Sox2 plus the weak activation
from Oct/Sox2 to Nanog constitute an excitable system,
leading to a recurring stochastic transition between
high-Nanog and low-Nanog sub-states even with
relatively low gene expression noise (Fig. 1d). In order to
reveal the excitable mechanism in a more generalizable
way, we further abstracted a minimal simplified two-
dimensional Oct4-Nanog model and preformed the
phase plane analysis as illustrated in Additional file 3:
Figure S2A (see the formulation in Methods and Mate-
rials and the parameters in Additional file 4: Table S2).
The bimodal distribution of Nanog expression level

within the pluripotent cell population under dynamical
equilibrium can be naturally generated from our five-
node model (Fig. 2a and Additional file 3: Figure S2B),
which is able to quantitatively fit the experimental data
better than the original fitting by the Kalmar’s model
[24]. Also, the simulation qualitatively matches the

normalized results from two single cell RNA-seq data sets
(using mouse ES cells cultured in serum+LIF) [4, 35],
which show a high-level expression of Oct4 and a bimodal
expression of Nanog in Fig. 2a, but a broader distribution
of the Sox2 expression compared to the simulation. To
verify that the distribution of high/low-Nanog cell sub-
populations are under interconversion toward dynamical
equilibrium, we repeat the re-establishment process of
Nanog expression bimodality from sorted stem cell sub-
populations, initiating from all high-Nanog state cells, or
all low-Nanog state cells. Both two cell sub-population
groups could re-establish the Nanog bimodal distribution
after reaching the dynamical equilibrium for ~ 10 days
[18, 34], displayed in Fig. 2b. The distributions of the
dynamical dwell time at the high/low-Nanog states are
shown in Fig. 2c. Note that they do not obey exponential
distribution, which is one characteristic of stochastic
transition between bistable switch systems, indicating an
essential difference of excitable system and stochastic bi-
stable switch.

Nanog as “catalyst”: Differentiation through the low-
Nanog state has a lower energy barrier
Now we consider possible functional roles of Nanog dy-
namics in the process of stem cell differentiation. In
order to investigate the functional role of Nanog dynam-
ics in the five-node network model, it is necessary to
introduce a control model that excludes the dynamics of

a b

c d

Fig. 1 The stochastic gene regulatory model of cell fate determination with Nanog and lineage specifiers. a The five-node gene regulatory network of
cell fate determination. The network includes three stemness genes: Oct4, Sox2, Nanog, and two mutual antagonistic lineage specifiers: MEs and ECTs.
b and c The cell-state landscape of multiple cell attractors, produced from trajectory density sampling. The red-color regions indicate relatively high
sampling probability, corresponding to low value of − log(Pss) on potential landscape. b The five-dimensional phase space is transformed to three-
dimensional one, where the x-axis represents the geometric average of Oct4 and Sox2, the y-axis for Nanog, and the z-axis indicates the difference
between MEs and ECTs. c The landscape in a two-dimensional phase plane, where the MEs-ECTs axis is compressed. d Typical temporal trajectories of
stochastic gene expression of stem cell state. Frequent dynamical transitions between high- and low-Nanog states can be seen (blue line)
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Nanog. To build up the control model, the concentra-
tion value of Nanog in the five-node model is fixed as a
constant, and the steady state values of the other four
genes remain unchanged (see details of the control
model in Methods and Materials). Therefore, we are able
to compare the parallel behaviors of the wild-type (WT)
model (with Nanog dynamics) and the control model
(without Nanog dynamics).
In order to quantitatively assess the tendency of cell

state transition from the stem cell state (the high-Nanog
sub-state in the WT model, or the homogeneous
pluripotent state in the control model) toward one of the
differentiated states driven by gene expression noise (ra-
ther than by parameter changing and bifurcation), we
employ the minimum action path (MAP) to locate the
transition path based on the Wentzell-Freidlin large devi-
ation theory [36]. This approach allows us to calculate the
most probable transition path between the initial and final
states in a random dynamic system by minimizing the ac-
tion functional, and has been successfully applied in many
biological systems, such as gene switching in zebrafish
hindbrain [37] and budding yeast cell cycle [38].
By calculating the transition paths (i.e., MAPs) of cellular

differentiation for the WT model and the control model,
the quantitative comparison of differentiation tendency is
proceeded by two ways: (i) The value of the potential land-
scape along the transition path; (ii) The monotonous in-
creasing action function along the transition path. For the
first approach, we apply the landscape function for complex
biological network dynamics, which often corresponds to
the non-equilibrium systems, to serve as an analogy of the

energy function in the equilibrium systems. There are three
representative landscape theories in literatures: 1) the “po-
tential landscape” from the steady state distribution of
stochastic differential equations (SDEs) [39]; 2) the “quasi-
potential” from Freidlin-Wentzell’s large deviation theory
[38]; 3) the potential function obtained through the SDE
decomposition by the fluctuation-dissipation theorem [40],
which can be viewed as a mapping between a non-
equilibrium dynamical system and a Hamiltonian system
[41]. Here, we use the potential landscape defined by the
negative logarithm of the steady state probability distribu-
tion Pss as the landscape function, i.e., − log(Pss), which is
the same one used in [39].
The potential landscape along the transition path is

similar to the free energy along the reaction coordinates,
and it is very intuitive to illustrate the transition inter-
mediates and the energy barriers. However, it should be
noticed that the potential landscapes only provide rough
sketches because the gene regulatory network systems
are usually far from gradient systems. The transition
path could be different from the reaction coordinates.
Thus, we also apply the second approach to calculate
the action function along the transition path for further
validation. The action barrier is a much stricter physical
quantity than the energy barrier to describe the transi-
tion tendency and estimate the transition rate [36].
We apply the minimum action method in [42] to com-

pute the minimum action path of differentiation for the
WT model (Fig. 3a) and the control model (Fig. 3b) (see
numerical method in Methods and Materials). For the
WT model, the most probable path (i.e., minimum

a b c

Fig. 2 Bimodal gene expression distribution and stochastic transitions between states with high / low Nanog level of the model. a Distributions
of Oct4 and Nanog level within simulated cell population (N = 10,000) (blue lines). Oct4 shows a single-peak distribution (μ=236.1, σ=111.8), and Nanog
a bimodal distribution. The fraction of low-Nanog population is 18.9%. (Low-Nanog population, μ=6.0, σ=4.4; high-Nanog population, μ=584.2,
σ=130.0.) For comparison, the green squares are the experimental flow cytometry data sets of Oct4 and Nanog from Kalmar et al. 2009 [24], the red
triangles correspond to the single-cell RNA-seq data in Kumar et al. 2014 [4], and the blue triangles correspond to the single-cell RNA-seq data in Kolodziejczyk
et at 2015 [35]. b Simulations of the re-establishment toward dynamical equilibrium of high/low-Nanog states. For simulated cell population (N=10,000) with
the initial high-Nanog condition (red curve) and the low-Nanog condition (blue curve), the fraction of low-Nanog subpopulation is tracked in the course of time,
and it can eventually recover to ~ 20% for both two groups after ~ 10 days. c Distribution of dwell time of high/low-Nanog sub-states within the pluripotent
stem cell state
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action path) passes the low-Nanog sub-state on the po-
tential landscape, which is robust to the selection of ini-
tial path for the action minimization algorithm
(Additional file 5: Figure S4). Also, it superimposes the
first half of the excitable excursion of the typical ODE
trajectory illustrated in green dotted line in Fig. 3a,
showing the connection between the system excitability
and the differentiation transition path. In the WT model,
the energy along the transition path is a typical double-
peak plot (blue curve in Fig. 3c), and the action is a typ-
ical two-stage stepwise function (blue curve in Fig. 3d),
indicating the existence of one intermediate and two
barriers along the transition path. The corresponding
low-Nanog sub-state on the landscape (Fig. 3a), the
intermediate state of the potential landscape (blue curve
in Fig. 3c), and the plateau part of the monotonous
action (blue curve in Fig. 3d) all point to the same con-
clusion: the low-Nanog state serves as the intermediate
state of the differentiation process. For the transition
path in the control model, the potential landscape (pink
curve in Fig. 3c) has a single large peak, and the action
is one-stage stepwise (pink curve in Fig. 3d), indicating
there is no intermediate state for the differentiation state
transition process in the control model.

By comparing both barriers of potential landscape
(Fig. 3c) and action values (Fig. 3d) of the entire transi-
tion path of the WT model and the control model, we
arrive at an important conclusion that the existence of
the low-Nanog intermediate state during the differenti-
ation process can significantly decrease the barrier of
potential landscape and the action value along the
transition path. This can be also understood qualita-
tively: low Nanog expression level leads to temporary
low level of Oct4 and Sox2, which in turn release the in-
hibition of Nanog to the lineage specifier genes, making
the high expression of one specifier gene and the differ-
entiation process more prone to happen. Such a role of
low-Nanog intermediate state is intuitively similar to the
enzyme in catalysis process. The enzyme-substrate com-
plex is often an intermediate state between the substrate
and the product that significantly decreases the energy
barrier of the chemical reaction.

Intrinsic bimodal Nanog expression slows down iPS
reprogramming, while exogenous induction of Nanog
improves reprogramming efficiency
Next we investigate how bimodal heterogeneity of Nanog
may affect induced cellular reprogramming process, i.e.,

a b

c d

Fig. 3 The low-Nanog state enhances cell differentiation through lower the transition barrier. a The potential landscape (computed by the trajectory
density sampling) for the wild-type (WT) model. The white curve indicates the minimum action path (MAP) from the pluripotent state (green dot) to
the ME state (blue dot). The green dotted line is a typical ODE trajectory showing the excursion due to the excitability of the system. b The control
model (excluding the dynamics of Nanog). The black curve is the MAP from the pluripotent state (green dot) to the ME state (blue dot). c and
d Comparison between the WT model (blue) and the control model (purple). The value of the potential landscape (c) and the action value (d)
along the relative coordinate ([0,1]) of the MAP from the pluripotent state to the ME state
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the enforced transition process from somatic cell state
(ME or ECT state) to the stem cell state. First, we notice
that the minimum action path of reprogramming without
additional exogenous Nanog induction does not pass
through the Nanog intermediate state, very different from
the path of differentiation (Additional file 6: Figure S5).
A common way of iPS cell reprogramming is to acti-

vate, or repress the expression of particular gene groups
with various types of external inductions, such as virus
transformation of vectors expressing target gene prod-
ucts, RNA interference, and small chemical molecule
stimulation [13, 14]. Activating gene inductions can be
modeled as constant terms indicating additional basal
expression rates, noted as (CO, CS, CN, CM, CE) below,
and repressive inductions can be represented by multi-
pliers of regulated production rate, noted as (IO, IS, IN,
IM, IE). Details of the mathematical formulations are
described by Eqs. (3.1–3.5) in Methods and Materials.
One may adjust the induction parameters in different

combinations to change the Waddington landscape of
iPS induction to enable the induced somatic cells falling
into the basin for stem the cell. At the end of the induc-
tion process, the induction parameters are re-set to the
original values, in order to model the retraction or deg-
radation of the input vectors, RNA or other chemical
molecules [43]. The original Waddington landscapes will
be then restored and the successfully induced cells will
be permanently switched to the stem cell state.
We notice that the pluripotent cellular state always

splits up into two sub-states with high/low Nanog level
due to spontaneous dynamical transition, i.e., all success-
fully reprogrammed cells have the heterogeneous stem
cell state, with ~ 80% in high Nanog level and ~ 20% in
low. However, the cells with high Oct4, Sox2 and low
Nanog expression are usually regarded as the incomplete
reprogrammed cells, as suggested by previous work that
the high Nanog expression could activate the related
downstream genes in the late stages of cell reprogram-
ming process, to promote the incomplete reprogrammed
cells towards the full pluripotent state [16, 17]. The time
period of reprogramming usually lasts for tens of weeks
[43]. If Nanog maintains a low expression level during
the long induction process, the expression of other
downstream genes of Nanog will remain repressed, lead-
ing to longer time to attain full pluripotency. Thus, the
long-time existence of low Nanog level will increase the
time of reprogramming [16, 17].
We next study the role of Nanog in the induction

process by exploring four strategies previously studied in
the “Seesaw” model of iPS reprogramming [33]. Specific-
ally, the four strategies are: activating stemness genes
Oct4 and Sox2; activating one stemness gene and another
specifier gene group (Oct4 & ECT, or Sox2 & ME);
activating one stemness gene while repressing another

lineage specifier gene group (+Oct4 & -ME, or +Sox2 &
-ECT); and equal activation of two lineage specifier genes
ME and ECT. One important step among those strategies
is the activation of Oct4 and Sox2, for which the feedbacks
from Nanog to Oct4 and Sox2 provide additional regula-
tions. When the activation strengths of Oct4 and Sox2 are
mild (Fig. 4a & b), the high-Nanog cells dominate in the
induction process. However, when the activation becomes
stronger (Fig. 4c & d), the low-Nanog intermediate state
dominates. This can be intuitively understood as a result
of the repression of Oct4/Sox2 on Nanog: when Oct4 and
Sox2 are highly induced, Nanog will be repressed to a low
level, leading to more incomplete reprogrammed cells and
slower reprogramming process. We note that introducing
Nanog activation in the induction process could rescue re-
programming by removing the intermediate Nanog state
(Fig. 4e & f). This observation is consistent with the stable
pluripotent state with high-doxycycline in D8H in [44],
where Oct4 and Nanog have been rapidly upregulated to
steady level, and remain after lowering the doxycycline
concentration. The same mechanism can explain the two
similar strategies of reprogramming involving the direct acti-
vation of Oct4 or Sox2: activating Oct4 and repressing MEs
(Additional file 7: Figure S6A-C), and activating both Sox2
and ECTs (Additional file 7: Figure S6D-F), where additional
Nanog activation could remove the low-Nanog state. In the
strategy of activating two lineage specifiers without Oct4
and Sox2, although the repression of Nanog due to Oct4/
Sox2 over-activation may be less significant, additional
Nanog activation may still benefit through removing the
intermediate state (Additional file 7: Figure S6G & H).
Together, we suggest that additional Nanog activation

can elevate Nanog level that is repressed by over-
activated Oct4/Sox2 during induction, which can boost
reprogramming efficiency by eliminating the Nanog
intermediate state.

Discussion
Nanog has been recognized as a critical pluripotency
gene in ES cell differentiation and iPS cell reprogram-
ming [26, 27]. While the low-Nanog state of stem cell
has been speculated as a “gate-keeper” [25], the roles of
the heterogeneous bimodal Nanog expression remain
elusive. In this work, through analyzing a five-node gene
regulatory network, including both stemness genes Oct4,
Sox2, Nanog and specifier genes MEs and ECTs, we in-
vestigated the role of Nanog in stem cell differentiation
and iPS cell reprogramming. In differentiation, the low-
Nanog state is found to serve as an intermediate state in
stem cell differentiation and to promote the differenti-
ation process. On the other hand, the bimodal distribu-
tion of Nanog is found to have a negative effect on the
iPS cell reprogramming. Additional Nanog activation is
shown to prevent the reprogrammed iPS cell from
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trapping in the Nanog intermediate state due to over-
activated Oct4/Sox2.
Through analyzing the Waddington landscape and

calculating the minimum action path of differentiation, we
suggest that the dynamic Nanog heterogeneity, induced
by gene expression noise, can be utilized to maintain the
stemness while, in the meantime, providing flexibility in
cell fate decisions (Fig. 5). Differentiation drives cells in
the high-Nanog state to overcome the barrier in the

landscape. Once the cells arrive at the noise-induced
Nanog intermediate state, they become more prone to dif-
ferentiate. The two-step process by going through the
intermediate state allows “easier” differentiation than the
one-step process bypassing the intermediate state. Our
model shows that the negative feedback between Oct4-
Sox2 and Nanog is the key to introducing the intermediate
state for cell differentiation. In principle, such intermedi-
ate state could be produced by other mechanisms. For

b

d

f

c

a

e

Fig. 4 The Nanog expression level during induction with different strategies of iPS cell reprogramming. a, c, e Three reprogramming strategies of
activating Oct4 and Sox2. a mild induction (C0 = CS= 0.1): the high-Nanog subpopulation still makes up the majority; (c) strong induction (C0 = CS= 0.3):
the low-Nanog subpopulation becomes the majority and reduces the reprogramming efficiency; (e) strong induction with additional Nanog activation (C0
= CS= CN= 0.3): the low-Nanog subpopulation disappears and only high-Nanog state remains. The green curves are the ODE trajectories of induced cell
reprogramming path started from the ME differentiated state. The backgrounds are the potential landscapes after induction, showing the equilibrium
distribution of high-Nanog / low-Nanog subpopulations when external inductions are turned on. b, d, f The equilibrium distribution of Oct4 and Nanog
among simulated cell population (N= 10,000) after induction: (b) the fraction of low-Nanog subpopulation for mild induction is 47.3%; (d) the fraction of
low-Nanog subpopulation for strong induction is up to 97.9%; (f) almost no low-Nanog subpopulation for strong induction of Oct4 and Sox2 coupled with
additional Nanog activation

Yu et al. BMC Systems Biology  (2018) 12:22 Page 7 of 13



instance, the histone modification in the chromatin region
of Oct4 and Nanog is randomly re-established during each
cycle of cell division and chromosome duplication [12].
Consequently, stochastic inheritance of histone modifica-
tions may also control gene on/off switching, leading to
the cell-cell heterogeneity [45, 46] and potential intermedi-
ate states. Moreover, it will be interesting to develop a more
comprehensive model to capture the fully dynamic pro-
cesses of reprogramming by including the transcription

factors (e.g. gene nodes of Klf4, Myc [47]) and specified ME/
ECT lineage specifiers.
Recently, there is some controversial discussion that

the genetic reporter for Nanog may cause a bifurcation
in the underlying dynamics that leads to heterogeneous
Nanog expression induced by the bistability [48]. Such
problem of measurement in cells could induce the
Nanog fluctuations. However, gene reporter strategy is
generic, and may also cause the similar measurement

a

c

e

g

b

d

f

h

Fig. 5 Summary of the dual roles of Nanog in differentiation and reprogramming. a, c, e, g Cellular states shown on the potential landscape;
(b, d, f, h) Corresponding metaphoric energy curves. a, b Spontaneous transition between high/low-Nanog states in stem cells; c, d Differentiation
tendency of stem cells: the low-Nanog intermediate state reduces the transition barrier in the differentiation process, making stem cell more prone to
differentiate. The solid curve is with the Nanog dynamics and the dotted curve without; e, f Reprogramming with only Oct4 and Sox2 activation: large
fraction of low-Nanog cells reduces the efficiency of reprogramming; g, h Reprogramming with additional Nanog activation: elimination of the low-
Nanog subpopulation increases reprogramming efficiency
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problem of the other pluripotent genes such as Oct4
and Sox2 whose heterogeneity has not been observed in
the literatures. Moreover, our present model shows the
negative feedback between Nanog and Oct4-Sox2 can
constitute an excitable system, leading to a recurring
stochastic transition between high and low Nanog states
of pluripotent cells and the bimodal distribution of
Nanog. Thus, the bistability required in [48] is not ne-
cessarily needed for the heterogeneous Nanog expres-
sion. Furthermore, perturbation of Nanog dynamics by
the fluorenscent reporter system may not full account
for the heterogeneity of Nanog expression under all cul-
ture conditions. The datasets using single cell RNA-Seq
can support the bimodal Nanog expression for mouse
embryonic stem cells cultured in serum and LIF [4, 35],
where the genetic reporter is excluded.
As a strategy in regulating stem cell properties, mul-

tiple intermediate states have been discovered in
epithelial-mesenchymal transition (EMT) process to
control cellular plasticity [49–51]. Similar to microRNA
and Ovol2 in the EMT regulatory network, which is crit-
ical to inducing one or more intermediate (“hybrid”)
states, Nanog is a key factor in the late stage of
reprogramming process to promote the incomplete re-
programmed cells to attain the full pluripotent state.
Identification of Nanog-related external signals and
genes will help to improve strategies for iPS cell
reprogramming.

Conclusions
In summary, our modeling work has identified novel
roles of Nanog in stem cell regulation. Such approach
can include more biological details or other stem cell
markers for more in-depth exploration. Our work offers
a general method for analyzing key regulatory factors
controlling cell differentiation and reprogramming.

Methods
Stochastic differential equations and parameters of the
five-node model
The stochastic differential equations and parameters
of the five-node model are listed below, where [O],
[S], [N], [M] and [E] represent the expression level of
Oct4, Sox2, Nanog, MEs and ECTs respectively. The
parameters of the model are listed in Additional file 1:
Table S1.

d O½ �
dt

¼ 1
τp

"
βp KM þ βp∙

O½ � S½ �
O½ � S½ � þ K 2

p act

∙
N½ �

N½ � þ Kp Na

 !

∙
K10

p inh

K10
p inh

þ M½ �10 ∙
K10

p inh

K 10
p inh

þ E½ �10 þ βp0−dO O½ �
#
þ σO O½ �∙ξ tð Þ

ð1:1Þ

d S½ �
dt

¼ 1
τp

"
βp KM þ βp∙

O½ � S½ �
O½ � S½ � þ K2

p act

∙
N½ �

N½ � þ Kp Na

 !

∙
K10

p inh

K10
p inh

þ M½ �10 ∙
K10

p inh

K10
p inh

þ E½ �10 þ βp0−dS S½ �
#
þ σS S½ �∙ξ tð Þ

ð1:2Þ

d N½ �
dt

¼ βNa OS þ βNa∙
N½ �2

K2
Na act þ N½ �2 þ SNa OS O½ � S½ �

 !

∙
K10

p inh

K10
p inh þ M½ �10 ∙

K10
p inh

K10
p inh þ E½ �10 −dN N½ � þ σN O½ � þ σN0ð Þ∙ξ tð Þ

ð1:3Þ

d M½ �
dt

¼ 1
τD fβd w∙
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a

þ K10
i

K10
i þ S½ �10 ∙
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d inh

K10
d inh þ E½ �10

" #

þβd0−dM M½ �g þ σM M½ �∙ξ tð Þ

ð1:4Þ

d E½ �
dt

¼ 1
τD fβd w∙

S½ �9
S½ �9 þ K9

a

þ K10
i

K10
i þ O½ �10 ∙

K10
d inh

K10
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ð1:5Þ
The Oct4-Sox2 protein complex will activate Nanog

expression more sensitively, i.e. with a low critical value
in the activation Hill function. While at the same time,
Oct4-Sox2 complex will repress Nanog with a high
critical value in the repression Hill function. As the acti-
vation strength of Oct4-Sox2 to Nanog (parameter
βNa_OS in the model) is much smaller than that of Nanog
self-activation (βNa), the Hill-activation term is simpli-
fied as a constant term (βNa_OS) in the model. Finally,
both MEs and ECTs repress the expression of Nanog.
The downstream interactions of Nanog to lineage
specifier genes are complicated, which are not consid-
ered in this model for simplicity. The noise in the system
is added in the form of σX[X] ∙ ξ(t), where σX indicates
the noise amplitude of each gene, and ξ(t) is the
Gaussian white noise with zero mean and unit variance.
The setting of parameter values refers to the previ-

ous modeling works [2, 3], shown in Additional file 2:
Figure S1A. Note that the copy numbers of Oct4 and
Nanog in the model are adjusted to fit the results of mice
E14IVc ES cell line cultured in serum and LIF [2], which
can be adjusted and scaled for other stem cell lines. Sox2
is assumed to be symmetric to Oct4, so most parameters
for Oct4 and Sox2 are set to be identical. Thus, the ex-
pression levels of both Oct4 and Sox2 are high in pluripo-
tent cell states and low in differentiated cell states. If there
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is a strong initial imbalance of Oct4 / Sox2, such as
high Oct4 and low Sox2, the system will lead to an
imbalanced expression of lineage specifiers: high MEs
and low ECTs. The high expression of MEs then
represses Oct4, leading to differentiation toward the
ME state, where both Oct4 and Sox2 are low in ex-
pression. On the other hand, if the initial imbalance
of Oct4/Sox2 is lower than a threshold, which cannot
trigger the differentiation process, the cell then
returns to the pluripotent steady state, where both
Oct4 and Sox2 are highly expressed. As a result, the
imbalanced expression of Oct4 and Sox2 could only
be a transient state, and such imbalance disappears
after the cells either commit to differentiation or re-
main in the pluripotent state. The noise levels of each
gene are adjusted to fit the previous experimental re-
sults of mice E14IVc ES cell line [2]. Note that the
degradation rate 1 a.u.− 1 of the arbitrary timescale in
the model is corresponding to 3 × 10−5 s− 1 under the
real timescale. For the re-establishment time (Fig. 2b)
and dwell time distribution (Fig. 2c), the timescale of
the system is scaled from a.u. to day.

Simplified two-dimensional Oct4-Nanog model
The regulatory relationships between Oct4 and Nanog
are extract out of the five-node model (where the
Sox2 is assumed totally symmetric to Oct4), and the
concentration of MEs and ECTs are set up as the
constant level under the pluripotent state. The
stochastic differential equations are displayed below,
where [O], [N] represent the level of Oct4 and
Nanog respectively, and the parameters of the model
are listed in Table S2. The behavior of excitable
system can be illustrated on the two-dimensional
phase plane in terms of nullclines and vector fields
(Additional file 3: Figure S2).

d O½ �
dt

¼ 1
τp

βO KM þ βO∙
O½ �2

O½ �2 þ K 2
p act

∙
N½ �

N½ � þ KO Na
−dO O½ �

" #

þ σO O½ �∙ξ tð Þ
ð2:1Þ

d N½ �
dt

¼ βNa OS þ βNa∙
N½ �2

K2
Na act þ N½ �2 þ SNa OS O½ �2 −dN N½ �

" #

þ σN O½ � þ σN 0ð Þ∙ξ tð Þ
ð2:2Þ

Parameter sensitivity analysis of the five-node model
To test the robustness of the model, each parameter
is individually increased/decreased by 20%, and the

relative changes of the low-Nanog distribution ratio
(in the time course, blue bar), the average value of
Oct4 expression level (green bar), and the average
value of Nanog expression level within the high-
Nanog state (red bar) is illustrated in Additional file 8:
Figure S3. The parameters of the Oct4/Sox2 expres-
sion terms are more sensitive (the first panel from
the left), and the parameters of the expression terms
of Nanog, MEs and ECTs are more robust (the sec-
ond, third panel from the left).

The control model excluding the dynamics of Nanog for
MAM analysis
To verify the role of Nanog during the differentiation
process, we set up a control model, where the dynamics
and the regulatory relationships of Nanog are removed
from the five-node model. As the activation terms of

Nanog to Oct4 and Sox2 ( ½N �
½N �þKpNa

in the formulas 1.1

and 1.2) are the only input regulations from Nanog to
the rest part of the network, the concentration value of
Nanog in those two terms is set as the constant value of
highly expressed steady state value of Nanog, so that the
steady state values of the other four genes can remain
unchanged at the same time.

The model with external induction input terms
In order to analyze the induced iPS reprogramming
process, some constant input terms are added into the
model. The input parameters for gene expression
activation (CO, CS, CN, CM, CE) indicate the extra, con-
stant protein production rates by exogeneous expression
(by virus vector, for example) for each gene, which are
set as 0 without any inductions. Note that the strengths
of external induction terms are scaled (KO = KS = KN =
KM = KE = 400). While the gene expression repressions
due to specific miRNA molecules silencing the transla-
tion of certain mRNA molecules are modeled by the
multiplier terms before the entire regulated expression
rate terms for each gene (IO, IS, IN, IM, IE), which is set
as 1 without any inductions. All other parameters
remained unchanged.

d O½ �
dt

¼ 1
τp

"
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 !
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K 10
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The sampling method of the potential landscape
The landscape functions in the non-equilibrium systems
have been widely used to model the gene switching and
cell fate transition [52, 53], which serves as an analogy
of the energy function in the equilibrium systems.
However, several different landscape functions have been
proposed by biophysicists and applied mathematicians
[38–40]. The mathematical relations and differences be-
tween different landscapes are elucidated in [54]. Here
we choose the simplest one, using the negative logarithm
of the probability distribution in the phase space under
the steady state,− log(Pss), as the definition of the poten-
tial landscape. Note that the gradient of − log(Pss) is no
longer corresponding to the vector field direction of the
dynamical system. And the landscape of− log(Pss) is
actually, to some extent, limited as an intuitive sketch of
cellular state distribution in the phase space. The prob-
ability distributions (Pss) in the phase space of the figures
above are produced by simulating the system for more
than 107 time a.u., and the probability density of the

trajectories are projected into the three-dimensional

space, with the x, y, z axis as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Oct4�∙½Sox2�p

, [Nanog]
and [MEs] − [ECTs] (e.g. Fig. 1b); or two-dimensional
space in other figures, with the x, y axis asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Oct4�∙½Sox2�p

and [Nanog] (e.g. Fig. 1c). The color
scale of the potential landscape measures the energy
value, indicating the probability density for the cell state
to appear in that certain region.

The method of minimum action path
The Wentzell-Freidlin theory of large deviation gives
an estimate of the probability of the paths in terms of
an action functional. A key result of this theory is
that the most probable path minimizes the action
functional associated with the random dynamical
system, i.e., the most probable path is the Minimum
Action Path.
In order to find the MAP between two steady states,

we follow the minimum action method in [42] to
compute the numerical solutions with the time interval
[0, 100]. We apply the BFGS algorithm for numerical
optimization.

Additional files

Additional file 1: Table S1. Parameters used in Eq. (1) for the five-node
model. (DOCX 50 kb)

Additional file 2: Figure S1. Typical temporal trajectories of stochastic
gene expressions at the ME differentiated cell state. ME state is a stable
state, and the noise-driven transition from differentiated states (low Oct4,
Sox2 and Nanog) to pluripotent states (high Oct4 and Sox2, low MEs and
ECTs) cannot occur spontaneously. (TIFF 1916 kb)

Additional file 3: Figure S2. The simplified two-dimensional Oct4-Nanog
model on the phase plate and the distribution of Oct4. (A)The nullclines
and the vector field of the simplified two-dimensional Oct4-Nanog model
on the phase plate. A typical trajectory is illustrated to indicate the excitable
mechanism of the model. (d[Oct4]/dt = 0: Red line; d[Nanog]/dt = 0: Blue
line.) (B) Distributions of Sox2 level within simulated cell population (N =
10,000). (PDF 102 kb)

Additional file 4: Table S2. Parameters used in Eq. (2) for the simplified
Oct4-Nanog model. (DOCX 42 kb)

Additional file 5: Figure S4. The MAPs of the differentiation process
with two different initial paths in the WT model. The MAPs (white curves)
starting from the pluripotent state (the green point) to the ME differentiated
state (the blue point) are insensitive to different initial conditions (purple
curves): (A) a smooth curve passing by the low-Nanog state; (B) a smooth
curve far from low-Nanog state. (PDF 614 kb)

Additional file 6: Figure S5. The MAP of the reprogramming process in
the WT model. The MAP (white curve) starting from the ME differentiated
state (the blue point) to the pluripotent state (the green point) is
different from that of differentiation process (Fig. 3A). The green dotted
line is the ODE trajectory to compare with the MAP. (PDF 3338 kb)

Additional file 7: Figure S6. Three different strategies of reprogramming
demonstrate additional Nanog activation is necessary to maintain the high
Nanog level and promote the efficient cell reprogramming. (A-C) Strategy by of
activating Oct4 and repressing MEs. (A) C0 = Im= 0.3; (B) C0 = Im= 0.5; (C) C0 = Im
= Cn= 0.5; (D-F) Strategy of activating Sox2 and ECTs. (D) Cm= 0.3, Cs= 0.06; (E)
Cm= 0.5, CS= 0.1; (F) Cm= 0.5, CS= 0.1, Cn= 0.5; (G-H) Strategy of activating MEs
and ECTs. (G) Cm= Ce= 0.3; (H) Cm= Ce= Cn= 0.3. (PDF 2322 kb)
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Additional file 8: Figure S3. Parameter sensitivity analysis for the
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