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RESEARCH

The response to influenza vaccination 
is associated with DNA methylation-driven 
regulation of T cell innate antiviral pathways
Hongxiang Fu1,5, Harry Pickering2, Liudmilla Rubbi1, Ted M. Ross3,4, Wanding Zhou5, Elaine F. Reed2 and 
Matteo Pellegrini1* 

Abstract 

Background The effect of vaccination on the epigenome remains poorly characterized. In previous research, 
we identified an association between seroprotection against influenza and DNA methylation at sites associated 
with the RIG-1 signaling pathway, which recognizes viral double-stranded RNA and leads to a type I interferon 
response. However, these studies did not fully account for confounding factors including age, gender, and BMI, 
along with changes in cell-type composition.

Results Here, we studied the influenza vaccine response in a longitudinal cohort vaccinated over two consecu-
tive years (2019–2020 and 2020–2021), using peripheral blood mononuclear cells and a targeted DNA methylation 
approach. To address the effects of multiple factors on the epigenome, we designed a multivariate multiple regres-
sion model that included seroprotection levels as quantified by the hemagglutination-inhibition (HAI) assay test.

Conclusions Our findings indicate that 179 methylation sites can be combined as potential signatures to predict 
seroprotection. These sites were not only enriched for genes involved in the regulation of the RIG-I signaling path-
way, as found previously, but also enriched for other genes associated with innate immunity to viruses and the tran-
scription factor binding sites of BRD4, which is known to impact T cell memory. We propose a model to suggest 
that the RIG-I pathway and BRD4 could potentially be modulated to improve immunization strategies.

Keywords DNA methylation, Influenza virus, Influenza vaccine, Targeted bisulfite sequencing, RNA sequencing, Cell-
type deconvolution

Background
Influenza vaccination has been recognized as the most 
effective method to prevent influenza virus infections 
and their complications, thereby reducing morbidity 
and mortality [1]. The development and deployment of 
influenza vaccines are guided by ongoing surveillance 
of circulating influenza strains, as the virus exhibits sig-
nificant antigenic variability. This variability necessi-
tates the annual reformulation of the influenza vaccine 
to match the predicted predominant circulating strains, 
highlighting the challenges in vaccine effectiveness and 
the need for continuous evaluation. Influenza vaccines 
work by triggering the production of antibodies against 
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the hemagglutinin surface glycoprotein [2]. These vac-
cines are designed to elicit hemagglutinin-specific anti-
body levels in the body, which can be quantified through 
the hemagglutination inhibition (HAI) assay. This assay 
measures the presence of functional antibodies capable 
of preventing the agglutination of Turkey red blood cells 
by the virus.

Numerous studies have sought to link the response 
to the influenza vaccine with various factors, including 
age, body mass index (BMI), and gene expression [3]. 
Despite these efforts, research into the epigenetic mecha-
nisms influencing vaccine responses remains incomplete. 
Associating epigenetic signatures directly with vaccine 
responsiveness is challenging due to the influence of con-
founding factors, such as age and BMI, which also impact 
the epigenome. In this study, we focus on DNA meth-
ylation (DNAm), which is a key epigenetic mechanism 
that plays a crucial role in gene regulation, impacting a 
wide array of biological functions and disease processes 
[4–6]. It involves the addition of a methyl group to the 
fifth carbon position on cytosine residues. In the human 
genome, DNAm primarily occurs within the context 
of CpG dinucleotides. The distribution of methylation 
across the genome is uneven, with CpG islands typi-
cally exhibiting low levels of methylation [7]. Advances 
in next-generation sequencing (NGS) technologies have 
enabled the detailed profiling of DNAm patterns by ana-
lyzing bisulfite-treated DNA. Techniques such as whole-
genome bisulfite sequencing (WGBS) and targeted 
bisulfite sequencing (TBS) offer precise measurements of 
DNAm at CpG sites [8].

In this study, we chose to profile our samples using TBS 
because it offers compelling advantages for the detailed 
analysis of DNAm patterns, especially in specific regions 
of interest within the genome. By focusing on predefined 
genomic regions, TBS enables researchers to achieve 
high-resolution, accurate measurements of methylation 
levels at CpG sites within specific target regions [9].

Previously, we identified longitudinal changes of 
DNAm and found that these changes were significant 
in genes associated with viral response pathways, such 
as the regulation of RIG-1 signaling, which leads to 
the production of interferons [10]. Complementary to 
our findings, another investigation utilized mice with 
site-specific genetic modifications and tools for tar-
geted demethylation to establish a direct link between 
methylation patterns and the production of type I 
interferons [11]. Furthermore, an additional study pin-
pointed methylation sites that were associated with 
the humoral response to influenza vaccination. This 
research revealed that methylation sites predictive of 
humoral immune responses were notably enriched for 
the binding sites of polycomb-group proteins and the 

FOXP2 transcription factor, underscoring the intricate 
relationship between epigenetic modifications and 
immune system function [12].

However, these studies did not address important con-
founders that may affect DNAm and influenza vaccina-
tion response. Notably, DNAm changes are associated 
with aging [13], and its patterns are highly specific to 
different cell types [14]. To address these potential con-
founding factors, including age, BMI, and cell-type pro-
portions, our study adopted a multifactorial approach. 
We included the same cohort consecutively vaccinated 
over two years and conducted RNA sequencing (RNA-
seq) for year 2020. This comprehensive approach led to 
the identification of key methylation sites associated not 
only with the previously identified RIG-I signaling path-
way but also with other genes involved in innate immu-
nity to viruses [10]. Our findings illuminate the complex 
interaction between DNAm and the influenza vaccine 
response, accounting for various potential confound-
ers. The genes we identified may offer novel insights for 
future vaccine development.

Results
Study cohort and serological response to influenza 
vaccination
For our study, we focused on the cohorts comprising 
influenza vaccine recipients, enrolled at the Univer-
sity of Georgia between 2016 and 2020 [15]. From these 
cohorts, we selected a subset of 42 individuals who par-
ticipated in the 2020 vaccination program (UGA5) and 
had also received their influenza vaccinations during the 
preceding 2019 program (UGA4). The administered vac-
cine was Fluzone (Fig.  1A), an inactivated, quadrivalent 
construct consisting of one strain from each of the four 
major subtypes (H1N1, H3N2, Yamagata, and Victoria) as 
described in detail in the Materials and Methods section.

Hemagglutination inhibition assay was used to quan-
tify the amount of antibody to influenza viruses. For 
both cohorts, peripheral blood mononuclear cells were 
collected. Both targeted bisulfite sequencing and RNA 
sequencing were performed at baseline prior to vacci-
nation and 28  days following vaccination (Fig.  1B). We 
sequenced approximately 5500 targeted regions within 
the genome that were selected based on different criteria 
as described in detail in the Methods section (Additional 
file 2: Supplementary Table 1). These sites were selected 
to be potentially involved in aging, viral responses, and 
cellular metabolisms. In total, we quantified levels of 
DNAm at approximately 100,000 CpG sites. The final 
methylation matrix contained 22,740 CpG sites that were 
covered by at least 20 reads in all the samples as described 
in detail in the Methods section. The multivariate model 
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was then utilized to analyze the methylation levels with 
immune response under various cofounding variables 
(Fig. 1C).

Seroprotection is defined as HAI antibody 
titers ≥ 1:40 or more post-vaccination, and serocon-
version is defined as a fourfold increment in titer 
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Fig. 1 Study schematic and design. A Vaccination summary of UGA4 (2019) and UGA5 (2020), the composition for quadrivalent Fluzone 
influenza vaccine in each cohort. B Hemagglutination inhibition assay, targeted bisulfite sequencing, and RNA sequencing schematic. C Model 
illustration, multivariate multiple regression, and pseudoinverse were used to address the effects of multiple factors on the epigenome. D The 
proportion of seroprotected subjects at day 0 and 28 days after receiving the vaccination. U3/4 indicates the vaccine strain is the same in UGA3 
and UGA4. U4/5 indicates the vaccine strain is the same in UGA4 and UGA5. (E) The proportion of seroconverted subjects 28 days after receiving 
the vaccination
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compared with the baseline, leading to a titer of 1:40 
or more. Each strain within the cohorts had a seropro-
tected percentage exceeding 50% at 28 days post-vacci-
nation for both UGA4 and UGA5. In particular, more 
than 80% of the subjects were seroprotected against 
the H3N2 strain in UGA5 (Fig.  1D). H3N2 in UGA4 
was the strain with the highest seroconverted rate, 
nearly 75% of the subjects seroconverted 28 days after 
vaccination. Overall, UGA4 participants had a higher 
percentage of seroconversion compared to partici-
pants in UGA5 (Fig. 1E).

Cell‑type deconvolution across four time points 
was correlated with different serology quantifications
Methylation is known to be cell-type specific. To address 
the confounding factor of relative immune cell types in 
each PBMC sample, we conducted cell-type deconvolu-
tion analysis using CellFi [16] from the published meth-
ylation atlas of various human cell types [17]. We focused 
on cell types present in PBMCs and identified 37 dif-
ferentially methylated regions (DMRs) for downstream 
cell-type abundance estimation (Fig.  2A). The relative 
abundance of 6 immune cell types was estimated across 
two cohorts at both time points (Fig.  2B). Our results 
align with the known composition of PBMC cells [18], 
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with ~ 70% being lymphocytes (including B cells, T cells, 
and Natural Killer (NK) cells), 25% monocytes, and a 
small percentage of granulocytes.

We analyzed the association between cell types and 
principal components of methylation with seroprotec-
tion levels (Fig. 2C, D). We observed various significant 
associations between cell-type estimates and serology 
trait measurements. These correlations matched previ-
ous findings. For example, day 0 NK cells showed nega-
tive associations with HAI titers for multiple vaccine 
strains, which is consistent with their role in inhibit-
ing adaptive immune responses and impacting immune 
memory post-vaccination [19, 20]. Additionally, age 
was negatively associated for both years with HAI titers 
(Additional file  1: Fig. S1A–C), emphasizing its known 
impact on vaccine response. We also found correlations 
between the principal components of DNA methylation-
level matrices and immune/biological traits. For example, 
the first three PCs showed strong gender association, and 
the fourth PC showed strong age association. They also 
demonstrated several significant positive correlations 
with immune responses to various strains, such as H1N1. 
This further reveals the importance of using a multivari-
ate model to fully uncover the potential DNA methyla-
tion role in vaccination immune response.

Cross‑validation of the multivariate multiple regression 
model showed nearly accurate predictions of all 
the variables
We utilized a multivariate multiple regression model 
framework to model the relationship between DNA 
methylation levels as the response and vaccine serologi-
cal immune levels and various confounding variables as 
features. We calculated the Pearson correlation between 
these variables and found that the absolute values of the 
correlations between pairs of variables were all below 0.5 
(Additional file 1: Fig. S2A). This indicates a lack of multi-
collinearity among them. The details of the model can be 
found in the methods section. To boost statistical power, 
we combined the two cohorts together and incorporated 
a year variable to mitigate the potential batch effect. We 
then applied leave-one-out cross-validation (LOOCV) 
to assess the model performance and prediction accu-
racy (Fig.  3A). This process revealed that our model 
yields accurate predictions of age, corroborating existing 

research that methylation can be utilized to construct 
aging clocks [21]. Moreover, all the other variables also 
exhibited high Pearson correlation coefficients between 
predicted and true values, and all of them are statisti-
cally significant below the threshold of 0.05. To interpret 
the model, we examined the coefficient of the regression 
for each CpG site and each factor. Four Manhattan plots 
each show significant sites identified by t tests for the 
four vaccine strains administered to participants in 2019, 
corresponding to H1N1, H3N2, Yamagata, and Victoria 
strains (Fig. 3B–E). The full coefficient p value heatmap is 
shown in Fig. S2B. Sites with significant gender-specific 
methylations were all located on the X chromosome.

Significant HAI sites were enriched in virus response 
pathway and transcription factors binding sites
We performed enrichment analyses on the combined 
significant CpG sites identified as associated with HAI 
titer against each vaccine strain. To differentiate between 
the effects of hypermethylation and hypomethylation, 
we analyzed the model’s coefficients separately. Positive 
coefficients suggest that an increase in methylation lev-
els is associated with higher HAI. While hypermethyla-
tion of gene promoter regions generally correlates with 
repression of gene expression, methylation in gene bodies 
can be associated with active gene expression [22]. Con-
versely, hypomethylation often correlates with increased 
gene expression. 147 positive coefficients of HAI signifi-
cant CpG sites were first mapped to the proximal genes, 
and gene set enrichment results showed viral response-
related pathways against the full probe background to 
avoid selection bias. Notably, genes like C1QBP and 
RNF125, identified in this process, have been previously 
implicated in the RIG-I signaling pathway, as observed 
in the longitudinal study of the UGA4 cohort [10]. Type 
1 interferon production is induced downstream of the 
RIG-I signaling pathway, and negative regulation of type 
1 interferon production was significantly enriched in 
hypermethylated CpG sites (Table 1).

We extended our analysis to identify transcription fac-
tor binding sites enriched at our significant CpGs using 
the Cistrome database (Fig.  4B), and we filtered the 
sources of the ChIP data to be blood or immune related. 
Among the enriched transcription factors, Brd4 and 
NFKB1 are known to regulate immune responses [23, 

Fig. 3 Multivariate multiple regression model LOOCV assessment and HAI significant coefficients. A LOOCV of the prediction from the multivariate 
multiple regression and pseudoinverse. The Pearson correlation between true and predicted of all the traits is all significant. B Manhattan plot 
of the significant coefficients of all the CpG sites for the 2019 H1N1 vaccine strain. C 2019 H3N2 vaccine strain. D 2019 Yamagata vaccine strain. (E) 
2019 Victoria vaccine strain. Each dot represents the − log10 of FDR adjusted p values using Benjamini–Hochberg procedure for the coefficients, 
and the blue line indicates the significant threshold of adjusted p values < 0.05

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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24]. We also cross-referenced our findings with publicly 
available Brd4 ChIP-Seq data [7], revealing the binding 
sites that are proximal to the methylation site regions 
(Fig.  4C). Brd4 was previously found to influence T 
cell memory and mediate RIG-I upregulation. It is also 
required by interferon regulatory factors in respiratory 
syncytial virus infection [25].

The significant HAI-positive coefficient sites also 
showed a predominant enrichment in H3K27ac, an active 
enhancer mark known for its association with active 
transcription. This finding was further supported by 
chromatin accessibility data, suggesting that most posi-
tive sites are located in regions of open chromatin, indic-
ative of active transcriptional activity, and such a pattern 

Table 1 Top 9 enriched pathways of significant positive HAI coefficients of the multimodal model

Significant sites were mapped to their proximal genes, and gene ontology enrichment was conducted against the full background set

Pathway Overlap p value Overlap genes

Regulation of defense response to virus (GO:0050688) 10/16 8.83382819583528E−09 ILRUN;PPM1B;RNF216;DHX9;ELMOD2;C1QBP;PCBP2;
TNFAIP3;IFNLR1;ATG5

Negative regulation of response to biotic stimulus 
(GO:0002832)

7/15 2.37558081599061E−05 ILRUN;PPM1B;C1QBP;PCBP2;TNFAIP3;ATG12;ATG5

Negative regulation of type i interferon production 
(GO:0032480)

7/17 6.3909478276655E−05 ILRUN;PYCARD;PPM1B;RNF125;RNF216;ATG12;ATG5

Regulation of type I interferon production (GO:0032479) 7/22 4.19269386834906E−04 ILRUN;RNF125;DHX33;RNF216;ATG12;PQBP1;ATG5

Negative regulation of defense response to virus 
(GO:0050687)

5/11 4.5122299575726E−04 ILRUN;PPM1B;C1QBP;PCBP2;ATG5

Negative regulation of immune response (GO:0050777) 5/12 7.31430042128143E−04 PCBP2;TNFAIP3;FURIN;ATG12;ATG5

Regulation of defense response to virus by host 
(GO:0050691)

7/24 7.57836072328408E−04 RNF216;DHX9;SIN3A;TNFAIP3;IFNLR1;EIF2AK4;PQBP1

Negative regulation of protein localization to nucleus 
(GO:1900181)

3/4 0.0011758126952240700 ILRUN;SIN3A;SUFU

Negative regulation of signal transduction by P53 class 
mediator (GO:1901797)

3/4 0.0011758126952240700 PRKN;KDM1A;SNAI1
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Fig. 4 Transcription factors binding sites enrichment of significant positive HAI coefficients. A Distance from significant positive HAI coefficient 
sites to transcription start sites percentage. B Significant transcription factor binding sites from the Cistrome database, specifically focusing 
on either blood or immune related sources. C Example of the overlap between methylation site and publicly available BRD4 ChIP-Seq data. The pink 
line indicates one of the significant methylation sites, and dark blue color marks the BRD4 transcription factor binding sites within 1500 base pairs 
of the methylation site
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was less apparent in HAI-negative sites (Additional file 1: 
Fig. S3A–D). Our analysis also extended to examining 
the effects of age and Body Mass Index (BMI) on DNAm. 
We identified two transcription factors, Rest and Tal1, 
that significantly correlated with these traits, respectively 
(Additional file 1: Fig. S4A-D). Significant HAI-negative 
sites notably overlapped with LMO2 (Additional file  1: 
Fig. S5B), a transcription factor previously identified as a 
key factor in the influenza virus response [26].

Gene expression analysis of UGA5 complemented 
the methylation analysis result
For the UGA5 cohort, RNA sequencing (RNA-seq) data 
were analyzed both before and after vaccination for the 
same patients. Initially, we performed a differential gene 
expression analysis using the raw transcript count data. 
This approach identified 574 genes that were differen-
tially expressed, meeting the genome-wide significance 
threshold (Fig. 5A). Notably, two genes, JAK3 and TYK2, 
exhibited a significant decrease in transcription 28 days 
post-vaccination (Fig. 5B). These genes are known to act 
as signal transducers in the adaptive immune STAT path-
ways, which are downstream of interferon lambda signals 
originating from the innate immune RIG-I pathway [27]. 
Interestingly, the genes corresponding to HAI-positive 
sites we found above did not show differential expres-
sion post-vaccination. However, we did observe a sig-
nificant difference in the average transcripts per million 
(TPM) for the enriched Negative Regulation of Immune 
Response genes from HAI-positive sites on day 0 between 
vaccine responders and non-responders (Fig. 5C), based 
on change in HAI titers from pre- to 28 days post-vacci-
nation, which suggests a potential link between baseline 
gene expression levels under methylation modulation 

and vaccine response. We conducted additional cor-
relation analyses between DNA methylation and gene 
expression linked to DNA methylation. Most correla-
tions are negative in the promoter regions and positive in 
the gene body regions (Additional file 1: Fig. S6A). Spe-
cifically, we examined the gene TRIM47 and found that 
responders exhibit lower expression levels and higher 
methylation percentages on both day 0 and day 28 (Addi-
tional file 1: Fig. S6B).

In addition, we utilized RNA sequencing data from the 
UGA5 cohort to estimate cell-type abundances, further 
validating our methylation-based cell-type deconvolution 
results. The cell-type proportions in UGA5 demonstrated 
consistency between methylation and transcriptomic 
analyses (Additional file 1: Fig. S7A). A similar coefficient 
p value heatmap for selected methylation sites associated 
with differentially expressed genes is shown in Fig. S6B.

Discussion
We developed a multimodal approach to explore the joint 
influence of multiple factors on DNA methylation and 
the humoral immune response to influenza vaccination. 
In this study, we focused on 42 subjects vaccinated with 
quadrivalent Fluzone across two consecutive seasons 
(UGA4 in 2019, UGA5 in 2020), noting that the vaccine 
composition differed between the two years except for 
the Yamagata strain. Notably, the UGA5 cohort exhibited 
a lower seroconversion rate compared to UGA4, poten-
tially influenced by previous vaccination histories and 
the concurrent COVID-19 pandemic [28, 29]. For our 
model, we focused on the four vaccine strains from the 
UGA4 cohort, for which HAI titers were also quantified 
in UGA5.
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Methylation is a cell-type-specific epigenetic mecha-
nism [17]. Our cell-type deconvolution provides an esti-
mation of the proportion of PBMC cell types that can be 
included in the model. Interestingly, the proportion of 
NK cells was negatively correlated with vaccine immune 
response. By contrast, B cells and T cells were positively 
correlated with HAI seroresponse. NK cells play an 
important role in antiviral responses by expressing acti-
vation receptors in the innate immune system, whereas B 
cells and T cells function in the adaptive immune system 
producing antibodies and killing infected cells [30, 31].

When identifying methylation sites associated with 
serological immune responses to influenza, we also con-
sidered other factors, such as age and BMI, known to be 
associated with methylation changes. Our final multivari-
ate multiple regression model demonstrated significant 
accuracy in predicting age, sex, cell types, and HAI levels 
against all four strains, indicating the importance of these 
factors in mediating the methylation at the measured 
sites. One hundred and forty seven hypermethylated 
CpG sites were associated with HAI levels against four 
vaccine strains, suggesting gene expression inhibition of 
proximal genes. These sites were mostly mapped to Neg-
ative Regulation to Defense Response to Virus and Type 
1 Interferons including genes involved in the negative 
regulation of the RIG-I signaling pathway. Hypermeth-
ylation of those sites leads to the inhibited expression of 
these negative regulators and therefore likely upregula-
tion of type 1 interferon production.

Furthermore, we investigated the overlap of these sig-
nificant methylation sites with transcription factor bind-
ing sites, which identified BRD4, a well-studied member 
of the bromodomain and extra-terminal protein family 
in immune diseases and cancer [32]. The discovery that 
methylation sites which can predict influenza vaccine 
response overlap with public ChIP-Seq data from blood 
or immune cells suggests a potential role for BRD4 in 
regulating the vaccine response. It provides a molecu-
lar link between epigenetic modifications and immune 
efficacy. By implicating a specific transcriptional regula-
tor, this discovery suggests that BRD4 could be a poten-
tial target for modulating vaccine responses through 
epigenetic mechanisms. For aging and BMI, we identi-
fied Rest and Tal1. Rest plays a crucial role in prevent-
ing senescence phenotypes, while Tal1 is implicated in 
high risk of obesity [33, 34]. These findings highlight Rest 
and Tal1 as potential targets for future studies focusing 
on immunosenescence and obesity in influenza vaccine 
response. Additionally, differential gene expression analy-
sis of the UGA5 cohort highlighted JAK3 and TYK2 as 
significantly differentially expressed following vaccina-
tion, underscoring the potential involvement of the JAK 
signaling pathway in this network.

By combining the methylation multimodal model and 
differential gene expression results, we generated a final 
vaccine response model (Fig. 6). The methylation compo-
nent (in red) mainly negatively regulates the RIG-I signal-
ing pathway. After detecting the viral component, RIG-I 
signaling pathway is activated to drive the transcription of 
interferon production. The RIG-I signaling pathway was 
previously shown to be involved in antiviral responses 
and differential methylation analysis after influenza vac-
cination [10, 35, 36]. Two genes whose methylation is sig-
nificantly associated with HAI act as negative regulators 
of the RIG-I signaling pathway. C1QBP and its recep-
tors are targeted to the mitochondrial outer membrane, 
and the interaction with MAVS led to the disruption of 
RIG-I signaling pathway [37]. RNF125 interacts with 
RIG-I through proteasomal degradation after its conju-
gation to ubiquitin [38]. The transcription factor BRD4, 
coupled with RelA, mediates RIG-I upregulation, which 
enhances interferon response factor IRF1/7 expression 
by transcriptional elongation [23, 25]. The downstream 
output of interferons is regulated by ILRUN. ILRUN has 
UBA-like and NBR1-like domains which are essential for 
the inhibition of interferons [39].

The interferons produced by this signaling pathway can 
interact with the interferon lambda receptor 1 leading 
to signaling transduction. Interferon lambdas are innate 
immune cytokines that induce antiviral cellular responses 
[40]. The differentially expressed genes we identified are 
associated with the JAK/TYK2 signaling pathway which 
activates downstream STAT proteins. A previous study 
has shown that The JAK family, including Tyk2, consists 
of tyrosine kinases linked to receptors that serve as sig-
nal transducers [27]. The activation process of the JAK 
pathway begins when a cytokine, which can be interferon 
lambda, binds to IFNLR1. This binding induces a struc-
tural change in the receptor, which in turn activates and 
leads to the binding of JAK and Tyk2. These molecules 
form JAK dimers and then phosphorylate the receptor, 
facilitating the binding, phosphorylation, and subse-
quent pairing of STAT proteins (STAT1, STAT2, STAT3, 
STAT4, STAT5a, STAT5b, and STAT6) which are impor-
tant for both innate and adaptive immune response [27].

We postulate that the association between DNAm 
patterns and the response to influenza vaccination is 
primarily mediated through the activation of antiviral 
pathways in T cells. This hypothesis was corroborated 
by analyzing publicly available gene expression data for 
human immune cells from the Human Protein Atlas [41]. 
Our analysis revealed that genes associated with HAI 
significant sites, namely RNF125, C1QBP, ILRUN, and 
BRD4, exhibit high levels of expression in T cells (Addi-
tional file  1: Fig. S8). Moreover, the expression of the 
interferon lambda receptor, predominantly observed in 
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naive B cells, suggests a critical role for T cell to B cell 
communication in eliciting an immune response to the 
vaccine. These findings underscore the importance of T 
cell-mediated pathways in the context of DNAm and its 
impact on vaccine-induced immunity.

Overall, our findings suggest potential targets for 
enhancing influenza vaccine efficacy through epige-
netic and transcriptomic regulation of RIG-I and related 
immune pathways. Future research directions include 
single-cell methylation analysis to dissect cell-type-
specific methylation patterns and their implications 
for vaccine response. For example, some of the genes 
and transcription factors might only appear in specific 
cell types, which would provide a clearer picture of the 
cell-type-specific methylation association with vaccine 
response. Additionally, expanding the study to include 
more subjects could enable strain-specific analyses. 
These studies will provide more insights into the influ-
enza vaccine response through the scope of epigenetics.

Conclusion
In conclusion, our study generated a multivariate multi-
ple regression model to control for potential confounding 
variables when analyzing DNAm levels and their associa-
tion with the influenza vaccine serological response. We 
identified significant methylation sites that are associated 

with the negative regulation of interferon production, 
along with the transcription factor BRD4, which plays a 
role in this regulatory process. Additionally, our differ-
ential RNA analysis shed light on the involvement of the 
JAK family genes in the signal transduction pathways of 
interferons. These insights not only enhance our under-
standing of the epigenetic and transcriptomic dynamics 
influencing vaccine efficacy but also highlight potential 
targets for future influenza vaccine design. By identifying 
specific genes and pathways that could be modulated to 
improve vaccine responses, this model framework sets 
the stage for more targeted and effective influenza vac-
cination strategies.

Materials and methods
Vaccination and cohort subjects
As part of a longitudinal study led by the University of 
Georgia, Athens (UGA), a cohort of 690 individuals was 
recruited for five successive seasons from 2016 to 2020 
(UGA 1–5) between the ages of 18 to 65 years old. Par-
ticipants were administered the split-inactivated influ-
enza vaccine, Fluzone, manufactured by Sanofi Pasteur. 
During the 2019–2020 season (UGA4), the vaccine 
strains incorporated were A/Brisbane/2018 (H1N1), A/
Kansas/2017 (H3N2), B/Phuket/2013 (Yamagata lineage), 
and B/Colorado/2017 (Victoria lineage). In the following 

Fig. 6 Generated using Biorender (Additional file 3), the full proposed model of multimodal DNA methylation analysis and differential gene 
expression analysis of immune responses to influenza vaccine (T cell/B cell communication)
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2020–2021 season (UGA5), the strains included were A/
Guangdong/2019 (H1N1), A/Hong Kong/2019 (H3N2), 
B/Phuket/2013 (Yamagata lineage), and B/Washing-
ton/2019 (Victoria lineage). The Institutional Review 
Board of the University of Georgia granted approval for 
the study protocols, informed consent procedures, and 
data gathering methodologies (IRB #3773). For this study, 
a subset comprising 42 participants, all of whom were 
enrolled in UGA 5 and had previously been part of the 
UGA4 season, were selected.

Hemagglutination‑inhibition (HAI) assay
Blood samples were drawn from the participants on the 
day of vaccination (day 0), preceding vaccine injection, 
and then again on the seventh and twenty-eighth days 
post-vaccination (day 7 and day 28). Hemagglutination 
inhibition (HAI) assays were conducted on the day 0 and 
day 28 blood samples against each of the vaccine strains 
as well as additional strains, as elaborated in a previous 
study [15]. Briefly, hemagglutination inhibition (HAI) 
titer was ascertained by considering the reciprocal dilu-
tion of the final well consisting of non-agglutinated RBCs. 
For each plate, both positive and negative serum controls 
were incorporated. Using the World Health Organiza-
tion (WHO) and the European Committee for Medicinal 
Products’ guidelines for evaluating influenza vaccines, 
seroprotected subjects were defined as an HAI titer equal 
to or greater than 1:40, and seroconverted subjects were 
defined as a fourfold increment in titer compared with 
the baseline, leading to a titer of 1:40 or more [42].

Targeted bisulfite sequencing (TBS‑seq)
DNA was isolated from each participant’s blood sam-
ples using the standard phenol–chloroform extraction 
approach previously described [43]. For the construc-
tion of the TBS-seq library, 500 ng of the extracted DNA 
was used. The NEBNext Ultra II Library prep kit along 
with custom pre-methylated adapters (IDT) was used to 
perform adapter ligation and dA-tailing [9]. The probes 
for targeted bisulfite sequencing (TBS-seq) were chosen 
based on specific parameters. A first set of probes was 
selected from previously published DNA methylation-
based aging clocks [13]. A second set was chosen to be 
within promoter regions of genes that respond to viral 
infections like SARS and influenza [44–47]. A third set 
included immune cell-type-specific loci as established 
by the Blueprint Epigenome Project [48]. The last set was 
chosen based on their correlation with metabolic pheno-
types [49, 50]. Their coordinates, based on GRCH38, can 
be found in Supplementary Table 1.

The purified libraries were subsequently hybridized 
with the biotinylated probes under the given condi-
tions: 2 min at 98  °C; 14 cycles of (98  °C for 20 s; 60  °C 

for 30 s; 72  °C for 30 s); 72  °C for 5 min; maintained at 
4 °C. Following the bisulfite treatment on captured DNA, 
PCR amplification was carried out using KAPA HiFi Ura-
cil + . An examination of library quality was carried out 
using the high-sensitivity D1000 assay on a 2200 Agilent 
TapeStation. The libraries were then sequenced as 150 
paired-end bases using two NovaSeq6000 (Sp lane).

TBS‑seq data process and methylation calling
Cutadapt (v2.10) was used to remove adapter sequences 
from the demultiplexed FastQ files [51]. Subsequently, 
BSBolt (v1.3.0) was employed to align the reads to the 
GRCh38 reference genome [52]. The markdup function 
in Samtools was used to eliminate PCR duplicates [53]. 
The final step in this process involved calling methylation 
using the BSBolt CallMethylation function. To generate 
the methylation matrix, each CpG site was required to be 
covered by a minimum of 20 reads in all samples using 
the AggregateMatrix function in BSBolt.

RNA sequencing and analysis (RNA‑seq)
RNA was isolated from peripheral blood mononu-
clear cells (PBMC) samples. Libraries were prepared 
for samples that passed quality control using the KAPA 
stranded-mRNA kit. Prepared libraries were sequenced 
on the Illumina HiSeq3000 platform. After quality con-
trol by FastQC, reads were aligned to the GRCh38 
human reference genome using STAR [54] and count 
tables were generated using R package Rsubread [55]. For 
this analysis, transcripts were included with a minimum 
count of ≥ 5 reads in ≥ 10% of samples. To normalize 
sequencing depth and gene length, transcripts per mil-
lion (TPM) was used to quantify gene counts. Differential 
gene expression analysis between day 0 and day 28 as the 
condition design was performed using DESeq2. We used 
the raw count data, which DESeq2 internally performed 
its normalization [56]. Cell-type abundances in PBMC 
cells were estimated from RNA-seq data using CIBER-
SORT with default parameters [57].

Cell‑type deconvolution for PBMC
B cells, Granulocytes, Monocytes, Natural Killer cells, 
Naive T cells, and Non-Naive T cells were selected as 
reference cell types within PBMCs. Their whole-genome 
bisulfite sequences were obtained from a recently pub-
lished DNA methylation atlas [17]. Cell-type abundance 
estimation was performed using CellFi, which employs 
nonnegative least square methods for deconvolution [16]. 
We first identified 37 differentially methylated regions 
that were specifically hypomethylated in each of the six 
cell types (Additional file 4: Supplementary Table 2). We 
used nonnegative least square regression to estimate cell-
type abundance using these 37 regions.
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Multivariate multiple regression model
A multivariate multiple regression model was used to 
account for different factors that affect DNA methylation 
and influenza vaccination response:

where M is the methylation matrix, i is the ith sample, 
and s is the sth methylation site. F is the factor matrix, 
and c is the cth factor. For the factor matrix, we included 
both the demographic variables (age, gender and BMI) 
and the cell-type compositions from the deconvolution 
method described above. To control for the year of the 
two cohorts, we also added a year variable where 0 is for 
UGA4 and 1 is for UGA5. The coefficients β were esti-
mated through least squares estimation, and ǫ is the ran-
dom error term.

For the prediction model, the pseudoinverse of the beta 
estimation was used (depicted as the plus sign) to predict 
the phenotype values based on the methylation levels. 
We utilized leave-one-out cross-validation to provide a 
more accurate prediction model assessment.

Enrichment analysis of significant coefficients sites
We selected the methylation sites that have significant 
coefficients for each trait after false discovery rate cor-
rection for multiple testing for both positive and negative 
coefficients separately. Gene ontology biological process 
enrichment was performed by mapping the significant 
sites to their proximal genes using biomaRt and then 
measuring enrichment of the gene sets using Enrichr and 
GREAT [58, 59]. We used the entire set of target regions 
as the background set for these analyses. Transcription 
factor binding, histone marks and variants, and chroma-
tin accessibility overlap analyses were performed using 
the Cistrome Data Browser [60]. Genomic region sets 
that overlap with the query set were also computed using 
LOLA [61]. Published BRD4 ChIP-Seq data were used to 
check for BRD4 enrichment analysis with one example of 
the significant methylation site from our model [62].
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