
UC Irvine
ICS Technical Reports

Title
Behavioral design assistant (BdA) user's manual : version 1.0

Permalink
https://escholarship.org/uc/item/3xx805b6

Authors
Ramachandran, Loganath
Gajski, Daniel D.

Publication Date
1994-09-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3xx805b6
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Behavioral Design Assistant (BdA)
User's Manual

Version 1.0

Loganath Ramachandran

Daniel D. Gajski

Technical Report ^94-36

Sep 1, 191)4

Dept. of Information and Computer Science

University of California, Irvine

Irvine, CA 92717

(714) 856-8059

ramachan@ics.uci.edu

Abstract

This report provides instructions for installing and using the Behavioral Design Assistant (BdAj.
BdA is a behavioral synthesis system that synthesizes structures from an abstract description written
with VHDL behavioral constructs. The system uses components from a generic component library

(GENUS), which can be mapped into a user defined technology library. The output of BdA is in
structural VHDL and could be verified using a commercial VHDL simulator. The designer can control

the synthesis process by providing different resource constraints to the system. BdA is also capable of
producing different architectures which can be selected by the designer.

Contents

Overview

1.1 BdA Advantages

2 Installation Instructions 4

2.1 Requirements 4

2.2 Obtaining the Release 4

2.3 Installing the release 5

3 BdA System 5

3.1 Synthesis Manager 5

3.1.1 Datapath Synthesizer 8

3.1.2 Control Unit Synthesizer 8

3.2 Constraints Manager 9

3.2.1 Resources 9

3.2.2 Clock 9

3.2.3 Architecture 10

3.2.4 Variable Mapping 10

3.2.5 Control Pipelining 10

3.3 Display Manager Tools 12

3.3.1 State Diagram 12

3.3.2 Component Utilization 12

3.3.3 Real Estate Utilization 12

3.4 Netlist 12

4 Using BdA 12

4.1 Interactive Mode 13

4.2 Constraint Area 13

4.3 Command Area 16

4.4 Shell Mode 20

4.4.1 Commands to set constraints 22

4.4.2 Commands to invoke synthesis tools 24

4.4.3 Commands to view synthesis results 26

5 Simulating the output 26

6 Tutorial 27

6.1 Interactive Mode 27

6.2 Shell Mode 33

7 Appendix A 36

8 References

List of Figures

Behavioral Design Assistant 3

The BdA System 6

FSMD model 7

Control Pipelining Schemes 11

BdA - User Interface 14

Resource Editor 15

Command Area - List of Commands 16

File selection window 17

State Diagram display 18

Component Utilization i I9

Area Utilization 20

Netlist Display tool 21

VHDL Display tool 22

Sample UNIT-CONSTRAINT file 23

Storage map 25

Results Directory 26

Centroid - Behavioral Description 28

Allocating Adder Subtractor 29

Allocating Comparator 30

Allocating Register File 30

Resource Editor 31

Variable Mapping Editor 31

Centroid - State Diagram 32

Centroid - Component Utilization 33

Centroid - Design Area 33

Centroid - Datapath 34

Centroid - UNIT.CONSTRAINT 35

Centroid - STORAGE-MAP 35

1 Overview

With wide acceptance of logic synthesis tools, the design process is gradually moving towards a

describe-and-synthesize paradigm, where the designer specifies the intent of the design and the

tool synthesizes a design that performs according to the given behavior. Also, with the growing

complexity of the designs itself, the focus in the describe-and-synthesize paradigm is on higher levels

of abstraction. By specifying the design at higher levels such as the behavioral or the algorithmic level,

the designer can minimize the amount of specification details thereby increasing the productivity.

The Behavioral Design Assistant (BdA) is a tool to aid designers at the architectural level. It

follows the describe-and-synthesize paradigm since it allows designers to specify the design behavior

using VHDL, and it synthesizes a netlist consisting of a controller and a datapath. In Figure 1 we

show the input and the output interfaces to BdA.

The input to BdA is a VHDL description of the design behavior. VHDL, which is an acronym for

VHSIC(Very High Speed Integrated Circuit) Hardware Description Language, is being widely accepted

as one of the standards for describing design behavior.

BdA supports a large subset of the VHDL language. It allows several data types such as bits,

bit-vectors and integers with subranges. It also supports one-dimensional arrays of these data types.

BdA supports standard sequential statements, such as assignment statements, conditionals statements,

while loops and wait statements. The appendix provides a list of constructs that is not supported in

this version of BdA.

The output of BdA is a structure netlist, which consists of two parts (a) a controller and (b) a

datapath. The datapath consists of RTL components such as register files, ALUs and Memories as

shown in Figure 1. The controller which is an implementation of a finite state machine, provides

control signals to the datapath components. Since VHDL can also be used to represent a netlist

structure, a VHDL structural description of the structural netlist is generated by BdA.

BdA follows a knobs-and-guages approach towards synthesis. The designer can control the synthe

sis trajectory, by setting the appropriate knobs. For example it is possible to control the amount of

resources or the area of the design by adjusting the amount of Resources. After synthesis the charac

teristics of the design are reflected in the various guages. For example the clock steps gauge gives an

indication of the size of the controller and the performance of the design.

1.1 BdA Advantages

There are many advantages in using the BdA tool for high level architectural design. We list some of

the important ones below:

Behavioral VHDL

architecture Arch of C is

PO: process

variable s: Memory;
begin

while (i < j) loop

s(J) :=s(i) + s(i);

i:=i + 1:

endloop;

Behavioral

design
Assistant

)n Environment

Figure 1: Behavioral Design Assistant

1. Orders of magnitude in Productivity Gain: BdA takes less than a couple of minutes to

produce RT netllsts comprising of thousands of gates. These rapid turnaround times decrease the

design cycle tremendously. Moreover, BdA can automate the laborious controller-specification

portion of the design process. With BdA it is possible to achieve orders of magnitude in produc

tivity gain.

2. Efficient Design Space Exploration: BdA allows designers to explore different resource

allocation, choose different memory architectures, select different architectural styles and pick

any mapping of variables to storage modules. This large set of choices facilitates rapid and

efficient exploration of the design space.

3. Ease of modeling and use: Since VHDL is one of the standard languages, no additional

training is required to use the BdA system. Since the design is specified at the behavioral level,

the amount of details are minimal. This results in smaller modules with very few errors.

4. Integration into existing CAD environments: BdA uses a generic Library called GENUS [1]

for synthesis. The library generates simulation models and logic equations for aU the components

used in the final design. The simulation models allow for easy verification of the synthesized

design. The logic equations facilitate easy integration into the existing C.AD environments, since

the components can be further synthesized with existing logic synthesis tools.

This report provides instructions for installing and using the BdA software in your site and is

organized as follows: the next section provides detailed instructions for installing the software. Section

3 gives a brief idea of the human interface and how to use the system. Section 4, we show the different

commands that can be invoked with an Xwindows based environment or with a an UNIX shell. Section

5 provides a hands-on tutorial.

2 Installation Instructions

2.1 Requirements

This version of BdA has been tested on SUN-4 platforms with SUN OS 4.1.1. The BdA software

requires around 20 Megabytes of disk space. The interactive displays, require XWindows (Release

X11R5) and Motif (Release 1.1). The control synthesis requires misll [2] distributed as part of the

Get tools release from by UC Berkeley.

2.2 Obtaining the Release

The BdA software can be obtained from UC Irvine through anonymous ftp. However, prior to ob

taining the release it is necessary to sign a non-disclosure agreement. Copies of the agreement can be

obtained at the contact address given in the title page of this document.

The release can be obtained via FTP in the following manner:

1. create a release dir: mkdir /home/BdA

2. ftp to the address: ftp ftp.ics.uci.edu

3. login: anonymous

4. password: your email address

5. change group name: quote site group <grp-name>

6. enter group passwd: quote site gpass <grp-passwd>

<NOTE: The <grp-name> and the <grp-passwd> for commands 5 and 6, wiU be provided after

you sign the non-disclosure agreement forms.>

7. change directory: cd pub/cadlab-releases/BdA

8. get the file : get BdA_1.0.tar.Z

2.3 Installing the release

Let us assume that the software has been ftped into the /home/BdA directory. The main installation

process consists of uncompressing and untarring the software. The steps for the installation are given

below:

1. Uncompress the software with the following command

% uncompress BdA_1.0.tar.Z

2. Extract the software from the tarred directory

% tar -xvf BdA_1.0.tar

This wiU create a directory BdA.l.O.

3. Edit the script file in /home/BdA/BdA_1.0/scripts/BdAjscript, to set the environmental vari

ables. The variable RELEASEJ)IR points to the directory where the software was installed,

which is /home/BdA/BdA_1.0 in this example. The OCTTOOLSJDIR points to the location

where OCTTOOLS is installed on your network.

3 BdA System

The BdA system is a synthesis framework that contains a collection of tools. The overall picture of

the BdA system is shown in Figure 2. In addition to a VHDL compiler, the system consists of three

sets of tools. The VHDL compiler compiles the input behavioral description into an internal Control

Data flowgraph (CDFG) format, which is used by the other tool sets in the BdA system. These sets of

tools are: (i) Synthesis Manager tools, (ii) Constraint Manager tools and (iii) Display Manager tools.

3.1 Synthesis Manager

BdA uses the FSMD model for synthesis[3, 4]. The implementation of the FSMD model is shown in

Figure 3. It contains two parts (a) A datapath that has storage units for storing data, functional

units for performing arithmetic and logic operations on the data, and interconnect units for moving the

data between the storage and the functional units, (b) A control unit represented by a finite-state

Constraint Manager

Architecture

Resources

Variattle

Mapping

Control

Pipelining

VHDL

Compiler

Ml
CDFQ

Representation

Synthesis Toois

Datapath
Synthesiser

Comrol Unit

Synthesiser

VHDL

Structure Netllst

Figure 2: The BdA System

Display Manager

State

Diagram

Comp
Utilization

Real Est.

Utilization

Qraphical
Netllst

Textual

Netllst

*

•

Lf :: TIMER!=0&X = 1

Lj ::D:=shr(A,1);C:=shr(B,3);

(a) FSMD model

control inputs data inputs

State Reg

Next-state control

Control Unit

control outputs data outputs

(b) FSMD implementation

Figure 3: FSMD model

machine (FSM), that provides the signals to sequence the operations and the movement of data. The

control unit is implemented with a state register and two combinational blocks that compute the next

state values and the output values for each state.

The Datapath and the control communicate through the status lines and the control lines. The

control lines carry the control signals from the control unit to the datapath, while the status lines

carry the status information of certain computations from the data path to the control unit. The

FSMD communicates to the external world by means of I/O points on the boundary. The datainputs

carry the input data from the external world to the FSMD, while the external control inputs control

the sequencing of the states.

The Synthesis Manager consists of two different tools, one for datapath synthesis and the other for

control synthesis.

3.1.1 Datapath Synthesizer

The Datapath Synthesizer maps the operations, the variables and the data transfers to individual

resources on the datapath. Since the resources available on the chip are limited, the datapath synthe

sizer has to share them efficiently. This is done in two steps. The operations and the variable accesses

in the behavioral description are partitioned into states (or control steps), in such a way that they

can be executed by the allocated resources. This task of partitioning the behavior into time intervals

is called scheduling.

Although the scheduling task assigns each operation to a particular state, it does not assign it to a

particular component. In order to obtain the proper implementation we have to assign each variable

to a storage unit, each operation to a functional unit and each transfer from 1/0 ports to units and

among units to an interconnect unit. This task is called binding or resource sharing.

After the scheduling and the binding tasks, the datapath is completely defined. More details about

scheduling and binding can be got from the vast literature in behavioral synthesis (e.g., [3, 4]).

3.1.2 Control Unit Synthesizer

After datapath synthesis the control specifications are defined. These control specifications indicate

the value on the control lines for each state of the design. The control unit synthesizer synthesizes the

structure of the control unit from these control specifications.

The control unit synthesizer performs the tasks of state encoding and logic minimization. During

state encoding a binary string is assigned to each state. This binary string is the encoded value for the

state. Logic minimization ensures that the size of the combinational blocks, which generate the next

state and the output values, are minimized. BdA uses misll [2] for logic minimization of the control

3.2 Constraints Manager

Given a behavioral description, it is possible to generate thousands of design implementations. It is

necessary to constrain the synthesis tasks in order to generate designs that are useful, for a desired

apphcation. The Constraint Manager provides a mechanism for capturing different types of constraints

for synthesis.

The Constraint Manager consists of five different constraint capture mechanisms, as shown in

Figure 2. These include mechanisms for capturing clock constraints, architectural styles, quantity and

type of resources, variable mapping schema and control pipeUning styles. We will now examine each

of these in detail.

3.2.1 Resources

BdA is a resource-constrained synthesis system. This implies that the designer can control the re

sources allocated for the synthesis and BdA produces an efficient schedule that maximizes the utiliza

tion of the allocated resources. Generally, if more resources are allocated then more operations can

be executed simultaneously in a given clock period. This results in high-performance designs, where

performance is defined as the product of the average number of states over all execution paths and

the clock period. On the other hand, allocating fewer resources results in a larger number of states,

thereby degrading the performance.

3.2.2 Clock

The clock value indicates the period of the clock that will be used to drive the design. If the clock

period is known before synthesis (due to other system constraints), then this can be specified to the

BdA, as a synthesis constraint. If the clock period is not a constraint, then it is possible to experiment

with different clock periods and determine the clock period that results in the best performance.

Clock period affects the performance of the design. If a higher clock period is given, then many

operations can be chained in a clock period. This chaining reduces the number of states in the design.

On the other hand if a lower clock period is specified by the designer, then an operation may take

multiple clock cycles to complete. This process of scheduling an operation over multiple clock cycles

is called multiclocking.

3.2.3 Architecture

With BdA it is possible to synthesize two different types of architectures, which are: (i) Mux-based

architecture and (ii) Bus-based architecture.

In the Mux-based architecture, BdA uses multiplexers to interconnect the functional units and the

storage units. However, BdA attempts to optimize the number of mux inputs that are used in the

design.

In Bus-based architecture, BdA uses busses to route data between the functional units and the

storage units. However, it is possible to constrain the number of busses used in the design, by

specifying a fixed number of busses as a constraint. As a general analysis, increasing the number

of busses would improve the performance of the design, since the bottlenecks on the busses can be

avoided.

3.2.4 Variable Mapping

By default BdA assigns a storage unit to store each scalar variable in the description. Therefore the

number of registers in the design would be equal to the number of scalar variables in the description.

However, the designer can specify the desired variable mapping for the array variables in the

description. These array variables are mapped onto register files and memory units. As an example,

the designer can allocate one memory for the design and constrain aU variables in the description to

be stored in this memory module. The advantages of such variable grouping are discussed in [5].

3.2.5 Control Pipelining

The FSMD design style can further be divided into three different architectures, each with a different

level of control pipelining. More details of the control pipelined architectures produced by BdA is

available in [6]. These architectures include:

• non.pipeUned architecture where the control and the status signals are not pipelined.

• status_pipelined architecture where the status signals are pipehned

• controljstatus.pipelined architecture where the control and status signals are pipehned.

Figure 4 shows the architecture for the three pipeUning methods. The designer can select any one

of these architectures.

(a) NonPipelined - Model

(c) Status Pipelined - Model

|4 illa
^ 2 sib s2a
« Isle S2b

uomroi Unit Datapath

STATE REG

Next-State

Logic

Control

Logic

Registers

(b) Non Pipelined Architecture

Control Unit Datapath

STATE REG

Next-State

Control

Logic

Registers

(d) Status Pipelined Architecture

Control Unit Control Datapath
' • " iRegisters t • ••

STATE REG

Next-State

Logic

Control

Logic

Registers

(e) Controi Status Pipelined - Modei (f) Control Status Pipelined Architecture

Figure 4: Control Pipelining Schemes

3.3 Display Manager Tools

After the synthesis process completes, different types of results and quality metrics are available from

the BdA. The Display Manager Tools provides these quality metrics to the designer, Figure 2 shows

some of the results available from BdA after synthesis.

3.3.1 State Diagram

The State Diagram displays the states and the state transitions. The conditions for each state transi

tion and the actions that are performed during each state transition are also available from the state

diagram.

3.3.2 Component Utilization

The Component Utilization table indicates how the components are utilized during each state or

control step. The general goal of synthesis is to reuse the components as much as possible, and

generate designs with a very high utilization.

3.3.3 Real Estate Utilization

This quality measure indicates the amount of the chip's real estate (area) that is used by each com

ponent. If a component is large then the percentage real estate used by that component is high.

3.4 Netlist

The Netlist displays show the synthesized RTL netlist. At the top level the synthesized netlist consists

of a controller and datapath. The datapath consists of an interconnection of RT level components.

After Control Synthesis, the controller implements a Finite State Machine, comprising of a state

register and a combinational block,

4 Using BdA

BdA can be used in an interactive mode, where the designer can control the various features of

the tool using the Motif based flexible user-interface. However, experienced designers, may also work

with the shell mode where the important features of the tool can be invoked directly from the UNIX

Before invoking BdA in either of the two modes the BdA_script must be sourced from the shell.

This can be done by using the command

% source /home/BdA/BdA_l.O/scripts/BdA_script

We wiU first discuss the various commands available in the interactive mode. We wiU then examine

the methods of invoking some of these same commands from the shell mode.

4.1 Interactive Mode

In order to use the interactive mode of BdA, enter the following command

% XBdA

The interface (shown in Figure 5) consists of two important regions. The Command Area consists

of a row of buttons on the top, which can invoke the synthesis manager and the display manager tools.

The Constraint Area which consists of a column of buttons on the left side can be used to setup the

constraints for the synthesis. A typical sequence of commands in a BdA session would involve, setting
up the constraints, invoking the synthesis tools, and then viewing the results of synthesis.

4.2 Constraint Area

As shown in Figure 5, the Constraint Area can be used to set 5 different types of constraints. These

include Clock, Architecture, Control Pipelining, Resources, and StorageMap

We now provide the details of aU the constraint specification mechanisms.

• Clock

The default clock period assumed by BdA is 100.0ns. In order to change the clock constraint

edit the information in the box marked Clock.

• Architecture

BdA supports two different architectures. Select between the Mux-based and the Bus-based

architecture, by placing the cursor on one of these choices and clicking the first mouse button

<ml>.

• ControlPipelining

BdA supports three different control pipelining styles. Select the desired style, by placing the

cursor on one of the available choices and clicking the first mouse button <ml>.

Ne Syntheii* Hesutti HEHntJ VHt>L?

ig^
"J:

i •

j'-wUlH s,'

• ¥

Figure 5: BdA - User Interface

H«4>

• Resources

Place the cursor on Modify and click the first mouse button <ml>. This brings up a Resource

Editor shown in Figure 6. The Resource Editor window allows you to add, delete and modify

resources for synthesis.

^imm

Figure 6; Resource Editor

- Add Comp - allows you to add different types components to the allocation. Invoking this

command, brings up a list of component types that are supported by this version of BdA.

The command prompts you for the different parameters. For example, the command wiU

prompt for (i) the number of words, (ii) number of read and write ports (iii) the bitwidth,

and (iv) instance name, when allocating a register file.

- Del Comp - allows you to delete one of the allocated components.

- Mod Comp - allows you to modify the parameters for one of the allocated components.

- Save DB - saves the allocated components onto a database which is used by the Synthesis

Manager.

- Read DB - reads the database containing a list of allocated components.

- Close - allows you to dismiss the Resource Editor window.

• StorageMap

Place the cursor on Edit and click the first mouse button <ml>. BdA displays a Storage Map

Editor, which contains a list of the allocated register files. For each register file, you can create

a list of variables that wiU be stored in that file.

4.3 Command Area

As shown in Figure 5, the Command Area consists of 6 different buttons. These buttons include File,

Synthesis, Results, Netlists, and ShowVHDL

Synthesis Results Netlists imShow VHDL

Datapath

ControlUnit Comp Utilization ControlUnit DP Netiist

Design Area CU Process

CU Netiist

Components

Figure 7: Command Area - List of Commands

You can place the cursor on any of these commands and click on the first mouse button to activate

any of these buttons. This action brings up a submenu which contains a further set of commands.

The list of commands in the submenu is shown in Figure 7. Without releasing the mouse button,

move the cursor to any of these subcommands and then release the button in order to execute any of

the subcommands.

We now provide a list of all the submenu commands and give an overviewof the actions that would

be invoked. We use the notation XX YY to indicate a subcommand YY which is under the main

command XX. We now provide a brief description of each of the commands, that can be invoked from

the Command Area.

• File Read VHDL This command can be used to specify the location of the VHDL behavioral

description. As soon as this command is invoked, BdA pops up a file selection window (as shown

in Figure 8), which contains a list of aU the possible files. Select the desired behavioral VHDL

file for synthesis.

• File =>• Quit

Use this command to quit the BdA tool.

• Synthesis ^ Datapath

This command invokes the Datapath Synthesizer.

• Synthesis =>• ControlUnit

This command invokes the ControlUnit Synthesizer.

SIrectoraes Fil«

nat^ Nc^iane ps
femhI

afcstract»t«x

•sck.tex

i^3peridj2if,aitex

Figure 8: File selection window

• Results State Diagram

This command can be used after datapath synthesis, to view the State Diagram ofthe synthesized
design. A sample state diagram display is shown in Figure 9. In this figure, each state is
represented by a bubble and the state transitions are represented by arcs connecting the bubbles.
The scrollbars on the right and the bottom can be used to scroU the display.

The statediagram display tool can be used to analyze the actions that occur in each state, or on
each transition. Each transition has a black s<^uare on the middle of the arc. In order to analyze
the actions on a particular transition, move the cursor on the black square of the transition and

press the <ml> key. In order to display all the actions that occur in a given state, press the
<ml> key after placing the cursor on any of the states.

The display tool also has 3 buttons at the bottom. They can be used as foUows:

- Delete Text

Use this button to delete aU the text of the actions that are displayed in the main window.

- Total States

Clicking on this command will popup an information window that displays the total number

of states in the design.

- Close

This button can be used to exit the state display window.

Figure 9: State Diagram display

• Results =?> Comp. Utilization

This command can be used after datapath synthesis, to view the utilization of the components in

the synthesized design. A sample component utilization diagram is shown in Figure 10. Each row

represents a state, and each column represents a component. Each entry in the figure represents

the utilization of a component in a given state. A value of 1.0 in entry (x, y) implies that the

component is used in that state, while a value of 0.0 implies that the component is idle in that

state. For multiport memories, the value of the entry will represent the percent utilization of the

ports in each state.

The scrollbars on the right and the bottom can be used to scroU the display. At the bottom

of the figure, a histogram shows the overall utilization of each component in the entire design.

This overall utilization is computed as a percentage of the total number of states, in which the

component is used. Use the Close button to dismiss the component utilization display.

• Results => Design Area

This command can be used after datapath synthesis, to view the real estate utihzation. The real

estate utilization is displayed as a histogram in which the 'y' axis is the list of components and

the 'x' axis is the percentage of the area that is occupied by the component. The total estimated

area of the design is displayed on the top of the figure. A sample histogram is shown in Figure 11.

The scrollbars on the right and the bottom can be used to scroll the display. Use the Close

• K»» . .i ! *16 aunt 1

££2 ESE

£EI tzs EE EE

£22. £M ,

£22 rmi 622 EE

122 rag E22

.• SHE £22 EE

BE EES £22 EIE

E3E

£22

£22

£22>

£££

OS

il

&

Figure 10: Component Utilization

button to dismiss the area utilization display.

• Netlists => Datapath

This command brings up a netlist display tool, which displays the datapath of the synthesized

design. Each component in the datapath is shown as rectangle, and the control ports are shown

on the left. The control Hnes displayed can be turned off by selecting CONTROLLINES ^ OFF.

They can be turned back on by selecting CONTROLLINFS =>• ON.

The netlist display tool provides zoom in and zoom out capabilities. In order to zoom into a

specific region of the netlist, place the cursor at the north-west corner of the region and press

the third mouse button <m3>. Drag the mouse to the south-east corner of the region, and

release the mouse button <m3>. Repeating the same actions, while moving the mouse from

the south-east corner to the north-west corner wiU cause a zoom out action to occur. Use the

middle mouse button <m2> to refit the picture. The File Quit option in the netlist display

dismisses the netlist display tool.

• Netlists ^ ControlUnit

Use this command to show the netlist of the controller, after controller synthesis.

• ShowVHDL CU-DP Netlist

This command displays the textual netlist (structural VHDL) consisting of the Control unit and

Bpom mrcum

Of*ORT LErr iHOX

DPORT MEM DATA

filXQRT MEM ADDA

OPORT n

DPORT JZ

WliiWWfwJ.

Figure 11: Area Utilization

the Datapath and their interconnections. Figure 13 shows BdA's textual display tool, which is

used for displaying aU the textual VHDL structures.

• ShowVHDL => DP Netlist

This command displays the structural netlist of the datapath expressed as VHDL structure.

• ShowVHDL => CU Process

This command displays the behavioral description of the synthesized control unit.

• ShowVHDL ^ CU Netlist

This command displays the structural netlist of the control unit, expressed as VHDL structure.

• ShowVHDL Components

This command displays the VHDL description of the components used in the datapath netlist.

4.4 Shell Mode

It is possible to use the essential features of BdA without the X windows interface. The synthesis

commands can be directly invoked from the UNIX shell. We divide the commands in the shell mode

are divided into three categories, (i) commands to set constraints (ii) commands to invoke tools in

the Synthesis Manager, and (iii) commands for results display.

rfe Ml.SLULCl DMAV« COMIKOL LifltS

Al. M jnilMrM I'M* 5 I

Mi IX

' 1*1
,^i

'-: .r-., "

^ J "•» ' »5S'̂ '"Mi .1,1 ,#•••': 1 9 • su
SKS^/*

Figure 12: Netlist Display tool

i< J

i ,,..1 £
• I L

sV

B?opt imm%'Mm vccw^ixs^fflrro^r
;• V: w*owi;, mjfe; mm '

: : mM.:. {»:a» mmmm

upoHrjzcomsffj , '

Of»mT>a'C«ffBn>
DPCWT"I-X3W ;t»U-SSTf
OPOftT M'C«/T8rrj ' ' :

•• jr ,i. K mtm w*rTO'';'>wwroftj;
DPOfiTJ?OMf ?iOlfr«F^\«CTCfl(/ EiOaWTO m

: : cpom rr iMsm
CBwtg'Wsrr;
CPC«iTjr:«<eff:
Cmi 4:j«8ffr
CBOBT 5'WBff) "!
{ W«J ^ INHI

CPWI ^

CPmi S:}»8«; ' '

aa*t

Figure 13: VHDL Display tool

4,4.1 Commands to set constraints

I Resource Constraints

Specify the resource constraints afile called UNIT.CONSTRAINT. Asample UNIT-CONSTRAINT
file is provided in $RELEASE_DIR/sample/UNIT_CONSTRAINT (Figure 14).

The sample file shown contains four components from the GENUS hbrary [1, 7]. Each functional
unit definition is demarcated with a hne containing a sign. The first functional unit called
ADDERl describes a 16-bit ALU, which performs the ADD function. The second component,
called COMPl is another ALU that performs two comparison functions (i.e., LEQ and LT). The
third component is a 16-bit multiplier called MULT_1, and the fourth component is a IK by 8
REG-FILE called MY_RF containing 1write port and 2read ports [1].

Copy the sample UNIT-CONSTRAINT file to the directory where the behavioral description
resides and edit it to reflect the appropriate constraints. Here are some of the ways the file can
be modified.

- Changing the number of instances - Copy the definition of the instance and change the
GCJNSTANCE-NAME of the second instance.

- Changing the bit width of components - Change the GCJNPVT.WIDTH: 10 line to the

desired value (e.g., GCJNPUT.WIDTH: 16).

GC_COMPILER_NAME; ALU
GCJNSTANCE_NAME: ADDER1
GGJNPUT_WIDTH: 16
GG_NUM_FUNCTI0NS:1
GG_FUNGTION_LIST: GG_ADD
GG_STYLE; GG_RIPPLE_GARRY
AREA: 100.0

DELAY: 40.0

#

GG_GOMPILER_NAME: ALU
GGJNSTANGE_NAME: G0MP1
GGJNPUT_WIDTH: 16
GG_NUM_FUNGTIONS;2
GG_FUNGTION_LIST: GG_LEQ,GG_LT
GG_SP*'LE: GG_R1PPLE_GARRY
AREA; 100.0

DEUY: 40.0

#

GG_GOMPILER_NAME : MULT
GG_INSTANGE_NAME: MULTJ
GG_LEFTJNPUT_WIDTH : 16
GG_RIGHTJNPUT_WIDTH: 16
GG_STYLE: GG_ARRAY
DELAY: 60.0

AREA: 3000.0

#

GG_GOMPILER_NAME; REG_FILE
GGJNSTANGE_NAME: MY_RF
GGJNPUT_WIDTH: 8
GG_NUM_WORDS: 1024
GC_NUMJNPUT_PORTS: 1
GG_NUMJNOUT_PORTS: 16
GG_NUM_OUTPUT_PORTS: 2
AREA: 100.0

DELAY: 10.0

#

Figure 14: Sample UNIT.CONSTRAINT file

- Deleting a component - Remove the component specification including the sign.

—Creating a new type of component - The ALU in GENUS can perform many different
functions. The possible functions are explained in the GENUS manual [1]. To create an
ALU that performs the increment and decrement operations copy the lines (including the

line) that represent the ALU component, and change the GC_NUM_FUNCTIONS and

GC_FUNCTION_LIST parameters. In other words, the following lines would get appended
to the UNIT.CONSTRAINT file.

GC_COMPILER_NAME: ALU

GC_INSTANCE_NAME: MY_INC_DEC

GC_INPUT_WIDTH: 16

GC_NUM_FUNCTIONS: 2

GC_FUNCTION_LIST: GC_INC,GC_DEC

GC.STYLE: GC_RIPPLE_CARRY

NUM.INSTANCES: 1

AREA: 100.0

DELAY: 80.0

- Changing Technology Specific Parameters - The AREA and the DELAY specification pro
vides hints to the synthesis program. This can be changed to reflect the area and delay
values of components in your technology library.

• Variable mapping

BdA reads a file called STORAGEJi^AP to determine the mapping ofvariables to the REG_FILEs.

A sample STORAGE-MAP is available in $RELEASE.DIR/samples/STORAGE_MAP. Each
line of the file specifies the instance name for the register file and the variables that are to be

stored in that register file. The sample STORAGE-MAP file shown in Figure 15 contains two

lines. The first line indicates that the variables a, b, c and d are to be stored in the first register
file called MY-RFl. The second line indicates that the variables e, /and g are to be storedin the

second register file called MY-RF2. Note that MY-RFl and MY_RF2 are the instance names of

the register files that were allocated in the UNIT-CONSTRAINT file.

Copy this file to the directory where the behavioral description resides and edit the mapping. It
is necessary to specify the mapping for all the array variables in the STORAGE.MAP file.

4.4.2 Commands to invoke synthesis tools

BdA has two separate commands based on the type of architecture that you would like to select.

MY_F=1 [a, b, c, d]

MY_RF2 [e, f, g]

Figure 15: Storage map

• Datapath and Control Synthesis (MuxBased Architecture):

Use the command

% BdA_mux [-cp_style <CntrlPipelining>] [-clock <period>] <input_file >

The <CntrIPipelining> has to be chosen from one of the following: (a) non_pipeIined (b)

status.pipelined (c) control_status_pipeIined. If the -cp_style is not specified, the default

is assumed to be non.pipelined. The <period> can be a number of floating point type. If the

-clock option is not specified then the default is assumed to be 100.0.

For example, the command

% BdA.mux -cp_style non_pipelined -clock 200.0 idct.vhdl

synthesizes a non.pipelined design from the behavioral description in the file idct.vhdl. The clock

period assumed during synthesis is 200ns.

BdA creates the controller specification for Mux-basedarchitecture in a directory RESULTS-MUX.

In order to run Control synthesis for the Mux-based architecture use the command:

% cd RESULTS-MUX; state-syn < design-name >

For example, the command

% cd RESULTS-MUX; state_syn idct

synthesizes a control unit for the idct design.

• Datapath and Control Synthesis (BusBased Architecture):

Use the command

% BdA-bus [-cp-style <CntrlPipelining>] [-clock <period>] <input_file >

The <CntrlPipeIining> has to be chosen from one of the following: (a) non-pipelined (b) sta-

tus-pipelined (c) control-Status4)ipelined The default is assume to be non-pipelined.

The <period> can be a number of floating point type. The default is assumed to be 100.0.

For example, the command

% BdA-bus -cp_style status-pipelined -clock 170.0 dct.vhdl

synthesizes a status-pipellned bus-based design from the behavioral description in the file dct.vhdl.

The clock period assumed during synthesis is 170ns.

BdA creates the controller specification for BusBased architecture in a directory RESULTS-BUS.

In order to run Control synthesis for the BusBased Architecture use the command:

% cd RESULTS-BUS; state_syn < design_name >

For example, the command

% cd RESULTS-BUS; state_syn dot synthesizes a control unit for the dct design.

4.4.3 Commands to view synthesis results

The VHDL files created after synthesis reside in the directory RESULTS-MUX for mux-based archi

tectures and in the directory RESULTS-BUS for bus-based architectures. The files that are produced

in the directory and their functionality is shown in Figure 16.

Filename Description

<design>_struct.vhdl VHDLstructural description of design

<design>_dp_struct.vhdl VHDLstructural description of datapath

<design>_cu_struct.vhdl VHDL structural description of control unit

<design>_cuj3rocess.vhdl VHDL behavioral description of control unit

STATE INFO State transitions and actions

Figure 16: Results Directory

The VHDL files for the components are created in the directory that is pointed to by the environ

mental variable $GENUS_VHDL-DIR. The default script file that was released sets the environmental

variable to the directory "/home/BdA/BdA-1.0/misc/genus_models. ".

5 Simulating the output

All the results of BdA are created in the results subdirectory which is either RESULTS-MUX or RE

SULTS-BUS based on the architecture being synthesized. The VHDL models for the individual com

ponents are be created in the directory pointed to by the environmental variable GENUS-VHDL-DIR.

In order to verify the results of synthesis, simulate the files in the following order.

types.vhd - the file is available in the directory /home/Bda/BdA-l.O/genus/vhdLpackage

resMVL4_functions.vhd - the file is available in the directory /home/Bda/BdA_1.0/genus/vhdLpackage

all files with a .ufid/extension in the directory pointed toby the environmental variable GENUS_VHD]

• the datapath structure netlist - the file <design_name>_dp-struct.vhdl in the results directory.

the control unit process - the file <design_name>_cu_proess.vhdl in the results directory.

• the overall structure consisting of the CU and DP - the file <design_name>_struct.vhdl in the

results

After compiling the files in the above order, test vectors can be applied to the overall structure.

6 Tutorial

In this section we will walkthrough an example to illustrate the use of BdA on a real life design. We

choose a centroid computation example, which was part of a fuzzy logic controller design [8]).

Figure 17 shows the behavioral description of the circuit. The design computes the centroid of a

set of values stored in a array variable s. The centroid is defined as that index of the memory which

has the sum of the values stored on the left of it equal to the sum of the values stored to the right of

it. We wiU synthesize this design using the interactive and the shell mode in BdA.

6.1 Interactive Mode

Let us go through a step-by-step procedure for synthesizing the centroid design, using the Interactive

mode.

1. Source the vss_script file

% source /home/BdA/BdA_l.O/scripts/BdA_script

2. Create a new working directory and move to this new directory:

% mkdir $HOME/test_bda; cd $HOME/test_bda

3. Copy the VHDL file from the examples directory

% cp <RELEASE_DIR>/examples/centroid/centroid.vhdl

4. Invoke XBdA

% XBdA .

entity CompCentrold Is
port(

exec: in bit;
inrtmem: in bit;
mem_data: in bit_vector(7 downto 0);
mem_addr; in tDit_vector(7 downto 0);
leftjndx : in bit_vector(7 downto 0);
rightjndx : in bit_vector(7 downto 0);
dout: out bit_vector(7 downto 0);
done: out bit;

end CompCentrold;

architecture ArchCompCentroid of CompCentrold is

begin
PO: process
type Memory is array (integer range o) of bit_vector 7 downto 0);

variatile s; Memory (255 downto 0
variable Isum, rsum : bit_vector(7 downto 0
variable ij : bit_vector(7 downto 0

begin
if exec »'1' then

done <• 0;
i ;• leftjndx;
j :«rightjndx;

while i < j loop

if rsum < Isum then

rsum ;> rsum + s(j
j:- H:

else

Isum :• Isum + s(i
i;« i+1;

end if;

end loop;

dout <- j;
done <-1;

elsif initmem - '1' then
^mem_addr)» mem_data;

end if;

end process;
end ArchCompCentroid;

Figure 17: Centroid - Behavioral Description

5. Load the VHDL file by selecting File ^ ReadVHDL on the main window and clicking on

centroid.vhdl in the file selection window.

6. Set clock to 50.0 by editing the clock information in the constraints area.

7. Set the architecture to Mux-based by clicking on the MuxBased item in the Architecture box.

8. Set the ControlPipelining style to Nonpipelined by clicking on the NonPipelined item in the

Controlpipelining box.

9. Modify the allocated resources, by clicking on the Modify button in the Resources box. This

brings up the ResourceEditor (shown in Figure 6). Let us first allocate one 8-bit ALU to perform

the addition/subtraction operation. In order to do this click on the Add Camp button on the

resource editor and select ALU as the type of component to be added. You will be queried for

the ALU's parameters. Enter the responses shown in Figure 18.

- |aJ4

arjNPUTjiiifn! s

KJUfiCTIOrUIST

SiWti |3C_Rjm.E_EARRV

Figure 18: Allocating Adder Subtracter

Let us add another ALU which can perform the comparison operations, LT and LEQ. In order

to do this click on the Add Camp button on the resource editor again and specify ALU as the

type of component to be added. Enter the following responses as shown in Figure 19.

Finally let us add a Register File with 1 read port and 1 write port to store the array variable s.

Click on the Add Campbutton on the resource editor again and specify REG.FILEzs the type of

component to be added. Enter the following responses (shown in Figure 20) for the REGJFILE.

The Resource Editor displays each resource on the screen as it is being allocated. Figure 21

shows the Resource Editor after all the three resources are added.

Ct: k:

D3HP1

Gc FuwTiai.usr SCJ-WJitt

tCJTYLE

=. iaiCfti

Figure 19: Allocating Compeirator

! txj:waeR-»»E -

ij. .v.- -ji mr pri

0£-WH.WiT.WgTS I

H«jc! ymt

Figure 20: Allocating Register File

>^0, .

Figure 21; Resource Editor

Save the three components to the allocation database by clicking on the Save.DB button in the

Resource Editor. Finally exit the resource editor by pressing Quit.

10. The next step is to map the array variable s to the allocated register file (MY_RF). This is done

by clicking on the EDIT button in the VariableMapping. This brings up a variable mapping

window, which shows all the allocated register files and memories. In this example since only

one register file (MyJlFl) was allocated. Let us map variable s to this register file (Figure 22).

Save the variable map to the database by clicking on the Save button in the Variable Mapping

editor. Finally exit the resource editor by pressing Cancel.

Figure 22: Variable Mapping Editor

11. Synthesize the datapath by selecting Synthesis Datapath. After synthesis is completed an
information window announcing DP Synthesis Completed is displayed. Dismiss this window by

pressing Cancel.

12. Synthesize the control unit by selecting Synthesis ControlUnit. After synthesis is completed
an information window announcing CU Synthesis Completed is displayed. Dismiss this window

by pressing Cancel.

SG 6

Figure 23: Centroid - State Diagram

13. View the following results that are available after synthesis, (a) Results State Diagram

(Figure 23). (b) Select Results =» Comp. Utilization (Figure 24), (c) Results ^ Design Area

displays Figure 25, and (d) Results Datapath displays Figure 26,

Figure 24: Centroid - Component Utilization

Figure 25: Centroid - Design Area

6.2 Shell Mode

The centroid example can also be synthesized with the SheU mode in BdA. The important steps for

the synthesis include:

r^B m sEircr anajlvzi: comnotim.% " H..]

:-«} »1»M Oft:A

I

Figure 26: Centroid - Datapath

1. Source the vss_script file

% source /home/BdA/BdAJ..O/scripts/BdA_script

2. Create a new working directory and move to this new directory:

% mkdir $HOME/test_bda; cd $HOME/test_bda

3. Copy the VHDL file from the examples directory

% cp <RELEASE_DIR>/examples/centroid/centroid.vhdl .

4. Create a file called UNITX'ONSTRAINT as shown in Figure 27. As shown in the figure, the

UNIT constraint file allocates one 8-bit ALU for performing addition and subtraction, one 8-bit

ALU for performing the comparison operations and one Register File with 1 read and 1 write

ports.

GC_COMPILER_NAME : REG_FILE
GCJNSTANCE_NAME : RF1
GCJNPUT_WIDTH ; 8
GC_NUM_WORDS : 256
GC_NUMJNPUT_PORTS : 1
GC_NUM_INOLrT_PORTS : 0
GC_NUM_OLrTPUT PORTS: 1
DELAY: 1.0

AREA : 2.0

#

GC_COMPILER_NAME : ALU
QCJNSTANCE_NAME : CX)MP1
GCJNPUT_WIDTH ; 8
GC_NUM_FUNCTIONS : 2
GC_FUNCTION_LIST: GC_LT.GC_LEQ
GC_STYLE : GC_RIPPLE_CARRy
DELAY : 30.0

AREA : 100.0

#

GC_COMPILER_NAME : ALU
GC_INSTANCE_NAME : ALU1
GC_INPUT_WIDTH : 8
GC_NUM_FUNCTIONS : 2
GO_FUNCTION_LIST : GC_SUB,GC_ADD
GC_STYLE : GC_RIPPLE_CARRY
DELAY : 30.0

AREA: 100.0

#

Figure 27: Centroid - UNIT.CONSTRAINT

5. Create a file called STORAGE-MAP as shown in Figure 28. This file maps the only array variable

in the description s to the allocated register file.

RF1 s

Figure 28: Centroid - STORAGE-MAP

6. Synthesize the datapath for a mux based architecture with a clock period of 50.0 ns and a non-

pipelined style for control pipelining. This is possible by executing the following command

% BdA_mux -cp_style non_pipelined -clock 50.0 centroid.vhdl

7. Synthesize the control unit with the following command:

% cd RESULTS-MUX; state_syn centroid

8. View the following results that are available after synthesis, (a) Datapath Structure

% edit RESULTS_MUX/centroid_dp_struct.vhdI

(b) Control Unit Structure

% edit RESULTS_MUX/centroid_cu_struct.vhdl

(c) Control Unit Behavior

% edit RESULTS_MUX/centroid_cu_process.vhdl

(d) Overall structure

% edit RESULTS-MUX/centroid.vhdl

7 Appendix A

In this appendix we list some of the features of the VHDL language that are currently not supported

by the BdA tool.

BdA does not support the following constructs in VHDL

• Procedure and Function Calls

• Enumerated Types

• Record Structures

• CONSTANT declarations

• Null statements

• Exit statements

• Return Satements

• loop with no iteration scheme

• Arrays of more than 2 dimensions

• Inout Ports

8 References

[1] P. Jha, T. Hadley, and N. Dutt, "The GENUS User Manual and C Programming Library," Tech

Rep: 93-32, ICS Dept, University of California, Irvine, CA 92717, 1993.

[2] R. Brayton, R. Rudell, A. SangiovanniVincenteUi, and A. Wang, "Mis: A multiple level logic

optimization system," in Transactions on CAD, 1987.

[3] D. Gajski and L. Ramachandran, "Introduction to High Level Synthesis," in submitted to IEEE

Design and Test, 1994.

[4] D. Gajski, N. Dutt, A. Wu, and S. Lin, High Level Synthesis. Boston, Massachusetts: Kluwer

Academic Publishers, 1992.

[5] L. Ramachandran, D. D. Gajski, and V. Chaiyakul, "An algorithm for array variable clustering,"

in Proc. of the EDAC94 Conference, Feb 1994.

[6] L. Ramachandran and D. D. Gajski, "Architectural Tradeoffs in Synthesis of Pipelined Controls,"

in Proc. of the European Design Automation Conference, September 1993.

[7] N. Dutt and P. Jha, "Rt component sets for high-level design applications," in Proc. 1st Asia

Pacific Conf. on HDL Standards and Applications, 1993.

[8] D. Gajski, L. Ramachandran, P.Fung, S. Narayan, and F. Vahid, "100 hr design methodology: A

Test Case," in Proc. EURO-DAC, Hamburg, 1994.

