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Abstract

Recent research indicates that paired comparisons can
accelerate perceptual learning of challenging dermatological
lesion categories. Here we investigated whether the role of
object categories as targets or distractors differentially
influences learning outcomes. The frequency with which a
given category occupied the target position was manipulated
across three learning conditions: Always-Never, where half of
10 categories were always shown as target and the other half
never shown as target; Often-Rarely, where half of categories
appeared 75% as targets and 25% as distractors, with reversed
presentation frequency for the other half; and Equal Split
learning, in which all categories appeared as targets or
distractors equally often. After learning, transfer results
indicated that all conditions yielded equivalent overall
learning, but categories prioritized more often as targets
exhibited greater learning gains. These findings implicate
differential processing of images in comparisons, even when
no information regarding target vs. distractor was given prior
to feedback.

Keywords: categories; comparison; discriminative contrast;
perceptual learning; skin cancer

Introduction
The classification of visual stimuli into meaningful
perceptual categories is fundamental in many cognitive
domains and a crucial driver of advanced expertise. In many
medical imaging domains, the detection of abnormalities
often requires the discovery and interpretation of complex
visual patterns. Cancer detection and lesion classification in
dermatology is one such domain, where perceptual
classifications of trained experts guide important medical
outcomes. The results of these classifications have real and
serious consequences. As skin cancers are currently the
most common form of cancer in the United States (CDC,
2023), it is imperative that experts are equipped with the
best training possible to increase detection rates of
dangerous carcinomas and melanomas.

While increasing declarative knowledge and explicitly
learned membership rules can provide valuable assistance in
certain instances of perceptual classification, expertise in
visual discrimination is largely dependent upon more
implicit processes of perceptual learning (PL),
experience-induced improvements in perception (Gibson,
1969; Kellman & Garrigan, 2009). In the case of skin cancer
detection, a learner may be informed about which features

(e.g., size, shape, symmetry, color) are most common in
cancerous versus benign lesions; however, because many of
these features vary across lesions of the same category, as
well as appear very similarly in lesions of different
categories, this declarative knowledge alone is insufficient.
PL in domains like this grows through classification
experiences and feedback with a variety of examples in
contrasting categories suitable to allow perceptual selection
of relevant discriminative features and patterns, as well as
downweighting of irrelevant variations.

Recent work has sought to introduce PL interventions
across multiple visually-rich medical domains to help
accelerate the development of perceptual expertise (for a
review, see Kellman, Jacoby, Massey, & Krasne, 2022).
Providing targeted practice with the relevant stimuli in
multi-category classification, typically by presenting
examples and requiring classification responses, attunes
perceptual mechanisms to selectively pick up relevant
information and suppress irrelevant information (cf. Petrov,
Dosher, & Lu, 2005). Consequently, learners become more
accurate and faster in extracting the information most
critical for classification (Kellman & Garrigan, 2009;
Shiffrin & Schneider, 1977). In dermatology in particular,
perceptual learning modules designed to improve the
classification of skin lesion categories successfully
accelerated category acquisition and transfer for medical
students (Rimoin et al., 2015) and novice learners (Kellman,
Krasne, Massey, & Mettler, 2023).

Recently, it has been suggested that the learning of these
perceptual classifications may be further enhanced by
shifting focus from practicing classification of individual
displays to simultaneously comparing category exemplars.
Jacoby, Massey, and Kellman (2024) tested a paired
comparison learning approach for teaching the perceptual
classification of 10 benign and cancerous skin lesion
categories to medically naive participants. In this approach,
two skin lesion displays, one from each of two different
categories, were presented side by side with the observer
instructed to select which one belonged to a given category.
For example, an image of a “basal cell carcinoma” lesion
might be presented alongside an image of a non-cancerous,
“haemangioma” lesion, with the question “Which one is
basal cell carcinoma?”. This paired comparison training was
compared to two classification-focused approaches in which
one or two skin lesions were presented at a time and learners
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selected a diagnostic label for each item. When tested on a
classification-focused assessment consisting of novel lesion
examples, those who trained with paired comparisons
demonstrated a significant, long-lasting advantage over
either classification condition.

The potential for comparisons to enhance learning is not
new and has been observed across various areas of learning
and cognition (e.g., Gentner & Markman, 1997; Goldstone,
Day, & Son, 2010; Medin, Goldstone, & Gentner, 1993),
including category learning specifically (e.g., Kurtz,
Boukrina, & Gentner, 2013; Spalding & Ross, 1994).
Simultaneous comparisons – presentation of exemplars from
the same or different categories – allow learners to look
between the features presented within each stimulus without
needing to rely on memory representations of either
category. This may be especially advantageous for complex
and/or highly confusable categories, as in dermatology,
where the relevant patterns and distinctions are subtle.

However, despite the clear evidence of comparison
benefiting learning, the vast majority of categorization
studies have involved only single-item classification trials
(Markman & Ross, 2003). Further, of the approaches that do
utilize simultaneous presentation of multiple items, most
learning approaches have used either an entirely passive
presentation of items (e.g., Kang & Pashler, 2012; Kok et
al., 2013) or required label recall for one or more of the
presented items (e.g., Andrews, Livingston, & Kurtz, 2011;
Carvalho & Goldstone, 2014; Homa, Powell, & Ferguson,
2014). To our knowledge, outside of the work by Jacoby et
al., little to no other research has previously evaluated the
use of discrimination-focused, paired comparison trials as a
way to learn multiple perceptual classifications.
Consequently, little is known about the way learning
advances through this method.

Figure 1: An example paired comparison learning trial with
feedback: “Which one is Solar Lentigo?” Left image: Solar
Lentigo (target); right image: Lentigo Maligna Melanoma

(distractor)

The paired comparison format provides learners the
opportunity to see two different category examples, while
also providing critical feedback regarding each item’s
category membership. However, given the prompt of each
trial, only one category is framed as the target, with the
other presented category fulfilling the role of a distractor.

An example of this trial format is shown in Figure 1.
Although the opportunity to learn about both presented
categories is equal, we were interested in whether the
different framing would lead to disparities in the extent to
which learning progresses for each presented category.

There are a few reasons for why differences in the
processing of targets and distractors in this format may be
expected. Learners are often considered to be conservative
with regard to their cognitive effort, often only learning and
engaging with the minimum amount of information
necessary to complete a task (Payne et al., 1993). Early in
learning, when the learning strength for all categories is low,
items are likely compared closely to complete each
trial–which should lead to benefits in the perception of both
categories. However, as learning progresses and close
comparison of items becomes less necessary, attention may
be devoted primarily to the target category. Additionally,
given that knowing the category label of the distractor
image is not necessary for correctly completing the trial
(i.e., one need not know what the distractor category is, just
that it is not the target category), participants may be less
inclined to devote attention to that category during
feedback. Finally, while both presented categories are
displayed alongside their category label after each trial, the
target of a trial gets the benefit of having its category label
visually presented twice (once in the instructions and once
in feedback). If a category were to regularly appear as a
target, rather than a distractor, the increased number of times
a learner is exposed to its label may give the impression that
that category is more important or possibly more common
than the distractor, which in turn could result in an
overestimation of likelihood that that category is presented
in future encounters.

In the present work, we investigated how learning
advances in paired comparison training, and in particular,
whether the specific role of a category on the trial (target vs
distractor) differentially affects the learning of that category.
To evaluate this, participants were tasked with learning the
perceptual classification of ten dermatological lesion
categories while the frequency with which a specific
category showed up in learning as a target or distractor was
manipulated across three different learning conditions.

In the Always-Never learning condition, half of the to-be
learned categories were assigned to appear in learning only
as targets, whereas the other half appeared only as
distractors. In the Often-Rarely learning condition, half of
the categories showed up as targets on 75% of trials and as
distractors on 25% of trials, with the remaining categories
following the opposite scheduling. Finally, in the Equal
Split condition, all categories showed up in learning equally
as often as the target of the learning trial and as the
distractor. Within each condition, we aimed to compare the
performance on categories prioritized as targets to the
performance on categories prioritized as distractors. If the
design of these trials provides an asymmetric learning gain
that benefits target categories relative to distractor
categories, then we would expect to see a positive
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relationship between the frequency of presentations as a
target and final assessment performance. Further, we
expected to see the largest disparity in performance among
categories in the Always-Never condition, followed by a
smaller difference in the Often-Rarely condition, and no
difference in the Equal Split condition.

Method

Participants
104 undergraduate psychology students from the University
of California, Los Angeles completed this experiment.
Participants had no particular medical background or
training and received partial course credit for their
participation.

Materials
Stimuli consisted of dermoscopic images of 10 different
skin lesion categories including four cancerous skin lesion
categories and six benign categories. A dermoscope
incorporates high magnification and an adjustable
illumination system that allows detailed assessment beneath
the outer surface of the skin. All images were obtained from
the MoleMap Database with the correct image classification
determined from combined assessments by expert
dermatologists, melanographers, AI systems, and, in many
cases, biopsy results. Images were selected on the basis of
dermatologic diagnosis, verification via biopsy when
appropriate, and good image quality. Due to these criteria
and availability, the number of instances varied from 19 to
165 unique images per category. Four exemplars per
category were set aside as novel stimuli to be used in
assessments.

Categories were divided into two separate lists, each
containing five categories. List 1 contained: Actinic
Keratosis, Basal Cell Carcinoma, Haemangioma, Nodular
Melanoma, and Solar Lentigo. List 2 contained Benign
Nevus, Lentigo Maligna Melanoma, Seborrheic Keratosis,
Squamous Cell Carcinoma, and Wart. Exemplars from each
list are shown in Figure 2. All participants learned both lists
of categories in learning.

Design & Procedure
The experiment used a mixed measures design, with three
between-participant learning conditions and two
within-participant priority lists. Each participant was
assigned to one of three learning conditions: Always-Never
Learning, Often-Rarely Learning, or Equal Split Learning.
Within each learning condition one list of categories was
designated as the Target-Priority list and the other was
designated as the Distractor-Priority list. The Target-Priority
list contained the categories assigned to appear in learning
more often as targets than as distractors, whereas the
Distractor-Priority list contained the categories that were
assigned to appear more often as distractors. This
assignment was counterbalanced within each learning
condition to control for possible differences in list difficulty.

Figure 2: Example category images. The top row depicts
List 1 categories in alphabetical order from left to right; the

bottom row depicts List 2 categories.

Learning Phase All participants completed a series of
paired comparison trials, in which an exemplar from two
separate categories would be presented side by side and
participants would be asked to identify a given target
through a prompt asking “Which is [Category Name]?” An
example of this trial can be seen in Figure 1.

In the Always-Never learning condition, when any of the
five categories designated as the Target-Priority list
appeared on a trial they would always be the target and
never be the distractor. Conversely, the five categories
designated as the Distractor-Priority list would always
appear as the distractor but never the target. As a concrete
example, if solar lentigo was on the list of categories
designated as the Target-Priority list and lentigo maligna
melanoma was on the list of categories designated as the
Distractor-Priority list, a participant could receive a trial that
displayed one solar lentigo image and one lentigo maligna
melanoma image side by side and asked “Which is Solar
Lentigo?” but never a trial that presented the same images
and asked “Which is Lentigo Maligna Melanoma?”

In the Often-Rarely learning condition, categories
designated as the Target-Priority list would appear as the
target of the trial on 75% of presentations and as the
distractor on 25%; the reverse was true for categories
designated as the Distractor-Priority list.

Finally, in the Equal Split learning condition, all
categories appeared equally often as the target and as the
distractor. If solar lentigo and lentigo maligna melanoma
were presented together in the trial, it was equally likely that
the prompt would be “Which is Solar Lentigo?” or “Which
is Lentigo Maligna Melanoma?”. Although there is no
difference between the Target-Priority and
Distractor-Priority lists in the Equal Split condition,
category lists were still designed as separate priority lists to
allow for subsequent analyses.

Participants in all conditions completed 400 learning trials
containing a total of 800 images. Importantly, all categories
were shown 80 times in learning regardless of the learning
condition or target/distractor-priority list. Every trial
contained one category from the Target-Priority list and one
category from the Distractor-Priority list. Categories were
presented in a randomized order. Participants were informed
that they would be learning 10 different categories of skin
lesions, but they were not made aware of how often a
category was to be shown as the target or distractor.
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Feedback was provided immediately after each trial and
indicated whether the answer was correct/incorrect, as well
as labeled both presented images. Participants were given 40
seconds to complete each learning trial and up to 10 seconds
to view feedback.

Testing Phase Participants completed an assessment at
three different timepoints: before learning, immediately
following learning, and after a one-week delay. Assessments
required the classification of individually presented skin
lesion images, where on each test trial, one image was
shown with all ten category labels organized alphabetically
below. Participants had 40s to select a category label on
each trial; no feedback was given. Each test contained four
questions from each category, and only novel (previously
unseen) exemplars were used.

Exclusion Criteria
To ensure that participants did not have considerable
knowledge of these skin lesion categories prior to starting
the experiment, those who scored 30% or greater on the
pretest were disqualified and did not participate in the rest
of the experiment. Only data from participants who
completed all parts of the experiment (pretest, learning
phase, immediate posttest, and delayed posttest) were
included in the following analyses.

Participants were excluded after data collection if they
failed to achieve an average accuracy in the learning phase
of 65% (chance accuracy: 50%). In total, 14 participants
were excluded for poor learning performance
(Always-Never condition: n = 2; Often-Rarely condition: n
= 5; Equal Split condition: n = 7). Data from 90 participants
were retained.

Dependent Measures and Data Analyses
Accuracy on learning trials and assessments was recorded
for all participants and compared across learning conditions.
Performance on the posttests was also divided between
categories designated as the Target-Priority list and the
Distractor-Priority list. Differences between priority lists
were compared within each learning condition. To check
whether any observed differences in accuracy were due to
changes in perception, as opposed to changes in response
behavior, false alarm rates and sensitivity (d’) were also
calculated and compared.

All analyses were conducted using standard parametric
measures. Effect sizes are reported for each difference.

Results

Learning Accuracy
All participants completed 400 paired comparison trials
during learning. A one-way ANOVA determined that
differences in accuracy during learning were not reliable,
(Always-Never: M = 0.81, SD = 0.06; Often-Rarely: M =
0.80, SD = .07; Equal Split condition: M = 0.78, SD = .07),
F(2, 87) = 1.78, p = .175, ηp

2 = 0.04

Assessment Performance

Overall Accuracy Average performance on the pretest
assessment was 16.44% (SD = 6.77), and did not differ
between conditions, F(2, 89) = 0.03, p = .972, ηp

2 = .001.
Posttest accuracy was similar across all three conditions at

the immediate posttest (Equal Split: M = .65, SD = .13;
Always-Never: M = .62, SD = .13; Often-Rarely: M = .60,
SD = .13) and at the delayed posttest (Equal Split: M = .54,
SD = .13; Always-Never: M = .53, SD = .17; Often-Rarely:
M = .52, SD = .15). A 3 (learning condition) X 2 (posttest
phase) mixed measures ANOVA was conducted on the
assessment scores. There was a significant main effect of
posttest phase, such that participants performed worse on
the one-week delayed posttest than on the immediate
posttest regardless of learning condition, F(1, 87) = 54.37, p
< .001, ηp

2 = 0.39. There was no reliable main effect of
learning condition, F(2, 87) = 0.67, p = .513, ηp

2 = 0.02, nor
any reliable learning condition by posttest phase interaction,
F(2, 87) = 0.17, p = .844, ηp

2 = 0.004.

Target vs. Distractor Accuracy Posttest items were then
divided into the categories that had appeared in learning as
Target-Priority items and Distractor-Priority items. Figure 3
shows average accuracy on Target-Priority and
Distractor-Priority categories for each learning condition at
both post-learning assessments.

Figure 3: Accuracy (proportion correct) for categories
prioritized as targets and for categories prioritized as

distractors for each learning condition. Error bars indicate
± 1 standard error of the mean

A 2 (Priority List) by 2 (Posttest Phase) by 3 (Learning
Condition) mixed measures ANOVA was conducted on
assessment scores. There was a reliable main effect of
posttest phase, such that items were classified with lower
accuracy at delayed posttest relative to immediate posttest,
regardless of learning condition, F(1,87) = 54.37, p < .001,
ηp

2 = 0.39. Posttest phase did not interact with learning
condition, F(2, 87) = 0.17, p = .844, ηp

2 = 0.004, or with
priority list, F(2, 87) = 0.001, p = .980, ηp

2 = 0. Additionally,
no three-way interaction was found, F(2, 87) = .0.52, p =
.599, ηp

2 = 0.01. A significant interaction was found
between priority list and learning condition, F(2, 87) = 4.56,
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p = .013, ηp
2 = 0.10. To further evaluate this relationship, the

effect of priority list was assessed separately for each
learning condition.

In the Always-Never condition, categories that were
assigned to the Target-Priority list were more accurately
classified than the categories assigned to the
Distractor-Priority list at the immediate posttest
(Target-Priority: M = 0.69, SD = 0.15, Distractor-Priority: M
= 0.56, SD = 0.17), as well as at the delayed posttest
(Target-Priority: M = 0.60, SD = 0.19, Distractor-Priority: M
= 0.46, SD = 0.21). Analyses confirmed the average
difference between priority lists across both posttests to be
significant with a large effect size, t(29) = 4.40, p < .001, dz
= 0.80.

In the Often-Rarely condition, accuracy on categories
prioritized as targets and categories prioritized as distractors
did not reliably differ, t(29) = 0.94, p = .357, dz = 0.17,
although accuracy was numerically greater for the
Target-Priority categories at both the immediate posttest
(Target-Priority: M = 0.63, SD = 0.15; Distractor-Priority: M
= 0.57, SD = 0.19) and delayed posttest (Target-Priority: M
= 0.53, SD = 0.19; Distractor-Priority: M = 0.51, SD = 0.20).

Finally, as was expected, in the Equal Split learning
condition, performance on categories designated as the
Target-Priority list was similar to those designated as the
Distractor-Priority list at both the immediate posttest
(Target-Priority: M = 0.64, SD = 0.16; Distractor-Priority: M
= 0.66, SD = 0.14) and delayed posttest (Target-Priority: M
= 0.54, SD = 0.14; Distractor-Priority: M = 0.55, SD = 0.19).
No reliable effect of priority list was found, t(29) = -0.38, p
= .705, dz = 0.07.

We also looked at the priority list by learning condition
interaction in a different way, to gain insight into the trend
across conditions. These results are shown in Figure 4,
which displays group means for target-priority categories vs.
distractor-priority categories by condition for both
immediate and delayed posttest target-accuracy differences.
Individual subject data varied considerably, but a single
linear fit accounted well for the group mean data (F(1, 4) =
58.56, p = .002) with an R2 value of .94. The y-intercept for
the combined data was -.018, very close to the theoretical
value of no difference for target list vs. distractor list in the
Equal Split condition. Even with such a small number of
data points, the slope of .138 was highly reliably different
from zero (t(4) = 7.65, p = .0015), indicating that as the
target-frequency disparity between target-priority and
distractor-priority categories increased, the performance
difference for the target and distractor lists increased
linearly. Separate linear fits for the immediate and delayed
posttest data yielded remarkably similar parameter estimates
(slope .142 vs. .135; y intercept -.019 vs. -.016), suggesting
that, despite overall accuracy decrements from immediate to
delayed tests, the difference between target and distractor
list performance showed an approximately invariant effect
in the two assessments.

Figure 4: Mean difference in accuracy between
Target-Priority and Distractor–Priority lists by Priority List
Probability Difference in immediate and delayed posttests.

False Alarm Rates In this multi-category classification
paradigm, misclassified trials were recorded as a “miss” for
the presented category, a “false alarm” for the category
whose label was incorrectly selected, and a “correct
rejection” for all remaining 8 categories. A false alarm rate
was calculated for each category and, consistent with the
posttest accuracy analyses, was averaged across the list of
categories prioritized as targets in learning and the list of
categories prioritized as distractors. This enabled us to test
whether superior performance on Target-Priority categories
might have resulted from participants, when unsure,
guessing those categories more often than
Distractor-Priority categories.

A 2 (Priority List) by 2 (Posttest Phase) by 3 (Learning
Condition) mixed measures ANOVA was conducted on
false alarm rates. Consistent with the decrease in overall
accuracy from immediate to delayed test, there was a
reliable main effect of posttest phase, with more false alarms
committed at delayed than at immediate posttest, F(1, 87) =
171.22, p < .001, ηp

2 = 0.66. There was no main effect of
priority list (p = .808) or learning condition (p = .579), and
no reliable 2-way or 3-way interactions (all p > .20),
suggesting that whether a category more frequently
occupied a target or distractor position had little or no effect
on subsequent classification response biases.

Sensitivity (d’) Accuracy (hit rates) and false alarm rates
were used to calculate sensitivity, measured as d’, for each
category before being averaged across priority lists. A 2
(Priority List) by 2 (Posttest Phase) by 3 (Learning
Condition) mixed measures ANOVA was conducted on d’
scores. There was a main effect of posttest phase, F(1, 87) =
80.66, p < .001, ηp

2 = 0.48, indicating greater sensitivity at
immediate posttest. There was a main effect of priority list,
F(1, 87) = 4.38, p = .039, ηp

2 = 0.05, such that d’ was
higher for items prioritized as targets rather than distractors.
The priority list by learning condition interaction was found
to be marginally significant, F(2, 87) = 2.68, p = .074, ηp

2
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= 0.06. All other two-way and three-way interactions were
not reliable, all p > .400.

As expected given the observed differences in the
accuracy and the lack of differences in false alarm rates, the
general pattern of results for d’ paralleled the accuracy
results. Within the Always-Never condition, d’ was
significantly greater for categories prioritized as the target
(immediate posttest: M = 2.29, SD = .60; delayed posttest:
M = 1.84, SD = .70) than categories prioritized as the
distractor (immediate: M = 1.98, SD = .67; delayed: M =
1.51, SD = .73), t(29) = 3.31, p = .002, dz = 0.60. In the
Often-Rarely condition, d’ was numerically greater for
Target-Priority categories (immediate: M = 2.12, SD = .57;
delayed: M = 1.65, SD = .66) than Distractor-Priority
categories (immediate: M = 1.94, SD = .73; delayed: M =
1.63, SD = .72), but this difference did not reach
significance t(29) = 1.29, p = .207, dz = 0.15. Finally, in the
Equal Split condition, differences between Target-Priority
list (immediate: M = 2.21 SD = .61; delayed: M = 1.71, SD
= .50) and Distractor-Priority lists (immediate: M = 2.26, SD
= .60; delayed: 1.72, SD = .68) did not differ, t(29) = -0.30,
p = .768, dz = 0.05.

Discussion
The present study investigated whether the role of
categories in a paired comparison task influences learning.
In all three learning conditions, Always-Never learning,
Often-Rarely learning, and Equal Split learning, novice
participants improved their ability to classify difficult skin
lesion images after a short learning period. Notably, all
learning conditions produced roughly equivalent learning
gains.

Despite similar overall performance, there were clear
differences between conditions in how overall accuracy was
achieved. The Always-Never condition showed significantly
greater learning gains, with a large effect size, for categories
that appeared as targets than for those only shown as
distractors, whereas no reliable differences were observed
between targets and distractors in the Often-Rarely and
Equal Split conditions. The numerical difference, t-value,
and effect size in the Often-Rarely condition fell between
those of the Always-Never and Equal Split conditions.

Notably, when any image appeared in any comparison
trial, there was no information in the display that indicated
its role as target or distractor. Only with feedback was the
role revealed; even then, however, category feedback was
given in the same way for both the target and distractor.

Importantly, in all conditions, categories designated as
being part of the Distractor-Priority list produced
classification accuracies that far exceeded chance
performance, indicating that the inclusion of a category in a
comparison, even if never as a target, is sufficient for
significant learning gains to occur. This is consistent with
prior research that suggests that simultaneous comparisons
enhance the discriminability of both presented items
(Gibson 1969; Mundy, Honey, & Dwyer, 2007, 2009).

Our assessment results do not suggest a process by which
participants became aware of which categories had appeared
as targets more often and developed a response bias to guess
those category labels more frequently. False alarms in the
posttests did not differ by experimental condition.
Conversely, increased hit rates for categories prioritized as
targets, with the absence of increased false alarms, indicate
true improvements in category perception.

What might explain the target-distractor effects we
observed? One possibility is that feedback may cause
preferential encoding or retention of relevant stimulus
information that has just been used to make a classification.
When a trial is correctly answered, a process similar to
reinforcement learning may strengthen the tendencies to
select and weigh more heavily information just used to
make that classification. When an error occurs, feedback
may initiate signals that downweight the information relied
upon. Interestingly, our results suggest that these processes
are centered upon the category queried on a given trial,
despite the fact that feedback always provided correct
labeling for both members of the comparison presented.
Classic work in PL (Gibson, 1969) suggested that PL can be
described as coming to selectively extract distinguishing
features -- features and relations that make the difference
between one category and another. One might think that
learning of distinguishing features would be an inherently
symmetrical process: Learning the stimulus properties that
make exemplars of Category A different from those of
Category B would seem to be the same as learning the
properties that distinguish B from A. An intriguing
possibility compatible with the present results is that the
relation may not be symmetrical. Given the way a
comparison task is posed, a learning experience framed as
"Choose the image that comes from Category A" may
preferentially benefit learning to distinguish A exemplars
from others more so than the reverse.

An alternative explanation is that learners may prioritize
attention to feedback given for the target category, given its
framing as the goal of the trial. Consequently, although
learners may come to pick up distinguishing features for the
distractor category in each comparison, if they fail to
regularly attend to the category label presented for
distractors, they may struggle to integrate what they learn
across separate trials. In other words, the comparison of
target category A and distractor category B provide learning
gains for both A and B, and a subsequent comparison
between target category C and distractor category B provide
similar gains, but if a learner does not come to recognize
that both comparisons contained an instance of B, then they
may fail to integrate the distinguishing features they have
extracted in each comparison.
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