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Deep neural networks (DNNs) have enabled the creation of high-quality synthetic media.

The intent of generating synthetic videos can be harmless as they can be used for tasks such as

advertisement campaigns, and face replacement in movies and animated films. However, DNNs

can also be trained to synthesize facially manipulated videos called Deepfakes, which may be

used maliciously to defame famous personalities, spread misinformation and influence elections

based on false facts.

My research focuses on the responsible use of deep learning for media synthesis. On

the synthesis side, I develop methods for natural and expressive speech synthesis methods for

new speakers in data-limited settings. My work enables the creation of a digital voice clone of
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a person that can either be generated using text or a reference speech from a different speaker.

Another area of my research focuses on the robust detection of Deepfake videos. We investigate

the limitations of current DeepFake detection methods and demonstrate that they can be easily

bypassed using adversarially crafted DeepFake videos. To address these limitations of Deepfake

detectors, we propose FaceSigns, a proactive method for proving media authenticity using semi-

fragile neural watermarks. FaceSigns can embed recoverable watermark data into real images

and videos at the time of their capture, which can withstand a set of benign image and video

transforms while being fragile to malicious tampering such as face swapping.
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Introduction

My research aims to develop Deep Neural Networks (DNNs) that can synthesize high-

quality multimedia content responsibly. The applications of high-quality image, video, and

speech synthesis systems are numerous across domains such as entertainment, healthcare, and

education. For example, video synthesis systems can be used to create and edit animated films,

accompanied by synthesized audio and speech. Additionally, speech synthesis systems can be

used for automatic dubbing of movies, creating targeted advertisement campaigns, and generating

digital clones of celebrity voices. These systems can also help create interactive educational

content. In the healthcare domain, such systems can improve accessibility for visually impaired

or speech-impaired individuals.

Media synthesis and manipulation techniques have long existed — Traditionally, heavily

engineered computer graphics and signal processing systems were used to synthesize and edit

images, videos and audio. DNNs have transformed the domain of media synthesis in two major

ways: 1) DNNs have improved the quality of generated content yielding state-of-the-art results

for tasks like text-to-speech synthesis, text-to-image synthesis, text-to-video synthesis, image-

to-image translation and more. 2) Neural-network-based systems are often trained end-to-end

simplifying the synthesis pipeline and making the technology more accessible to people.

As neural networks continue to advance and make high-quality synthetic content more

accessible, it is crucial to prioritize safeguards against potential misuse of this technology. The

most alarming misuse of this technology is Deepfakes. Deepfakes are facially manipulated

videos that are used to create a realistic looking scenario that never happened. Such videos

can be used to spread misinformation, defame individuals, influence elections or cause political
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unrest. Reliable detection or differentiation of real media from synthesized media is important

to guard against these potential harms of Deepfake technology. In my research, I investigate

the existing methods to detect Deepfake videos. My work unconvers major vulnerabilities in

Deepfake detection systems by demonstrating that they can be easily bypassed by an adversary. I

then propose a system to for reliable authentication of real media using semi-fragile watermarks.

Figure 1. Recent examples of DNN-based multimedia generators.

Dissertation Organization

In Chapter 1, I provide a high-level overview of existing neural network based media

synthesis techniques techniques. I discuss synthesis techniques both in the vision and audio

domain and also discuss the ethical impact of generative media technology.

In Chapter 2, I discuss the systems I developed for natural and expressive speech synthesis.

I first describe an expressive voice cloning system that is based on a text-to-speech synthesizer

conditioned on speaker and style embeddings. Next, I describe a textless voice conversion system

that can convert any given source utterance to a target voice using disentangled representations

learnt using self-supervised learning.

In Chapter 3 and Chapter 4 I discuss detection of neural network-generated media. In

Chapter 3, I describe the systems that have been developed to detect synthetic media using

computer vision classifiers. I then discuss my work, which uncovers major vulnerabilities in such

detectors based on adversarial examples. My work demonstrates that state-of-the-art Deepfake
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detectors can be easily bypassed using adversarial examples in both white-box and black-box

settings.

To address the challenges of synthetic media detectors, In Chapter 4 I describe a semi-

fragile media watermarking that we developed to authenticate real images and videos. The

watermarking framework embeds a verifiable digital signature into the pixels of the image or

video at the time of its capture. The watermark is designed to be semi-fragile to enable fuzzy

authentications — The watermark is robust against benign image transforms like compression,

and image filters but it is fragile against malicious manipulations such as face replacement.
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Chapter 1

Media Synthesis using Neural Networks

Deep Neural Networks (DNNs) have emerged as a powerful tool for synthesizing media,

including audio, images, and videos. This has led to a proliferation of AI-generated content,

such as images and music generated from text descriptions, facially morphed Deepfake videos

and realistic voice clones. While the use of AI-generated media can be beneficial in various

applications, such as entertainment, education, and healthcare, it also poses significant risks. The

purpose of this chapter is to provide an overview of media synthesis techniques using DNNs,

their use cases, and the potential harms associated with them.

DNNs can be used to generate high-quality multimedia content by training synthesis

models in both the visual and audio domains. In the vision domain, training techniques like

Generative Adversarial Networks (GANs) [56], Variation Autoencoders (VAE) [84] and more

recently Stable Diffusion [137] can be used to generate realistic images and videos. These

methods are often adapted for tasks such as conditional generation using control variables such

as text or labels and face replacement to create a convincing image or footage of events that

never occurred.

AI-generated visual content is often accompanied by synthetic audio that is created using

DNN-based speech synthesis networks. Text-to-speech synthesis systems have long existed

and have become more natural sounding with the advances in neural sequence models such as

LSTMs and transformers. However, such systems often lack control over the style aspects of
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synthesized speech and are limited to the voices used in the training set. To synthesize convincing

speech for synthetic videos, it is important to have fine-grained control over the style aspects of

the synthesized speech. Moreover, it is desirable to clone new voices using only a few minutes

of data of a given speaker to make neural speech synthesis suitable for practical applications. My

research in the domain of speech synthesis addresses the challenges and is described in more

detail in Chapter 2.

The ability to generate realistic videos using deep neural networks has many potential

use cases. For instance, it can be used for creating realistic training datasets for computer vision

applications, such as object recognition and tracking. It can also be used for entertainment, such

as creating new films and video games. Additionally, it can be used for virtual and augmented

reality applications, allowing users to experience simulated environments and scenarios.

Despite its potential benefits, the use of AI-generated videos also poses significant risks.

One of the main risks is the misuse of Deepfake videos, which are videos that are created to

misrepresent individuals or events. These can be used to spread false information, create political

propaganda, or defame individuals. Additionally, AI-generated videos can be used for malicious

purposes, such as cyberbullying, harassment, and blackmail. Furthermore, the ability to generate

realistic videos can also have negative impacts on privacy, as individuals can be depicted in

situations they never experienced or consented to.

1.1 Visual Synthesis for Facially Manipulated Videos

In this section, I discuss some past works on media synthesis in the vision domain. Image

and video synthesis is a broad domain with applications such as unsupervised image generation,

text-to-image synthesis, and face replacement and editing. I will focus this section on video

synthesis techniques used for synthesizing Deepfake videos, which are facially manipulated

videos in which a person‘s face is replaced or modified to simulate a scenario that never occurred.

As described in this survey [165], facial manipulations can be classified into three major groups
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based on the degree of manipulation shown in Figure 1.1 and described below:

1.1.1 Entire Face Synthesis

This category pertains to methods used for producing complete facial images, typically

employing GAN-based techniques, as exemplified by the recent StyleGAN approach proposed

in [80]. These methods have been successful in generating high-quality facial images. To

generate novel faces, generative models like GANs and VAEs are trained on facial image

datasets [104, 24, 20]. Once trained, these models can be used to synthesize new faces by

mapping a random noise vector from a uniform distribution to a realistic-looking facial image.

These models can also be trained to interpolate between two given images and create interesting

intermediate faces of people that do not exist. Recently, several high-quality synthetic facial

datasets [1, 38] have been curated using techniques such as ProGAN [79] and StyleGAN [80].

The purpose of these datasets is to train reliable detection methods for synthetic faces.

Entire Face Synthesis Face Swapping Attribute Manipulation

Figure 1.1. Three categories of neural facial manipulation techniques. Entire Face Synthesis
includes examples from the website thispersondoesnotexist.com. Face Swapping shows examples
from SimSwap [26] and attribute manipulation is performed using the FaceApp mobile app.

1.1.2 Face Swapping

Face Swapping methods aim to replace the face of one person in a video with the face

of another person. Traditionally, computer graphics-based techniques such as FaceSwap [89]

have been used to achieve this goal. In such methods, sparse facial landmarks are detected to

extract the face region in an image. These landmarks are then used to fit a 3D template model
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which is back-projected onto the target image by minimizing the distance between the projected

shape and localized landmarks. Finally, the rendered model is blended with the image and color

correction is applied.

More recently neural network-based face swapping methods have been proposed to

achieve more realistic-looking synthetic videos. These approaches typically rely on convolutional

neural network (CNN) based encoder-decoder networks that can optionally be trained with an

adversarial loss. For example, in the DeepFakes method [42] two auto-encoders with a shared

encoder are trained to reconstruct the images of source and target face. To create a fake image,

the encoded source image is passed as input to the target image decoder. Korshunov and Marcel

introduced in [88] the DeepfakeTIMIT database. Fake videos were created using the public

GAN-based face-swapping algorithm1. In this approach, a CNN based encoder-decoder network

is trained with an additional adversarial loss from a discriminator. The encoder-decoder network

is trained to reconstruct the original image from a warped image using a reconstruction and an

adversarial loss. Similar to [42], during inference a different face can be used as input to get a

face-swapped image produced from the encoder-decoder setup.

Face Swapping methods have gained popularity in recent years since they can be easily

used to generate Deepfake videos of scenarios that never occurred. The detection of such videos

is an important problem and several efforts have been made to identify synthetic videos using

machine learning classifiers. I discuss some of these approaches and their limitations in Chapter 3

and Chapter 4.

1.1.3 Attribute Manipulation

Attribute manipulation also known as face editing or face retouching, involves altering

various facial features such as the skin or hair color, gender, age, adding glasses, and more [55].

Attribute manipulation is performed by training controllable generative models on facial image

datasets. One technique to train controllable generative models is using labelled datasets that

1https://github.com/shaoanlu/faceswap-GAN

7

https://github.com/shaoanlu/faceswap-GAN


label the facial attributes in each image. The labels can be used as conditioning variables to train a

conditional GAN [112]. For example, in [127], the authors introduced the Invertible Conditional

GAN for image editing by jointy training an encoder with a conditional GAN(cGAN) [112].

An alternate approach to achieving attribute control involves learning disentangled latent

representations in an unsupervised manner. For example, Lample et al. proposed in [93] an

encoder-decoder architecture that is trained to reconstruct images by disentangling the salient

information of the image and the attribute values directly in the latent space. Methods like [30, 31]

learn image-to-image translation across multiple domains without having explicitly labelled

paired data between the domains. In this work, the authors trained a conditional attribute transfer

network via attribute classification loss and cycle consistency loss.

1.2 Speech Synthesis

In this section, I provide a background of existing work on speech synthesis using neural

networks. While there have been some efforts in unsupervised speech synthesis [47], to generate

high-quality speech for synthetic videos, the two most common approaches are text-to-speech

(TTS) and voice conversion systems. While TTS systems enable speech synthesis from only

textual input, they can be limiting in certain use cases that require higher control over the style of

the synthesized speech like expressivity, untranscribed sounds, pauses or multi-lingual utterances.

Voice conversion systems require a richer input that can be more expensive to collect, but offer

fine-grained control over the speaking rate and pitch contour of the synthesized speech.

1.2.1 Text-to-speech (TTS) Synthesis Systems

The best-performing TTS systems decompose the synthesis into two main steps: 1)

Synthesizing the perceptually informed spectrogram (mel spectrogram) representation from

the text. 2) Vocoding: Synthesizing listenable waveforms from the perceptually informed

spectrogram representation. The state-of-the-art TTS methods employ neural networks for both

of these steps. Figure 1.2 demonstrates the this two step TTS pipeline.
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Text Encoder Attention Decoder Vocoder

Synthesized
Waveform

Log-mel 
spectrogram

Mel spectrogram Synthesizer

Figure 1.2. Two-step Neural TTS pipeline. A sequence-to-sequence encoder-decoder network
first predicts the mel spectrogram from the text sequence. Thereafter, a neural vocoder converts
the spectrogram into the waveform representation.

Mel-spectrogram synthesis

Text to mel-spectrogram is typically modelled as a sequence-to-sequence translation

problem which is trained on a large corpus of text and speech pairs of a given speaker. Until

recently, state-of-the-art TTS models used a Tacotron-based architecture which is an encoder-

decoder LSTM model with attention. The model is trained to optimize the reconstruction loss

between the generated and ground-truth spectrogram. Once trained, the attention mechanism in

the Tacotron model captures the alignment between text tokens and audio frames.

More recently, transformer-based sequence-to-sequence models have shown promising

results on TTS benchmarks. The advantage of transformer architecture is that it predicts the

spectrogram in parallel as opposed to the auto-regressive nature of LSTMs. To stabilize the

training for transformer-based models, intermediate prediction heads for pitch and duration are

added that are jointly optimized with the whole network.

While TTS systems can generate natural sounding speech from text, as discussed earlier,

they have two main limitations which make it challenging to generate speech for synthetic videos:

1) TTS systems are limited by the speakers used in the training set and cannot directly be used to

synthesize speech for new speakers without retraining. 2) TTS models lack control over the style

aspects of synthesized speech unless they are trained with additional conditional variables or

latent representations. To address the above challenges, I develop an expressive voice cloning

framework which is described in Chapter 2.
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Vocoder

The need for vocoding arises from the non-invertibility of perceptually-informed spectro-

grams. These compact representations exclude much of the information in an audio waveform,

and thus require a predictive model to fill in the missing information needed to synthesize

natural-sounding audio. Notably, standard spectrogram representations discard phase informa-

tion resulting from the short-time Fourier transform (STFT), and additionally compress the

linearly-scaled frequency axis of the STFT magnitude spectrogram into a logarithmically-scaled

one. This gives rise to two corresponding vocoding subproblems: the well-known problem of

phase estimation, and the less-investigated problem of magnitude estimation.

Vocoding methodology in state-of-the-art TTS systems [130, 147] endeavors to address

the joint of these two subproblems, i.e., to transform perceptually-informed spectrograms directly

into waveforms. Wavenet [168] is a high-quality vocoder that uses an autoregressive temporal

CNN architecture to vocoder spectrograms into waveforms. However, due to its autoregressive

nature, the inference from Wavenet is very slow and not suitable for real-time vocoding. Recently,

there have been some works on vocoders that can operate in parallel across the time axis. A

recently proposed vocoder, HifiGAN [87] follows a WaveGAN [47] like architecture to vocode

spectrograms into waveforms in a parallel manner. Waveflow [133] is another neural vocoder

system based on an invertible convolutional architecture that achieves real-time vocoding and is

at par with WaveNet in terms of audio quality. In my research [118], we developed a lightweight

vocoder that uses a hybrid approach — We use a GAN-based neural network to perform the

magnitude estimation and use a heuristic algorithm to perform the phase estimation. For both

real spectrograms and synthetic ones from TTS systems, our proposed vocoding method yields

significantly higher mean opinion scores than a heuristic baseline and faster speeds than state-of-

the-art vocoding methods.
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1.2.2 Voice conversion

Voice conversion is the task of changing the voice of a given utterance to a target speaker

while preserving the linguistic content. Traditional voice conversion systems rely on parallel

speech datasets between two speakers speaking the same sentence [141, 114]. Such systems

are typically trained as spectrogram-to-spectrogram translation models using a convolutional

encoder-decoder network. However, such systems can only perform voice conversion between the

speakers seen during the training, also known as one-to-one or many-to-many voice conversion.

More recently, there have been some developments in voice conversion systems that do

not require parallel data [33, 134, 28, 23]. The key idea behind non-parallel voice conversion

systems is disentangling speech into representations describing the linguistic content and speaker

characteristics. Once the representations are disentangled, a synthesis network is trained to

reconstruct the spectrogram from the disentangled representations. Synthesizing speech from

these disentangled features allows voice conversion by swapping the speaker embedding of a

given utterance with a target speaker.

Previous research on voice conversion has utilized pre-trained automatic speech recogni-

tion (ASR) and speaker verification (SV) models to separate content and speaker information

from a speech signal [153, 163]. This involves considering the phonetic posteriogram (PPG)

or predicted text from the ASR model as the content representation, and the embedding from

the SV model as the speaker representation. While this approach has shown potential in voice

conversion, it has limitations. Firstly, ASR errors can lead to mispronunciation or inaccurate

conversion. Secondly, the content representation (text/PPG) does not capture all linguistic

features, resulting in synthesized speech that sounds neutral and lacking in accents, expressions,

and speaker-independent style.
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1.3 Ethical Impact of Generative Media

Generative AI technologies can be used to create new and original art and design, from

paintings and sculptures to clothing and furniture. This can push the boundaries of creativity

and lead to new and exciting forms of expression. Deep learning models can generate realistic

and immersive virtual worlds for gaming, enhancing the player experience and allowing for

greater interactivity and customization. Such technologies can be also used to create personalized

learning experiences for students, adapting to their individual learning styles and needs. In

medicine, generative models can be used to develop new drugs and treatments.

AI-generated media can amplify existing biases and inequalities in society, such as racial

and gender biases, by replicating them in the generated content. For example, a GAN trained on

biased data may generate images or text that reinforce harmful stereotypes or discriminatory atti-

tudes. Furthermore, generative models can generate content that may infringe on the intellectual

property rights of others, such as copyrights or trademarks. This can create legal challenges for

companies and individuals who use these technologies.

Generative models be used to create convincing deepfakes and other forms of manipulated

content, which can be used to deceive and defraud individuals and organizations. Fake news

generated by AI could be used to sway public opinion and influence democratic processes. One

of the most significant challenges is that AI-generated content can be difficult to detect, especially

when it is designed to mimic the style and tone of legitimate news sources. In recent years,

there have been numerous instances of fake news and misinformation spreading rapidly across

social media platforms. These stories can be designed to appeal to people’s emotions, playing on

fears, prejudices, and biases. When combined with the powerful generative models, fake news

can be even more effective at manipulating public opinion. By disseminating false information

generated using AI tools and manipulating public opinion, those who control the narrative can

influence election outcomes, policy decisions, and public perceptions of important issues.

To address this issue, it is essential to develop effective strategies for detecting and
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combating AI-generated media. This can involve a combination of technological solutions,

such as AI-powered fact-checking tools, as well as social and political measures, such as public

education campaigns and regulations to ensure greater transparency and accountability in online

content. Ultimately, it will require a concerted effort from all stakeholders to ensure that the

potential harms of AI-generated fake news are minimized and that democratic processes remain

robust and resilient. It has become crucial to ensure that these technologies are developed and

used responsibly, with a focus on maximizing their benefits while minimizing their potential

harms.
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Chapter 2

Speech Synthesis for Generative Media

In recent years, there has been a significant advancement in speech synthesis using neural

networks. These advancements have enabled high-quality text-to-speech (TTS) synthesis that is

almost indistinguishable from natural speech. However, despite these achievements, the speech

generated by these systems is often monotonic or neutral in style, lacking the expressiveness

and variability that human speech possesses. Additionally, generating unseen voices for new

speakers is challenging and requires retraining the models on large amounts of data, making

them unsuitable for synthesizing expressive and speaker-adaptive speech that can accompany

AI-generated visuals.

To synthesize speech for new speakers using neural networks, past work has focused

on two broad problems: Voice Cloning and Voice Conversion. Voice Cloning is the problem of

synthesizing a person’s voice from only a few reference audio samples. While voice cloning

systems can generate speech from text for a new speaker, it leaves out control over various style

aspects of speech. Explicit control over the style aspects of cloned speech is desirable for several

applications, such as: voice-overs in animated films, synthesizing realistic and expressive speech

for DeepFake videos, translating speech from one language to another while preserving speaking

style and speaker identity, advertisement campaigns with expressive speech in multiple voices

and languages (etc.).

Voice conversion is the task of modifying an utterance from a source speaker to match the
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vocal qualities of the target speaker. Unlike voice cloning systems, there is no text input provided

for synthesizing the speech. While traditional voice conversion systems [141, 114] rely on parallel

training data with multiple speakers saying the same sentence, there has been a recent surge in

voice conversion systems trained on non-parallel multi-speaker datasets [33, 134, 28, 23]. The key

idea behind non-parallel voice conversion systems is disentangling speech into representations

describing the linguistic content and speaker characteristics. Synthesizing speech from these

disentangled features allows voice conversion by swapping the speaker embedding of a given

utterance with a target speaker.

In this chapter, I describe two speech synthesis frameworks that I have developed to

enable high-quality expressive speech synthesis for new speakers in data-limited settings. The

first framework tackles the problem of voice cloning with style control. To achieve style control,

we adapt TTS-based voice cloning models by additionally conditioning them on latent and

heuristically derived style information. The second framework addresses the challenges in

existing voice conversion systems and achieves state-of-the-art results by disentangling content

and speaker information features from representations learned using self-supervised learning.

2.1 Speech Synthesis Preliminaries

Generating natural-sounding speech from text is a well-studied problem with numerous

potential applications. While past approaches were built on extensive engineering knowledge in

the areas of linguistics and speech processing (see [185] for a review), recent approaches adopt

neural network strategies which learn from data to map linguistic representations into audio wave-

forms [4, 54, 130, 173, 147]. Of these recent systems, the best performing [130, 147] are both

comprised of two functional mechanisms which (1) map language into perceptually-informed

spectrogram representations (i.e., time-frequency decompositions of audio with logarithmic

scaling of both frequency and amplitude), and (2) vocode the resultant spectrograms into lis-

tenable waveforms. In such two-step TTS systems, using perceptually-informed spectrograms
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as intermediaries is observed to have empirical benefits over using representations which are

simpler to convert to audio [130].

Original STFT Drop phase Log freq Log amp

Feature extraction

Inv. STFT Est. phase Est. mag Lin. amp Features

Inversion (vocoding)

Figure 2.1. Depiction of stages in common audio feature extraction pipelines and corresponding
inversion. The two obstacles to vocoding are (1) estimating linear-frequency magnitude spectra
from log-frequency mel spectra, and (2) estimating phase information from magnitude spectra.

The typical process of transforming waveforms into perceptually-informed spectrograms

involves several cascading stages. Here, we describe spectrogram methodology common to two

state-of-the-art TTS systems [130, 147]. A visual representation is shown in Figure 2.1.

Extraction The initial stage consists of decomposing waveforms into time and fre-

quency using the STFT. Then, the phase information is discarded from the complex STFT

coefficients leaving only the linear-amplitude magnitude spectrogram. The linearly-spaced

frequency bins of the resultant spectrogram are then compressed to fewer bins which are equally-

spaced on a logarithmic scale (usually the mel scale [152]). Finally, amplitudes of the resultant

spectrogram are made logarithmic to conform to human loudness perception, then optionally

clipped and normalized.

Inversion To heuristically invert this procedure (vocode), the inverse of each cascading
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step is applied in reverse. First, logarithmic amplitudes are converted to linear ones. Then, an

appropriate magnitude spectrogram is estimated from the mel spectrogram. Finally, appropriate

phase information is estimated from the magnitude spectrogram, and the inverse STFT is used to

render audio.

The audio feature extraction pipeline has two sources of compression: the discarding of

phase information and compression of magnitude information. Conventional wisdom suggests

that the primary obstacle to inverting such features is phase estimation. However, a systematic

evaluation of the individual contributions of magnitude and phase estimation on perceived

naturalness of vocoded speech has never been reported.

To perform such an evaluation, in our research, we mix and match methods for estimating

both STFT magnitudes and phases from log-amplitude mel spectrograms. A common heuristic

for magnitude estimation is to project the mel-scale spectrogram onto the pseudoinverse of the

mel basis which was originally used to generate it. As a phase estimation baseline, state-of-the-art

TTS research [130, 147] compares to the iterative Griffin-Lim [58] strategy with 60 iterations.

We additionally consider the more-recent Local Weighted Sums (LWS) [95] strategy which, on

our CPU, is about six times faster than 60 iterations of Griffin-Lim. As a proxy for an ideal

solution to either subproblem, we also use magnitude and phase information extracted from real

data.

We show human judges the same waveform vocoded by six different magnitude and

phase estimation combinations (inducing a comparison) and ask them to rate the naturalness of

each on a subjective 1 to 5 scale. Mean opinion scores are shown in Table 2.1.

From these results, we conclude that an ideal solution to either magnitude or phase

estimation can be coupled with a good heuristic for the other to produce high-quality speech.

While the ground truth speech is still significantly more natural than that of ideal+heuristic

strategies, the MOS for these methods are only 2-9% worse than the ground truth (p < 0.05).

Based on these results, we developed a light-weight vocoding method [118] that uses a neural

network to solve the magnitude estimation problem, while using the LWS heuristic for phase
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Table 2.1. Ablating the effect of heuristics for magnitude and phase estimation on mean opinion
score (MOS) of speech naturalness with 95% confidence intervals.

Magnitude est. method Phase est. method MOS

Ideal (real magnitudes) Ideal (real phases) 4.30±0.06
Ideal (real magnitudes) Griffin-Lim w/ 60 iters 3.70±0.07
Ideal (real magnitudes) Local Weighted Sums 4.09±0.06
Mel pseudoinverse Ideal (real phases) 4.04±0.06
Mel pseudoinverse Griffin-Lim w/ 60 iters 2.48±0.09
Mel pseudoinverse Local Weighted Sums 2.51±0.09

estimation.

More recently, CNN based parallel vocoders like Waveglow [133] and HiFiGAN [87]

have been proposed that solve both magnitude and phase estimation subproblems in an end-to-end

manner while staying fast and real-time during inference. We adopt such end-to-end vocoders for

developing our voice cloning and voice conversion systems described in the upcoming sections.

2.2 Expressive Neural Voice Cloning

The goal of voice cloning is commonly formulated as learning to synthesize the voice

of an unseen speaker using only a few seconds of transcribed or untranscribed speech. This is

typically done by embedding speaker-dependent information from the available speech samples

of the new speaker, and conditioning a trained multi-speaker Text-to-Speech (TTS) model on

the derived speaker embedding [3, 75]. While such a system can achieve promising results in

closely retaining speaker-specific characteristics in the cloned speech, it does not offer control

over other aspects of speech that are not contained in the text or the speaker-specific embedding.

These aspects include variation in tone, speaking rate, emphasis and emotions.

Several past works have focused on the problem of expressive TTS synthesis by learning

latent variables for controlling the style aspects of speech synthesized for a given text [174, 149].

Such models are usually trained on a single-speaker expressive speech dataset to learn meaningful

latent codes for various style aspects of the speech. Recent works [151, 167], have extended

the idea of learning style representations to a multi-speaker setting by conditioning the TTS

18



synthesis model on both speaker identity and style encodings. Such techniques show promise

in disentangling style and speaker specific information, and generate different style variants of

synthesized speech for the same text and speaker. However, these methods are limited by the

speakers used in the training set and cannot be directly used for synthesizing voices of speakers

not seen during training.

Adapting multi-speaker TTS models for voice cloning requires scaling up model training

to a large multi-speaker TTS dataset, containing several minutes of transcribed speech from

thousands of speakers. High speaker diversity in the training data is important to achieve

generalization on unseen speakers [3, 75]. The goal of our voice conversion framework is to

perform TTS synthesis for an unseen speaker with control over the style aspects of generated

speech. As a first step in this direction, we train a TTS model conditioned on speaker encodings

and latent style tokens [174] on a large multi-speaker dataset. While this model is able to generate

voices for unseen speakers, we find that the results fall short in terms of speech naturalness and

style control during synthesis. Our results suggest that learning meaningful latent style aspects is

difficult when training on a large multi-speaker dataset containing speech with mostly neutral

style and expressions.

To address problem of disentangling style and speaker characteristics on a large multi-

speaker dataset containing mostly style-neutral speech, we propose a voice cloning model that is

conditioned on both latent and heuristically derived style information. Specifically, we condition

our TTS synthesis model on (i) text, (ii) speaker encoding (iii) pitch contour of the target speech

and (iv) latent style tokens [174]. By conditioning synthesis on various style aspects and speaker

embeddings derived from the target speech, we are able to train a model that offers fine-grained

style control for synthesized speech. To adapt inference for an unseen speaker, we can either

perform zero-shot inference or fine-tune the synthesis model on the limited text and speech pairs

for the new speaker. Through both quantitative and qualitative evaluations, we demonstrate that

our proposed model can make a new voice express, emote, sing or copy the style of a given

reference speech.
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Figure 2.2. Expressive Voice Cloning Model: Tacotron-2 TTS model conditioned on speaker and
style characteristics derived from the target audio of a given text. At inference time, the model
can be provided independent references for style and speaker encodings to achieve expressive
voice cloning.

2.2.1 Voice Cloning Framework

Our expressive voice cloning framework is a multi-speaker TTS model that is conditioned

on speaker encodings and style aspects of speech. Style conditioning in expressive TTS models

is popularly done by learning a dictionary of latent style vectors called Global Style Tokens

(GST) [174]. While GSTs can learn meaningful latent codes when trained on a dataset with high

variation in expressions, we empirically find that it offers limited style control when trained on a

large multi-speaker dataset with mostly neutral prosody.

Signal processing heuristics like the Yin algorithm [41] can derive the fundamental

frequency contour (pitch contour) and voicing decisions from speech, which can be useful for

expressive speech synthesis. We find that using a combination of latent and heuristically derived

style information in the TTS model not only provides fine-grained control over the style aspects

of synthesized speech, but also scales up to a large multi-speaker dataset to produce more natural

sounding audio for an unseen speaker.

Speaker Encoder

Speaker conditioning in multi-speaker TTS models is usually done using a lookup in

the speaker embedding matrix which is randomly initialized and trained end-to-end with the

synthesizer. While such a framework learns speaker-specific information via the embedding
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vectors, synthesis cannot be generalized to unseen speakers. To adapt the multi-speaker TTS

model for the goal of voice cloning, the speaker embedding layer can be replaced with a speaker

encoder that derives speaker specific information from the target waveform. In this setting,

the speaker encoder can obtain embeddings for speakers not seen during training using a few

reference speech samples. To obtain meaningful embeddings, the speaker encoder should be

trained to discriminate between different speakers for the task of speaker verification [171]. We

follow the speaker encoder architecture described in [171, 108]. The speaker encoder is trained

to optimize a generalized end-to-end speaker verification loss [171], that encourages high cosine

similarity between embeddings from same speaker and low similarity between different speaker

embeddings. During inference, each utterance is broken into smaller segments of 1,600 ms with

1,000 ms overlap between consecutive segments. The final embedding is estimated by averaging

the embedding of each individual segment.

Mel-Spectrogram Synthesizer

The goal of our synthesis model is to disentangle the style and speaker-specific informa-

tion in speech by conditioning our TTS synthesis model on the speaker encoding and various

style aspects. To this end, we adapt the synthesis model used in Mellotron [167] for the task

of voice cloning. Mellotron is a multi-speaker TTS model that extends Tacotron 2 GST [174]

by additional conditioning on pitch contours and speaker embeddings. To adapt Mellotron for

voice cloning, we remove the speaker embedding layer and replace it with the speaker encoder

network described in Section 2.2.1.

At its core, our synthesis model based on Tacotron 2 [147], is an LSTM based sequence-

to-sequence model composed of an encoder that operates on a sequence of characters and a

decoder that generates the individual frames of the mel spectrogram while attending over the

encoded representations. Along with the encoded representation for text, we concatenate the

speaker encoding (obtained from the speaker encoder) and the GST embedding at each time-step.

The GST embedding is obtained by querying a dictionary of latent style vectors with the target
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mel-spectrogram using a multi-headed attention mechanism described in [174]. Decoding occurs

in an autoregressive manner where we synthesize one mel spectrogram frame at a time by

providing the fundamental frequency (from the pitch contour) and the mel spectrogram of the

previous frame as the input to the decoder. The pitch contours are derived from the target speech

using the Yin algorithm with harmonicity thresholds between 0.1 and 0.25.

In this way, we can factor mel-spectrogram synthesis into the following variables: text

(t), speaker encoding (s), pitch contour ( f0) and latent style embedding obtained from GST (z).

Formally, our synthesizer is a generative model g(t,s, f0,z;W ) that is parameterized by trainable

weights W , trained to optimize a loss function L that penalizes the differences between the

generated and ground truth mel spectrogram. That is,

min
W

E(ti,ai)∼D {L(g(ti,si, f0i,zi;W ),meli)} (2.1)

where D is the dataset containing text and audio pairs (ti,ai). The variables (si, f0i,zi,meli) are

all derived from the target waveform ai. For the loss function L, we use the L2 loss between the

generated and ground truth mel spectrograms.

During training, the synthesizer learns another latent variable: the attention map between

the encoder and decoder states which captures the alignment between text and audio. Following

the notation used in [167], we call this latent variable rhythm, since it controls the timing aspects

of synthesized speech. Note that unlike other style aspects which can be obtained directly from

ai, deriving rhythm requires both text and audio (ti,ai). In our experiments, we obtain the rhythm

by using our synthesizer as a forced-aligner. That is, for a given text and audio pair, we derive

the attention map between the encoder and decoder states by doing a forward pass through our

model using teacher forcing. Therefore, during inference, our synthesizer g can be explicitly

conditioned on rhythm r derived from some text and audio pair: g(t,s, f0,z,r;W ).

While the style aspects are obtained from the target waveform of the same speaker during

training, we can use a different reference audio and text pair during inference. For example, we
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can transfer the pitch contour and rhythm of a style reference audio S from a different speaker to

the voice of a given target speaker T as follows:

mel = g(tS,sT , f0S,zT ,rS;W ) (2.2)

The output mel should have the same pitch and rhythm as the style reference S and should retain

the latent style aspects and voice of the target speaker T .

Additionally, to assess the importance of pitch contours during training, we train another

TTS model that is conditioned only on the latent style aspects obtained using GST. We use the

same Tacotron2 architecture and GST module as our proposed model. Formally, this alternative

synthesizer g(t,s,z;W ) is trained to optimize the same objective as Equation 2.1:

min
W

E(ti,ai)∼D {L(g(ti,si,zi;W ),meli)} (2.3)

We refer to this alternative model as Tacotron2 + GST in our experiments. Similar to our

proposed system, this model can also be additionally conditioned on rhythm. Since we are not

explicitly conditioning the model on pitch contours, we expect the pitch variation in speech to

be captured as part of the latent style tokens. We empirically demonstrate that using only latent

style representation on a large multi-speaker dataset with neutral prosody offers limited style

control and audio naturalness.

Vocoder:

For decoding the synthesized mel-spectrograms into listenable waveforms, we use the

WaveGlow [133] model trained on the single speaker Sally dataset [167]. An advantage of

WaveGlow over WaveNet [168] is that it allows real-time inference, while being competitive in

terms of audio naturalness. The same vocoder model is used across all experiments and datasets.

We find that the vocoder model trained on a single speaker generalizes well across all speakers

in our datasets.
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2.2.2 Cloning Techniques: Zero-Shot and Model Adaptation

We adopt the following two approaches for cloning the voice of a new speaker from a

few transcribed or untranscribed speech samples:

Zero-Shot: For zero-shot voice cloning, we derive the speaker embedding by taking the

mean followed by L-2 normalization of the speaker encodings of the individual samples of the

target speaker. Since speaker encodings are obtained directly from the waveforms, we do not

require audio transcriptions of the new speaker for zero-shot voice cloning.

Model Adaptation: When transcribed samples of a new speaker are available, we

can fine-tune our synthesis model using the text and audio pairs. As shown in Neural Voice

Cloning [3], fine-tuning can significantly improve the speaker similarity metrics of the cloned

speech. Also, the authors of [3] observe that fine-tuning the whole synthesis model is faster and

more effective than fine-tuning only the speaker embedding layer since more degrees of freedom

are allowed in the whole model adaptation. Our preliminary experiments on model adaptation

suggested the same. We hypothesize the reason for this is that fine-tuning the last-few layers of

the synthesis model is essential, if not sufficient, to adapt the synthesizer to the speaker-specific

speech characteristics. Therefore, we study the following two model adaptation techniques:

Adaptation whole - Fine-tune all the parameters of the synthesis model on the text and audio

pairs of the new speaker. Adaptation decoder - Fine-tune only the decoder parameters of the

synthesis model. The advantage of only adapting the decoder parameters is that it requires fewer

speaker-specific model parameters and a shared encoder can be used across all speakers in a

real-world deployment setting. In both of the above adaptation settings, we fine-tune our model

for 100 to 200 iterations using Adam optimizer with a learning rate of 1e−4.

2.2.3 Experiments on Expressive Voice Cloning

We train our mel-spectrogram synthesis model on the clean subset of the publicly

available Libri-TTS [184] dataset—train-clean-100 and train-clean-360. This clean subset
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contains around 245 hours of speech across 1151 speakers sampled at 24 kHz. We filter out

utterances longer than 10 seconds and resample waveforms to 22050 Hz. The speaker embedding

layer is replaced with our speaker encoding network which is kept frozen during training. We

use a validation set with 250 examples and train the model using a batch size of 32 and an initial

learning rate of 5e-4. We use an Adam optimizer [83] to update the weights and anneal the

learning rate to half its value every 50k mini-batch iterations. For the Tacotron 2 + GST model,

we use the same Tacotron 2 architecture and GST hyper-parameters as our proposed model.

Training for the proposed model and the Tacotron 2 + GST model converged in 210,000 and

185,000 mini-batch iterations respectively and took around 4 seconds per iteration on a single

Nvidia Titan 1080 GPU. The Resemblyzer speaker encoder [108, 107] used in our experiments is

trained on the VoxCeleb [116], VoxCeleb2 [35] and LibriSpeech-other [123] datasets containing

a total of 8.4k speakers. The authors of [107] report a 4.5% Equal Error Rate (EER) for the task

of speaker verification using this speaker encoder on their internal test set.

To evaluate our cloning techniques objectively in terms of style and speaker disentangle-

ment, and also assess their usefulness in real world settings, we perform the following cloning

tasks:

1. Text Cloning speech directly from text: For cloning speech directly from text, we first

synthesize speech for the given text using a single speaker TTS model: Tacotron 2 + WaveGlow

trained on the LJ Speech [74] dataset. We then derive the pitch contour of the synthetic speech

using the Yin algorithm [41] and scale the pitch contour linearly to have the same mean pitch

as that of the target speaker samples. For deriving rhythm, we use our proposed synthesis

model as a forced aligner between the text and Tacotron2-synthesized speech. We use the target

speaker samples for obtaining the GST embedding for both our proposed model and the baseline

Tacotron2 + GST model.

2. Imitation - Reconstruct a sample from the target speaker: In this setup, we use a text

and audio pair of the target speaker (not contained in the target speaker samples), and try to

reconstruct the audio from its factorized representation using our synthesis model. All of the
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style conditioning variables - pitch, rhythm and GST embedding are derived from the speech

sample we are trying to imitate. The imitation task is a toy experiment that allows quantitative

evaluation of style similarity metrics between the synthesized speech and style reference.

3. Style Transfer - Transfer the pitch and rhythm of speech from a different expressive speaker:

The goal of this task is to transfer the pitch and rhythm from some expressive speech to the

cloned speech for the target speaker. For this task, we use examples from the single speaker

Blizzard 2013 dataset [82] as style references. This dataset contains expressive audio book

readings from a single speaker with high variation in emotion and pitch. For our proposed model,

we use this style reference audio to extract the pitch and rhythm. Similar to the Text task, we

scale the pitch contour to have the same mean as that of the target speaker samples. In-order

to retain speaker-specific latent style aspects, we use target speaker samples to extract the GST

embedding. For the Tacotron2 + GST model, which does not have explicit pitch conditioning,

we use the style reference audio for obtaining the GST embedding and the rhythm.

For the above-described cloning tasks, we evaluate three aspects of the cloned speech: i)

speaker similarity to the target speaker, ii) style similarity to the reference style and iii) speech

naturalness. We encourage the readers to listen to our audio examples referenced in the footnote

of the first page to contextualize the following results.

Speaker Classification Accuracy: We train a speaker classifier on the VCTK dataset to classify

a given utterance as one of the 108 speakers. The speaker classifier is a two layer neural network

with 256 hidden units that takes as input the speaker encoding obtained through our pre-trained

speaker encoder network. Similar to [3], our speaker classifier achieves 100% accuracy on a

hold out set containing 200 examples from the VCTK dataset. However, since our classification

model and training dataset for the synthesizer are not the same as [3] (1,151 speakers in ours

vs. 2,481 speakers in [3]), we do not make direct comparisons with their work.

We conduct our speaker classification evaluations on all 108 speakers of the VCTK

dataset. We clone 25 speech samples per speaker for each cloning task. Figure 2.3 (left) shows

the speaker classification accuracy curves for all cloning tasks and techniques with respect to
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the number of target speaker samples. Our results are consistent with the following findings

of [3]—Model adaptation significantly outperforms the zero-shot voice cloning technique since it

allows the model to adjust to the speaker characteristics of the new speaker. More target speaker

samples helps improve speaker classification accuracy, although in the zero-shot scenario we do

not observe much improvement after 10 target speaker samples.

For zero-shot voice cloning, both Tacotron2-GST and our proposed model achieve similar

speaker classification accuracy for Text and Style Transfer cloning tasks. The accuracy of our

proposed model is slightly higher for the imitation task as compared to other tasks for both model

adaptation and zero-shot voice cloning. This implies that conditioning on the actual pitch contour

of the target speaker improves speaker specific characteristics of the cloned speech. While linear

scaling of a reference style pitch contour works well, our findings motivate future research on

predicting speaker-specific pitch contours from text and speaker encodings.
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Figure 2.3. Speaker similarity evaluation of each cloning technique for different voice cloning
tasks in terms of Speaker Classification Accuracy and Speaker Verification Equal Error Rate
(SV-EER).

Speaker verification Equal Error Rate (SV-EER): SV-EER is another objective metric used

to evaluate speaker similarity between the cloned audio and the ground-truth reference audio.

We use a speaker verification system that scores the speaker similarity between two utterances

based on the cosine similarity of the encodings obtained using the speaker encoder described
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in Section 2.2.1. Equal Error Rate (EER) is the point when the false acceptance rate and false

rejection rate of the speaker verification system are equal.

We perform speaker verification evaluations on randomly selected 20 speakers in the

VCTK dataset. We enroll 5 speech samples per speaker in the speaker verification system and

synthesize 50 speech samples per speaker for each cloning task. EERs are estimated by pairing

each sample of the same speaker with another sample from a different speaker. Figure 2.3 shows

the plots of SV-EER for different cloning techniques and tasks using our proposed model and

also the those estimated using real data. Our observations on the SV-EER metric are similar to

those on the accuracy metric. Model adaptation outperforms zero-shot cloning techniques and

with more than 10 cloning samples achieves similar EER as the real data.

Table 2.2. Style similarity evaluations for the imitation and style transfer tasks. We use three
objective error metrics (lower values are better). For the style transfer task we present the mean
opinion scores on style similarity (Style-MOS) with 95% confidence interval.

Imitation Style Transfer

Approach GPE VDE FFE Style-MOS

Tacotron2 + GST - Zero-shot 20.37% 26.39% 29.47% 2.69±0.11
Proposed Model - Zero-shot 3.72% 10.65% 11.74% 3.15±0.11
Proposed Model - Adaptation Whole 2.97% 12.58% 13.60% 3.40±0.10
Proposed Model - Adaptation Decoder 2.39% 11.60% 12.51% 3.29±0.10

Style Similarity: In order to evaluate the similarity between the style of synthesized and

reference audio, we perform quantitative evaluation on the Imitation task. We use the following

error metrics: Gross Pitch Error (GPE) [117], Voicing Decision Error (VDE) [117] and F0 Frame

Error (FFE) [34]. Results are presented in Table 2.2 in which we compare the error values for

different approaches when using 10 target speaker samples for cloning. We synthesize 25 speech

samples per speaker for all speakers in the VCTK dataset to estimate the reported error values.

Our proposed models significantly outperform the Tacotron 2 + GST baseline, clearly indicating

the importance of pitch contour conditioning for accurate style transfer.

We also conduct a crowd-sourced listening test on Amazon Mechanical Turk (AMT) for

28



the style transfer task in which we ask the listeners to rate the style similarity between the ground

truth style reference and synthesized audio on a 5 point scale. For each cloning technique (using

10 target speaker samples), we synthesize 25 audio samples per speaker for 20 speakers in the

VCTK dataset leading to 500 evaluations of each technique. We present the style similarity Mean

Opinion Scores (Style-MOS) in Table 2.2. It can be seen that our proposed models significantly

outperform the Tacotron 2 + GST model. Model adaptation techniques perform slightly better

than zero-shot method suggesting that fine-tuning improves the model predictions for an unseen

speaker encoding.

Naturalness: To assess speech naturalness, we conducted a crowd-sourced listening test on

AMT and asked listeners to rate each audio utterance on a 5-point naturalness scale to collect

Mean Opinion Scores (MOS). Similar to the above mentioned user study, we use 10 target

speaker samples for each cloning technique. All evaluations are conducted on randomly selected

20 VCTK speakers with 25 audio samples synthesized per speaker. Each sample is rated

independently by a single listener leading to 500 evaluations for each technique per cloning task.

We report the MOS of Real data and audio synthesized using different cloning techniques in

Table 2.3. Our proposed model significantly outperforms the baseline Tacotron2 + GST model for

both zero-shot and model adaptation techniques. This suggests that pitch contour conditioning in

a multi-speaker setting helps improve speech naturalness in addition to providing higher style

similarity. It can be seen that the naturalness is even further improved with model adaptation

techniques since it allows the generative model to adjust for the unseen speaker encodings.

2.3 Voice Conversion Using Iterative Self-Refinement

In this section, I describe a zero-shot voice conversion framework we developed using

speech representations trained with self-supervised learning. The key idea behind our voice

conversion system is disentangling speech into features describing the linguistic content and

speaker characteristics. Synthesizing speech from these disentangled features allows voice
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Table 2.3. Mean Opinion Score (MOS) for speech naturalness with 95% confidence intervals.

Cloning Task

Approach Text Imitation Style Transfer

Real data VCTK 4.11±0.08
Real data Blizzard 4.07±0.08

Tacotron2 + GST - Zero-shot 2.67±0.10 2.51±0.10 3.02±0.09
Proposed Model - Zero-shot 3.56±0.09 3.54±0.10 3.53±0.10
Proposed Model - Adaptation Whole 3.75±0.09 3.71±0.09 3.60±0.09
Proposed Model - Adaptation Decoder 3.61±0.09 3.57±0.09 3.45±0.09

conversion by swapping the speaker embedding of a given utterance with a target speaker.

To derive disentangled speech representations in a text-free manner, recent methods [92,

131, 101, 68, 28] have proposed to obtain speaker information from a speaker verification model

and linguistic content information from the output of models trained using self-supervised

learning (SSL) [7, 62]. While the representations obtained from the SSL models are highly

correlated with phonetic information, they also contain speaker information [71, 68, 70]. To

remove speaker information from the SSL model outputs, some techniques utilize an information

bottleneck approach such as quantization [131, 92, 60]. Alternatively, several researchers have

proposed training strategies that employ an information perturbation technique to eliminate

speaker information without quantization [135, 28, 29, 71]. Notably, for training synthesizers,

NANSY [28] and NANSY++ [29] propose to heuristically perturb the voice of a given utterance

with hand-engineered data augmentations, before deriving the content embedding from the

SSL model. To reconstruct the original audio accurately, the synthesizer is forced to derive

the speaker characteristics from the speaker embedding since the speaker information in the

content embedding is perturbed. While such techniques are effective, heuristic voice perturbation

algorithms based on pitch randomization and formant shifting represent a very limited set of

transformations. We hypothesize that such training strategies can be improved by utilizing neural

network-generated augmentations.

In our work, I propose a learning framework to automatically generate diverse data
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transformations during training and enable controllable speech synthesis from imperfectly dis-

entangled but uncompressed speech representations. First, we develop a feature extraction

methodology that not only derives the content and speaker embeddings but also prosodic infor-

mation such as speaking rate and pitch modulation. Next, to train a controllable synthesizer,

we propose a training strategy that utilizes the synthesis model itself to create challenging

voice-converted transformations of a given speech utterance. At any given training iteration, the

current state of the synthesis model is used to transform the input content embedding and the

model is updated to minimize the reconstruction error of the original utterance.

All the components in our framework are trained in a text-free manner requiring only

audio data. Once trained, our framework can be used for tasks such as zero-shot voice con-

version, audio reconstruction with pitch and duration modulation as well as multilingual voice

conversion across languages outside of the training set. On metrics evaluating speaker similarity,

intelligibility and naturalness of synthesized speech we demonstrate that our model outperforms

previously proposed zero-shot voice conversion methods for both seen and unseen speakers.

2.3.1 Related Work

Voice conversion: Voice conversion is the task of modifying an utterance of a source

speaker to match the vocal qualities of a target speaker. Traditionally, voice conversion models

were trained as a speech-to-speech translation system on a parallel dataset containing multiple

speakers saying the same utterance [154, 25]. More recently, voice conversion systems have been

developed by training neural synthesizers to reconstruct speech from disentangled representations

describing content and speaker characteristics [134, 33]. For example, [153, 163] have utilized

pre-trained automatic speech recognition (ASR) and speaker verification (SV) models to disen-

tangle content and speaker information respectively. The predicted text or phonetic posteriogram

(PPG) obtained from the ASR model is taken as the content representation. However, such voice

conversion systems have limitations: 1) Training such systems requires transcribed speech data

and the synthesis is limited to the language the model is trained on. 2) Text and PPG do not
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capture all linguistic features such as accent, expressions, emotions or speaker-independent style

resulting in neutral-sounding synthesized speech.

To derive linguistic content in a text-free manner, some prior works have utilized SSL

based models. However, as noted by prior work [131, 68], SSL model outputs do not necessarily

separate speaker and content information. One line of research [131, 92, 60] aiming to disentangle

the speaker and content representations, proposes an information bottleneck approach to quantize

SSL model outputs thereby limiting the information to only capture the content or pseudo-text

of the audio. However, the loss of information during such a quantization approach leads to

sub-optimal reconstruction quality.

Addressing the limitations of information bottleneck approaches, researchers have pro-

posed training strategies based on heuristic transformations. For example, in ContentVec [135]

and ACE-VC [71], while training the SSL-based feature extractor model, the audio is trans-

formed using pitch-shift transformation and the SSL model is encouraged to output similar

representations for the original and transformed audio. Alternatively, in NANSY [28], the trans-

formations are applied while training the synthesizer, i.e. the synthesizer is tasked to reconstruct

the original audio from the content representation of audio perturbed using transforms such as

formant-shift, pitch-randomization and randomized frequency shaping. Although these heuristic

transformations serve as a reasonable proxy for voice conversion methods, we hypothesize such

methods can be greatly improved by utilizing the voice conversion system itself to generate more

diverse input transformations.

Transformation invariant representation learning: Learning representations that are

invariant to various input transformations has been a topic of significant interest in unsupervised

representation learning [6, 113]. Several techniques addressing this challenge utilize domain-

specific and hand-engineered data augmentation methods [27, 22, 164, 59, 113] for training

transformation invariant representation encoders. Stochastic data augmentation in the image

domain such as cropping, rescaling, shifts in brightness and recoloring have been popularly

used [27, 164] to learn robust representations for image classification tasks. More recently, [158]
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Figure 2.4. Voice Conversion Approach Overview: The synthesis model is trained to reconstruct
the mel-spectrogram from SSL-based content representation of a transformed audio (heuristic or
self-transformed) and speaker embedding of the original audio.

proposed to train generative models to produce diverse views from a given input by adding a

bounded perturbation. Their results demonstrate that neural generative models can produce a

more diverse set of input distortions (compared to hand-engineered augmentations) without

requiring domain-specific knowledge. While such techniques have been useful for learning

transformation invariant representations for downstream recognition tasks, their applicability for

upstream generative tasks is yet to be explored. In our work, we develop a novel framework for

training a controllable synthesis model using self-generated input transformations. In contrast to

previous ideas, we do not introduce additional networks for data augmentation but utilize the

synthesizer model itself to generate diverse input transformations.

2.3.2 Voice Conversion Approach

Our framework consists of two main components: 1) A feature extractor that derives

content (linguistic features), speaker and style representations from a given speech utterance. 2)

A synthesizer that reconstructs the audio from the derived representations. To allow controllable
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synthesis from imperfectly disentangled representations, we propose a training strategy that

challenges the model to reconstruct the audio from self-generated perturbations of the content

representation. Specifically, we train the model to reconstruct the audio from the content

representation of a heuristically modified or self transformed audio, while preserving the speaker

and style representations. The content and speaker encoder networks remain fixed during

synthesis model training.

Feature Extraction

Content Embedding: We define content as a temporal feature that encodes the linguistic

information of a given speech utterance. We use the output of the Conformer-SSL [62] model

(Gc) as the content representation of speech (z). The Conformer-SSL model is a convolution-

augmented transformer architecture that is trained to reconstruct the masked areas of the mel-

spectrogram on 56k hours of English speech data, using contrastive and masked language

modelling (MLM) losses. The representations derived from SSL-based speech encoder models

have been shown to have a high correlation with corresponding phonetic information [7]. Given

a speech utterance as a sequence of mel-spectrogram frames x = x1 . . .xT , the Conformer-SSL

model outputs a temporally downsampled sequence of feature vectors z = Gc(x) = z1 . . .zT ′ . In

our setup, the SSL model temporally downsamples the mel-spectrogram by a factor of 4 and

the output at each time-step zt is a 256 dimensional vector corresponding to a contextualized

representation of roughly 46 milliseconds of audio.

Speaking Rate or Duration: Speaking rate determines how long the speaker vocalizes each

phoneme of a given utterance. Since the speaking rate can vary greatly across different speakers

and accents, accurate modelling of speaking rate during synthesis is important to closely mimic

a target speaker. We propose a technique to derive the speaking rate or duration information

in a text-free manner from the content representation. Since SSL representations have a high

correlation with phonemes [7, 62], we conjecture that if a phoneme is emphasized in an utter-

ance, the consecutive content vectors at the corresponding timesteps will have high similarity.
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Therefore, we propose Algorithm 1 to process the content representation z = z1 . . .zT ′ into a

duration-augmented content representation z′ = z′1 . . .z
′
T ′ and d′ = d′1 . . .d

′
T ′ . We group together

consecutive content vectors with cosine similarity higher than a threshold τ , and set the target

duration for the averaged vector as the number of grouped vectors times the duration of a single

vector.

Algorithm 1. Deriving duration-augmented content by grouping similar consecutive vectors

1: z′← [z1] ▷ Initialize z′ with the vector from the first time-step in z
2: d′← [δ ] ▷ d′t represents duration of z′t . δ represents duration of of each zt (i.e 46 ms)
3: num grouped← 1 ▷ number of similar vectors grouped at the last processed time-step
4: for t← 2 to T ′ do
5: if CosineSimilarity(zt ,z′[−1])> τ then ▷ Group zt with the running group
6: z′[−1]← (zt +num grouped ∗ z′[−1])/(num grouped +1) ▷ Update average
7: d′[−1]← δ ∗ (num grouped +1)
8: num grouped← num grouped +1
9: else ▷ Insert zt in a new group

10: z′.append(zt)
11: d′.append(δ )
12: num grouped← 1
13: end if
14: end for
15: return z′,d′

Speaker Embedding: The speaker embeddings in our setup are derived from the TitaNet [85]

model (Gs). TitaNet is based on a 1-D depthwise separable convolution architecture with Squeeze

and Excitation layers that provide global context. The TitaNet speaker verification model is

trained using additive angular margin loss [102] on 3373 hours of speech from multiple datasets

that span 16681 speakers. The model is designed to be parameter-efficient and achieves state-of-

the-art results on the VoxCeleb-1 speaker verification benchmark with an EER of 0.68%. The

output from the speaker verification model is a 256 dimensional speaker embedding s = Gs(x).

Pitch Contour: The pitch contour p is derived from the fundamental frequency f0 contour of

the speech signal that represents the prosodic modulations over time. The raw values in the

fundamental frequency contour (derived from PYin algorithm [110]) are speaker-dependent,

therefore f0 is not strictly disentangled from the speaker information. To ensure that the pitch
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contour only encodes the prosodic changes and not the speaker identity, we normalize f0 using

the mean ( fmean) and standard deviation ( fstd) of all pitch contours of the given speaker. That is,

p = ( f0− fmean)/ fstd.

Synthesizer

The task of the synthesizer is to first reconstruct the ground-truth mel-spectrogram from

the extracted speech representations and then vocode the mel-spectrogram into a listenable

audio waveform. For vocoding, we use a HiFiGAN [87] vocoder, which is trained separately on

spectrogram and waveform pairs of real audio from a multi-speaker dataset.

Our mel-spectrogram synthesizer Gsynth is composed of two feed-forward transformers

Fe and Fd and intermediate modules to predict the duration and pitch similar to [94] but operates

on the grouped content representation z′ = z′1 . . .z
′
T ′ instead of text. The speaker embedding s

is repeated across all time-steps and concatenated with each z′t to be fed as input to the first

feed-forward transformer Fe. The hidden representation from Fe is then used to predict the

duration and pitch, that is: h = Fe(z′,s); ŷd = DurationPredictor(h), ŷp = PitchPredictor(h).

The pitch contour is projected and averaged over each time-step of the hidden representation

h and added to h to get k = h+PitchEmbedding(p). Finally, k is discretely upsampled as per

the ground-truth duration d′ and fed as input to the second transformer Fd to get the predicted

mel-spectrogram ŷ = Fd(DurationRegulation(k,d′))

Our model is trained to optimize three losses — mel-reconstruction error, pitch prediction

error and duration prediction error such that

Lsynth = ∥ŷ− y∥2
2 +λ1∥ŷp− p∥2

2 +λ2∥ŷd−d′∥2
2 (2.4)

During inference, we can use either the predicted pitch and duration, in which case the

prosody is derived from both the content and speaker embeddings; or we can mimic the prosody

and speaking rate of the source utterance by using ground-truth duration and pitch information.
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Figure 2.5. (a) The feature extractor derives the duration augmented content information from
an SSL model, pitch information using PYin algorithm and speaker embedding from a speaker
verification model. (b) The synthesizer reconstructs the mel-spectrogram from the derived
features.

2.3.3 Synthesizer Training: Iterative Refinement using Self Transforms

While the mel-spectrogram can be accurately reconstructed from a synthesizer trained

using the objective given by Equation 2.4, during inference, we cannot effectively modify the

voice of a given utterance. This is because the content representation z′ is not strictly disentangled

from the speaker information. To address this challenge, past works [28, 29], have proposed

an information perturbation based training strategy as follows: Instead of feeding the content

embedding of the original audio as the input, the audio is perturbed to synthetically modify the

speaker characteristics using formant-shifting, pitch-randomization and randomized frequency

shaping transforms to obtain xp = gheuristic(x). Next, the content embedding is derived from the

perturbed audio z′ = Gc(xp), while the speaker embedding is still derived from the original audio

s = Gs(x). The network is then tasked to reconstruct the original audio from z′ and s. While

heuristically perturbed content representations play a crucial role in enhancing the synthesizer

model’s attention towards the speaker embedding, they are limited in terms of the range of

transformations they can introduce. Heuristic transformations represent only a subset of the

potential natural variations that can occur during voice conversion.
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To expand on the heuristic set of transforms, we propose to utilize the synthesizer model

itself to generate a voice-converted variation of a given utterance x. That is, given a synthesizer

model Gi
synth trained until training iteration i, we obtain a self transformed audio for iteration

i+1 as:

xp = gself(x) = Gi
synth((Gc(x),s′) (2.5)

where Gc(x) is the content embedding of the original audio x and s′ is the speaker embedding

obtained from an utterance x′ of a different randomly selected speaker, that is, s′ = Gs(x′). The

content embedding input for the training step i+1 is then derived as z′ = Gc(xp).

Self transformations not only provide a more diverse set of transformations but also

present an increasingly challenging reconstruction task for the synthesizer, as its voice conversion

capabilities improve with each training iteration. Figure 2.4 demonstrates the proposed self

transformation training strategy. In our experiments, we begin self transformations after 100k

mini-batch iterations of training with heuristically modified audio. Thereafter, we continue to

use self transformations to obtain xp.

2.3.4 Experiments on Voice Conversion

Dataset and Training

The Conformer-SSL model used as the content encoder is pretrained on 56k hours of

unlabelled English speech from the LibriLight [77] corpus sampled at 16 KHz. We finetune the

Conformer-SSL model (using self-supervision with contrastive and MLM loss) on the train-

clean-360 subset of LibriTTS [183] dataset with audio sampled at 22050Hz to make the model

compatible with the mel-spectrogram representation of the synthesizer. For both the content

encoder and synthesizer, we use 80 bands for mel spectrogram with the FFT, window, and hop

size set to 1024, 1024, and 256 respectively. We finetune the Conformer-SSL on this revised

spectrogram representation for 50 epochs with a batch size of 32 using the AdamW optimizer
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with a fixed learning rate of 5e−5 and β1 = 0.9,β2 = 0.99. Finetuning takes around 50 hours

on a single NVIDIA A600 GPU.

For our primary experiments, the mel-spectrogram synthesizer and the HifiGAN vocoder

are also trained on the train-clean-360 subset of the LibriTTS dataset which contains 360 hours

of speech from 904 speakers. We train three variants of the mel-spectrogram synthesizer:

1. Synth (NoTransform) is trained to simply reconstruct the mel-spectrogram from the

embeddings of the given utterance without any information perturbation procedure.

2. Synth (Heuristic) is trained to reconstruct the mel-spectrogram from the content embed-

ding of the heuristically perturbed utterance and the speaker embedding of the original

utterance. We employ two transforms g1,g2 proposed in [28]. g1 perturbs formant, pitch,

and frequency response and g2 perturbs formant and frequency response while preserving

pitch.

3. Synth (SelfTransform) is first trained in the same way as Synth-Heuristic for the first

100k mini batch iterations. Thereafter, we use the gself transformation procedure given by

Equation 2.5.

All three variants of the synthesizer are optimized using AdamW optimizer [106] with a

fixed learning rate of 1e−4 and β1 = 0.8,β2 = 0.99 for 500 epochs with a batch size of 32. The

threshold τ for duration extraction is set as 0.925. The loss coefficients for the duration and pitch

loss are set as λ1 = λ2 = 0.1. Training time for Synth (SelfTransform) model is around 5 days on

4 NVIDIA A600 GPUs. The HifiGAN vocoder is trained on the mel-spectrogram and waveform

pairs of the real audio utterances and the same vocoder is used across all three synthesizers.

Evaluation Metrics

Quantitatively, we evaluate the synthesized audio on the following aspects:

1. Intelligibility (CER): We compute the Character Error Rate (CER) between the ASR tran-

scriptions of the original source and the generated audio. We use pre-trained Quartznet [90]
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ASR models for the respective language of the given utterance.

2. Speaker Similarity (SV-EER): To evaluate speaker similarity to our target speaker, we

compute the speaker embeddings of synthesized and real utterances using a separate pre-

trained speaker verification model [86]. Then we pair the synthesized and real utterances

to create an equal number of positive and negative pairs for each target speaker to compute

the Equal Error Rate (SV-EER).

3. Naturalness (MOS): We perform a human study on Amazon Mechanical Turk, where

human judges rate the naturalness of each utterance on a 1 to 5 scale with 0.5 point

increments. Each utterance is rated by 4 independent listeners and each listener can rate

multiple utterances. For 200 synthesized utterances from each technique, this procedure

results in a total of 800 evaluations of each technique.

4. Prosodic Similarity (GPE): To evaluate prosodic similarity for the reconstruction task

(Section 2.3.4), we compute the error between the fundamental frequency contours of the

original and synthesized audio. Specifically, we use the Gross Pitch Error (GPE) [34] to

evaluate prosodic similarity.

Reconstruction Results

First, we evaluate how effectively our setup can reconstruct audio from the extracted

representations for unseen utterances and speakers. Our synthesizers can operate in two modes

during inference — 1) Guided: In this scenario, we use ground truth pitch and duration informa-

tion derived from the source utterance. 2) Predictive: In this case, we use the predicted pitch and

duration for synthesis.

We conduct the reconstruction test on two unseen datasets — 1) We choose 200 utterances

from the VCTK [178] dataset (English) with 20 random utterances from each of the 10 speakers

(5 random male and 5 random female speakers); 2) To evaluate performance on unseen languages,

we choose 200 utterances from the CSS10 [126] dataset with 20 random utterances from each
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of the 10 unseen languages. The CSS10 dataset has a single speaker per language. For both of

these evaluations, we use the synthesizer models trained on the same dataset, i.e. train-clean-360

subset of LibriTTS (English). The synthesized speech is evaluated on the intelligibility, speaker

similarity and prosodic similarity metrics. As indicated by the results in Table 2.4, all three

synthesizers can effectively reconstruct the speech signal from the derived representation. Since

the model is trained in a text-free manner, we also see a promising generalization to unseen

languages. For unseen languages, our synthesizers produce more intelligible speech in the guided

mode, where the duration information of the source utterance is kept intact. In the reconstruction

mode, since the speaker and content embeddings are derived from the same utterance, both Synth

(NoTransform) and Synth (Heuristic) models achieve competitive speaker similarity to the target

speaker. However, for controllable synthesis tasks such as voice conversion, we demonstrate that

Synth (SelfTransforms) outperforms these models.

Table 2.4. Reconstruction evaluation: The resynthesized speech from different synthesizers is
evaluated for intelligibility (CER), speaker similarity (SV-EER) and prosodic similarity (GPE).
Lower values are desirable for all three metrics.

Guided Predictive

Dataset Technique SV-EER CER GPE SV-EER CER GPE

Real Data 3.1% - - 3.1% - -
VCTK Synth (NoTransform) 4.6% 3.5% 8.0% 4.7% 4.9% 22.0%

(English) Synth (Heuristic) 4.3% 2.9% 8.8% 4.5% 4.1% 21.1%
Seen Language Synth (SelfTransform) 4.2% 2.2% 8.9% 4.1% 3.9% 21.0%

Real Data 2.3% - - 2.3% - -
CSS10 Synth (NoTransform) 5.5% 25.5% 11.7% 4.9% 29.8% 15.9%

(Multilingual) Synth (Heuristic) 5.3% 26.1% 11.6% 5.5% 30.2% 16.1%
Unseen Language Synth (SelfTransform) 4.1% 25.2% 10.8% 4.8% 29.2% 16.8%

Voice Conversion Results

To convert the voice of a given source utterance to a target speaker, we derive the content

embedding from the source utterance and estimate the speaker embedding from the target

speaker’s audio and feed both as input to the synthesizer. We consider two voice conversion

scenarios — for a seen speaker to another seen speaker from the training data (Many-to-Many)
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and from an unseen speaker to another unseen speaker outside of training data (Any-to-Any). For

seen speakers, we use the holdout utterances of the train-clean-360 subset of LibriTTS dataset,

and for unseen speakers, we use the VCTK dataset. For each scenario, we randomly select 20

target speakers (10 male and 10 female). Next, we select 10 source utterances, each one from 10

alternate speakers. This results in a total of 200 voice conversion trials in each scenario.

Table 2.5. Comparison of different voice-conversion techniques. Lower values for SV-EER and
CER are desirable for higher speaker similarity and intelligibility respectively. Higher MOS
(reported with 95% confidence interval) indicates more natural-sounding speech.

Many-to-Many Any-to-Any

Technique SV-EER CER MOS SV-EER CER MOS

Real Data 2.9% - 4.03±0.09 3.1% - 4.08±0.09

AutoVC [134] 23.5% 21.2% 2.75±0.11 38.3% 34.2% 2.46±0.11
AdaIN-VC [33] 18.2% 29.2% 2.64±0.11 27.5% 30.3% 2.82±0.12
MediumVC [60] 10.2% 31.5% 3.01±0.12 23.2% 36.2% 2.95±0.11
FragmentVC [101] 15.9% 27.2% 3.10±0.11 24.8% 38.5% 3.11±0.12
S3PRL-VC [68] 13.7% 9.8% 3.20±0.11 22.8% 9.8% 3.14±0.12
YourTTS [23] 9.5% 6.1% 3.52±0.10 12.3% 7.9% 3.58±0.10
ACE-VC [71] 5.3% 3.7% 3.58±0.10 9.2% 8.2% 3.68±0.09

Synth (NoTransform) 19.1% 2.6% 3.55±0.12 25.2% 3.8% 3.51±0.11
Synth (Heuristic) 4.4% 2.3% 3.69±0.12 10.5% 3.1% 3.65±0.12
Synth (SelfTransform) 3.0% 2.2% 3.72±0.11 4.3% 3.1% 3.75±0.11

For our primary evaluation, we use 10 seconds of speech from each target speaker to

derive the speaker embedding. We split the 10 second target-speaker utterance into 2 second

segments and estimate the speaker embedding as the mean speaker embedding across the

segments. We also evaluate the speaker-similarity performance for different amounts of target

speaker data and present the results in Figure 2.6.

The synthesized speech is evaluated on three aspects: speaker similarity, intelligibility

and naturalness. We compare our synthesis model against several prior voice conversion methods

listed in Table 2.5. While NANSY [29] is not open-sourced, our Synth (Heuristic) baseline

model closely follows the training strategy proposed in NANSY, incorporating more recent

neural architectures for the synthesizer and feature extractors. As shown by the results, the Synth
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Figure 2.6. Left: SV-EER of voice-converted speech generated by Synth (SelfTransform) using
different amounts of target speaker data. Right: TSNE visualization of speaker embeddings
of generated (using Synth (SelfTransform)) and ground-truth audio. Each color represents a
different speaker.

(SelfTransform) model outperforms the Synth (NoTransform) and Synth (Heuristic) models on

the speaker similarity metrics. The improvement is even more notable for Any-to-Any voice

conversion task. On all three metrics, our proposed technique outperforms previously proposed

voice conversion models. In Figure 2.6, we show TSNE plots of the speaker embeddings of

generated and real audio.

Cross-lingual Voice Conversion: In this setup, we consider three scenarios — 1) S2U:

Source utterance from a seen language speaker (English VCTK) and target speaker from an

unseen language (CSS10). 2) U2S: Source utterance from an unseen language (CSS10) and

target speaker from the source language (English VCTK). 3) U2U: Source utterance from an

unseen language (CSS10) and target speaker from another unseen language (CSS10).

We present the results in Table 2.6. While the Synth (SelfTransform) model generates

speech with high speaker-similarity in all three scenarios, the generated speech is more intelligible

when the source utterance is in English. This is not surprising since the synthesizer is trained on

only English speech (LibriTTS).
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Table 2.6. Results on cross-lingual voice conversion task in three scenarios considering different
languages for source utterance and target speaker. Lower SV-EER is desirable for higher speaker
similarity and lower CER is desirable for more intelligible speech.

S2U U2S U2U

Technique SV-EER CER SV-EER CER SV-EER CER

Real Data 2.3% - 3.1% - 3.1% -

Synth (NoTransform) 31.2% 3.8% 28.2% 29.7% 39.1% 30.7%
Synth (Heuristic) 15.3% 3.1% 9.0% 28.5% 22.1% 29.5%
Synth (SelfTransform) 8.5% 3.0% 5.4% 27.5% 15.1% 29.1%

2.4 Conclusion

In this chapter, I described two speech synthesis frameworks that tackle the problem of

expressive speech synthesis for new speakers. The first framework is a voice-cloning method

that performs text-to-speech synthesis with explicit control over speaker and style aspects. By

utilizing both latent and heuristically derived style information, the model is able to learn a

wide-range style control for unseen speakers while being trained on a mostly style-neutral

dataset. The second framework is a voice conversion model that proposes a training strategy

to perform controllable speech synthesis from imperfectly disentangled speech representations.

The synthesis model of the voice conversion framework allows speaker-adaptive duration and

pitch control for more natural-sounding speech achieving state-of-the-art results on various voice

conversion metrics. Both of the above frameworks enable high-quality speech synthesis that can

accompany AI-generated visuals for various generative media applications.
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Chapter 3

Synthetic Media Detectors and Their Vul-
nerability to Adversarial Attacks

Deep Neural Networks (DNNs) have brought about a significant advancement in the

realm of digital media generation. DNNs have not only improved the quality of artificially

generated and forged media, but they have also rendered the process of creating fake content

much simpler. Deepfakes are a new genre of synthetic videos, in which a subject’s face is

modified into a target face in order to simulate the target subject in a certain context and create

convincingly realistic footage of events that never occurred. Video manipulation methods like

Face2Face [162], Neural Textures [161] and FaceSwap [89] operate end-to-end on a source

video and target face and require minimal human expertise to generate fake videos in real-time.

Combined with the voice cloning and voice conversion techniques described in Chapter 2, these

methods can create high-quality fake videos that are hard to distinguish from real videos.

The intent of generating such videos can be harmless and has led to advances in research

on synthetic video generation for movies, storytelling, and modern-day streaming services.

However, they can also be used maliciously to spread misinformation, harass individuals or

defame famous personalities [156]. These videos are now an emerging threat, especially within

the realms of politics and misinformation. Deepfakes have been used to create fake news

aggravating political and religious tensions, with the aim to influence results in election cam-

paigns [63, 76, 120]. Such extensive spread of fake videos through social media platforms has
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raised significant concerns worldwide, particularly hampering the credibility of digital media.

Recent research has found evidence that widespread misinformation not only misleads indi-

viduals and reduces public trust on digital media but also leads to increased cynicism within

democratic societies [166].

To address the threats imposed by Deepfakes, the machine learning community has

proposed several countermeasures to identify forgeries in digital media [169]. In this chapter,

we first discuss the recently proposed state-of-the-art methods to detect Deepfake videos. The

recently proposed state-of-the-art methods use a visual DNN-based classification system that is

trained in a supervised manner on a curated dataset of real and fake videos. Deepfake detection

is typically modeled as a per-frame classification problem. Additionally, the best performing

models employ a face-tracking method following which the cropped face from a frame is passed

on to a CNN-based classifier for classification as real or fake [2, 32, 143, 65]. Some of the recent

Deepfake detection methods also use models that operate on a sequence of frames as opposed to

a single frame to exploit temporal dependencies in videos [40].

While the above DNN-based detection methods achieve promising results in accurately

detecting manipulated videos, my work uncovers major vulnerabilities in such systems. Later in

the chapter, I describe my work on AdversarialDeepfakes that examines the vulnerabilities of

Deepfake detection systems adversarial examples. An adversarial example is an intentionally

perturbed input that can fool a victim classification model [157]. We quantitatively assess

the vulnerability of Deepfake detectors to adversarial examples in different threat scenarios.

Assuming a complete access (white-box) threat scenario, we find that it is trivial to bypass a

Deepfake detector with an imperceptible adversarial modification to a given video. However, in

a practical threat scenario the attacker may not have knowledge of the victim detection model

and parameters. To this end, we assume a more challenging threat scenario in which the attacker

can only query a victim model to get the detection scores for a video frame. Even in this attack

scenario, we find that it is possible to bypass the detector with a slightly higher amount of

adversarial perturbation. Additionally, to ensure the adversarial videos remain effective even
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after video compression, we incorporate expectation over input transforms [5] while training the

adversarial perturbation to craft robust adversarial videos. While the above attacks can effectively

bypass Deepfake detectors, they can be easily thwarted by the service provider. Detection models

and parameters can be kept private to prevent the white-box attack and query access can be

limited to prevent the black-box attack. Adversarial examples pose a practical threat to Deepfake

detection if they are transferable across different detection methods. That is, if adversarial videos

designed to fool some open source Deepfake detection method can also reliably fool other unseen

CNN-based detection methods, this would pose a real security threat to deploying CNN-based

detectors in production. We experimentally demonstrate that it is possible to design highly

transferable adversarial examples by ensuring robustness to input-transformation functions while

training the perturbation. Finally, we design more accessible adversarial attacks by creating

transferable universal adversarial perturbations that can be universally added across all frames of

all videos to reliably fool a number of Deepfake detection methods.

3.1 Deepfake Detection Datasets

Deepfake detection methods rely on the availability of high-quality deepfake detection

datasets, which are crucial for training and evaluating deepfake detection models. Several

Deepfake detection datasets have been developed in recent years, each with its own unique

characteristics and properties. One of the most widely used Deepfake detection datasets is the

FaceForensics++ dataset. This dataset contains Deepfake and real videos captured using a variety

of cameras and settings. The dataset includes four types of Deepfakes:

• FaceSwap (FS): FaceSwap [89] is a classical computer graphics-based approach for face

replacement in videos. In this method, sparse facial landmarks are detected to extract the

face region in an image. These landmarks are then used to fit a 3D template model which

is back-projected onto the target image by minimizing the distance between the projected

shape and localized landmarks. Finally, the rendered model is blended with the image and
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color correction is applied.

• Face2Face (F2F): Face2Face [162] is a facial reenactment system that transfers the

expressions of a person in a source video to another person in a target video, while

maintaining the identity of the target person. In this method, faces are compressed into a

low-dimensional expression space, where expressions can be easily transferred from the

source to the target.

• DeepFakes (DF): While the term ‘Deepfake’ has commonly been used in mainstream

media as a blanket term for deep-learning based face replacement, it is also the name of

a specific manipulation [42] method that was spread via online forums. In the learning

phase, two auto-encoders with a shared encoder are trained to reconstruct the images of

source and target face. To create a fake image, the encoded source image is passed as input

to the target image decoder.

• NeuralTextures (NT): NeuralTextures [161] is a Generative Adversarial Network (GAN)

based facial reenactment technique. In this method, a generative model is trained to learn

the neural texture of a target person using original video data. The GAN objective is a

combination of an adversarial and photometric reconstruction loss.

FaceForensics++ has been widely used in research, with several deepfake detection

models trained on this dataset. Aside from the FaceForensics++ dataset, another prominent

collection of Deepfake videos was released by Facebook, Inc in 2019. To the best of our

knowledge, this recently developed DeepFake Detection Challenge (DFDC) dataset [46] is the

largest collection of real and Deepfake videos, consisting of over one million training clips of

face swaps produced with a variety of methods. For synthesizing the fake videos in the DFDC

dataset, 8 different video manipulation techniques were used, many of which are CNN-based

techniques. These methods include the traditional Deepfake auto-encoder architecture, a non-

learned morphable mask face swap algorithm, and several Generative Adversarial Networks
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(GAN) techniques like Neural Talking Heads [182], FSGAN [121] and StyleGAN [81]. In

conjunction with the dataset, a corresponding competition1 was launched in which competitors

were encouraged to submit models trained for Deepfake detection on the training set. These

models were then ranked on a hidden, held-out test set, and the winning competitors released

their architectures and training strategies publicly.

3.2 Deepfake Detectors

Traditionally, multimedia forensics investigated the authenticity of images [172, 18, 52]

using hand-engineered features and/or a-priori knowledge of the statistical and physical properties

of natural photographs. However, video synthesis methods can be trained to bypass hand-

engineered detectors by modifying their training objective. We direct readers to [11, 19] for an

overview of counter-forensic attacks to bypass traditional (non-deep learning based) methods of

detecting forgeries in multimedia content.

More recent works have employed CNN-based approaches that decompose videos into

frames to automatically extract salient and discriminative visual features pertinent to Deepfakes.

Some efforts have focused on segmenting the entire input image to detect facial tampering

resulting from face swapping [189], face morphing [136] and splicing attacks [9, 10]. Other

works [98, 99, 2, 61, 139, 140] have focused on detecting face manipulation artifacts resulting

from Deepfake generation methods. The authors of [99] reported that eye blinking is not well

reproduced in fake videos, and therefore proposed a temporal approach using a CNN + Recurrent

Neural Network (RNN) based model to detect a lack of eye blinking when exposing Deepfakes.

Similarly, [180] used the inconsistency in head pose to detect fake videos. However, this form of

detection can be circumvented by purposely incorporating images with closed eyes and a variety

of head poses in training [170, 50].

1https://www.kaggle.com/c/deepfake-detection-challenge
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3.2.1 Per-frame Deepfake Detectors

The Deepfake detectors proposed in [139, 2, 46] model Deepfake detection as a per-

frame binary classification problem. The authors of [139] demonstrated that XceptionNet

can outperform several alternative classifiers in detecting forgeries in both uncompressed and

compressed videos, and identifying forged regions in them. Since the task is to specifically

detect facial manipulation, these models incorporate domain knowledge by using a face tracking

method [162] to track the face in the video. The face is then cropped from the original frame and

fed as input to a classification model to be labelled as real or fake. Experimentally, the authors

of [139] demonstrate that incorporation of domain knowledge helps improve classification

accuracy as opposed to using the entire image as input to the classifier. The best performing

classifiers amongst others studied by [139] were both CNN based models: XceptionNet [32]

and MesoNet [2]. Figure 3.1 demonstrates the detection pipeline of these per-frame Deepfake

classifiers.

Figure 3.1. Per-frame Deepfake Classification Models typically follow a two-step pipeline: Face
detection followed by binary classification.

3.2.2 Sequence-based Deepfake Classifiers

Some detectors have also focused on exploiting temporal dependencies for detecting

Deepfake videos. Such detectors work on sequence of frames as opposed to a single frame using

a CNN + RNN model or a 3D CNN model. One such model based on a 3D EfficientNet [159]

architecture, was used by the third place winner [40] of DFDC challenge [46] in addition to
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a per-frame classification model. While intuitively, exploiting temporal dependencies using

sequence models should improve a detector’s ability to detect manipulated videos, the insights

from the results of the DFDC challenge [46] show that the best performing models operate

on a frame level. In fact, the winning team [143] of the DFDC challenge explicitly noted that

other ideas besides frame-by-frame detection did not improve their performance on the public

leaderboard. The first two winning submissions were both CNN based per-frame classification

models similar to the ones described above.

3.2.3 Understanding Deepfake detectors

To gain insight into the decision-making logic of Deepfake detectors, we obtain the

gradient of the score of the predicted class with respect to the input image and plot the magnitude

of these gradients as a heat-map. Back-propagating gradients naively does not result in very

interpretable visualizations. This is because it is more important to consider pixels which activate

a neuron and do not suppress it (suppression is indicated by negative gradients). Therefore, we

use guided back-propagation which defines custom gradient estimates for activation functions

like ReLU and suppresses negative gradients during the backward pass. We then standardize the

gradient obtained with respect to the input and overlay the heat-map on the frame to visualize

the areas of an image that trigger the network’s output. Figure 3.2 shows some examples of the

saliency maps obtained while analyzing two different detectors on Deepfake videos.

Our initial observations on these saliency maps suggest that different CNN based detec-

tion methods attend to similar aspects of the input frame for predicting the label. These aspects

include the edges of the face, the eyes, lips, teeth etc. These similarities across different detection

methods indicate that adversarially modifying such aspects of the image could potentially fool

multiple detection methods. We validate this hypothesis in our work by studying the transfer-

ability of adversarial examples (Section 3.5.2) across different detection methods and proposing

techniques (Section 3.3.3) that improve the transferability.
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Figure 3.2. Gradient saliency maps obtained on Deepfake videos using guided backpropogation
on a CNN-based detector [143]. The highlighted areas indicate the image regions that strongly
influence the detector’s predictions.

3.3 Adversarial attacks on Deepfake detectors

In this section, I discuss the threat models for Deepfake detectors in various attack settings

assuming different attacker capabilities. First, we mathematically define the threat model and

attack goal (Section 3.3.1). Next, we propose a white-box attack to achieve the attack goal in a

scenario when the attacker has complete access to the victim model architecture and parameters

(Section 3.3.2). In our experiments, we find that while the simple white-box attack works well on

uncompressed videos, the attack success rate drops significantly on compressed videos. Another

challenge in the simple white-box attack is the limited transferability of the attack to unseen

models. We tackle these two challenges using our robust and transferable attack which poses

a real world threat — the adversarial videos are more robust to compression and can also fool

unseen detectors to a significant extent thereby posing a real-world threat (Section 3.3.3). Next

we propose query based black-box attacks which do not require access to any surrogate model

but only require query access to the model scores (Section 3.3.4, 3.3.5). Finally, we propose a

highly accessible attack using universal adversarial perturbations — we find that it is possible to
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craft a single input-agnostic perturbation that can be added across all frames of any given video

to cause classification to the target label by many seen and unseen detectors. Once crafted, this

perturbation can be easily shared amongst adversaries thereby posing a very practical challenge

to Deepfake detection (Section 3.3.6).

3.3.1 Threat Model

Given a video (Real or Fake), our task is to adversarially modify the video such that the

label predicted by a victim Deepfake detection method is incorrect. That is, we want to modify

the videos such that the Fake videos are classified as Real and vice-versa. Misclassifying a Fake

video as Real can be used by the adversary to propagate false information. Misclassifying a Real

video as Fake can be used by the adversary to cover up an event that did actually happen.

Distortion Metric

To ensure imperceptibility of the adversarial modification, the Lp norm is a widely used

distance metric for measuring the distortion between the adversarial and original inputs. The

authors of [57] recommend constraining the maximum distortion of any individual pixel by

a given threshold ε , i.e., constraining the perturbation using an L∞ metric. Additionally, Fast

Gradient Sign Method (FGSM) [57] based attacks, which are optimized for the L∞ metric, are

more time-efficient than attacks which optimize for L2 or L0 metrics. Since each video can be

composed of thousands of individual frames, time-efficiency becomes an important consideration

to ensure the proposed attack can be reliably used in practice. Therefore, in this work, we use

the L∞ distortion metric for constraining our adversarial perturbation and optimize for it using

gradient sign based methods.

Notation

We follow the notation previously used in [21, 125]; we define F to be the full neural

network (classifier) including the softmax function, Z(x) = z to be the output of all layers except
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𝟄+      C Fake Real

Adversarially modified fake video

=       C

Fake video

Figure 3.3. An overview of our attack pipeline to generate Adversarial Deepfakes. We generate
an adversarial example for each frame in the given fake video and combine them together to
create an adversarially modified fake video.

the softmax (that is z are the logits). That is:

F(x) = softmax(Z(x)) = y

The classifier assigns the label C(x) = argmaxi(F(x)i) to input frame x.

Problem Formulation

Mathematically, for each video frame x, we aim to find an adversarial frame xadv such

that:

C(xadv) = y and ||xadv− x0||∞ < ε

where y is the target label. In our case the target label is Real for Fake videos and Fake for

Real videos. In the upcoming sections, we study this attack goal in various attacker knowledge

settings and constraints.
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Attack Pipeline

An overview of the process of generating adversarial fake videos is depicted in Figure 3.3.

For any given frame, we craft an adversarial example for the cropped face, such that after going

through some image transformations (normalization and resizing), it gets classified as Real by

the classifier. The adversarial face is then placed in the bounding box of face-crop in the original

frame, and the process is repeated for all frames of the video to create an adversarially modified

fake video. In the following sections, we consider our attack pipeline under various settings and

goals. Note that, the proposed attacks can also be applied on detectors that operate on entire

frames as opposed to face-crops. We choose face-crop based victim models because they have

been shown to outperform detectors that operate on entire frames for detecting facial-forgeries.

3.3.2 Simple White-box attack

In this setting, we assume that the attacker has complete access to the detection model,

including the face extraction pipeline and the architecture and parameters of the classification

model. To construct adversarial examples using the attack pipeline described above, we use the

iterative gradient sign method [91] to optimize the following objective:

Minimize loss(x′) where

loss(x′) = max(Z(x′)o−Z(x′)y,0)
(3.1)

Here, Z(x)y is the final score for target label y and Z(x)o is the score of the original label

o before the softmax operation in the classifier C. The loss function we use is recommended

by [21] because it is empirically found to generate less distorted adversarial samples and is robust

against defensive distillation. We use the iterative gradient sign method to optimize the above

loss function while constraining the magnitude of the perturbation as follows:

xi = xi−1− clipε(α · sign(∇loss(xi−1))) (3.2)
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We continue gradient descent iterations until success or until a given number of maximum

iterations, whichever occurs earlier. We solve the optimization problem for each frame of

the given video and combine all the adversarial frames together to generate the adversarial

video. In our experiments, we demonstrate that we are able to successfully fool all the detection

methods studied in our work in the white-box attack setting using the above attack. However, the

transferability of adversarial examples generated using this attack across different methods is

limited. In the next section we propose techniques to overcome this challenge.

3.3.3 Robust and Transferable attack

Videos uploaded to social networks and other media sharing websites are usually com-

pressed. Standard operations like compression and resizing are known to remove adversarial

perturbations from an image [51, 39, 64]. To ensure that the adversarial videos remain effective

even after compression, it is important to ensure robustness to input-transformation functions

while training the perturbation.

Also, past works [48, 49, 103, 124, 177, 190] have studied that adversarial inputs can

transfer across different models. That is, an adversarial input that was designed to fool a particular

victim model can possibly fool other models that were trained for the same task. This is because

different models learn similar decision boundaries and therefore have similar vulnerabilities.

However, for Deepfake detectors, the goal of making transferable adversarial videos is more

challenging due to multiple steps involved in the Deepfake detection pipeline and the differences

in these steps across various methods.

• Different face detection methods result in different face-crops.

• Different data-augmentation procedures during training result in different levels of robust-

ness to adversarial examples.

• Different input pre-processing pipelines, such as image resizing, cropping and channel

normalization parameters vary across different detection methods.
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Therefore ensuring robustness to input transformation functions not only helps create

adversarial videos that are robust to compression, but can also potentially result in adversarial

videos that are transferable across different detection methods. We use the expectation over

transforms [5] attack to craft robust and transferable adversarial examples. Given a distribution

of input transformations T , input image x, and target class y, our objective is as follows:

xadv = argmaxxEt∼T [F(t(x))y] s.t. ||x− x0||∞ < ε

That is, we want to maximize the expected probability of target class y over the distribution of

input transforms T . To solve the above problem, we update the loss function given in Equation 3.1

to be an expectation over input transforms T as follows:

loss(x) = Et∼T [max(Z(t(x))o−Z(t(x))y,0)]

Following the law of large numbers, we estimate the above loss functions for n samples as:

loss(x) =
1
n ∑

ti∼T
[max(Z(ti(x))o−Z(ti(x))y,0)] (3.3)

Since the above loss function is a sum of differentiable functions, it is tractable to compute

the gradient of the loss w.r.t. to the input x. We minimize this loss using the iterative gradient

sign method given by Equation 3.2. We iterate until a given number of maximum iterations

or until the attack is successful under the sampled set of transformation functions, whichever

happens first.

Next we describe the class of input transformation functions we consider for the distribu-

tion T :

• Gaussian Blur: Convolution of the original image with a Gaussian kernel k. This

transform is given by t(x) = k ∗ x where ∗ is the convolution operator.
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• Gaussian Noise Addition: Addition of Gaussian noise sampled from Θ∼N (0,σ) to

the input image. This transform is given by t(x) = x+Θ

• Translation: We pad the image on all four sides by zeros and shift the pixels horizontally

and vertically by a given amount. Let tx be the transform in the x axis and ty be the

transform in the y axis, then t(x) = x′H,W,C s.t. x′[i, j,c] = x[i+ tx, j+ ty,c]

• Downsizing and Upsizing: The image is first downsized by a factor r and then up-sampled

by the same factor using bilinear re-sampling.

The details of the hyper-parameter search distribution used for these transforms can be

found in the Section 3.5.1.

3.3.4 Query based Black-box Attack

In the black-box setting, we consider the more challenging threat model in which the

adversary does not have access to the classification network architecture and parameters. We

assume that the attacker has knowledge of the detection pipeline structure and the face tracking

model. However, the attacker can solely query the classification model as a black-box function

to obtain the probabilities of the frame being Real or Fake. Hence there is a need to estimate

the gradient of the loss function by querying the model and observing the change in output for

different inputs, since we cannot backpropagate through the network.

We base our algorithm for efficiently estimating the gradient from queries on the Natural

Evolutionary Strategies (NES) approach of [175, 72]. Since we do not have access to the

pre-softmax outputs Z, we aim to maximize the class probability F(x)y of the target class y.

Rather than maximizing the objective function directly, NES maximizes the expected value of

the function under a search distribution π(θ |x). That is, our objective is:

Maximize: Eπ(θ |x)[F(θ)y]
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This allows efficient gradient estimation in fewer queries as compared to finite-difference

methods. From [175], we know the gradient of expectation can be derived as follows:

∇xEπ(θ |x) [F(θ)y] = Eπ(θ |x) [F(θ)y∇x log(π(θ |x))]

Similar to [72, 175], we choose a search distribution π(θ |x) of random Gaussian noise around

the current image x. That is, θ = x+σδ where δ ∼N (0, I). Estimating the gradient with a

population of n samples yields the following variance reduced gradient estimate:

∇E[F(θ)]≈ 1
σn

n

∑
i=1

δiF(θ +σδi)y

We use antithetic sampling to generate δi similar to [142, 72]. That is, instead of

generating n values δ ∼N (0, I), we sample Gaussian noise for i ∈ {1, . . . , n
2} and set δ j =

−δn− j+1 for j ∈ {(n
2 + 1), . . . ,n}. This optimization has been empirically shown to improve

the performance of NES. Algorthim 2 details our implementation of estimating gradients using

NES. The transformation distribution T in the algorithm just contains an identity function

i.e., T = {I(x)} for the black-box attack described in this section.

After estimating the gradient, we move the input in the direction of this gradient using

iterative gradient sign updates to increase the probability of the target class:

xi = xi−1 + clipε(α · sign(∇F(xi−1)y)) (3.4)

3.3.5 Query based Robust Black-box Attack

To ensure robustness of adversarial videos to compression, we incorporate the Expectation

over Transforms (Section 3.3.3) method in the black-box setting for constructing adversarial

videos.
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To craft adversarial examples that are robust under a given set of input transformations

T , we maximize the expected value of the function under a search distribution π(θ |x) and our

distribution of input transforms T . That is, our objective is to maximize:

Et∼T [Eπ(θ |x) [F(t(θ))y]]

Following the derivation in the previous section, the gradient of the above expectation can be

estimated using a population of size n by iterative sampling of ti and δi:

∇E[F(θ)]≈ 1
σn

n

∑
i=1,ti∼T

δiF(ti(θ +σδi))y

Algorithm 2. NES Gradient Estimate

1: Input: Classifier F(x), target class y, image x
2: Output: Estimate of ∇xF(x)y
3: Parameters: Search variance σ , number of samples n, image dimensionality N
4: g← 0n
5: for i = 1 to n do
6: ti ∼ T
7: ui←N (0N , IN·N)
8: g← g+F(ti(x+σ ·ui))y ·ui
9: g← g−F(ti(x−σ ·ui))y ·ui

10: end for
11: return 1

2nσ
g

We use the same class of transformation functions listed in Section 3.3.3 for the distri-

bution T . Algorithm 2 details our implementation for estimating gradients for crafting robust

adversarial examples. We follow the same update rule given by Equation 3.4 to generate adver-

sarial frames. We iterate until a given a number of maximum iterations or until the attack is

successful under the sampled set of transformation functions.
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3.3.6 Universal attack

While the transferability of adversarial perturbations poses a practical threat to Deepfake

detectors in production, creating an adversarial video requires significant technical expertise in

adversarial machine learning — the attacker needs to solve an optimization problem for each

frame of the video to fool the detector.

To ease the process of fooling Deepfake detectors, we aim to design more accessible

adversarial attacks that can be easily shared amongst attackers. Past works [115, 12, 119] have

shown the existence of universal adversarial perturbations that can fool classification models in

various input domains. We aim to find a single universal adversarial perturbation which when

added across all frames of any video, will cause the victim Deepfake Detector to classify the

video to a target label.

That is, we aim to find a targeted universal perturbation δ such that:

C(x+δ ) = y s.t ||δ ||∞ < ε

for “most” x in our dataset
(3.5)

where y is the target class. We train separate perturbations for Real and Fake target labels. In order

to ensure robustness to differences across detection methods, we incorporate the transformation

functions described in Section 3.3.3. We train the universal adversarial perturbation on a dataset

of videos that are labelled opposite from our target label. On this dataset of videos, we aim

to maximize the log-likelihood of predicting our target label y. Additionally to ensure the

imperceptibility of the adversarial perturbation we penalize the L2 distortion of the perturbation

by adding a regularization term in our objective. Thus, our final objective to train a universal

perturbation for a target label y is as follows:

Minimize ∑
x in D

Et∼T [L(F(t(x+δ )),y)]+ c||δ ||2

such that ||δ ||∞ < ε

(3.6)
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Here, L is the cross-entropy loss between the predictions and our target label, c is a

hyper-parameter to control the regularization loss and x is an input frame of a video from our

dataset D. Similar to Equation 3.3, we estimate the above expectation using n samples as follows:

Et∼T [L(F(t(x+δ )),y)] =
1
n ∑

ti∼T
[L(F(ti(x+δ )),y)] (3.7)

To ensure the constraint ||δ ||∞ < ε , we express δ as follows:

δ = ε · tanh(p)

where p is a trainable unconstrained parameter having the same dimensions as δ . We fix

the size of the perturbation vector p to be 3× 256× 256 in our experiments, but resize the

perturbation using bilinear interpolation to match the size of our input x. We iteratively optimize

the objective given by Equation 3.6 using gradient descent. In our experiments, we find that

targeting certain Deepfake detectors not only results in input-agnostic universal perturbations but

also model-agnostic universal perturbations.

3.4 Experimental Setup

We perform adversarial attacks on the FaceForensics++ [139] and the DFDC datasets [46]

and choose the best performing models on these datasets as the victim models. We first craft

adversarial videos for the FaceForensics++ dataset and target the XceptionNet and MesoNet

models which are the best reported architectures reported in the paper [139] introducing this

dataset (Section 3.5.1). We use these two models as a test-bed to study the robustness of our

attacks to video compression and demonstrate the using our robust attack helps significantly

improve attack performance on compressed videos. Next we conduct the transferable and

universal attack experiments on the DFDC dataset. We choose the models from top three

winning entries in the DFDC Kaggle competition as the victim models for these experiments
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(Section 3.5.2, 3.5.3). Finally, we evaluate our attacks on a sequence based 3D CNN model to

demonstrate that adversarial examples are a threat to not only frame by frame detectors but also

sequence based models (Section 3.5.4).

3.4.1 Dataset and Models

On the FaceForensics++ dataset, XceptionNet [32] and MesoNet [2] CNN classifiers

have been reported to achieve the best performance in the paper introducing the dataset [139].

For these two models, we perform our attack on the test set of the FaceForensics++ Dataset [139],

consisting of manipulated videos from the four methods described in Section 3.1. We construct

adversarially modified fake videos on the FaceForensics++ test set, which contains 70 videos

(total 29,764 frames) from each of the four manipulation techniques. For simplicity, our exper-

iments are performed on high quality (HQ) videos, which apply a light compression on raw

videos. The accuracy of the detector models for detecting facially manipulated videos on this

test set is reported in Table 3.1.

Table 3.1. Accuracy of Deepfake detectors on the FaceForensics++ HQ Dataset as reported
in [139]. The results are for the entire high-quality compressed test set of Deepfakes.

DF F2F FS NT
XceptionNet [139] Acc % 97.49 97.69 96.79 92.19

MesoNet [139] Acc % 89.55 88.6 81.24 76.62

For the DFDC dataset, we choose the top three winners of the challenge, which was hosted

by Facebook on the Kaggle website. The top two winning entries of the challenge rely solely

on face detection models and per-frame CNN classifiers similar to the best performing models

on the FaceForensics++ dataset. The third place winner of the challenge uses a combination

of per-frame classifiers and a 3D CNN based sequence model. Table 3.2 lists the Deepfake

detection methods studied in this work along with their respective CNN architectures used for

classification and face detection. We use the DFDC dataset and these top three winning models

as the test bed for evaluating the transferability of our attacks across different models. In our
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Table 3.2. Different Deepfake detection systems studied in our work with their respective
classification models, face detection models and detection AUC scores on the DFDC test set.

Model Team Name Classifier Face detection AUC

EN-B7 Selim [143] Selim EfficientNet B7 [159] MTCNN [186] 0.717
XN WM [65] Team WM XceptionNet [32] RetinaFace [43] 0.724
EN-B3 WM [65] Team WM EfficientNet B3 [159] RetinaFace [43] 0.724
EN-B7 NLab [40] NTech Lab EfficientNet B7 [159] DSFD [97] 0.717

transferability experiments we use the terms victim model and test model and define them as:

• Victim model: The detection model that the attack/adversarial perturbation is trained on, in

the complete-knowledge (white-box) attack scenario.

• Test model: The model on which we evaluate the attack. This can be the same as the victim

model (white-box) or an unseen detection model (black-box).

We craft adversarial videos for the first 100 Fake and 100 Real videos in the public DFDC

validation set [46]. These videos contain a total of 30,300 frames. The videos are recorded in

various lighting and background conditions and include people with different skin-tones.

3.4.2 Evaluation Metrics

Once the adversarial frames are generated, we combine them and save the adversarial

videos in the following formats:

• Uncompressed (Raw): Video is stored as a sequence of uncompressed images.

• Compressed (MJPEG): Video is saved as a sequence of JPEG compressed frames.

• Compressed (H.264): Video is saved in the commonly used mp4 format that applies

temporal compression across frames.

65



We conduct our primary evaluation on the Raw and MJPEG. We also study the effective-

ness of our white box robust attack using different compression levels in the H264 codec. We

report the following metrics for evaluating our attacks:

• Success Rate (SR): The percentage of frames in the adversarial videos that get classified

to our target label. We report: SR-U- Attack success rate on uncompressed adversarial

videos saved in Raw format; and SR-C- Attack success rate on compressed adversarial

videos saved in MJPEG format.

• Accuracy: The percentage of frames in videos that get classified to their original label by

the detector. We report Acc-C- accuracy of the detector on compressed adversarial videos.

• Mean distortion (L∞): The average L∞ distortion between the adversarial and original

frames. The pixel values are scaled in the range [0,1], so changing a pixel from full-on to

full-off in a grayscale image would result in L∞ distortion of 1 (not 255).

3.5 Results

3.5.1 Evaluation on FaceForensics++ dataset

Simple white-box attack

To craft adversarial examples in the white-box setting, in our attack pipeline, we im-

plement differentiable image pre-processing (resizing and normalization) layers for the CNN.

This allows us to backpropagate gradients all the way to the cropped face in-order to generate

the adversarial image that can be placed back in the frame. We set the maximum number of

iterations to 100, learning rate α to 1/255 and max L∞ constraint ε to 16/255 for both our attack

methods described in Sections 3.3.2 and 3.3.3.

Table 3.3 shows the results of the white-box attack (Section 3.3.2). We are able to

generate adversarial videos with an average success rate of 99.85% for fooling XceptionNet

and 98.15% for MesoNet when adversarial videos are saved in the Raw format. However, the
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Table 3.3. Evaluation of various attacks on the two models XceptionNet and MesoNet on
the FaceForensics++ dataset. We report the average L∞ distortion between the adversarial and
original frames and the attack success rate on uncompressed (SR-U) and compressed (SR-C)
videos.

XceptionNet MesoNet

Attack Dataset L∞ SR - U SR - C Acc-C % L∞ SR - U SR - C Acc-C %

DF 0.004 99.67 43.11 56.89 0.006 97.30 92.27 7.73
Simple White-box F2F 0.004 99.85 52.50 47.50 0.007 98.94 96.30 4.70

(Section 3.3.2) FS 0.004 100.00 43.13 56.87 0.009 97.12 86.10 13.90
NT 0.004 99.89 95.10 4.90 0.007 99.22 96.20 3.80

All 0.004 99.85 58.46 41.54 0.007 98.15 92.72 7.53
DF 0.016 99.56 98.71 1.29 0.030 99.94 99.85 0.15

Robust and Transferable F2F 0.013 100.00 99.00 1.00 0.020 99.71 99.67 0.33
(Section 3.3.3) FS 0.013 100.00 95.33 4.67 0.026 99.02 98.50 1.50

NT 0.011 100.00 99.89 0.11 0.025 99.99 99.98 0.02

All 0.013 99.89 98.23 1.77 0.025 99.67 99.50 0.50
DF 0.055 89.72 55.64 44.36 0.062 96.05 93.33 6.67

Query based F2F 0.055 92.56 81.40 18.60 0.0627 84.08 77.68 22.32
Black-box (Section 3.3.4) FS 0.045 96.77 23.50 76.50 0.0627 77.55 62.44 37.56

NT 0.024 99.86 94.23 5.77 0.0627 85.98 79.25 20.75

All 0.045 94.73 63.69 36.31 0.0626 85.92 78.18 21.83

DF 0.060 88.47 79.18 20.82 0.047 96.19 93.80 93.80
Query based Robust F2F 0.058 97.68 94.42 5.58 0.054 84.14 77.50 77.50

Black-box (Section 3.3.5) FS 0.052 98.97 63.26 36.74 0.061 77.34 61.77 61.77
NT 0.018 99.65 98.91 1.09 0.053 88.05 80.27 80.27

All 0.047 96.19 83.94 16.06 0.053 86.43 78.33 78.33

attack average success rate drops to 58.46% for XceptionNet and 92.72% for MesoNet when

MJPEG compression is used. This result is coherent with past works [51, 39, 64] that employ

JPEG compression and image transformations to defend against adversarial examples.

Robust attack

For our robust white box attack, we sample 12 transformation functions from the distri-

bution T for estimating the gradient in each iteration. This includes three functions from each

of the four transformations listed in Section 3.3.3. Table 3.4 shows the search distribution for

different hyper-parameters of the transformation functions.
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Table 3.4. Search distribution of hyper-parameters of different transformations used for our
Robust White box attack. During training, we sample three functions from each of the transforms
to estimate the gradient of our expectation over transforms.

Transform Hyper-parameter search distribution

Gaussian Blur Kernel k(d,d,σ), d ∼U [3,7], σ ∼U [5,10]
Gaussian Noise σ ∼U [0.01,0.02]

Translation dx ∼U [−20,20], dy ∼U [−20,20]
Down-sizing & Up-sizing Scaling factor r ∼U [2,5]

Table 3.3 shows the results of our robust white-box attack. It can be seen that robust

white-box is effective in both Raw and MJPEG formats. The average distortion between original

and adversarial frames in the robust attack is higher as compared to the non-robust white-box

attack. We achieve an average success rate (SR-C) of 98.07% and 99.83% for XceptionNet and

MesoNet respectively in the compressed video format.
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Figure 3.4. Attack success rate vs Quantization factor used for compression in H264 codec for
robust white box attack.

We also study the effectiveness of our robust white box attack under different levels of

compression in the H.264 format which is widely used for sharing videos over the internet. Fig-

ure 3.4 shows the average success rate of our attack across all datasets for different quantization
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parameter c used for saving the video in H.264 format. The higher the quantization factor, the

higher the compression level. In [139], fake videos are saved in HQ and LQ formats which

use c = 23 and c = 40 respectively. It can be seen that even at very high compression levels

(c = 40), our attack is able to achieve 80.39% and 90.50% attack success rates for XceptionNet

and MesoNet respectively, without any additional hyper-parameter tuning for this experiment.

Examples of adversarial frames are showin in Figure 3.5 and video examples can be found on

the website linked in the footnote 2.

Fake (from Dataset) White-Box Robust White-Box Black-Box Robust Black-Box

DF

F2F

FS

NT

Figure 3.5. Randomly selected frames of Adversarial Deepfakes from successful attacks. Video
examples are linked in the footnote.

3.5.2 Transferability of adversarial attacks

We evaluate the transferability of adversarial perturbations across different detectors

trained on the DFDC dataset. We train adversarial videos targeting a given victim model and test

2https://adversarialdeepfakes.github.io/
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the videos against different test models. For our simple whitebox attack, while we achieve 100%

attack success rate for the same test model as the victim model, the attack success rate drops

significantly on alternate models. EfficientNet-B7 by NTech Lab requires the highest amount of

adversarial perturbation under the L∞ metric as compared to other methods in this study. We

find that perturbations trained to fool EfficientNet-B7 by Team NTech Lab result in the most

transferable attacks as indicated by the higher success rates on other test models. This suggests

that EN-B7 NLab is relatively more robust to adversarial perturbations in comparison to the

other models used in this study (also indicated by higher L∞ perturbation required to fool EN-B7

NLab).

To improve the transferability of adversarial examples across different methods, we

perform our robust transfer attack described in Section 3.3.3 and evaluate the adversarial videos

against unseen detection methods in a black-box setting. The hyper-parameters of the trans-

formation functions used for the attack have been provided in Table 3.4. All other attack

hyper-parameters are kept the same as our simple white-box attack.

As indicated by the results in Table 3.5, we are able to significantly improve the transfer-

ability of adversarial perturbations across different detection methods as compared to our simple

white-box attack. The adversarial perturbations are most transferable across models with the

same architecture. For example, we are able to achieve high cross-transferability between EN-B7

Selim vs EN-B7 NLab. Similar to our observation in the previous section, attacking EN-B7 NLab

results in the most transferable adversarial attacks - we are able to achieve at least 72% success

rate across all other detection methods when attacking EN-B7 NLab. Sample images for these

attacks are presented in Figure 3.6.

3.5.3 Universal attacks

To create more accessible attacks, we train a universal adversarial perturbation using

the procedure described in Section 3.3.6. We set the L2 regularization term c = 0.01 and use

the Adam optimizer with a learning rate of 0.001. For our initial experiments, we set the L∞
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Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Original Label: Fake Prediction: Real Prediction: Real Prediction: Real Prediction: Real

Benign Frame Adversarial Frames
EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Original Label: Real Prediction: Fake Prediction: Fake Prediction: Fake Prediction: Fake

Simple White-box attack examples on DFDC detectors Robust and Transferable attack examples on DFDC detectors

Figure 3.6. Randomly selected frames of adversarial videos from attacks on the DFDC detectors.

Table 3.5. Attack success rates (SR-U) of the white-box (Section 3.3.2) and robust and trans-
ferable attacks (Section 3.3.3) on different victim models and their transferability to seen and
unseen detectors (test models).

Test Model
Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM
EN-B7 Selim 0.007 100.0 % 59.5 % 57.0 % 38.5 %

Simple EN-B7 NLab 0.013 94.0 % 100.0 % 66.5 % 49.5 %
White-box (Section 3.3.2) XN WM 0.006 13.0 % 12.5 % 100.0 % 12.0 %

EN-B3 WM 0.005 21.0 % 15.5 % 22.0 % 100.0 %
EN-B7 Selim 0.010 100.0 % 89.0 % 72.5 % 62.0 %

Robust and EN-B7 NLab 0.018 99.0 % 100.0 % 72.0 % 76.5 %
Transferable (Section 3.3.3) XN WM 0.018 49.0 % 33.5 % 100.0 % 46.0 %

EN-B3 WM 0.008 46.5 % 35.0 % 47.5 % 100.0 %

threshold ε = 40/255 for all victim models. Since the goal of finding a single input-agnostic

perturbation is more challenging than finding one perturbation per video frame, a higher amount

of distortion is required for a successful attack as compared to the per-frame attacks described

earlier. We train the universal perturbation on a dataset of 100 videos from the DFDC train set

which are separate from our evaluation dataset. We train the perturbation using a batch size of 8

for 10,000 iterations.

We target one victim model at a time and test the transferability of the universal pertur-

bation on seen and unseen detectors. Table 3.6 presents the results of performing the universal

attack on different victim models at ε = 40/255 = 0.156. We are able to achieve 100% attack

success rate on the same test model as the victim model using a single perturbation across
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Table 3.6. Attack success rates (SR-U) of the universal attacks (Section 3.3.6) on different victim
models and their transferability to unseen detectors (test models).

Test Model
Victim Model L∞ EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

EN-B7 Selim 0.156 100.0% 94.5% 65.0% 69.0%
EN-B7 NLab 0.156 94.5% 100.0% 75.0% 81.5%

XN WM 0.156 77.5% 61.0% 100.0% 20.0%
EN-B3 WM 0.156 66.5% 50.5% 60.0% 100.0%

all frames and videos of the same label. Also, the universal perturbation is transferable to a

significant extent across different models which poses an extremely practical threat to Deepfake

detectors in production. Attacking EN-B7 NLab results in the most transferable perturbations

where we are able to achieve at least a 75% success rate across all unseen detectors.

Benign
Label: FAKE

UAP

 Adversarial
Prediction: REAL

EN-B7 Selim EN-B7 NLab XN WM EN-B3 WM

Figure 3.7. Visualization of universal adversarial perturbations trained on different Deepfake
detection models at ε = 0.156.

Visually, the universal perturbations at ε = 0.156 are more perceptible than our per-frame
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attacks discussed in the sections above. Figure 3.7 shows examples of universal adversarial per-

turbations trained on different Deepfake detectors and the resulting adversarial images obtained

after adding the perturbation to the face-crop of the benign frame.

We perform an additional experiment to study the effectiveness of universal adversarial

perturbations at different magnitudes of added perturbations. We choose EN-B7 NLab as the

victim model and perform our universal attack at different values of ε . The attack success rates

across different models are shown in Figure 3.8. Figure 3.8 also shows what a perturbed image

looks like at different values of ε . At ε < 0.1, the perturbation is fairly imperceptible but can

still achieve high success rates on various test models.

𝟄 = 0.039    𝟄 = 0.078    Benign   

𝟄 = 0.235    𝟄 = 0.313    𝟄 = 0.156    

𝝐 (L∞ Norm)

Figure 3.8. Left: Visualization of the perturbed images using different magnitudes (ε) of
universal adversarial perturbations trained on EN-B7 NLab. Right: Attack success rates of the
universal attacks (Section 3.3.6) on different victim models and their transferability to unseen
detectors (test models).

3.5.4 Evaluation on Sequence Based Detector

We consider the 3D CNN based detector described in Section 3.2. The detector performs

3D convolution on a sequence of face-crops from 7 consecutive frames. We perform our attacks

on the pre-trained model checkpoint (trained on the DFDC [46] train set) released by the NTech-

Lab team [40]. We evaluate our attacks on the Deepfake videos from the DFDC public validation

set which contains 200 Fake videos. We report the accuracy of the detector on the 7-frame

sequences from this test set in the first row of Table 3.7.
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Table 3.7. Evaluation of different attacks on a sequence based detector on the DFDC validation
dataset. The first row indicates the performance of the classifier on benign (non adversarial)
videos.

3D CNN Sequence Model

Attack Type L∞ SR - U SR - C Acc. - C%

None - - - 91.74

Simple White-box (Section 3.3.2) 0.037 100.00 77.67 22.33
Robust and Transferable (Section 3.3.3) 0.059 100.00 100.00 0.00
Query based Black-box (Section 3.3.4) 0.061 87.99 24.43 75.57
Query based robust Black-box (Section 3.3.4) 0.062 88.21 51.02 48.98

Similar to our attacks on frame-by-frame detectors, in the white-box setting we back-

propagate the loss through the entire model to obtain gradients with respect to the input frames

for crafting the adversarial frames. While both white-box and robust white-box attacks achieve

100% success rate on uncompressed videos, the robust white-box attack performs significantly

better on the compressed videos and is able to completely fool the detector. As compared to

frame-by-frame detectors, a higher magnitude of perturbation is required to fool this sequence

model in both the white-box attacks. In the black-box attack setting, while we achieve similar

attack success rates on uncompressed videos as the frame-by-frame detectors, the attack success

rate drops after compression. The robust black-box attack helps improve robustness of adversarial

perturbations to compression as observed by higher success rates on compressed videos (51.02%

vs 24.43% SR-C).

3.6 Conclusion

In this chapter, I described the current best-performing Deepfake classifiers and studied

their vulnerability to adversarial examples. We consider both per-frame and sequence-based

Deepfake detection models and demonstrate that they can be bypassed under various attack

settings and attacker capabilities. We first design an attack pipeline to bypass Deepfake detectors

in a white-box attack setting and propose techniques to increase the robustness of such attacks
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to video compression codecs. Next, we demonstrate that adversarial videos crafted using our

robust attacks can fool alternate models to a significant extent thereby posing a real-world threat

in a black-box attack setting. Finally, we demonstrate the existence of universal adversarial

perturbations which pose a more practical threat since they can be easily shared amongst

attackers and applied to any video in real-time. In the upcoming chapter, I discuss a semi-fragile

watermarking framework as a proactive media authentication method to overcome the limitations

of Deepfake classifiers.
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Chapter 4

Media authentication using Proactive Wa-
termarking

Media authentication, despite having been a long-term challenge, has become even more

difficult with the advent of deep learning based generative models. As discussed in the previous

chapters, Deep Neural Network (DNN) based generative models, have enabled the creation

of high-quality synthetic media in various domains. Such techniques can be used to easily

manipulate real images, videos and audio to fuel misinformation, tamper sensitive documents,

defame individuals and reduce trust in social media platforms [111]. Media authentication

is crucial in ensuring the accuracy of news and maintaining public trust to safeguard against

the potential misuse of generative models. Media authentication also plays a crucial role in

law enforcement, where videos and images are often used as evidence. Recent methods to

detect fake media rely on DNN based classification systems [139, 45]. As discussed in the

previous chapter, there are certain limitations in classification based fake media detectors: 1) The

current best-performing detectors for synthetic media can be easily bypassed by attackers using

adversarial examples. 2) Classifiers trained in a supervised manner on existing media synthesis

techniques cannot be reliably secure against black-box generation methods.

As an alternate solution to fake media detection, proactively embedding a secret verifiable

message into images and videos at the time of their capture from a device can establish the

provenance of authentic images and videos and circumvent the limitations of classifiers for
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synthetic media. Prior work has explored digital image watermarking and deep learning based

steganography techniques [37, 53, 160, 191, 109] to hide secret messages in image pixels. How-

ever, these methods are either fragile to basic image processing operations such as compression

and color adjustments or overly robust to the point that the secret can be recovered even after

occluding major portions of the embedded image [160]. Moreover, past neural watermarking

frameworks are not designed to be robust to common video compression codecs that apply tem-

poral compression along with per-frame spatial compression. For solving the challenge of media

authentication, the watermarking framework should have the following desirable properties: 1)

The watermark data should be recoverable if the image/video undergoes benign transformations

such as compression or minor adjustments. 2) The watermark recovery should break if the

image/video has been maliciously manipulated e.g. replacing the face, occluding/replacing

significant portions of the image 3) The watermark should be visually imperceptible.

Malicious Transform

Not 
Verified

FaceSign 
Encoder

Benign Transform

Message

Key

Encrypted 
Message

Verified

Key

Watermarked 
Image

FaceSign
Decoder

FaceSign
Decoder

Figure 4.1. Overview of FaceSigns Watermarking framework: The encoder network embeds a
secret encrypted message into a given image as an imperceptible watermark that is designed to
be robust against benign transformations but fragile towards malicious manipulations.

In this chapter, I describe FaceSigns, a semi-fragile image and video watermarking

framework that we developed to embed a recoverable message as an imperceptible perturbation

in the image pixels. The watermark can contain a secret message or device-specific codes which

can be used for authenticating images and videos. The desirable property of the watermark is that
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it should break if a malicious manipulation such as occlusion, face-swapping or content manipu-

lation is applied to the image/video, but it should be robust against harmless transformations such

as image compression, video compression, color and lighting adjustments which are commonly

applied on pictures and videos before uploading them to online sharing platforms. To achieve

this goal, we develop an encoder-decoder based training framework that encourages message

recovery under benign transformations and discourages message recovery if the watermark has

been spatially tampered in certain parts of the image. In contrast to hand-designed pipelines

used in previous work for semi-fragile watermarking [100, 67, 179, 132, 16], FaceSigns is

trained end-to-end and learns to be robust to a wide range of real-world digital image processing

operations such as social media filters and compression techniques, while being fragile to various

Deepfake tampering techniques.

4.1 Background: Digital Watermarking

Digital watermarking [37] similar to steganography [53], is the task of embedding

information into an image in a visually imperceptible manner. These techniques broadly seek

to generate three different types of watermarks: fragile [44, 16], robust [36, 129, 17, 146, 191,

128, 13] and semi-fragile [100, 155, 181] watermarks. Fragile and semi-fragile watermarks are

primarily used to certify the integrity and authenticity of image data. Fragile watermarks are used

to achieve accurate authentication of digital media, where even a one-bit change to an image will

lead it to fail the certification system. In contrast, robust watermarks aim to be recoverable under

several image manipulations, in order to allow media producers to assert ownership over their

content even if the video is redistributed and modified. Semi-fragile watermarks combine the

advantages of both robust and fragile watermarks, and are mainly used for fuzzy authentication of

digital images and identification of image tampering [181]. The use of semi-fragile watermarks is

justified by the fact that images and videos are generally transmitted and stored in a compressed

form, which should not break the watermark. However when the image gets tampered, the
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watermark should also get damaged, indicating image tampering.

Several past works have proposed hand-engineered pipelines to embed semi-fragile

watermark information in the spatial and frequency (transform) domain of images and videos.

In the spatial domain, the pixels of digital images are processed directly using block-based

embedding [16] and least significant bits modification [176, 179] to embed watermarks. In the

frequency domain, the watermark can be embedded by modifying the coefficients produced

with transformations such as the Discrete Cosine Transform (DCT) [132, 67, 13] and Discrete

Wavelet Transform [96, 15, 145]. However, we demonstrate in our experiments the major

limitations of traditional approaches lies in higher visibility of the embedded watermarks,

increased distortions in generated images and low robustness to compression techniques like

JPEG transforms. Moreover, these works have not been designed to be fragile against Deepfake

manipulations.

More recently, CNNs have been used to provide an end-to-end solution to the water-

marking problem. They replace hand-crafted hiding procedures with neural network encod-

ing [8, 66, 191, 188, 109, 160]. Notably, both StegaStamp [160] and HiDDeN [191] propose

frameworks to embed robust watermarks that can hide and transmit data in a way that is robust

to various real-world transformations. All of these works focus on generating robust watermarks,

with the goal of ensuring robustness and recovery of the embedded secret information under

various physical and digital image distortions. We empirically demonstrate that these techniques

are unable to generate semi-fragile watermarks and are therefore not suitable for identifying

tampered media such as Deepfakes.

4.2 Methodology

In this section, we describe the training methodology for the image watermarking frame-

work FaceSigns that can withstand a range of benign image and video alterations, while remaining

fragile to malicious ones. It is also crucial that the watermark is unnoticeable, allowing the
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devices to retain solely the watermarked images without exposing the original image to the

end-user. The selection of benign and malicious transformations is dependent on the media

authentication system’s application and can be adjusted as needed. For instance, in situations

where document verification is the primary objective, it may be preferable to limit benign trans-

formations to compression only, whereas for social media platforms, creative image filtering

may be permitted. We are proposing a flexible framework that can be adapted to accommodate

any benign and malicious transformations.

Our system consists of three main components: an encoder network Eα , a decoder net-

work Dβ and an adversarial discriminator network Aγ where α,β and γ are learnable parameters.

The encoder network E takes as input an image x and a bit string s ∈ {0,1}L of length L, and

produces an encoded (watermarked) image xw. That is, xw = E(x,s). The watermarked image

then goes through two image transformation functions — one sampled from a set of benign trans-

formations (gb ∼ Gb) and the other sampled from a set of malicious transformations (gm ∼ Gm)

to produce a benign image xb = gb(xw) and a malicious image xm = gm(xw). The benign and

malicious watermarked images are then fed to the decoder network which predicts the messages

sb = D(xb) and sm = D(xm) respectively.

For optimizing secret retrieval during training, we use the L1 distortion between the

predicted and ground-truth bit strings. The decoder is encouraged to be robust to benign transfor-

mations by minimizing the message distortion L1(s,sb); and fragile for malicious manipulations

by maximizing the error L1(s,sm). Therefore the secret retrieval error for an image LM(x) is

obtained as follows:

LM(x) = L1(s,sb)−L1(s,sm) (4.1)

The watermarked image is encouraged to look visually similar to the original image

by optimizing three image distortion metrics: L1, L2 and Lpips [187] distortions. Additionally,

we use an adversarial loss LG(xw) = log(1−A(xw)) from the discriminator which is trained

simultaneously to distinguish original images from watermarked images. That is, our image
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Figure 4.2. Model overview: The encoder and decoder networks are trained by encouraging
watermark imperceptibility and message retrieval from watermarked images that have undergone
benign transformations and discouraging retrieval from maliciously transformed watermarked
images.

reconstruction loss Limg is obtained as follows:

Ld(x,xw) = L1(x,xw)+L2(x,xw)+ cpLpips(x,xw)

Limg(x,xw) = Ld(x,xw)+ cgLG(xw)

(4.2)

Therefore, the parameters α,β of the encoder and decoder network are trained using

mini-batch gradient descent to optimize the following loss over a distribution of input messages

and images:

Ex,s,gb,gm[Limg(x,xw)+ cMLM(x)] (4.3)

The discriminator parameters γ are trained to distinguish original images x from water-

marked images xw as follows:

Ex,s[log(1−A(x))+ log(A(xw))] (4.4)

In the above equations, cp, cg, cM are scalar coefficients for the respective loss terms.

We use the following values for our loss coefficients: cp = 1, cg = 0.1, cm = 1. We use Adam

optimizer during training with a learning rate of 2e−4.
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4.2.1 Message encoding

The encoder network accepts watermarking data as a bit string s of length L. This

watermarking data can contain information about the device that captured the image or a secret

message that can be used to authenticate the image. To prevent adversaries (who have gained

white-box access to the encoder network) from encoding a target message, we can encrypt the

message using symmetric or asymmetric encryption algorithms or hashing. In our experiments,

we embed encrypted messages of size 128 bits which allows the network to encode 2128 unique

messages. We discuss the possible threats and defenses to our watermarking framework in

Section 4.4.

4.2.2 Network Architectures

Our encoder and decoder networks are based on the U-Net CNN architecture [138, 73,

160] and operate on 256× 256 images. The encrypted message s, which is an L length bit

string, is first projected to a tensor sProj of size 96×96 using a trainable fully connected layer;

then resized to 256×256 using bilinear interpolation and finally added as the fourth channel

to the original RGB image to be fed as an input to the encoder network. The encoder U-Net

contains 8 downsampling and 8 upsampling layers. We modify the original U-Net architecture

and replace the transposed convolution in the upsampling layers with convolutions followed by

nearest-neighbour upsampling as per the recommendations given by [122]. In our preliminary

experiments, we found this change to significantly improve the image quality and training

speed of our framework. The downsampling and upsampling layers have skip-connections

between the corresponding layers with same output size. The decoder network also follows the

U-Net architecture similar to our encoder network. The decoder U-Net first outputs a 256×256

intermediate output, which is downsized to 96×96 using bilinear down-sampling to produce

sProjDecoded and then projected to a vector of size L using a fully connected layer followed by a

sigmoid layer to scale values between 0 and 1. We use batch normalization layers in the encoder
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network and instance normalization layers in the decoder network.

4.2.3 Transformation functions

To achieve selective fragility and robustness of the watermark, it is crucial to carefully

select benign and malicious transformation functions. Although we can only employ a restricted

range of image transformations for training purposes, the real-world scenarios involve an ex-

tensive set of possible benign and malicious transformations, which cannot be exhaustively

listed. Our experiments (described in Section 4.3.3) demonstrate that by incorporating the

transformation functions described below, we can effectively adapt to unforeseen benign and

malicious transformations that are commonly employed on various social media platforms.

Benign Transforms

To approximate standard image processing distortions, we apply a diverse set of differentiable

benign image transformations (Gb) to our watermarked images during training:

1. Gaussian Blur: We convolve the original image with a Gaussian kernel k. This transform

is given by t(x) = k ∗ x where ∗ is the convolution operator. We use kernel sizes ranging

from k = 3 to k = 7

2. JPEG compression: Digital images are usually stored in a lossy format such as JPEG. We

approximate JPEG compression with the differentiable JPEG function proposed in [148].

During training, we apply JPEG compression with quality 40, 60 and 80.

3. Saturation adjustments: To account for various color adjustments from social media

filters, we randomly linearly interpolate between the original (full RGB) image and its

grayscale equivalent.

4. Contrast adjustments: We linearly rescale the image histogram using a contrast factor

∼U [0.5,1.5]
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5. Downsizing and Upsizing: The image is first downsized by a factor scale and then

up-sampled by the same factor using bilinear upsampling. We use scale∼U [2,5]

6. Video Compression: Simulating video compression distortions during training is more

challenging because common video compression codecs such as MPEG4, H264 cannot be

easily implemented using differentiable functions. Such codecs not only compress each

frame of a given video but also apply temporal compression across the time-steps for a

more optimised compression. Since video compression is applied to almost all videos

uploaded on the internet, it is essential to ensure the robustness to these codecs to make

the watermark suitable for videos. To this end, we propose the first technique to ensure

robustness of the generated watermark to a benign non-differentiable video transform gb:

• When training the watermarking framework on videos, each mini-batch of images x,

corresponds to consecutive frames of a single video.

• We obtain watermarked frames xw by embedding unique signatures into each frame

using the encoder network. Next, we detach xw from the computational graph, extract

each frame and write the frames into a video file. The video file is then compressed

into H264 codec using FFMPEG 1 at a quantization factor from the interval [5,25].

• Next, we read each frame of the compressed file and stack them together to obtain

the transformed image batch gb(xw) which is then reinserted in the computational

graph to be fed as input to the decoder.

• During the backward pass, we use the straight-through estimator [14] to estimate the

gradient across the transformation function gb. That is:

∇xwLM(gb(xw))|xw=x̂w
≈ ∇xwLM(xw)|xw=gb(x̂w)

. (4.5)

where LM(xw) indicates the message recovery loss from the decoder for an input xw.

1https://ffmpeg.org/
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Figure 4.3. Training procedure to make watermarks robust against video compression codecs.
We use the actual implementation of the video compression codec in the forward pass, and
estimate the gradients in the backward pass using a straigh-through estimator.

We illustrate the video compression procedure used during training in Figure 4.3.

Malicious Transforms

The semi-fragile watermarks have to be unrecoverable when malicious transforms such as image

compositing, occlusion or face replacement are applied. The common operation across these

manipulation techniques is to modify certain spatial areas of the image. To simulate such

transforms during training, we propose a watermark occlusion transform as follows: We first

generate a tampering mask which indicates what modifications we want to retain or partially

discard in the signed image. Given such a tampering mask, we partially remove the added

perturbation in the signed image from the areas indicated by the mask. We consider two kinds of

spatial tampering masks during training:

• Image Compositing mask: For each image, we initialize a mask Mh×w×c of all ones.

Next, we randomly select n rectangular patches in the mask and set the value of all pixels

in the patches to a small watermark retention percentage wr ∈ [0,1].

• Facial manipulation mask: For each image, we initialize a mask Mh×w×c of all ones.

Next, we extract the facial feature polygons for eyes, nose and lips and set the values for

all pixels inside the polygons to a small watermark retention percentage wr ∈ [0,1].
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That is, That is, M[i, j, :] = wr for all i, j in the selected spatial polygons. Finally, the

maliciously transformed image gm(xw) is obtained as follows:

gm(xw) = M · xw +(1−M) · x

Figure 4.4 illustrates the malicious transform procedure.

Watermarked Image
 (Exaggerated for visualization)

    Original Image Manipulation Mask Malicious Transform:

2. Facial Manipulation Mask

1. Image Compositing Mask

Figure 4.4. Malicious Transform: To simulate image tampering during training, the watermark
is partially removed from the areas indicated by a manipulation mask.
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4.3 Experiments

4.3.1 Datasets and Experimental Setup

We conduct our experiments on the CelebA dataset [105], MIRFLICKR [69] and UCF-

101 [150] dataset. CelebA is a large scale database of over 200,000 face images of 10,000

unique celebrities. MIRFLICKR dataset is a diverse image retrieval dataset containing 1 million

images. For training our watermarking framework to be robust to video compression, we use

the UCF-101 dataset that contains 13320 short clips for action recognition. We set aside 1000

images/videos for testing from each dataset and split the remaining data into 80% training and

20% validation. We train our models for 200K mini-batch iterations with a batch-size of 64 and

use an Adam optimizer with a fixed learning rate of 2e−4. All our models are trained using

images/video frames of size 256×256 which are obtained after center-cropping and resizing the

images. We conduct experiments with message length L = 128. To evaluate the effectiveness

of using transformation functions during training, we conduct an ablation study by training

a FaceSigns (No Transform) model that does not incorporate any input transformations and a

FaceSigns (Robust) model that uses only benign transformations during training. We evaluate

watermarking techniques primarily on the following aspects:

1. Imperceptibility: We compare the original and watermarked images to compute: peak

signal to noise ratio (PSNR) and structural similarity index (SSIM). Higher values for

both PSNR and SSIM are desirable for a more imperceptible watermark.

2. Robustness and Fragility: To measure the robustness and fragility of the watermarking

system we measure the bit recovery accuracy (BRA) of the bit string s when unseen

(not used in training) benign and malicious image transformations are applied. BRA is

calculated by comparing the decoded secret bit-string with the secret bit-string that was

embedded by the encoder into the given image. The number of matched bits divided by

the length of the bit-string gives the bit recovery accuracy of a single image. We average
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this over our test set to report the BRA. For robustness, it is desirable to have a high

BRA against benign transformations like social media filters and image compression.

For fragility against malicious tampering, it is desirable to have a low BRA when facial

manipulation or image compositing is applied. To make a fair comparison with past works,

we do not apply any bit error correcting codes while calculating the BRA and compare the

input string s with the raw decoder output. A detector can classify an input as manipulated

if the BRA of the decoded message is below a set threshold and benign if the BRA is more

than the threshold. We measure the performance of such a detector using the AUC score -

Area under the ROC curve.

3. Capacity: measures the amount of information that can be embedded in the image. We

measure the capacity as the bits per pixel (BPP) that is the number of bits of the encrypted

message embedded per pixel of the image which is simply = L/(HWC).

It is important to note the trade-off between the above metrics—e.g. models with higher

capacity, sacrifice on the imperceptibility or bit recovery accuracy. Similarly, more robust models

sacrifice capacity or imperceptibility. We compare FaceSigns against three prior works on image

watermarking — a DCT-based semi-fragile watermarking system [67] and two neural image

watermarking systems HiDDeN [191] and StegaStamp [160]. Both HiDDeN and StegaStamp

embed a bit string message into a square RGB image while ensuring robustness to a set of image

transformations. We present examples of original and watermarked images along with the added

perturbation from different techniques in Figure 4.5.

4.3.2 Imperceptibility and Capacity

The image similarity and capacity metrics of different watermarking techniques are

reported in Table 4.1. We find that even at a higher message capacity, FaceSigns can encode

messages with better imperceptibility as compared to StegaStamp and HiDDeN. As noted by

the authors of StegaStamp and visible in Figure 4.5 and Figure 4.10 , the residual added by
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HiDDeN 

StegaStamp 

FaceSigns 
SemiFragile
(Ours) 

Figure 4.5. Examples of original and watermarked images using prior works and our FaceSigns
(Semi-Fragile) model. The image perturbation has been linearly scaled between 0 and 1 for
visualization.

their model is perceptible in large low frequency regions of the image. We believe that this is

primarily due to the difference in our network architecture choices. In our initial experiments, we

found that using a UNet architecture for the decoder with an intermediate message reconstruction

loss described in Section 4.2.2, performed significantly better than a down-sampling CNN

architecture used in prior work. Additionally, we use nearest neighbour upsampling instead of

transposed convolutions in our U-Net architectures which helps reduce the perceptibility of the

watermark by removing upsampling artifacts.

4.3.3 Robustness and Fragility

To study the robustness and fragility of different DNN based watermarking techniques,

we transform the watermarked images using unseen benign and malicious transformations

and then attempt to decode the message from the transformed message. We perform ablation

studies to evaluate the effectiveness of the proposed transforms by training three versions of our

watermarking framework: FaceSigns (No Transform) that does not use any benign or malicious

transformations during training, FaceSigns (Robust) that is only trained to be robust against
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Table 4.1. Capacity and imperceptibility metrics of different watermarking systems. H,W
indicate the height and width of the input image.

Capacity Imperceptibility

Method H,W L BPP PSNR SSIM

SemiFragile DCT [67] 128 256 5.2e-3 22.49 0.871
HiDDeN [191] 128 30 6.1e-4 27.57 0.934
StegaStamp [160] 400 100 2.0e-4 29.39 0.925

FaceSigns (No Transform) 256 128 6.5e-4 36.38 0.973
FaceSigns (Robust) 256 128 6.5e-4 35.56 0.964
FaceSigns (Semi-Fragile) 256 128 6.5e-4 35.43 0.962

benign transformations and does not use malicious transformations during training and FaceSigns

(Semi-Fragile) which uses both benign and malicious transformations during training.

Benign Image Transforms:

For benign transforms, we consider real-world image operations that are commonly

used when uploading pictures on the internet. We compress the image using different levels

of JPEG compression (separate from training) and also apply Instagram filters namely Aden,

Brooklyn and Clarendon which we use from an open-source python library - Pilgram [78]. Some

example images from these transformations are shown in Figure 4.6. We report the BRA of

different watermarking frameworks after undergoing benign transformations in Table 4.2. We

find that both StegaStamp and our robust and semi-fragile models can decode secrets with a

high BRA for these image transformations. We find that FaceSigns (Robust), which does not

use malicious transforms during training, is slightly more robust to benign transformations as

compared to FaceSigns (Semi-Fragile). However, this improved robustness comes at the cost

of being non-fragile to malicious transformations and being able to decode messages with high

BRA even for Deepfake manipulations. The model FaceSigns (No-Transform) which does not

incorporate any benign or malicious transformations during training is fragile to both JPEG

compression and malicious transforms as indicated by the low BRA for both methods.
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Watermarked Instagram Filter (Brooklyn) Instagram Filter (Clarendon) Instagram Filter (Aden) JPEG Compression (75) JPEG Compression (50)

Figure 4.6. Watermarked images with unseen benign transformations applied. Benign transfor-
mations depicted in this diagram include Instagram filters [78] Brooklyn, Clarendon, Aden and
various levels of JPEG compression

Robustness to Video Compression: For watermarking videos, we use the FaceSigns encoder to

insert the watermark data into each video frame. Similarly for decoding, we decode watermark

data by passing each frame of the watermarked video to the FaceSigns decoder network. In

our initial experiments, we found that training FaceSigns to be robust against spatial image

transforms does not ensure robustness against video compression codecs. This is because besides

compressing each frame spatially, video compression codecs like H264 also compress data

temporally. To address this challenge, we incorporate video compression during training using

the gradient-estimation procedure described in Section 4.2.3. As indicated by the results in

Figure 4.7-C, incorporating video compression codecs during training significantly improves

watermark recovery from highly compressed videos. Robustness to H264 compression makes

FaceSigns a practical framework for inserting recoverable watermarks in videos shared on the

internet.

Table 4.2. Bit recovery accuracy (BRA) of different watermarking techniques against benign
and malicious transforms. A higher BRA against benign and a lower BRA against malicious
transforms is desirable to achieve our goal of semi-fragile watermarking.

BRA (%) - Benign Transforms BRA (%) - Malicious Transforms

Method None JPG-75 JPG-50 Aden Brooklyn Clarendon SimSwap [26] FSFT [144] FS [89] Compositing

SemiFragile DCT [67] 99.81 56.65 55.04 94.98 96.41 95.06 57.62 57.61 88.59 82.31
HiDDeN [191] 97.06 72.71 68.48 94.52 94.52 94.52 85.48 72.33 74.23 73.27
StegaStamp [160] 99.92 99.91 99.87 99.84 99.73 99.39 98.34 97.42 97.43 98.21

FaceSigns (No Transform) 99.96 50.51 50.07 98.39 99.67 99.65 51.04 52.00 51.36 53.36
FaceSigns (Robust) 99.96 99.74 97.26 99.53 99.19 99.37 97.29 89.76 68.99 97.26
FaceSigns (Semi-Fragile) 99.68 99.49 98.38 97.40 98.34 99.32 64.93 52.21 31.77 51.61
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A B C

Figure 4.7. Fig. A: BRA vs JPEG compression levels (lower values indicate higher compression).
Fig. B: BRA vs sigma value used for Gaussian blur (higher sigma corresponds to higher
distortion). Fig. C. BRA vs quantization factor for H264 video codec.

Malicious Transforms:

To evaluate fragility of the watermark against unseen facial manipulations, we apply three

face-swapping techniques on the CelebA watermarked images: FaceSwap [89], SimSwap [26]

and Few-Shot Face Translation (FSFT) [144]. FaceSwap [89] is a computer graphics based

technique that swaps the face by aligning the facial landmarks of the two images. SimSwap [26]

and FSFT [144] are deep learning based techniques that use CNN encoder-decoder networks

trained using adversarial loss to generate Deepfakes. Figure 4.9 shows examples of swapped

faces using these techniques. Additionally, we consider a general image compositing operation

for all test images where we randomly select image patches covering 10% to 50% of the image

and replace the patches with those from an alternate image.

As reported in Table 4.2, we find that StegaStamp and FaceSigns (Robust) can decode

signatures from maliciously transformed images with a high BRA thereby making them unsuit-

able for authenticating the integrity of digital media. This is understandable since these methods

prioritize robustness over fragility. StegaStamp has been shown to be robust to occlusions

even though occlusions were not explicitly a part of their set of training transformations. In

contrast, watermark data recovery for FaceSigns (Semi-Fragile) model breaks against malicious

transforms, which is desirable for malicious tampering detection.
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Based on the bit-recovery accuracy of the watermark data, we can define a manipulation

detector as follows: The detector labels an image as maliciously tampered if the BRA of the

predicted bit-string is less than a threshold τ . The ROC curve of such a detector is shown in

Figure 4.8. As evident by the ROC plots and AUC scores shown in Figure 4.8, in contrast to

prior works, our semi-fragile model demonstrates robustness to benign transformations while

being fragile toward out-of-domain malicious Deepfake transformations, thereby achieving our

goal of selective fragility and an AUC score of 0.996 for manipulation detection.
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FaceSigns (Semi-Fragile)  : AUC = 0.996

FaceSigns (Robust)        : AUC=0.855

FaceSigns (No-Transforms) : AUC=0.605

StegaStamp                : AUC=0.894

HiDDeN                    : AUC=0.645

SemiFragile DCT           : AUC=0.672

Figure 4.8. Manipulation detection ROC plots and AUC scores for different watermarking
techniques. The watermarking framework labels an example as manipulated if the BRA for an
image is less than a given threshold.

Watermarked Image Target Face SimSwap FSFT FaceSwap

Figure 4.9. Facially manipulated images created through SimSwap [26], FSFT [144] and
FaceSwap [89] techniques for evaluating the fragility of the watermark.
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4.4 Discussion - Threat Models

Media authentication systems face adversarial threats from attackers who attempt to

bypass the detectors by authenticating manipulated media. In this section, I discuss some of the

threat models faced by our system and how these challenges can be addressed:

Attack 1. Querying the decoder network for performing adversarial attacks: The attacker

may query the decoder network with an image to get the decoded message and adversarially

perturb the query image until the decoded message matches the target message.

Defense: The attacker does not know what target messages can prove media authenticity since

these messages can be kept as a secret and updated frequently. If the attacker gains access to the

secret message by querying the decoder with a watermarked image, the encryption key secrecy

can prevent the attacker from knowing the target encrypted message for the decoder. Lastly, the

decoder network can be hosted securely and can only output a binary label indicating whether

the image is authentic or manipulated by matching the decoded secret with the list of trusted

secrets. This would make the decoder’s signal unusable for performing adversarial attacks to

match a target message out of the total possible 2128 messages.

Attack 2. Copying the watermark perturbation from one image to another: The adversary

may attempt to extract the added perturbation of the watermark and add it onto a Deepfake image

to authenticate the manipulated media.

Defense: Since FaceSigns generates an image and message specific perturbation, we hypothesize

that the same perturbation when applied on alternate images should not be recoverable by the

decoder. We verify this hypothesis by conducting an experiment in which we extract added

perturbations from 100 watermarked images, and apply extracted perturbation to 100 alternate

images. The bit recovery accuracy of such an attack is just 17.6% which is worse than random

prediction.
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Figure 4.10. Additional examples of original and watermarked images using prior works and
our method (FaceSigns). Observe the change in the perturbation pattern as we incorporate both
robust and benin transformations in the FaceSigns (Semi-Fragile) model.

Attack 3. Training a proxy encoder: The adversary can collect a dataset of original and

watermarked images and train a neural network based encoder-decoder image-to-image transla-

tion network to map any new image to a watermarked image.

Defense: One defense strategy is to only store watermarked images on devices so that an attacker

never gains access to pairs of original and watermarked images. Also, the above attack can only

work if the encoded images all contain the same secret message, so that the adversary can learn a

generator for watermarking a new image with the same secret message. To prevent the creation

of such a dataset, some bits of the message can be kept dynamic and contain a unique time-stamp

and device-specific codes so that each embedded bit-string is different. Regularly updating the

trusted message or encryption key is another preventative strategy against such attacks.
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4.5 Conclusion

In this chapter, we described FaceSigns, a deep learning based semi-fragile watermarking

system that can certify the integrity of digital images and videos, and reliably detect tamper-

ing. Through our experiments and evaluations, we demonstrate that FaceSigns generates more

imperceptible watermarks than previous state-of-the-art methods while upholding the desired

semi-fragile characteristics. By carefully designing a fixed set of benign and malicious transfor-

mations during training, our framework achieves generalizability to real-world image and video

transformations and can reliably detect Deepfake facial and image compositing manipulations

unlike prior image watermarking techniques. Additionally, our work is a significant step forward

in the field of covert watermarking for videos. FaceSigns can be vital to media authenticators

in social media platforms, news agencies and legal offices and help create more trustworthy

platforms and establish consumer trust in digital media.
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Chapter 5

Conclusion

In this dissertation, I discussed my research on developing expressive speech synthesis

frameworks and discussed methodologies for detecting synthesized media. On the synthesis side,

I developed two frameworks that allow the user to synthesize a given voice from either text (voice

cloning) or a reference speech input (voice conversion). Both these systems generate expressive

and natural sounding speech that is suitable for accompanying AI generated visual content. Next,

I discussed the potential misuse and harms of high-quality media synthesis technology and the

need to develop reliable detection methods. My research explored the limitations in existing

Deepfake detectors and exposed major vulnerabilities using adversarial examples. Finally, to

address these limitations, I described a semi-fragile image and video watermarking framework I

developed for authentication real images and videos.

Generation and Detection of synthesized media are both important problems that need to

be addressed together for the responsible use of media-synthesis technology. As AI generated

content is expected to increase across social media platforms in the foreseeable future, reliable

detection of such content is essential to ensure trust in social media platforms and prevent

potential harms of the synthesis technology. I plan to extend my research and develop media

authentication and detection systems for audio and speech domain.

97



Bibliography

[1] 100,000 Faces Generated by AI, 2018.

[2] D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen. MesoNet: a Compact Facial Video
Forgery Detection Network. In Proc. IEEE International Workshop on Information
Forensics and Security, 2018.

[3] Sercan Arik, Jitong Chen, Kainan Peng, Wei Ping, and Yanqi Zhou. Neural voice cloning
with a few samples. In NeurIPS. 2018.
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