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Higher-temperature phases of a structured neural model of cortex

John V. McGrann, Gordon L. Shaw, and Dennis J. Silverman
Department of Physics and Center for the Neurobiology of Learning and Memory, University of California, Irvine,

California 927I 7

John C. Pearson
David Sarnoff Research Center, Princeton, New Jersey 08543

(Received 18 January 1991)

The trion represents a localized group of neurons with three levels of firing activity. Networks of
a small number of trions (with structured interactions and firing dependent on activity at two previ-
ous discrete time steps) support a repertoire of hundreds of quasistable, periodic firing patterns
(which can be learned). We report striking phenomena with variation in "temperature" T: There
exist a series of "phase transitions" at precise values T(n), giving new repertoires of periodic firing

patterns, and the average time for any initial firing configuration to project onto a firing pattern
shows a quite sharp change at each T(n). Near a phase transition, in a Monte Carlo simulation, the
temporal evolution wanders back and forth between sets of these firing patterns in contrast to the
more structured sequential evolutions far from a T (n).

One of the important problems in science is the under-
standing of information processing and memory in the
brain. Theoretical studies of neural networks have been
addressing these problems for over 50 years. The formal
mathematical application of the powerful physical spin
system formalism to neural networks began with the
seminal paper by Little. ' The temperature T and the
Boltzmann relation for the probability of neuron firing in
Little's Ising spin model were shown by Shaw and
Vasudevan to follow from the known statistical Auctuta-
tions of neurotransmitter release at the synapse.
Modifications of Little's model by Hopfield has led to
the popular spin-glass neural network analogy, which is
characterized by long-range random (or by zero strength)
connections between neurons (before learning) and asyn-
chronous updating of neuronal firing. An opposite ap-
proach by us was to modify Little's model in a direc-
tion inspired by Mountcastle's organizational principle
for cortical function and by the striking axial next-
nearest-neighbor Ising (ANNNI) model results of Fisher
and Selke. (i) Following Mountcastle, the resulting
trion model considers the basic neural network to be
the well-established cortical column (about 700 pm in di-
ameter) comprised of small irreducible processing sub-
units (trions). This column or network of subunits has
the capability of being excited into comp1ex spatial-
temporal firing patterns. The creation and transforma-
tion of such patterns constitute the basic events of
short-term memory and information processing. We as-
sume that higher mammalian cortical processes involve
complex spatial-temporal patterns defining the code [this
is in contrast to models (e.g., the early spin-glass ' mod-
el) that assume that this code only involves sets of neu-
rons firing with high frequency]. It is argued that the
appropriate spatial scale of these subunits is about 100
pm in diameter (about 100 neurons), and that there exists
a temporal scale or time step ~ of about 50 ms for these
groups of neurons to "burst" in synchrony. (ii) Following

Fisher, the interactions among trions are taken to be lo-
calized, competing (between excitation and inhibition)
and highly structured, and the firing state of the system is
updated in a probabilistic way related to the states at the
two previous time steps. We have found that the trion
model combines the computational power of cellular au-
tomata' with the learning, adaptive capabilities of the
standard neural models. " A small trion network has a
repertoire of hundreds of quasistable, periodic, spatial-
temporal firing patterns defined as magic patterns or
MP's. The MP's have the striking properties of having
high probabilities of cycling through the entire pattern,
and can be "learned" with only small modifications in the
interaction strengths using a Hebb-type algorithm. ' The
MP's evolve temporally in Monte Carlo simulations in
certain natural sequences from one to another, as in Fig.
1 of Ref. 5.

The purpose of this paper is to present striking results
that are of strong physical interest concerning the nature
of the many "phase transitions" that occur at precise
values [see Eq. (4)] of higher temperature T(n), giving
new repertoires of MP's. In the example given below
(Fig. 2), the repertoire in the second phase region has an
order of magnitude more MP's than the lowest T phase
region. The average time (t) for any initial network
firing configuration to "recall" an MP has a sharp change
at each T(n). Near a T(n), in a Monte Carlo simulation,
the temporal evolution wanders back and forth between
sites of MP's, in contrast to the more structured sequen-
tial evolutions far from a T(n).

The probability P;(S) of the ith trion having a firing
level or state S at time n ~ is given by

P; (S)=g (S)exp(BM, S) g g (s)exp(BM, s),
S

M; = g ( V, S,'+ 8;)S,
". )

—V, ,
J
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where S' and S". are the states of the jth trion at the two
earlier times (n —1)r and (n —2)r, respectively, as shown
in Fig. 1. V, and 8'.

~
are the interactions between trions

i and j at time r from times (n —1)r and (n —2)r, respec-
tively; V, is an e6'ective firing threshold. The three possi-
ble firing states (of each trion) denoted by +, 0, and-
for S =1, 0, —1 represent, respectively, a large "burst"
of firing, an average burst, and a below average firing.
The statistical weighting term g (S) with g (0) ))g (+,—)

takes into account the number of equivalent firing
configurations of the trion's internal neuronal constitu-
ents. The fluctuation parameter B is inversely propor-
tional to the noise or "temperature, " and was explicitly
related to the statistical nature of neurotransmit ter
release at the synapse: we define the temperature
T=B '. Learning a pattern takes place through the
Hebb-type algorithm'

b. V~ =@g S;(n~)S.((n —1)r),

bW~ =@AS;(nr)SJ((n —2)r), e) 0,
(2)

which allow for "experience" (via the parameter e) to
modify the interactions between trions. Equations (1)
and (2) completely describe the trion model.

For this paper, we consider a one-dimensional ring of
N trions. For a given set of V 's, W' 's, g (S), and B we ex-
amine all 3' ' possible firing configurations of the first
two time steps. The computer is instructed to search for
all the quasistable (high probability of cycling) periodic
firing patterns, defined as MP's. The MP's are found by
computing the most probable temporal evolution of the
trion states using (1) starting from each of the 3' ' initial
network firing configurations (S'&', . . . , Sg, S'i, . . . , S&)
and determining if that evolution leads to a pattern that

repeats, an MP. This program also determines the aver-
age number of time steps (t ) for the set of initial firing
configurations to recall an MP. Small networks with
highly structured, competing (between excitation and in-
hibition) interactions are found to have huge repertoires
of MP's that will temporally evolve in Monte Carlo cal-
culations from one to another (see Fig. 1 of Ref. 5). Ex-
perience or learning can select out (as in the model of
Edelman' ) MP's with only small changes in interaction
strengths using (2). Many initial firing configurations
project onto or recall an MP. This recall is extremely
rapid: the average number of time steps ( t ) is 2 to 4.

The statistical fluctuations are crucial for the full rich-
ness of the trion model. This we can show from the fol-
lowing simple analysis: In the deterministic limit (B go-
ing to infinity, or T to 0) and with any small deviation of
the interactions from a precise structure, an MP having
an S =0 level would have vanishing probability of cycling
P, (B). We see (e.g. , in Fig. 4 of Ref. 6) that P, (B) van-
ishes both at large B and at small B. Thus finite fluctua-
tions are necessary to stabilize the high firing probabili-
ties of the MP's that contain many S =0 levels. Now we
present a new phenomenon not at all related to the T =0
limit: There is a series of transition temperatures T ( n )
between which new sets of repertoires of MP's exist, and
sharp changes in (t ) occur at these T(n). This is a
counter example to the conjecture' that cellular automa-
ta with explicit statistical fluctuations should have
features equivalent to those found in deterministic mod-
els.

We rewrite the statistical factors g (S)/
g (S =0)=exp( —u S ) so that (1) becomes
P, (S) ~ exp( —u S. +BM,S). The full richness of the
trion model occurs due to the competing of the two terms
in the exponential that allow the S =0 firing level to com-
pete with the S =1 and —1 levels for finite M. Consider
a specific example. %'e will choose
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FICz. 1. Schematic diagram of a ringlike network of N trions (trion i =trion i +N) at three time steps showing the states and con-
nectivity.
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g(0)/g(+, —)=500 or u =ln(500)=6. 2146,
(3)

V;;+ i
= 1, 8'"= —V;V;;=2,

with V; and all other V; and 8'" equal to zero, and ring-
like connections (trion i =trion i +1V). This nearest-
neighbor example will have eight positive integers ~M;~
with values n =1 to 8 depending on the network firing
levels S" and S' at the two previous time steps. Thus we
will have a different competing logic for the eight values
of T(n):

T '(n)=B(n)=6. 2146/n, n =1, . . . , 8 .

These values (4) will correspond exactly to "transition
temperatures" T(n) separating regions with difFerent re-
pertoires of MP's, and having sharp changes of ( t ) at
these T(n). This is illustrated in Fig. 2 for the %=6
trion network. Two sets of calculations are presented,
one with a 0.1% random deviation for each trion's con-
nections away from the precise values (3), and one with
30 times the same deviations (3%). They show the
robustness of the calculations, as well as the sharpness of
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IG. 2. (a) The number of MP's vs (inverse) temperature T =B for two sets of calculations .o a
—1 . r an N =6 trion network with con-

nections (3) modified by a 0.1% random deviation and a 3% random deviation. [These calculations were done by following the
sin (1).~j The 0.1% deviation curve has the sharper transitions. Only the n =1—3 transitions (4)most-probable-path time evolution using .

& e . o evia ion c
this scale. The n =4 transition corresponds to the repertoire changing from two MP's to t e sing e a rions incan be seen on t is sca e. e n = rans

h S =0 level). Each distin uishable spatially rotated pattern is counted as a distinct MP, , imi ar o a or e
of time steps (t ) for an initial firing configuration to project into an MP. All eight transitions, , in p
creases in (t j occur or n = — . c n en argem( ) f =1—3. ( ) A largement of the T ' vs (t) curve in (b) at the n =2 transition. The sharp peak in the
curve corresponding to 0.1% random deviations from connections ( ) i q

'
g.

'
itions (3) is uite strikin . [A further calculation (not shown) wit

0.01% deviations demonstrated that the peak was a plateau of height 3.S5 and width proportional to this percentage deviation.
An enlargement of the low T ' vs (t ) region in (b) to clearly show the four transitions n =5—8 not present in (a).
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the transitions. Figure 2(a) shows the number of MP's
versus T '=8; note the huge increase in the repertoire
going across the T(n = 1) transition. Other transitions in
Fig. 2(a) are seen at the n =2 and 3 T(n) values; a further
transition not seen on this scale occurs for n =4 to the
single MP with all trions in the S =0 level. We see in
Fig. 2(b) that all eight transitions are present in the plots
of (t ) versus T ', i.e., the n =5—8 transitions are only
seen in (t ). Sharp spikes in (t ) occur for n =1—3; a
blowup of the n =2 region in Fig. 2(c) clearly demon-
strates this "slowing down" at the phase transition. A
further set of calculations using O. l%%uo deviations showed
that the "slowing down" at T(n =2) was a plateau of
height 3.5 and width proportional to the precentage ran-
dom deviation used for the interactions away from the
values (3). To illustrate the nature of the MP's, we show
in Fig. 3 all the MP s from the repertoire for the six-trion

network with connections (3) from the phase region
below T(n =1). To appreciate the magnitude of the re-
pertoire of MP's from our structured connections, con-
sider a seven-trion network with connections (3) from the
phase region between T(n =1) and T(n =2). This re-
pertoire has 4496 MP's. In contrast, a similar network
randomly connected had a repertoire of 30 MP's along
with a very large increase in ( t ).

Further insight into the nature of these phase transi-
tions is obtained by examining Monte Carlo evolutions
near these T(n). Far from a transition, the MP's evolve
in somewhat natural sequences, as in Fig. 1 of Ref. 5.
Near a T(n) there is much more Row back and forth
within a set of MP's. To better illustrate this in a more
rapid time evolution, we give an example in Fig. 4 in
which the precise symmetry of (3) is broken and a 10%
random component is added, considerably smearing out
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FIG. 3. There are 155 MP's in the repertoire below the
T(n = 1) transition. Each row of squares of each block
represents the states of the six trions at one time step in an MP.
The shadings white, gray, and black correspond to S =1, 0, and
—1, respectively. Time in each MP is represented as advancing
downward. These include all distinct spatial rotations and can
be completely classified by the 34 MP's shown here that cannot
be rotated into each other. For the connections (3), all the MP's
have cycle length 6 (except for the one with all S =0); other
choices of connections (Ref. 6) yield diAerent cycle lengths. In a
calculation of the most probable pathway, once the network is
in an MP, the MP will continue to cycle repeatedly. However,
in a Monte Carlo calculation (see Fig. 4), transitions occur from
one MP to another.

FIG. 4. A Monte Carlo calculation where the connections
(Ref. 3) were modified asymmetrically so that V;; &

=0.8,

W;;+, = —0.9, and then a 10% random deviation was added.
The inverse temperature T '=3. 107, which is the n =2 transi-
tion for the symmetrical connections. Notice the Aow between
MP's as the network evolves in time starting with the first
column and ending downward and then up to the top of the
second column, etc. A Monte Carlo evolution with temperature
T far from a phase transition quickly evolves through a struc-
tured sequence of MP's into one of the "dominant" MP's, in
which it remains usually by the equivalent of 50 time steps. The
MP at the top left of Fig. 3 is the "dominant" one for
T ( T(n =2), whereas the MP in the bottom right of Fig. 3 is
the "dominant" one for T ) T(n =2).
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FIG. 5. The number of MP's vs (inverse) temperature T
for an N =6 trion network with connections the same as those
for the Monte Carlo calculation in Fig. 4. The N =1 and N =2
transitions are smeared out considerably with the total number
of patterns reduced, while the other transitions are not apparent
[see Fig. 2(a)j.

from Little's neural network Ising spin analogy, ' and
from the Fisher and Selke ANNNI model. As is strik-
ingly demonstrated in Fig. 2, we see "phase transition"
phenomena in the trion model, which we believe are of
strong interest to the physicist interested in (a) cellular
automata' '' as well as in (b) problems of "critical" be-
havior of structured systems: ' (a) As noted above, the
series of transition temperatures T(n) between which
new sets of MP's exist, and the sharp changes in (t )
which occur at these T(n), provide a counter example to
the conjecture' that cellular automata with explicit sta-
tistical fluctuations have features equivalent to those
found in deterministic models. (b) The series of higher-
temperature transitions at T(n) are analogous to the
higher T phase boundaries found in the ANNNI model
by mean-field-theory calculations. ' We also suggest that
these phenomena might be studied using the recent
memory in Lie algebras (MILA) model' based on zero-
level representations of Kac-Moody algebras' to describe
adaptive temporal development of structured finite sys-
tems. The relevance of our results to neurobiological ex-
periments will be presented elsewhere. '

the transitions, yet maintaining a sizable part of the MP
repertoire (see Fig. 5) from the unbroken case (3). In the
Monte Carlo case shown in Fig. 4, we observe the Aow
back and forth among MP's.

The trion model of cortical organization was developed
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