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ABSTRACT OF THE DISSERTATION 

 

Evolution of RNA Secondary Structure and Epigenetic Features in Plants 

by 

Galen Thomas Martin 

Doctor of Biological Sciences 

University of California, Irvine, 2023 

Professor Brandon S. Gaut, Chair 

 

 

RNA transcription is the primary route through which genomes determine the 

phenotype of organisms. However, proper execution of this process on a genome-wide 

scale requires that (1.) the DNA of transcribed genes lies within portions of the genome 

that are accessible to RNA polymerase proteins, and (2.) that the mRNAs produced from 

these genes are stable enough in the cytoplasm to be translated. To complicate matters, 

many genomes are saturated with transposable elements (TEs) that must remain silent and 

not be transcribed. My work revolves around understanding the molecular mechanisms 

and evolutionary processes that govern DNA accessibility and RNA structure/stability. 

 My first chapter focused on methylated CHH (mCHH) islands, short regions of high 

methylation near genes that are linked to TE silencing and partitioning the genome 

between actively transcribed and non-transcribed components. We analyzed the 

evolutionary conservation of mCHH islands among grass (family Poaceae) genomes, as well 

as their relationships with gene expression, genic methylation, and proximity to TEs. We 

found that they were seldom conserved in orthologous genes between species, but they 



 

ix 
 

often corresponded to insertions of certain DNA transposon families.  They were also 

significantly negatively associated with methylated but positively associated with gene 

expression.  Based on these findings, we propose a model wherein mCHH islands are a 

consequence of aberrant transcription leading to RNA-directed DNA methylation. 

 An unsolved mystery in genome partitioning is how TEs are initially identified and 

targeted for silencing. One way that this process has been observed is through hairpin 

secondary structures that form whenever TEs escape silencing and are transcribed. These 

hairpins act as a signal that allows structured transcripts to be broken down into small 

(21–24-nt) RNAs, which then methylate complementary parts of the genome. My second 

chapter focused on analyzing the genome-wide prevalence of this phenomenon in maize 

(Zea mays), where we found that it is widespread across many types of TEs. We also found 

that, where they exist in genes, these hairpin-like structures have the same effect.  The 

prevalence of these structures despite their epigenetic effects suggests a conflict between 

RNA function and stability. 

 Finally, I studied the evolutionary dynamics of secondary structure in Arabidopsis 

thaliana using a novel method to identify derived mutations that interrupt ancestral mRNA 

secondary structures. I found that these mutations, even those at synonymous sites, exist at 

reduced frequencies relative to putatively neutral mutations in the global Arabidopsis 

population. Based on population genetic data, I estimated the selective effects of these 

mutations; they are more deleterious than neutral mutations but not as deleterious as most 

missense mutations.  The population frequencies also varied between Arabidopsis 

subpopulations on a geospatial scale and were correlated with temperature.  I hypothesize 
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that the correlates with temperature reflect the fact that secondary structures vary in part 

as a function of heat. 
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INTRODUCTION 
 

Genomic information is carried by DNA and RNA molecules, but the phenotypes 

produced from this information rely on the interactions between the nucleotide molecules 

and their cellular environments. Particularly, genomic information affects cellular 

processes through the cipher of gene expression, and nucleic acid physicality influences 

both the transcription of DNA and the stability of RNA. In the nucleus, DNA wraps around 

histone proteins to form nucleosomes that themselves interact to form higher order 

structures known as chromatin (Luger et al. 1997; Khorasanizadeh 2004; Dong et al. 2017), 

which can either by more or less accessible to RNA polymerase enzymes. Similarly, RNA is 

single-stranded and can form intramolecular base-pairing bonds that contort it into a 

complex secondary structure. This structure informs the function of the RNA molecule, 

including its splicing, translation, and localization (Vandivier et al. 2016). As a result, 

natural selection and genome evolution are guided by the myriad processes that control 

the physical structure of these molecules. Understanding genome evolution—and, 

consequently, biology as a whole (Dobzhansky 1973)—therefore relies on understanding 

how these molecular processes influence (and are influenced by) evolutionary processes. 

My work herein describes variations on this theme.  

One reason that the physical structure of nucleic acids is important for genome 

function lies in the fact that most of the space within genomes is not taken up by functional 

genes. Instead, transposable elements (TEs)—selfish DNA sequences that can move or copy 

themselves—make up major portions of these genomes (Wicker et al. 2017; Stitzer et al. 

2021). TEs are especially pervasive in plants; in fact, Barbara McClintock discovered them 

by studying maize (Zea mays) lines with large effect mutations (McClintock 1947). Such 
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mutations are a natural consequence of TE mobility, because TEs can insert into gene 

bodies (disrupting the protein sequence) or promoters (disrupting expression), and they 

can grossly disrupt chromosomal architecture via ectopic recombination (Langley et al. 

1988; Blumenstiel 2011). One famous example of the large-effect phenotypic consequences 

of these insertions in plants comes from the maize gene teosinte branched 1 (tb1), which is 

a major quantitative trait locus that determines the apical dominance of maize compared to 

its progenitor species, teosinte (Zea mays ssp. parviglumis)(Doebley et al. 1995). The 

difference in apical dominance phenotypes between these two species comes from a TE 

insertion, Hopscotch, in the regulatory region of tb1 that increases tb1 expression in maize 

compared to teosinte (Studer et al. 2011). Because TEs can have these severe phenotypic 

consequences, their DNA sequences are often physically differentiated from those of genes 

to prevent their transcription. 

Plant genomes achieve this differentiation through epigenetic means such as DNA 

methylation, the addition of an extra methyl group to the pyrimidine ring of cytosine bases. 

DNA replete with methylated Cs (mC) exhibits different chromatin states compared to non-

methylated DNA, typically causing methylated DNA to be heterochromatic and inaccessible 

to polymerase enzymes (Zhang et al. 2018). Genomes target and maintain methylation 

states through various mechanisms, such as RNA-directed DNA methylation, where small 

RNAs produced from the destruction of TE transcripts directs methylation to 

complementary portions of the genome (Matzke and Mosher 2014; Erdmann and Picard 

2020), so the post-transcriptional silencing (degradation of transcripts into small RNAs 

through RNA interference) and transcriptional silencing (methylation) of TEs are 

interlinked. Since RNA secondary structure partially controls the entry of transcripts into 
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RNA interference (Slotkin et al. 2003; Bousios et al. 2016), the physical structures of RNA 

and DNA are also interlinked. 

However, studying the evolution of repetitive regions is not simple because TE 

genomic sequences tend to be degraded over time and are not conserved. As these regions 

are highly variable, it is difficult to study the specific epialleles involved in TE silencing. 

Instead, general methylation patterns can be compared between species, such as by 

Zemach et al. (2010) and Niederhuth et al. (2016). These comparative studies have given 

rise to two major conclusions: (1.) most plant TEs are heavily methylated and silent, and 

(2.) overall levels of methylation are divergent between different taxa, depending largely 

on genomic TE content, life history (e.g., clonal vs sexual propagation), and evolution 

(Seymour et al. 2014; Niederhuth et al. 2016). The fact that TEs are nearly ubiquitously 

silenced indicates that this process is important for genome function, but the fact that it 

differs by taxa indicates that conflicting pressures exist that are largely unknown. Hollister 

& Gaut (2009) showed that trade-offs between TE silencing and negative consequences for 

gene function may account for these variable patterns, which has largely been supported 

by the modern accumulation of methylome sequencing data (Niederhuth et al. 2016). 

One such way that TE methylation can negatively affect gene function is through 

spreading of repressive methylation (Ahmed et al. 2011). Methylated TEs act as a 

“nucleation sites” of heterochromatin which spreads to surrounding regions (Choi and Lee 

2020). This process has been observed to affect loci as far as 20 kb away from TEs (Lee and 

Karpen). In a genome—like that of maize—that is mostly composed of TEs, most genes are 

within proximity to TEs (Stitzer et al. 2019). Therefore, mechanisms must exist to protect 
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expression of important genes from heterochromatic spreading  (Phillips-Cremins and 

Corces 2013; Li et al. 2015). Another way that gene function may be hampered by the TE 

silencing comes not from DNA chromatin structure, but from RNA secondary structure; 

when genes have strong secondary structures, it can cause them to enter into the RNA 

interference pathway and be degraded (Li et al. 2012). Both of these complications from 

TE-silencing mechanisms may affect gene function, so the evolutionary pressures on 

genomes with differing TE content are sometimes contradictory: a major challenge for 

plant genomes lies in distinguishing TE sequences from gene sequences and maintaining 

expression of genes in the face of widespread TE silencing. 

However, in plants, DNA methylation is more complex than a simple 

heterochromatic mark (Harris et al. 2018). It occurs in three possible sequence contexts: 

CG, CHG, and CHG (where H = any DNA residue other than G, guanine)(Zhang et al. 2018), 

and methylation in these different contexts is deposited by separate enzymes which confer 

different chromatin states (Stroud et al. 2014). One example of a non-heterochromatic 

relationship between methylated DNA and chromatin state can be seen in gene-body 

methylation (gbM), a phenomenon wherein constitutively expressed gene exons are 

heavily methylated in the CG context (Takuno and Gaut 2013). Evolutionarily, this type of 

methylation may be of functional importance as it is conserved in orthologous genes and 

evolves slowly between diverged species (Takuno and Gaut 2012; Takuno and Gaut 2013; 

Bewick et al. 2016; Bewick and Schmitz 2017; Seymour and Gaut 2020), but its function 

and importance remain a subject of debate, as it is not present in at least one species, 

Eutrema salsugineum (Bewick et al. 2016; Zilberman 2017). The way that methylation 
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affects evolution is therefore complicated by the fact that the functional effects of 

methylation differ depending on the type of methylation involved.  

My first chapter investigates a specific type of non-heterochromatic methylation 

feature, termed methylated CHH islands, which are areas of CHH methylation concentrated 

upstream of genes. These regions are are typically found at the boundaries between tightly 

packed chromatin (heterochromatin) and loosely packed chromatin (euchromatin), often 

near actively expressed genes. To explore the evolutionary dynamics of mCHH islands, 

compared their presence in eight different grass (family Poaceae) species. We discovered 

that mCHH islands are quite common and are associated with approximately 39% of genes, 

on average. We observed that genes near transposable elements (TEs) were more likely to 

have mCHH islands. While TEs play a role in this association, mCHH islands were not solely 

determined by TEs. Other factors, such as gene length and gene-body methylation (gbM), 

also influenced the presence of 5' mCHH islands. In some species, the absence of gbM was a 

stronger predictor of 5' mCHH islands than TE proximity. Additionally, gene expression 

level had a weak influence on the presence of mCHH islands. Finally, we assessed the 

conservation of mCHH islands across evolutionary time and found that they were generally 

not conserved. Overall, we concluded that mCHH islands are not solely a result of the TE 

silencing process, and perhaps they emerge from other properties of expressed genes, such 

as aberrant expression.  

The second chapter focuses on the effects of RNA secondary structure on epigenetic 

response in maize. RNA secondary structure can trigger a response in the host organism 

controlled by small RNA molecules (smRNAs) in a process similar to RNA interference 
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(RNAi). To study this, we used computer-based methods to predict folded structures in the 

maize genome, particularly in regions that folded similarly to pre-miRNA (microRNA 

precursor) locations that are known to act as RNAi substrates. We discovered that these 

miRNA-like folded structures are common in genes and in most, but not all, groups of 

transposable elements (TEs). These miRNA-like regions had more smRNAs and 

methylation associated with them compared to regions without such structures, but genes 

with miRNA-like structures tended to be more highly expressed compared to other genes. 

However, the expression of these genes varied more across different maize lines, and this 

variability was positively linked to the number of smRNAs associated with them. Together, 

our results suggest that these hairpin structures serve a functional purpose but could also 

have negative consequences in the form of smRNA production.  

The third chapter investigated the evolution of RNA secondary structure explicitly 

in Arabidopsis thaliana. In addition to their epigenetic effects, RNA structure is essential for 

proper mRNA processing, but its evolutionary patterns have not been characterized. We 

studied mutations that may alter RNA structure using computer predictions and empirical 

pairing data from the 1,001 genomes dataset. We categorized mutations as either 

conserving ancestral secondary structure or interrupting it. We found that structure-

interrupting mutations had lower genetic diversity and were less. Additionally, the impact 

of these mutations varied depending on where they occurred within genes. We used 

demographic models to estimate that synonymous structure-changing mutations had 

selection coefficients about a third those of those for non-synonymous mutations. We 

conclude that RNA structure experiences subtle but widespread selection. 
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CHAPTER 1 
 

CHH Methylation Islands: A ubiquitous but non-conserved feature of 
grass genomes 

 
1.1 Abstract 

 
mCHH islands are peaks of CHH methylation that occur primarily upstream to 

genes. These regions are actively targeted by the methylation machinery, occur at 

boundaries between heterochromatin and euchromatin, and tend to be near highly 

expressed genes. Here we took an evolutionary perspective by studying upstream mCHH 

islands across a sample of eight grass species. Using a statistical approach to define mCHH 

islands as regions that differ from genome-wide background CHH methylation levels, we 

demonstrated that mCHH islands are common and associate with 39% of genes, on 

average. We hypothesized that islands should be more frequent in genomes of large size, 

because they have more heterochromatin and hence more need for defined boundaries. We 

found, however, that smaller genomes tended to have a higher proportion of genes 

associated with 5’ mCHH islands. Consistent with previous work suggesting that islands 

reflect the silencing of the edge of transposable elements (TEs), genes with nearby TEs 

were more likely to have mCHH islands. However, the presence of mCHH islands was not a 

function solely of TEs, both because the underlying sequences of islands were often not 

homologous to TEs and because genic properties also predicted the presence of 5’ mCHH 

islands. These genic properties included length and gene-body methylation (gbM); in fact, 

in three of eight species the absence of gbM was a stronger predictor of a 5’ mCHH island 

than TE proximity. In contrast, gene expression level was a positive but weak predictor of 

the presence of an island. Finally, we assessed whether mCHH islands were evolutionarily 
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conserved by focusing on a set of 2,720 orthologs across the eight species. They were 

generally not conserved across evolutionary time. Overall, our data establishes additional 

genic properties that are associated with mCHH islands and suggests that they are not just 

a consequence of the TE silencing machinery. 

 

1.2 Introduction 
 

Epigenetic marks—such as DNA methylation, histone modifications and nucleosome 

positioning—affect the function and evolution of plant genomes (Diez, Roessler and Gaut, 

2014; Vidalis et al., 2016). Perhaps the best characterized epigenetic effect is transposable 

element (TE) silencing. Epigenetic silencing within TEs is achieved through a complex 

series of biochemical reactions that usually result in the methylation of cytosines in three 

contexts: CG, CHG, and CHH (where H = C, T, or A). Methylation in all three contexts is 

associated with transcriptional silencing and a heterochromatic state, which effectively 

renders a TE unable to propagate (Slotkin and Martiennsen, 2007; Fultz et al. 2015). This 

silencing has evolutionary effects both because it alters the potential trajectory of genome 

content, which is dominated by TEs in large plant genomes (Lee and Kim 2014), and 

because TE methylation affects the expression of nearby genes (Lippmann et al., 2004; Choi 

and Lee 2020).  

The processes of DNA methylation and maintenance vary by cytosine context.  In 

Arabidopsis thaliana, CG methylation is deposited and then maintained across generations 

by the DNA methyltransferase MET1 (see Law and Jacobsen, 2010 for a review). Once it is 

established, CHG methylation is maintained by a separate methyltransferase (CMT3). In 

contrast to CG and CHG methylation, CHH methylation is not maintained but must be 



 

12 
 

deposited de novo every generation. This deposition is achieved by one of two pathways. 

One is RNA-directed DNA methylation (RdDM), which uses homology of small interfering 

RNAs (siRNAs) to guide methyltransferase machinery to complementary DNA sequences 

(Law and Jacobsen, 2010). At siRNA target sites, the methyltransferase enzyme deposits 

methylation in all three contexts (CG, CHG, and CHH), particularly at the edges of targeted 

TEs (Zemach et al. 2013; Gent et al. 2013). The second pathway includes the plant-specific 

methylases CHROMOMETHYLASE 2 (CMT2) and CHROMOMETHYLASE 3 (CMT3) (Gouil 

and Balcombe, 2016), which methylate CHH and CHG cytosines in deep heterochromatin 

(Bewick et al. 2017). Unlike RdDM, CMT2 tends to methylate TEs across their full length 

(Zemach et al. 2013), but the regions methylated by RdDM and CMT2 do frequently overlap 

in Arabidopsis thaliana (Zemach et al., 2013).  

 These pathways contribute to the epigenetic features known as methylated CHH 

(mCHH) islands. mCHH islands are short regions of elevated methylation typically found 

upstream and downstream from genes. mCHH islands were first identified in rice, where 

they were associated with Miniature Inverted-Repeat Transposable Elements (MITEs) 

(Zemach et al., 2010b), a group of Terminal Inverted Repeat (TIR) DNA elements that often 

insert near genes. mCHH islands have also been characterized in maize (Zea mays ssp. 

mays); they were located near ~50% of genes and tend to be nearby genes with high 

expression levels (Gent et al. 2013). The maize analyses suggest that mCHH islands do not 

represent typical TE methylation, because maize TEs within 1 kb of genes are more heavily 

CHH methylated than other TEs and are more heavily methylated on the side of the TE 

closest to the gene that contained the mCHH island.  
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Thus far, the function of these mCHH islands is unclear. Given that they occur along 

boundaries between euchromatin and heterochromatin and also that mCHH island-

associated genes tend to be more highly expressed than other genes, Gent et al. (2013) 

proposed that they partition the genome between different chromatin states, either by 

preventing the spread of epigenetic modifications into genes or, vice versa, by preventing 

the spread of euchromatin into TEs, thereby potentially reactivating them. Li et al. (2015) 

explored this potential function using mop1 maize mutants, which lack mCHH islands. They 

confirmed that the loss of RdDM leads to an increase of transcribed RNA from some TEs 

(between 29–179, depending on the tissue examined), suggesting that mCHH islands 

contribute to TE silencing.  Similarly, others have found that the loss of near-gene RdDM in 

mop1 mutants can lead to unstable TE silencing that may be more susceptible to 

spontaneous reactivation during heat stress (Guo et al. 2021).  Nonetheless, these 

observations do not fully explain why mCHH islands are concentrated near expressed 

genes. One potential explanation is that mCHH islands are a result, rather than a cause, of 

gene expression; this explanation is consistent with the observation mop1 mutants do not 

display widespread downregulation of mCHH-deficient genes (Li et al., 2015). There is, 

however, some evidence for a causal relationship between mCHH islands and gene 

expression, because recent work has shown that two gene A. thaliana products (SUVH1 and 

SUVH3) form a complex that binds CHH methylated sequences and enhances transcription 

(Harris et al., 2018). Raju et al. (2019) suggest that this mechanism implicates mCHH 

islands in protecting and promoting the expression of genes nearby TEs.  

Until recently, it has been unclear whether mCHH islands are an idiosyncrasy of rice 

and maize or instead a general feature of plant epigenomes. To address this question, 
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Niederhuth et al. (2016) surveyed genome-wide methylation patterns across a panel of 34 

angiosperms. They defined mCHH islands as 100 bp windows within two kb of genes that 

were methylated in at least 25% of reads mapped to cytosines in the CHH context. This 

definition was based on previous work (Li et al., 2015), but it did not account for the widely 

varying background levels of CHH methylation found across species. Their survey also 

predominantly contained genomes of relatively small size. Their survey did include the TE 

rich ~2.3 Gb maize genome, but the remaining species had genomes of < 1.25 Gb in size, 

which is much smaller than the angiosperm average of 5.7 Gb (Dodsworth et al., 2015). 

This size distribution makes it difficult to assess whether mCHH islands correlate with 

genome size, as do other features of plant epigenomes (e.g., Alonso et al., 2015; Takuno et 

al, 2016; Niederhuth et al., 2016). Nonetheless, the Niederhuth et al. (2016) survey was 

remarkably informative about many aspects of DNA methylation variation among 

angiosperms, including mCHH islands. It reported, for example, that species vary markedly 

in the percentage of genes associated with upstream mCHH islands, from < 1% in Vitis 

vinifera to ~74% in Beta vulgaris. They also found that several species did not demonstrate 

an obvious association between mCHH islands and gene expression, making the 

relationship unclear.  

Here we study mCHH islands in members of the grass family (Poaceae). We have 

chosen to focus on grasses for several reasons, including that they are economically 

important, that their intermediate evolutionary age makes them a useful comparative 

system, and that they encompass extensive variation in diploid genome size. They are also 

an interesting system from the perspective of CHH methylation, because all of the grass 

species surveyed thus far have low background levels of CHH methylation compared to 
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other angiosperms (Bewick et al. 2017). This is a useful property for studying mCHH 

islands because they can be easily detected as exceptions to the background pattern of low 

CHH methylation.  

To study mCHH islands, we focus on a set of eight grass taxa that span the breadth of 

the family, that vary widely in genome size, and that have available data—i.e., whole 

genome bisulfite sequencing (WGBS) data and RNAseq data (Seymour and Gaut 2020). 

Importantly, 2,720 1-to-1 orthologs have been identified among these same taxa, so that we 

can assess the evolutionary conservation of mCHH islands across species for specific genes. 

Given these data, we identify mCHH islands using methods that recognize that genome-

wide mCHH levels vary across species. We then address four questions: First, what is the 

genome-wide pattern of mCHH islands across species? Is there, for example, a correlation 

with genome size for mCHH islands, as for other features of DNA methylation? Second, are 

islands located near genes that have nearby TEs, reinforcing the notion that mCHH islands 

are associated with TEs? Third, is there a relationship between mCHH islands and gene 

expression? That is, does gene expression predict the presence of a nearby island, or do 

other genic features better predict an island’s presence? Finally, we take advantage of 

orthologous genes to investigate whether mCHH islands are evolutionarily conserved 

across species. Once established, is an island conserved, or is it an evolutionarily short-

lived feature of the epigenomic landscape?  

 

1.3 Results 
 

General patterns of CHH methylation near genes  
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We analyzed the near-gene distributions of cytosine methylation in a dataset of 

WGBS and RNA-seq data from leaf and shoot tissue of eight grass species (Seymour and 

Gaut 2020) (Figure S1.1; see Methods). These species represent most of the evolutionary 

breadth of the Poaceae and span a 15-fold range of genome sizes from 5,428 Mb (Hordeum 

vulgare) to 355 Mb (Brachypodium distachyon) (Table 1.1). We first examined methylation 

in and near genes by measuring the weighted methylation level across all genes with 

available flanking data for 2 kb both up and down-stream. Following precedent (Schultz et 

al 2012; see Methods), we defined the weighted methylation level of a region as the 

proportion of methylated versus unmethylated bases that align to a single site in the 

appropriate context, and then averaged across all such sites in a defined region or window. 

We applied this approach to plot CG, CHG and CHH methylation in 200 bp windows and 

merged the results across genes (Figures 1.1A & S1.2). These analyses revealed well-known 

patterns—e.g., CG methylation within genes predominated over CHG and CHH methylation, 

and methylation was relatively low near both transcription start sites (TSS) and 

downstream of transcription termination sites (TTS) (Zemach et al., 2010b; Feng et al., 

2010) (Figure 1.1A & S1.2). 

These plots also demonstrated that peaks of CHH methylation within most species 

are located immediately upstream to the TSS and downstream of the TTS (Figure 1.1A & 

S1.2). Four features of the mCHH peaks merit further comment. First, the peaks were 

identifiable despite the fact that these figures average over all genes, not just the genes 

with mCHH islands. Hence, the peaks likely underestimate the magnitude of methylation 

levels for the subset of genes that are associated with mCHH islands. Second, the CHH 

peaks varied in magnitude. They were most prominent in Z. mays (Figure S1.2), suggesting 
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either that Z. mays had a higher proportion of genes with mCHH islands than other species 

or that its mCHH islands were more highly methylated. However, mCHH peaks were also 

notable in H. vulgare, which has the largest genome in our sample, in B. distachyon, with the 

smallest genome in our sample, and in S. bicolor, with an intermediate size genome (Figure 

1.1A). In Oryza sativa, another species with a small genome (Table 1.1), the peak height 

was also pronounced, reaching >10% of methylated reads across all cytosines in the CHH 

context (Figure S1.2). Third—as previously found in Z. mays (Gent et al. 2013)— mCHH 

peaks were far more evident in 5’ upstream regions compared to 3’ downstream regions; 

accordingly, most of our subsequent analyses focus on 5’ islands. Finally, the analyses of 

Triticum urartu and Phyllostachys heterocycla yielded the least obvious 5’ bumps in mCHH 

levels (Figure S1.2). Genome-wide analyses of T. urartu genes also yielded non-standard 

patterns of genic methylation (Figure S1.2). In this context, it is worth noting that these two 

genomes had the lowest contiguity among our sample (Table S1.1). In theory, low 

contiguity should not affect our results, because we only analyzed genes that had 2.0 kb 

flanking regions. However, the potential effects of fragmented data and/or poor 

annotations for these two species must be kept in mind.  

One argument about mCHH islands is that they separate euchromatin from 

heterochromatin. If true, a simple prediction is that mCHH levels should be higher in 

species with large genomes, because they are more likely to have a high density of TEs 

interspersed with genic regions. To assess the relationship between mCHH levels and 

genome size, we measured weighted mCHH methylation in 1.0 kb regions upstream of TSS 

and downstream of TTS across all genes. We focused on 1.0 kb regions because this 

distance usually encompassed near-genic CHH peaks (Figure 1.1A & S1.2). Following Gent 
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et al. (2013), we then estimated the fold-enrichment of those 1.0 kb regions by comparing 

them to an equal number of randomly determined 1.0 kb sites across each genome. All 

eight species exhibited greater than two-fold enrichments of near-gene mCHH, ranging 

from 2.34x enrichment near genes in B. distachyon to 6.25x enrichment in H. vulgare. We 

tested the relationship between GS and near-gene mCHH enrichment using phylogenetic 

generalized least squares (PGLS) regression (Symonds and Blomberg, 2014). The 

relationship was not significant with all eight species (p = 0.157), but T. urartu was a clear 

outlier. When we performed a post hoc analysis without T. urartu, the remaining seven 

species represented a strongly positive correlation between genome size and near-gene 

mCHH enrichment (p = 4e-4).  

To probe this result further, we examined the relationship between genome size 

separately with levels of CHH methylation in near-gene 1.0 kb windows (Figure S1.3A) 

versus randomly chosen windows from throughout the genome (Figure S1.3B). Near-gene 

mCHH levels had a slight but nonsignificant negative relationship with genome size (Figure 

S1.3A) (R2 = -0.04; p = 0.43). In contrast, random genomic windows had a stronger negative 

relationship with genome size (R2 = -0.1; p = 0.22), mirroring a previous study that 

measured genome-wide mCHH levels in this same sample of eight species (Seymour and 

Gaut, 2020). Putting these results together, they suggest that any relationship between 

genome size and mCHH enrichment (i.e., the ratio of near-gene to random windows) 

reflects that background levels of CHH tend to be lower in large genomes. Thus, we find no 

compelling relationship between genome size and near-gene mCHH levels.  

 

mCHH islands are methylation islands 
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To characterize mCHH islands more fully, we modified the method of Li et al. (2015) 

by splitting each genome into non-overlapping 100 bp windows and calling windows with 

elevated mCHH levels as mCHH islands when they were <2.0 kb from a gene. While Li et al 

(2015) called mCHH islands using an empirical >25% mCHH cutoff, we performed a 

binomial test on each window to determine whether there was significantly more CHH 

methylation than the genome-wide level (p < 0.01, after FDR correction) (see Methods). 

Note that we also applied alternative methods that either focused on the fraction of 

significantly methylated cytosine sites, rather than weighted methylation levels (Schultz et 

al. 2012), and also used an empirical cut-off rather than the binomial test (see Materials 

and Methods). All methods yielded qualitatively identical results with nearly-identical 

quantitative results. For simplicity, we present the results based on weighted methylation 

levels, to follow the precedence of previous mCHH island analyses (Li et al., 2015; 

Niederhuth et al., 2016), and on the binomial test, because it is an inherently statistical 

approach.  

The binomial method yielded information about the mCHH level of statistically 

identifiable islands. For example, the median mCHH level of islands was highest in Z. mays 

at 53.8%, followed by S. bicolor and O. sativa, which were between ~40–50%. The 

remaining species all had median island levels of ~30–40% mCHH (Table 1.1), which is 

much higher than background levels of 12% or less (Figure S1.3A). Given the identification 

of islands, we characterized genes as mCHH island-associated (hereafter mCHH island 

genes) if they had at least one significantly elevated 100 bp region within 2.0 kb upstream. 

After examining >30,000 annotated genes per genome, we found that the proportion of 
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island genes varied widely between species, from 17.3% in P. heterocycla to 71.9% in O. 

sativa, with an average of 38.8% across all eight species (Table 1.1).  

To assess methylation levels around mCHH islands, we focused on the center of a 

single 5’ 100 bp mCHH island window and plotted the average upstream and downstream 

of that center. As expected, we found that methylation distributions were elevated in the 

CHH context, but the results showed that islands were also elevated in the CG and CHG 

contexts in all eight species (Figure 1.2). Thus, as noticed previously (Niederhuth et al., 

2016), mCHH islands are really “methylation islands,” because they contain elevated 

methylation levels in all three cytosine contexts.  This result further reinforces previous 

conclusions that mCHH islands represent RdDM deposition (Gent et al. 2013; Li et al., 

2015), because RdDM is agnostic with respect to cytosine context (Matzke and Mosher, 

2014). 

 

Genic attributes of mCHH island-associated genes 

mCHH islands are hypothesized to function as a boundary between TE-enriched 

heterochromatin and gene-rich euchromatin (Gent et al., 2013). This hypothesis predicts 

that island-genes should be adjacent to TE-rich regions more often than non-island genes. 

One way to examine this prediction is to investigate genome size, but this approach does 

not recognize that different genomes may have different organization of TEs and genes that 

may not be tightly correlated with genome size. Hence, to test this prediction in more 

detail, we explored the relationship between CHH island genes and TEs. For each species, 

we first downloaded publicly available annotations of each genome (Table S1.2). Then, for 

each gene in each species, we identified the annotated repetitive element closest to the TSS 
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and measured the distance from the gene TSS to the nearest end of the repeat. As expected 

given previous research (Li et al., 2015), we found that mCHH island genes are much closer 

to repeats, on average, than non-island genes, and this was true for each of the eight species 

(logistic regression; p < 0.01). Although the signal was consistent across each species, note 

that the quality of repeat annotations likely vary across genomes, as does genome quality.   

Another attribute of maize mCHH islands was their association with gene 

expression (Gent et al., 2013; Li et al., 2015), but the relationship between islands and gene 

expression did not hold across angiosperms in a more extensive dataset (Niederhuth et al. 

2016). We re-investigated this relationship on a smaller scale by first repeating the 

analyses of previous studies (Gent et al., 2013; Li et al., 2015; Niederhuth et al., 2016). 

These studies separated genes into quartiles of expression and plotted mCHH levels 

upstream of genes. Our results were similar to previous work, showing that more highly 

expressed genes were slightly enriched for mCHH in all species (Figure 1.4A & S1.4). We 

also contrasted expression differences between mCHH island- vs non-island genes (Figure 

1.4B). In all eight species, mCHH island-genes had slightly higher average expression levels 

than non-island genes, but the difference was significant for only three species (Z. mays, H. 

vulgare, and P. heterocycla). These results mimic Niederhuth et al. (2016) by suggesting 

that a relationship between mCHH islands and gene expression is either not universal or 

that it is so subtle as to be difficult to support statistically in some species.  

We investigated additional genic features that may be associated with mCHH 

islands. For example, Li et al. (2015) reported a small (but non-significant) enrichment of 

gene-body methylation (gbM) genes among mCHH island-genes. We assessed the 

relationship between mCHH islands and gbM in two ways, using gbM either as a binary 
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trait or as a quantitative variable (weighted mCG levels within exons) (see Methods). In 

both cases, we found a negative relationship between mCHH islands and genic methylation, 

and this negative relationship held for all species (logistic regression with %GC, p < 3.9e-6 

for each species). We also tested whether island-associated genes were longer than other 

genes, because gbM genes are typically longer than unmethylated genes (Takuno et al., 

2012). mCHH island genes were significantly longer than non-island genes in all species 

except H. vulgare and P. heterocycla (p < 0.05, logistic regression) (Figure 1.4D), and this 

relationship held for both total gene length and length of longest transcript (Figure S1.6). 

As a comparison to gene expression, we plotted genes by length quartiles (Figure 1.4C & 

S1.5), illustrating that the relationship with gene length is more obvious. 

Finally, we incorporated all four predictors (TE distance, gene expression, gbM and 

total gene length) into a logistic regression model for each species. Gene expression and 

gene length were positive predictors of island presence. TE distance and gbM were 

negative predictors and significant in all eight species (Table S1.2).  A limitation of logistic 

regression is that the estimates for predictors are on different scales, so it is difficult to 

compare their effects directly to one another from the estimates. To circumvent this 

problem, we applied variable importance analysis (Kuhn, 2008), which scales predictors 

for direct comparison within a model (Figure 1.5; see Methods). Three notable patterns 

emerged. First, TE proximity was generally—but not always—the most powerful predictor 

of the presence of an mCHH island. TE proximity was the most important variable in 5 of 8 

species, but gbM was the strongest predictor in the remaining three species.  Second, TE 

proximity was least important in T. urartu, which could again reflect features of genome or 

annotation quality. Third, gene length was also consistently significant, but its importance 
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was always eclipsed by gbM and TE proximity. Finally, gene expression was comparatively 

unimportant, even in the three species for which it was a significant predictor (Table S1.2). 

  

Assessing evolutionary conservation of mCHH islands 

The availability of a set of orthologs from these species facilitates the address of 

another question: are mCHH islands conserved over evolutionary time? To address this 

question, we investigated mCHH island conservation among 2,720 orthologs (Seymour and 

Gaut, 2020). Islands were recorded as a binary trait for each ortholog; that is, each gene 

was or was not associated with an island in each species (Table 1.1). We then contrasted 

pairs of species and calculated the enrichment of island conservation. Enrichment was 

measured as the ratio of the number of orthologs with conserved islands between species 

to the number expected at random (see Materials and Methods). mCHH islands did not 

exhibit a signal consistent with a signal of evolutionary conservation (Figure 1.5A). 

Enrichment between species never exceeded 1.1x (Table 1.1), and the number of orthologs 

with conserved island-association was not significantly greater than expected by random 

chance in any pairwise comparison (permutation test, p > 0.05). As a contrast, we also 

investigated gbM conservation, because it is an epigenetic state that is known to be 

conserved between orthologs from different species (Takuno et al., 2013; Seymour et al., 

2014; Takuno et al., 2016; Niederhuth et al., 2016; Seymour and Gaut 2020). In comparison 

to mCHH island enrichment levels of < 1.1x, gbM conservation ranged from a minimum of 

2–fold enrichment to as much as 3.5x enrichment (Figure 1.5A).  

We further examined some of the features that may contribute to rare cases of 

mCHH island conservation. We began by plotting, for each of 2,720 orthologs, the number 
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of islands across eight species. The distribution of mCHH island conservation among 

orthologs (Figure S1.7) had a median of four species and a mean of 3.57 species, which was 

statistically indistinguishable both from the expected mean of 3.55 species under a purely 

random model (simulation, p = 0.272) and from normality (Shapiro-Wilkes test, p > 0.05). 

To investigate further, we applied linear models to test for correlations between gene-

associated variables and maintenance of mCHH island status over evolutionary time. For 

example, the average exonic %CG across orthologs in all eight species was significantly 

negatively correlated with the number of species that had a gene island (R2 = -0.0003, p = 

0.003) (Figure 1.5B). Using the same approach, we found that the average expression of an 

ortholog was not correlated with the number of species that have an mCHH island (R2 = 

9.2-2e-4, p = 0.0567, Figure 1.5C) but that average gene length was positively correlated 

(avg. gene length, R2 = 0.0029, p = 0.011, Figure 1.5D). The largest correlation was between 

conservation and TE distance (R2 = -0.051, p = 9.6e-21, Figure 1.5E), providing further 

evidence of the link between mCHH islands and TEs. Although the magnitude of these 

significant correlations were very low, they largely recapitulated our within-species 

analyses.  

 

mCHH islands and TE superfamilies in maize, rice and barley 

Finally, we brought together data on mCHH islands, TEs and orthologs to further 

investigate the link among mCHH islands, genes and specific types of TEs. For these 

analyses, we narrowed our focus to three well-studied species—Z. mays (maize) O. sativa 

(rice), and H. vulgare (barley)—that had both reasonably contiguous genomes (Table S1.1) 
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and careful TE annotations that distinguished among element superfamilies (Wicker et al. 

2007; Table 1.2).   

mCHH islands and homology to TEs: If the primary function of mCHH islands is to 

silence near-gene TEs (Li et al., 2015), their lack of evolutionary conservation is 

unsurprising because TE content often varies between species.  Under this model one 

expects mCHH islands to be associated with sequences that have homology to TEs and 

perhaps to specific TE families (Zemach et al. 2010a, Li et al, 2015). Given data from maize, 

rice and barley, we first counted how often TEs were 2 kb upstream of the TSS of an 

annotated gene and then assessed whether those genes had a 5’ mCHH island. The results 

varied markedly among species; ~30% of genes had both a TE and an mCHH island in 

barley and maize, but 74% of genes fell into this category in rice (Table 1.2). The 

interesting point about these values is that many mCHH islands—about 70% in maize and 

barley—are not obviously associated with nearby TEs.  

One likely possibility for the low overlap with annotated TEs is incomplete 

annotations, particularly if mCHH island sequences are within fragmented remnants of TEs. 

To investigate further, we aligned mCHH island DNA sequences to a database of annotated 

TE sequences from Poaceae genomes, using Blast, and tallied the e-values of mCHH island 

sequences (see Materials and Methods).  As expected, a large proportion of island 

sequences had high-threshold hits to TEs—e.g., 65.8%, 72.0, and 82.0% of island sequences 

had homology to TEs at an e-value < 1e-5 in Z. mays, O. sativa, and H. vulgare, respectively. 

Nonetheless, this implies that from 18.0% to 34.2% of sequences had little homology to 

TEs. As a genome-wide comparison for context, we sampled the same number of random 

100 bp regions from throughout each genome and mapped them to the TE database. In the 
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case of Z. mays and H. vulgare (Figure 1.6A), a smaller proportion of mCHH island 

sequences had significant (<1e-5) sequence homology to TEs than the random regions 

(65.8% vs. 78.9% in Z. mays; 82.0% vs 86.2% in H. vulgare). Moreover, in both species 

there was a substantial dearth of mCHH island sequences with exact (e-value < 1e-40) hits 

to annotated TEs. The situation differed somewhat in O. sativa, because it had a greater 

proportion of mCHH islands (72.0%) with < 1e-5 e-values compared to control regions 

(55.1%), but it again had a lower proportion of islands with stringent hits (e-value < 1e-

40)(Figure 1.3A). Overall, these results indicate: i) that a substantial proportion of mCHH 

islands were not obviously derived from TEs and, ii) when they did exhibit homology to 

TEs, they were often diverged such that they did not have especially stringent matches.  

Associations with specific TE superfamilies: Both Zemach et al. (2010a) and Li et al 

(2015) found especially strong signals of association between mCHH islands and terminal 

inverted repeat (TIR) DNA transposons. We therefore investigated particular classifications 

of TEs, asking whether their presence within 2 kb of a gene led to mCHH enrichment. We 

performed this analysis for 12 TE classifications (Table 1.2) that were present in all three 

species. The enriched TE types varied among species, but there was a clear general trend: 

DNA transposons tended to be enriched for mCHH islands and retrotransposons were not 

(Table 1.2). For each 5’ mCHH island within an annotated TE, we also measured the 

distance to the closest 5’ or 3’ end of the TE and the distance to the TSS of the gene (Figure 

1.6B). By definition, the mean distance of within-TE mCHH islands to the edge of the TE 

was smaller than the distance to the TSS.  Surprisingly, however, the coefficient of variation 

(CV) of distance to the TSS was always smaller than the CV of the distance from the mCHH 

island to the TE end; this was true for every TE classification and species (Table S1.3 and 
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Figure 1.6B; P ≅ 0, Feltz and Miller asymptotic test for equality).  Assuming the TE 

annotations were accurate, these results suggest that the location of islands are influenced 

by their position relative to genes more than their location within TEs.    

mCHH islands and TEs between orthologs: If TE movement contributes to low 

conservation of mCHH islands between orthologs, the presence/absence of a TE should 

frequently coincide with the presence/absence of an mCHH island between species. We 

leveraged the set of 2,720 orthologous genes for Z. mays, O. sativa, and H. vulgare to test 

this idea. For each ortholog, we examined the presence or absence of mCHH islands 

between two species and then evaluated whether the orthologs had a TE within 2 kb. 

Focusing on orthologs that had lineage specific mCHH islands (i.e., an island in only one of 

the two species), we determined whether the mCHH island was ‘dissonant’ or ‘coincident’ 

with the TE, as defined in Figure 1.6C. As expected from our within-genome analyses 

(Figure 1.4), the presence of an mCHH island often corresponded with the presence of a TE, 

because coincident events were more frequent than dissonant events for each of the three 

species contrasts (chi-square; p <0.006).  The effect also varied by TE types, because 

coincident lineage-specific mCHH islands were:  i) significantly overrepresented for DTH 

(Harbinger) transposons and ii) significantly underrepresented for RLC (Copia), RLG 

(Gypsy) and DHH (Helitrons) (Table S1.4).  Overall, the cross-species comparisons support 

inferences based on within-species data (Table 1.2) by suggesting that TEs—and specific 

TE superfamilies—are associated with mCHH islands.  

 

1.4 Discussion 
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We have identified mCHH islands across a sample of eight grass species and 

documented their patterns relative to genome structure and function.  Our study agrees 

with previous work by showing that mCHH islands have elevated methylation in all three 

sequence contexts (Niederhuth, 2016), that they vary in prevalence across species 

(Niederhuth, 2016), and that they tend to be associated with TEs (Zemach et al., 2010b; Li 

et al. 2015). Our work complements and confirms previous work, but it also provides novel 

insights into the evolutionary dynamics of mCHH islands as well as associations between 

mCHH islands and features of nearby genes.   

 

TEs are associated with, but are not sufficient to explain, mCHH islands  

Because mCHH islands in maize may act as a boundary between euchromatin and 

heterochromatin (Gent et al., 2013; Li et al., 2015), we predicted that the prevalence and 

level of mCHH islands varies with genome size, because larger genomes have more TEs 

(Tenaillon et al. 2010) and presumably more heterochromatin. We tested the relationship 

between mCHH islands and genome size in a few ways. We first examined levels of CHH 

methylation near genes against randomly chosen background windows of similar size. 

While we could recapitulate a modest negative correlation between background mCHH 

levels and genome size (Seymour and Gaut, 2020), near-gene mCHH levels were not 

correlated with genome size (Figure S1.3).  The ratio of these two measures—i.e., the 

enrichment of mCHH levels near genes relative to the background—was negatively 

correlated with genome size T. urartu is not considered.  To the extent that these 

enrichment analyses are accurate, it appears to be driven by the fact that larger genomes 

have lower genome-wide mCHH levels. We suspect this negative correlation reflects that 
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larger genomes have a higher proportion of deeply-silenced heterochromatin, which is 

typically not targeted by RdDM for de novo CHH methylation (Zemach et al. 2013).   

 Separately, we leveraged our mCHH island annotations to measure the median 

mCHH level of mCHH islands in each species and to identify the proportion of genes across 

the genome that have an mCHH island within 2.0 kb upstream of their TSS. Neither of these 

values were obviously positively associated with genome size (Table 1.1);  if anything, 

small genomes tended to have higher (although non-significant; R2=-0.63; p = 0.09) 

proportions of genes associated with islands. The higher proportions in smaller (and more 

densely CHH methylated, Figure S1.3B) genomes are particularly notable given the biases 

in our statistical approach (see Materials and Methods), which favors identification of 

islands in larger genomes with lower CHH background methylation levels. Ultimately, the 

evidence for a relationship between genome size and mCHH islands remains ambiguous: 

larger genomes have lower background mCHH levels and thus experience somewhat 

higher near-gene mCHH enrichment, but smaller genomes tend to have a higher proportion 

of genes with mCHH islands. 

Failing to find any compelling relationships with genome size, we turned to genome 

architecture and particularly to the potential association between mCHH islands and TEs.  

Consistent with previous work, we find that the presence of a nearby 5’ repeat is a 

significant predictor of the presence of an mCHH island (Niederhuth et al., 2016). We also 

focused more carefully on three species—maize, rice and barley—that have well-

established TE annotations, allowing us to assess whether specific TE classes and 

superfamilies are particularly associated with mCHH islands. Similar to previous studies of 

rice and maize (Zemach et al., 2010b, Li et al., 2015), mCHH islands are most consistently 
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associated with Terminal Inverted Repeat (TIR) DNA transposons across species (Table 

1.2). The details do vary somewhat because some TIR superfamilies like DTA (hAT 

elements) are associated with mCHH islands in maize but not significantly so in rice and 

barley.  Nonetheless, TIR elements contrast markedly with retrotransposons, which are 

usually not enriched for CHH island associations (Table 1.2). It is worth noting that our 

method to test for enrichment only considers elements within 2 kb of a gene. Thus, these 

results do not simply reflect that most retrotransposons are located far from genes; when 

they are close to genes, they are associated with an mCHH island less often than DNA 

elements.   

Previous work has hinted that mCHH islands are evolutionarily labile, because only 

~64% of B73 genes had conserved mCHH enrichment (>10% mCHH) across five maize 

accessions (Li et al. 2015). By examining a set of 2,720 1:1 orthologs identified across all 

eight species (Seymour and Gaut, 2020), we have shown that 5’ conservation of mCHH 

islands was never greater than expected by random (Figure 1.5A). However, the presence 

of lineage specific TEs coincides significantly with the presence of a lineage-species mCHH 

island (Figure 1.6C). TEs turnover rapidly in non-coding regions; this turnover provides at 

least a partial explanation for the lack of conservation of mCHH islands.  

 

Genic properties associated with mCHH islands 

Although TEs (and particularly DNA transposons) are clearly associated with the 

presence of mCHH islands, TEs are not sufficient to explain the presence of mCHH islands. 

This was illustrated aptly by Gent et al. (2013), who found that the proximal of near-genic 

TEs was more highly CHH methylated than the distal half. Gent et al (2013) ultimately 
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concluded that mCHH islands are the product of “an interaction between genes and 

neighboring sequences” that can be independent of TEs. A subsequent study of maize 

showed that islands are enriched at the edge of transposons, particularly (TIR) elements, 

due to RdDM activity (Li et al., 2015).  However, they also found that only ~40% of maize 

mCHH islands are associated with TIR elements, again supporting the view that the TEs 

may are not fully sufficient to explain mCHH islands. Consistent with previous work, our 

analyses show that an appreciable proportion of mCHH island sequences do not have 

strong Blast hits (e-value < 1e-5) to a TE database and that most do not have strong 

homology to existing TEs. Thus, many mCHH islands may not be derived from active 

silencing of annotated TEs.   

If mCHH island sequences are not specific to a TE, what explains their presence? One 

possibility is that TEs trigger epigenetic modifications that then spread to adjacent 

chromosomal regions. If spreading occurs over sufficient distances, it could in theory 

explain two observations—i.e., that mCHH islands often exist when a TE is not within 2 kb 

of a gene and that a large proportion of mCHH islands have little homology to TE 

sequences. Yet, mCHH islands are also clearly a function of genic properties. For example, 

the maize literature has established that mCHH island genes tend to be highly expressed 

(Gent et al., 2013, 2014; Li et al., 2015), although it has not been clear if this relationship 

holds across species (Niederhuth et al., 2016). We have measured gene expression in all 

eight species and contrasted expression levels between genes that had and did not have 

nearby 5’ mCHH islands. mCHH island genes are generally more highly expressed than 

genes without islands, but this relationship is not significant in five of eight species. 

Intriguingly, the three species that have a significant association have the largest genomes, 
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an observation for which we have no ready explanation (Figure 1.4 & S1.4). There is also an 

important caveat: we have only examined expression in one tissue, but the tissue(s) under 

study may be critical, as may be expression breadth (Li et al., 2015). Future studies need to 

interrogate across more tissue types. 

 Surprisingly, in all species, gbM is a stronger predictor of mCHH islands than gene 

expression; in fact, gbM is even a stronger predictor than TE-proximity in three of eight 

species (Figure 1.4). Our observed negative gbM relationship differs from the positive 

association documented previously in maize (Li et al., 2015), which examined a subset of 

syntenic genes. It is difficult to know whether differences between studies reflect the 

particular subset of genes or specific features of their data. However, we retrieve the same 

negative relationship when we focus only on the ortholog gene set and on alternative 

measures of gbM (e.g., presence/absence instead of quantitative measures). Altogether, our 

results show that 5’ mCHH islands are associated with genic properties that include (from 

stronger to weaker associations): gbM, gene length and gene expression. Intriguingly, 

mCHH islands are also located at a more consistent distances from the TSS than from the 

edge of the TE in which they reside (Figure 1.6B), suggesting that spacing relative to the 

gene is more important than the physical confines of a TE.  

 

Additional questions about mCHH islands 

This study has confirmed several features of mCHH islands and discovered more, 

but it leaves at least two important questions unanswered: how are mCHH islands formed 

and what is their function?  We cannot answer either question, but we can provide a few 

additional insights. Previous work in maize has shown that the proximal mechanism of 
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formation is RdDM (Gent et al., 2013; Li et al., 2015), which is consistent with the fact that 

mCHH islands have high methylation across all three methylation contexts (Figure 1.2). Our 

genome-wide results uphold the view that this is not solely a TE driven phenomenon, 

suggesting again that mCHH islands represent an interaction between active genes and 

their neighboring sequences (Gent et al., 2013). A crucial feature of this interaction may be 

RNA polymerase II (Pol II) (Gent et al., 2013), because it is necessary for both genic 

transcription and for non-canonical (RDR6) RdDM (Zheng et al., 2009; Cuerda-Gil and 

Slotkin, 2016).  

The specific characteristics of genes or their neighboring sequences that trigger 

island formation remain unclear. Recent work has shown that maize mCHH island targets 

are enriched for a specific CG-rich sequence motif (Long et al. 2021), but this motif neither 

fully explains the existence of islands nor our observations about gbM and gene length. 

Another possibility is that mCHH islands represent a consequence of erroneous gene 

transcription (Gent et al., 2013). In this model, genes occasionally experience internal and 

bidirectional initiation of transcription, leading to transcripts which extend beyond the 5’ 

end of the gene or beyond the polyadenylation site. This transcription of neighboring 

sequences could engage RdDM and precipitate mCHH islands, especially when those 

transcripts encompass nearby TEs. Once established, CHH islands may help moderate the 

effects of neighboring TEs on gene expression by binding the SUVH1 and SUVH3 mediated 

complex (Harris et al., 2019; Raju et al., 2019). 

This proposed mechanism of island formation complements one of our primary 

observations, which is that mCHH islands and gbM are negatively associated, because one 

of the presumed functions of gbM is to suppress internal transcription (Zilberman et al. 
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2008).  Although evidence for this gbM effect is admittedly mixed (Neri et al., 2017; 

Teissandier and Bourc’his 2017, Zilberman 2017; Le et al. 2020), it could drive the 

observed negative association between gbM and mCHH islands. Under this model, gbM 

suppresses aberrant transcription but mCHH islands result from aberrant transcription, 

leading to a negative association. This model is also consistent with our finding that mCHH 

island genes are generally longer than other genes, because longer genes have a higher 

probability of containing a cryptic internal promoter. The model also helps explain the 

relationship between gene expression and TE proximity, because non-expressed genes 

have no Pol II activity and hence could not develop islands.  

Interestingly, a small proportion of genes (ranging from 5.5% in P. heterocycla to 

26.0% in O. sativa) have both gbM and mCHH islands. This is not predicted by our model 

unless this subset of genes is particularly prone to aberrant transcription.  We predict that 

such genes should be highly expressed and may represent rare cases in which the two 

epigenetic features are reinforcing and perhaps even synergistic. Consistent with the 

prediction, genes with both epigenetic features are more highly expressed than genes than 

with just one of the two features, and this observation holds across all eight species (Figure 

S1.8). Although intriguing, it is at best preliminary evidence for the model that posits that 

both gbM and mCHH islands are related to aberrant transcription. Further analyses of 

aberrant transcription may prove insightful, recognizing that the effect may be subtle, just 

as the effects of gbM on gene expression are subtle but have become evident with the 

analysis of larger and more expansive data sets (Muyle et al., 2021). Another important 

avenue for future research will be analyses of expression breadth and responsiveness as 

they relate to mCHH islands.     
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1.5 Materials and Methods 
 

Data and Methylation Calls  

These analyses used RNAseq and BSseq data from eight grass species. The H. 

vulgare, T. urartu, S. italica, and S. bicolor data were retrieved from the NCBI Short Read 

Archive under accession PRJNA340292, all of which were generated from leaf tissue in 6-

week-old plants. Data from B. distachyon (SRR628921, SRR629088, SRR629207) and O. 

sativa (SRR1035998, SRR1035999, SRR1036000) RNAseq and BSseq were also generated 

from young leaf tissue. Finally, Z. mays (SRR850328) data were generated from seedling 

tissue. The differing tissues used in this study should have little effect, as methylation 

typically varies little between tissues (Schmitz et al., 2013; Roessler et al. 2016). These data 

were chosen to make our mCHH island results comparable to gbM results from the same 

species, using the same data and reference genomes (Seymour and Gaut, 2020). Genome 

sizes in Table 1.1 for each of the species were from the Kew C-value database 

(http://data.kew.org/cvalues/ last accessed September 2, 2019) except for that of P. 

heterocycla, which came from Peng et al. (2013).  

For all eight species, we used methylome data provided by Seymour and Gaut 

(2020).  Briefly, they trimmed BSseq reads for quality and adapter sequences using 

trimmomatic (v0.35) and used Bismark (v0.15.0) with bowtie2 (v 2.2.7) to align trimmed 

reads to the reference genomes of each species, with seed parameters of -N 0 -L 20. After 

alignment, Bismark methylation extractor (0.15.0) was used to determine numbers of 

methylated and unmethylated reads at each cytosine site. The accessions used in this study 

were the same as those used to generate the reference genomes.  The reference genomes 
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were: S. italica (Bennetzen et al. 2012; Sitalica_312_v2.fa), O. sativa (International Rice 

Genome Sequencing Project, 2005), Z. mays (Schnable et al. 2009), T. urartu (Ling et al. 

2013), S. bicolor (Paterson et al. 2009), P. heterocycla (Peng et al. 2013), B. distachyon 

(International Brachypodium Initiative 2010), and H. vulgare (Mascher et al. 2017). 

Coverage information for methylomes can be found in Table S1.6. 

 

Measuring mCHH in windows and defining mCHH islands 

 We calculated the weighted mCHH level of defined genomic windows using a 

custom R script (R version 3.5.1). Following Schultz et al. (2012), the weighted methylation 

of a window was calculated separately for each cytosine context (CG, CHG or CHH) as the 

number of methylated reads in that window divided by the number of unmethylated reads 

at cytosines in the same context. We applied this metric to windows of various lengths for 

different analyses (see text). When this metric was compared to randomly chosen windows 

(e.g., Figures 1B and 3), we identified those windows using the sample_n() function in the R 

package dplyr v1.0.2 (Wickham et al. 2019).  

mCHH islands were identified using the method of Li et al (2015), altered to be 

applicable across species with varying genome-wide mCHH levels. Each chromosome was 

divided into non-overlapping 100 bp windows and weighted methylation levels were 

calculated for each window. Each window was then assigned a p-value with a one-sided 

binomial test for mCHH hyper-methylation, similar to the method of Takuno and Gaut 

(2012) for genes. 100 bp windows were annotated as mCHH islands if they were within 2 

kb of gene TSS, contained more than 5 mCHH cytosines, and possessed an Benjamini–

Yekutieli FDR-corrected P value < 0.01. Coverage across CHH residues was counted in the 
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near-gene (2 kb 5’ of TSS) region for each gene; genes were excluded if they lacked WGBS 

CHH site coverage >2x in more than half of this region.  

For completeness, we performed the same analysis based on methylation levels 

calculated as the fraction of methylated cytosines (Schultz et al., 2012). In this variation, 

each cytosine in the CHH context was determined to be either methylated or not based on 

the binomial test (Lister et al., 2008) when the site had 2 or more reads. Genome-wide and 

window-wide methylation were then calculated as the percentage of cytosines that were 

methylated among cytosines with sufficient data. The two methods (weighted vs. per site 

methylation) yielded nearly identical results; for example, >95% of genes in Z. mays had the 

same designation as island or non-islands genes. All downstream analyses were 

qualitatively identical for the two analytical methods; we report only weighted methylation 

levels for simplicity.  

Similarly, to ground truth our binomial test, we also explored analyses without 

using the binomial—i.e, by employing the empirical 25% cutoff (Li et al., 2015). We found 

similar results between the two methods.  For example, we asked what proportion of the 

21,760 (=2,720 orthologs x 8 species) genes had mCHH islands based on the binomial 

method and the 25% cutoff. The two methods agreed for 85.8% of the genes. These results 

strongly suggest that our overall results are robust to some variation in the mCHH island 

detection approach. As a further test of robustness, we applied linear regression and 

variable importance analysis to mCHH islands detected with 25% cut-offs, yielding 

qualitatively similar results.   

 

Expression analyses 
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We used the expression information calculated by Seymour and Gaut (2020) from 

RNAseq data to evaluate expression of mCHH island genes. RNAseq data came from the 

same tissues and accessions as BSseq data. The raw RNAseq data were filtered for quality 

and adapter trimming with trimmomatic (v0.35), requiring 45 bp read lengths after 

trimming. Alignments to reference annotations were performed using bwa (v0.7.12) 

allowing two mismatches (-n 2). Raw read counts were normalized (TMM) in edgeR 

(v3.20.9) for each species and reads-per-kilobase-mapped (RPKM) was estimated from the 

fitted values. Trimmed reads were aligned to annotations available for each genome and 

reported in supplementary table S4 of Seymour and Gaut (2020).  

Expressed genes were divided into quartiles of expression based on log2 RPKM 

using the quantile() function in R. Genes that were not present in RNA-seq data were 

marked as being in quartile 0. Metaprofiles showing near-gene mCHH at different 

expression quartiles were generated by demarcating 100 bp windows across the 2 kb 

regions 5’ to the TSS and separately calculating mCHH means per window for each 

expression quartile. To compare expression of orthologs between species, expression in 

RPKM was normalized to zero-mean unit variance using the scale() function in R.   

 

Gene characteristics and regression analyses 

 We used PGLS regression to query the relationship between GS (log 10 1C) 

and levels of CHH DNA methylation. PGLS regression corrects for phylogenetic 

relationships and requires information about branch lengths between species. For the 

latter, we used a phylogenetic tree inferred by Seymour and Gaut (2020) from 2,982 single-

copy orthologs across the eight species of interest (Figure S1.1). The single copy orthologs 
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were identified using orthomcl (v2.0.9) and BLASTP (v.2.2.30), with the “-evalue 1e-5 - 

outfmt 6” options. The phylogeny was inferred from concatenated nucleotide alignments of 

orthologs using ape (v5.2) and phangorn (v2.4.0) using a GTR substitution model. PGLS 

regression using these branch lengths was performed using nlme (v3.1.131) in R. Genome 

size was retrieved from the Kew C-values database (https://cvalues.science.kew.org/) 

We downloaded repeat annotations for all 8 species (Table S1.5). Given annotations, 

we calculated the TE distance to a gene by taking the absolute value of the difference 

between the TSS of each gene and the 5’ or 3’ edge (whichever was closest) of the nearest 

TE (indiscriminate of strand).  Genes without a detectable TE upstream, which were 

generally the first or last genes on a scaffold, were not included in this analysis. The 

distance was marked as zero when a TE overlapped with a gene.  

We also calculated genic parameters.  Gene length included both introns and exons 

and was calculated by subtracting the minimum from maximum annotated chromosomal 

position for each gene. As a comparison to gene expression, we divided genes into quartiles 

of length using the same method as described above for gene expression data. Weighted 

exonic mCG levels were calculated as before (#mCG reads / # total reads) inside exons of 

the longest transcript in each gene. Logistic regression models were built in R using the 

glm() function, using genic variables (expression, distance to a TE, length, and gbM) to 

predict island association as a qualitative, binary variable. We standardized each variable 

to a 0–1 scale by subtracting the lowest value of each set from all values in each, then 

dividing by the highest value in each set. We built this model separately using both gbM as 

a qualitative and quantitative variable, to make sure that the inclusion of a qualitative 
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variable did not affect the outcome. We evaluated the contribution of each predictor 

variable to the model using the varImp() function in the caret package (Kuhn, 2008).   

We assessed conservation of mCHH island by focusing on the list of orthologs 

identified by Seymour and Gaut (2020).  After filtering for near-gene coverage in our 

WGBS, we included 2,720 genes (Table S1.7). We calculated fold-enrichment of mCHH 

island and gbM conservation by comparing observed and expected counts between pairs of 

species.  The observed was the number of orthologs that were mCHH island associated or 

gbM within both species; the expected was the product of proportions of mCHH island 

orthologs (Table 1.1) between the two species in each pair. We modeled the relationship 

between mCHH island frequency (counts from 0 to 8 across species) and each genic 

variable using the lm() function in R. The Feltz and Miller test ( 1996) was used to assess 

the equivalence of CVs between distances to TE-edges and genes.  

 

Blast analyses 

To investigate the homology of mCHH island sequences in maize, rice and barley to 

TEs, we built a reference TE database.  The data set consisted of:  i) O. sativa TE fasta files 

from the Rice Transposable Element Database (last accessed Feb 10, 2020) (Copetti et al. 

2015), ii) Z. mays and H. vulgare TEs extracted from their reference genomes using 

samtools, iii) full length TEs from Stitzer et al., 2019, accessed at  

https://github.com/mcstitzer/maize_TEs/blob/master/B73.structuralTEv2.fulllength.201

8-09-19.gff3.gz (Stitzer et al. 2019) and iv) repeat sequences from the Transposable 

Element Platform (TREP) database (Wicker et al. 2002) 

(https://botserv2.uzh.ch/kelldata/trep-db/index.html, last accessed Apr 1, 2021).  This TE 
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reference database was used as a reference to query mCHH island sequences.  The island 

sequences were run through BLASTn (v2.8.1) (Altschul et al., 1990) using discontiguous 

megablast (-task dc-megablast) against a custom reference fasta file containing the 

combined TE sequences in the database. To identify a set of random, “control” sequences, 

we sampled a number of non-mCHH island 100 bp windows equal to the number of mCHH 

islands from each genome using the sample_n() function in the R package dplyr v1.0.2 

(Wickham et al. 2019). These sequences were BLASTed against the TE reference in the 

same manner. Sequences with no BLAST hit were assigned an e-value of 1.0.  
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Figures 
 

 
Figure 1.1. Near-gene methylation across Poaceae species. (A) Profiles of methylation across 

genes and their 2.0 kb 5’ and 3’ flanking regions. Weighted methylation levels are summarized 

in 10 200 bp windows upstream and downstream of genes, and in 20 equally sized windows 

within genes that vary in size depending on gene length. These figures summarize across full 

genes, with exons and introns. Here we show three species that span the range of genome size 

(Table 1.1), with the remaining species shown in Figure S1.2. TTS refers to the transcription 

termination site. (B) Near-gene enrichment of mCHH increases with genome size. Near-gene 

mCHH enrichment represents the mean weighted mCHH levels in 1 kb regions upstream of the 

transcription start site (TSS) divided by the mean weighted mCHH levels in an equal number of 

1 kb regions randomly selected throughout the genome. 
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Figure 1.2. Profiles of methylation across mCHH islands in each sequence context. The x-axis 

provides the distance in base pairs (bp) from a detected island, which is centered at zero. The 

points on the graph represent weighted methylation levels in 100 bp windows. The islands were 

not at a fixed distance from genes, because they were determined by significance tests, but 

they were within the 2 kb 5’ flanking region of genes.  

 

 
 
 
 
 
 



 

44 
 

 
Figure 1.3. mCHH island relative to gene expression and length. (A) Profiles of near-gene 

methylation in genes separated into four quartiles of expression and into non-expressed genes. 

The graphs illustrate for some species that genes in the higher quartiles tend to have higher 5’ 

flanking CHH methylation. (B) Expression levels between mCHH island genes and non-island 

genes. Significance levels between the two categories are shown for each species, with NS = not 

significant. (C) Profiles of near-gene methylation in genes separated into four quartiles for gene 

length. (D) The length of island and non-island genes. Significance levels between the two 

categories are shown for each species, with NS = not significant. For B) and D), the box plots 

present the median, with the edges representing the upper and lower quartiles. These length 

measures were based on distances from the TSS to the TTS, but the results hold using the 

length of exons in the longest transcript (Figure S1.6). For panels A) and C), the species were 

chosen because they represent a range of genome size, as in Figure 1.1.  The remaining species 

are shown in Figures S1.4 & S1.5.  
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Figure 1.4. Variable importance analysis of the logistic regression model presenting the 

contribution of each variable to the model on an equivalent scale. Values <0 on the y-axis 

denote a negative association between the predictor and the presence of a CHH island; values > 

0 are positive predictors.  
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Figure 1.5. Conservation of mCHH islands across orthologs in grass species. (A) A heatmap of 

the enrichment of features over the random expectation of 1.0. Top half: enrichment of mCHH 

island conservation between pairs of species based on one-to-one orthologs. Bottom half: 

enrichment of gene-body methylation between pairs of species based on one-to-one orthologs. 

(B-E) Graphs of the relationship between mCHH island conservation and each genic predictor 

variable: exonic mCG level (B), expression (C), length (D), and TE distance (E). For each graph, 

the x-axis denotes the number of orthologs, of eight total, with a 5’ mCHH island, and the y-axis 

denotes the average value of the stated statistics in the ortholog across species. 
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Figure 1.6. mCHH islands in relation to TE presence. (A) The distribution of e-values after 

blasting sequences to an annotated TE database for Z. mays (left) and O. sativa (middle) and H. 

vulgare (right). Each graph plots the results for 100 bp mCHH island DNA sequences and an 

equal number of randomly chosen 100 bp non-island sequences for comparison. (B)  The 

coefficients of variation for mCHH island distances from gene TSS- (orange) and TE-edges 

(green) for each of the different types of TEs analyzed (Wicker et al., 2007). The schematic 

above the graphs defines the distances measured. (C) A schematic that defines the use of the 

terms Coincident and Dissonant.  Each term describes a comparison of orthologs between pairs 

of species, with a lineage specific 5’ mCHH island in only species.  Coincidence is when there is a 

lineage species TE and island in the same species; Dissonance is when the TE and island are in 

different species. The bar graph shows the frequency with which orthologs possess a lineage-

specific TE alongside a lineage-specific mCHH island (coincidence) or the opposite (dissonance) 

in the three pairwise comparisons between maize, rice, and barley. 
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Tables 
 

Table 1.1. A list of species examined in this study, with their genome size, the number of genes 

used in analyses and information about CHH-island characteristics.  

Species 
Genome 

Size (Mb)1 
No. Genes2 

% mCHH 

Island Genes3 

Median 

island mCHH 

level4 

% mCHH 

Island 

orthologs5 

Median 

ortholog 

island mCHH 

level6 

Brachypodium 

distachyon 
355 34,257 55.16%  31.49% 58.20% 32.76% 

Hordeum 

vulgare 
5,428 35,200 28.22% 34.19% 41.34% 34.64% 

Oryza sativa 489 41,806 71.85% 41.80% 76.61% 49.19% 

Phyllostyachys 

heterocyla 
2,075 30,946 17.27% 29.03% 18.51% 28.57% 

Setaria italica 513 34,170 29.80% 38.89% 34.31% 41.00% 

Sorghum 

bicolor 
734 33,972 54.01% 46.05% 59.91% 49.06% 

Triticum 

urartu 
4,817 33,612 22.94% 34.78% 28.29% 35.71% 

Zea mays 2,655 37,534 30.85% 53.85% 38.73% 53.80% 

1 Genome sizes estimated by flow cytometry, primarily from the Kew C-values database (see 
Materials and Methods) 
2 Number of genes used in genome wide summaries in Figures 1 and 2, including only genes 
with near-gene BSseq coverage (see Methods).  
3 The percentage of genes associated with mCHH islands within the flanking 5’ or 3’ 2.0 kb.  
4 The median level of CHH methylation in islands within 2 kb of genes.   
5 The percent of orthologs, of 2,720 total, associated with a 5’ mCHH island in each species.  
6  Median mCHH level for islands associated with orthologs.  
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Table 1.2:  Counts of TEs within 2kb for a common set of TE superfamilies across species and 

their enrichment status for mCHH islands.  

 Barley Rice Maize 

TE 
Family1 

#TEs 
<2kb2 

% with 
island3 

Enriche
d4 

#TEs 
<2kb 

% with 
island 

Enrich
ed 

#TEs 
<2kb 

% with 
island 

Enriche
d 

DHH 69 0.174 NS 132 0.417 Under 5235 0.283 Under 

DTA 21 0.095 NS 517 0.768 NS 653 0.542 Enriched 

DTC 3480 0.280 NS 1243 0.474 Under 184 0.429 Enriched 

DTH 478 0.460 Enriched 40 0.700 NS 2677 0.536 Enriched 

DTM 654 0.378 Enriched 1106 0.806 Enriched 122 0.623 Enriched 

DTT 474 0.430 Enriched 2143 0.898 Enriched 2307 0.389 Enriched 

DTX 332 0.497 Enriched 6476 0.882 Enriched 299 0.408 Enriched 

RIX 880 0.227 Under 551 0.611 Under 87 0.253 NS 

RLC 4896 0.239 Under 1433 0.651 Under 3148 0.280 Under 

RLG 4413 0.213 Under 2230 0.580 Under 3891 0.292 Under 

RLX 11356 0.315 Enriched 10753 0.704 Under 2632 0.224 Under 

RSX 76 0.316 NS 796 0.932 Enriched 43 0.302 NS 

TOTAL 27129 0.285  27420 0.747  21278 0.333  

1 TE classification code as described by Wicker et al. (2007). Abbreviations are DHH: Helitron; 

DTA: hAT; DTC: CACTA ; DTH:PIF-Harbinger ; DTM: Mutator; DTT: Tc1-Mariner; DTX: unknown 

DNA elements; RIX: unclassified LINE; RLC: Copia; RLG: Gypsy; RLX: unclassified LTR; RSX: 

unclassified SINE.  
2 The number of TEs within each class that are within 2kb upstream of an annotated gene, 

based on counting only the closest TE to a gene. 
3 The proportion of genes that have both an mCHH island and a TE within 2kb upstream.   

 4 Based on a binomial test (FDR corrected, p< 0.05), classes of TEs were determined to be 

enriched for CHH islands or under-enriched, relative to the total proportion estimated across all 

TE superfamilies. NS = non significant.    
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Supplemental Figures 

 
Figure S1.1. Maximum likelihood phylogeny of the eight Poaceae species used in this study, 
inferred from single-copy orthologous genes.  
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Figure S1.2. Metaprofiles summarizing methylation levels in all three contexts across genes 
and near-gene regions. Weighted methylation levels were calculated in 100 bp windows 2 
kb upstream and downstream of genes, and transcription start sites (TSS) and 
transcription termination sites (TTS) are marked by dotted lines. 
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Figure S1.3. Correlations between GS and mCHH levels near genes (S1.3a) and among 
control sites (S1.3b). These figures represent the numerator and denominator of Figure 1b 
respectively. 



 

54 
 

 
Figure S1.4. Metaprofiles of mCHH levels across 5’ near-gene regions in genes separated 
into non-expressed genes and four quartiles of expression (quartile one being those with 
the lowest expression, and four with highest). 
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Figure S1.5. Metaprofiles of mCHH levels across 5’ near-gene regions in genes separated 
into four quartiles of length. 
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Figure S1.6. Length of longest transcript between mCHH island associated genes and other 
genes. Boxplots show the four quartiles of the transcript length distributions in each 
species, and middle lines represent median. Significance was established by replacing full 
gene length with transcript length in the logistic regression model from the main text. 
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Figure S1.7. Histogram illustrating the distribution of mCHH island conservation among 
orthologs of the eight species. The numbers on the x-axis represent the number of species 
in which orthologs were mCHH island associated. The count on the y-axis is the number of 
orthologs. 
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Figure S1.8. Gene expression levels between categories of gbM genes, mCHH island 
associated genes, genes with both and genes with neither. Genes were separated into four 
non-overlapping categories: mCHH island only, gbM only, both island and gbM, and neither. 
Violin plots depict distributions of expression within each category, with mean values 
marked by dots. Letter codes represent significance (P < 0.05, unpaired t-test), where any 
distributions that share a letter (e.g., AB and AA) are not significantly different but those 
that do not share letters (e.g., AA and BB) are significantly different. All comparisons are 
within, not between, species. 
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Figure S1.9. Distributions of distances from the gene TSS to mCHH islands located within 
different types of TEs and not within TEs (“None”). These distributions include data from 
all three species. 
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Supplemental Tables 
 

Table S1.1. Reference genome statistics 

Species # contigs 
Largest contig 
size (bp) 

Total Length 
(bp) N50 (bp) 

N50 / Total 
Length 

O. sativa 63 4.33E+07 3.75E+08 3.00E+07 0.07988 

H. vulgare 10 7.68E+08 4.83E+09 6.57E+08 0.13595 

P. heterocycla 277278 4.87E+06 2.05E+09 3.29E+05 0.00016 

S. bicolor 867 8.09E+07 7.09E+08 6.87E+07 0.09687 

S. italica 336 5.90E+07 4.06E+08 4.73E+07 0.11646 

T. urartu 248855 1.07E+06 3.68E+09 8.76E+04 0.00002 

Z. mays 267 3.07E+08 2.14E+09 2.24E+08 0.10487 

B. distachyon 10 7.51E+07 2.71E+08 5.91E+07 0.21806 
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Table S1.2. Logistic regression models of predictors of mCHH island presence 

Species 

Expression 
Distance to nearest 
TE 

Gene length Exonic mCG 

Estimate1 
p-
value2 

Estimate p-value Estimate p-value Estimate p-value 

Oryza sativa -6.43E-01 
7.48E-
01 

-8.54E-04 0.00E+00 7.09E+00 
1.13E-
111 

-
1.36E+00 

0.00E+00 

Sorghum 
bicolor 

-1.81E+00 
3.00E-
01 

-7.42E-04 0.00E+00 5.62E+00 
9.31E-
61 

-7.35E-
01 

3.57E-86 

Zea mays 2.94E+00 
3.12E-
05 

-3.76E-05 2.52E-41 3.38E+00 
1.03E-
39 

-
1.60E+00 

0.00E+00 

Hordeum 
vulgare 

2.62E+00 
3.50E-
02 

-3.19E-04 
9.78E-
187 

8.93E-01 
6.57E-
02 

-
1.08E+00 

3.59E-
257 

Brachypodium 
distachyon 

4.59E-01 
8.18E-
01 

-5.37E-05 1.71E-47 3.74E+00 
6.98E-
81 

-6.44E-
01 

4.58E-83 

Setaria italica -8.05E-01 
7.82E-
01 

-7.64E-04 0.00E+00 3.53E+00 
4.61E-
47 

-3.69E-
01 

1.32E-17 

Triticum 
urartu 

5.85E-01 
6.89E-
01 

-2.19E-04 4.80E-16 1.38E+00 
5.65E-
04 

-8.38E-
01 

1.45E-
101 

Phyllostachys 
heterocycla 

1.03E+01 
6.77E-
21 

-4.03E-04 1.43E-68 4.33E-01 
6.45E-
02 

-7.61E-
01 

2.03E-45 

1 
Estimate of the effect of the predictor 

2 
P-value of significance for the estimated effect of the predictor 
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Table S1.3. Coefficients of variation in mCHH island-gene distance vs mCHH island-TE edge 
distance 

Species1 
TE 
classification2 

Gene 
distance 
CV 

 
TE 
distance 
CV 

P 
value3 

Test 
statistic3 

# 
Cases4 

Mean 
distance 
to TE 
edge 

Mean 
distance 
to gene 
TSS 

Hv Other 0.80  1.77 0 4.83E+04 2527 81.26 672.78 

Hv DTM 0.86  0.91 0 8.17E+05 119 77.18 660.48 

Hv RLX 0.76  1.23 0 2.02E+05 3149 127.52 744.76 

Hv RLG 0.69  1.33 0 2.29E+04 696 178.93 813.62 

Hv DTA NA  NA NA NA 1 14.00 93.00 

Hv RLC 0.66  1.16 0 4.39E+04 958 188.97 862.32 

Hv DTC 0.74  1.27 0 3.58E+04 732 110.21 776.24 

Hv DTT 0.82  0.77 0 5.53E+05 124 38.51 643.79 

Hv DTH 0.78  1.08 0 3.26E+04 213 122.81 656.64 

Hv DHH 0.54 
 

2.09 
2.74E-
07 2.64E+01 6 143.33 885.17 

Os Other 0.67  1.19 0 6.59E+05 14574 72.15 841.81 

Os DTM 0.67  1.07 0 4.21E+04 600 118.71 852.06 

Os RLX 0.66  1.62 0 7.64E+04 4963 191.86 859.51 

Os RLG 0.60  1.24 0 2.26E+04 821 383.82 935.37 

Os DTA 0.65  1.16 0 8.90E+03 200 88.42 884.95 

Os RLC 0.62  1.49 0 1.10E+04 648 259.71 926.34 

Os DTC 0.58  1.46 0 5.10E+03 334 311.80 977.07 

Os DTT 0.77 
 

0.55 
3.26E-
127 5.76E+02 5 66.60 948.60 

Os DTH 0.53 
 

1.84 
2.23E-
20 8.56E+01 13 188.69 935.85 

Os DHH 0.47 
 

0.68 
4.47E-
75 3.36E+02 4 105.00 396.25 

Zm Other 0.63  1.06 0 3.70E+03 64 135.41 816.39 
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Zm DTM 1.05  2.07 0 1.56E+03 64 121.58 515.03 

Zm RLX 0.70  0.89 0 8.44E+04 302 706.97 767.25 

Zm RLG 0.56  1.29 0 1.16E+04 561 234.79 865.79 

Zm DTA 0.73  0.85 0 1.97E+05 305 117.78 778.33 

Zm RLC 0.54  0.98 0 2.00E+04 471 372.23 1012.97 

Zm DTC 0.50 
 

1.16 
3.59E-
231 1.05E+03 51 115.24 964.25 

Zm DTT 0.70  1.31 0 1.59E+04 425 94.87 731.58 

Zm DTH 0.73  1.11 0 9.19E+04 1049 79.44 728.49 

Zm DHH 0.76  1.03 0 1.95E+05 1149 552.83 683.98 

1 
Hv = Hordeum vulgare, Os = Oryza sativa, Zm = Zea mays 

2 
TE classification codes from Wicker 2007 

3 
Fultz and Miller asymptotic test for CV equality 

4 
Total number of TE-mCHH islands analyzed in each category 
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Table S1.4. Coincidence vs dissonance of lineage-specific mCHH islands and TEs 

Comparis
on (TE, 
species 1, 
species 
2)1 

 
Observed 
unique 
island/TE 
coinciden
ce2 

Expected 
unique 
island/TE 
coinciden
ce3 

Enrichme
nt unique 
island/TE 
coinciden
ce4 

Observe
d unique 
island/T
E 
dissonan
ce 

Expected 
unique 
island/T
E 
dissonan
ce 

Enrichme
nt unique 
island/T
E 
dissonan
ce 

Chi-
square 
statisti
c5 

P 
value
5 

DHH_HvO
s 

 
2 2.63 0.76 0 2.25 0.00 7.70 

2.609
E-01 

DHH_ZmH
v 

 
87 80.35 1.08 84 81.80 1.03 6.90 

3.302
E-01 

DHH_ZmO
s 

 
24 30.92 0.78 166 156.37 1.06 9.56 

1.444
E-01 

DTA_HvOs 
 
10 17.10 0.58 4 4.03 0.99 10.84 

9.334
E-02 

DTA_ZmH
v 

 
15 11.79 1.27 7 11.99 0.58 8.97 

1.754
E-01 

DTA_ZmO
s 

 
22 20.65 1.07 18 24.81 0.73 21.00 

1.265
E-02 

DTC_HvOs 
 
20 19.43 1.03 80 96.00 0.83 10.48 

1.058
E-01 

DTC_ZmH
v 

 
63 52.26 1.21 51 51.40 0.99 14.77 

9.746
E-02 

DTC_ZmO
s 

 
7 2.78 2.51 4 5.43 0.74 13.71 

3.302
E-02 

DTH_HvOs 
 
9 5.58 1.61 17 23.14 0.73 9.01 

1.731
E-01 

DTH_ZmH
v 

 
91 64.99 1.40 41 65.78 0.62 62.02 

5.467
E-10 

DTH_ZmO
s 

 
29 21.00 1.38 69 107.15 0.64 47.43 

1.536
E-08 

DTM_HvO
s 

 
39 31.14 1.25 28 32.26 0.87 8.12 

2.294
E-01 

DTM_ZmH
v 

 
21 16.51 1.27 16 16.30 0.98 9.46 

3.962
E-01 
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DTM_ZmO
s 

 
32 27.31 1.17 4 9.93 0.40 18.56 

4.970
E-03 

DTT_HvOs 
 
8 4.20 1.90 14 18.02 0.78 12.34 

5.477
E-02 

DTT_ZmH
v 

 
68 60.47 1.12 53 61.26 0.87 11.91 

2.187
E-01 

DTT_ZmO
s 

 
22 18.97 1.16 95 100.96 0.94 7.93 

5.416
E-01 

RLC_HvOs 
 
63 71.72 0.88 201 171.07 1.17 19.10 

2.432
E-02 

RLC_ZmH
v 

 
119 127.99 0.93 113 127.36 0.89 26.53 

1.670
E-03 

RLC_ZmOs 
 
72 63.94 1.13 110 109.66 1.00 5.57 

7.824
E-01 

RLG_HvOs 
 
56 67.80 0.83 167 147.35 1.13 11.49 

2.434
E-01 

RLG_ZmH
v 

 
121 127.79 0.95 133 127.56 1.04 20.18 

1.684
E-02 

RLG_ZmOs 
 
63 67.80 0.93 116 128.26 0.90 8.70 

4.650
E-01 

RLX_HvOs 
 
304 269.22 1.13 335 359.98 0.93 36.97 

2.660
E-05 

RLX_ZmH
v 

 
239 216.58 1.10 180 213.27 0.84 17.65 

3.948
E-02 

RLX_ZmOs 
 
308 288.15 1.07 84 93.56 0.90 17.20 

4.562
E-02 

1 
Hv = Hordeum vulgare, Os = Oryza sativa, Zm = Zea mays. TE classification codes from 

Wicker 2007 
2 

See model in main text for coincidence/dissonance definitions. These numbers represent 
the observed occurrences in each comparison 
3 

Expected values calculated by product of proportions of lineage specific TEs and 
proportions of lineage specific mCHH islands 
4 

Enrichment = observed / expected 
5 

Chi-square test of equality between observed and expected proportions of lineage specific 
mCHH islands and TEs  
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Table S1.5. Transposable element and repeat annotations 

Species Repeat annotation Source 

Oryza 
sativa irgsp1_repeat_unit.gff 

https://rapdb.dna.affrc.go.jp/downlo
ad/irgsp1.html 

Sorghum 
bicolor 

Sbicolor_454_v3.1.1.repeatmasked_assem
bly_v3.0.1.gff3.gz https://phytozome.jgi.doe.gov/ 

Zea mays 
B73.structuralTEv2.fulllength.2018-09-
19.gff3 

https://mcstitzer.github.io/maize_TE
s/ 

Hordeum 
vulgare Barley_TE_annotation_v2_18Aug16.tsv 

https://doi.org/10.5447/IPK/2016/
16 

Brachypo
dium 
distachyo
n 

Bdistachyon_556_v3.2.repeatmasked_asse
mbly_v3.0.gff3.gz https://phytozome.jgi.doe.gov/ 

Setaria 
italica 

Sitalica_312_v2.2.repeatmasked_assembly
_v2.gff3.gz https://phytozome.jgi.doe.gov/ 

Triticum 
urartu Triticum_urartu.GCA_000347455.1.30.gff3 https://plants.ensembl.org/  

Phyllostac
hys 
heterocycl
a P_heterocycla_v1.0.repeats.detail 

http://server.ncgr.ac.cn/bamboo/do
wn.php 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://plants.ensembl.org/
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Table S1.6. Genome assembly information 

Species 
Bisulfite seq 
mean 
coverage 

Genome assembly Source 

Oryza 
sativa 60.3 Osativa_323_v7.0.fa 

https://phytozome.jgi.doe.go
v/ 

Sorghum 
bicolor 17.87 Sbicolor_313_v3.0.fa 

https://phytozome.jgi.doe.go
v/ 

Zea mays 
6.7 

Zea_mays.AGPv4.dna.chromosom
e.all.fa 

http://plants.ensembl.org/in
dex.html 

Hordeum 
vulgare 16.99 

150831_barley_pseudomolecules
.fa 

https://webblast.ipk-
gatersleben.de/ 

Brachypodi
um 
distachyon 81.07 Bdistachyon_314_v3.0.fa 

https://phytozome.jgi.doe.go
v/ 

Setaria 
italica 17.88 Sitalica_312_v2.fa 

https://phytozome.jgi.doe.go
v/ 

Triticum 
urartu 14.88 

Triticum_urartu.ASM34745v1.31.
dna.genome.fa 

http://plants.ensembl.org/in
dex.html 

Phyllostach
ys 
heterocycla 18.17 P_heterocycla_v1.0.Scaffolds.fa 

http://server.ncgr.ac.cn/bam
boo/ 
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CHAPTER 2 
 

miRNA-like secondary structures in maize (Zea mays) genes and 
transposable elements correlate with small RNAs, methylation, and 

expression 
 

2.1 Abstract 
 

RNA molecules carry information in their primary sequence and also their 

secondary structure. Secondary structure can confer important functional information, but 

it is also a signal for an RNAi-like host epigenetic response mediated by small RNAs 

(smRNAs). In this study, we used two bioinformatic methods to predict local secondary 

structures across features of the maize genome, focusing on small regions that had similar 

folding properties to pre-miRNA loci. We found miRNA-like secondary structures to be 

common in genes and most, but not all, superfamilies of RNA and DNA transposable 

elements (TEs). The miRNA-like regions mapped a higher diversity of smRNAs than regions 

without miRNA-like structure, explaining up to 27% of variation in smRNA mapping for 

some TE superfamilies. This mapping bias was more pronounced among putatively 

autonomous TEs relative to non-autonomous TEs. Genome-wide, miRNA-like regions were 

also associated with elevated methylation levels, particularly in the CHH context Among 

genes, those with miRNA-like secondary structure were 1.5-fold more highly expressed, on 

average, than other genes. However, these genes were also more variably expressed across 

the 26 Nested Association Mapping founder lines, and this variability positively correlated 

with the number of mapping smRNAs. We conclude that local miRNA-like structures are a 

nearly ubiquitous feature of expressed regions of the maize genome, that they correlate 

with higher smRNA mapping and methylation, and that they may represent a trade-off 

between functional need and the potentially negative consequences of smRNA production.  
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2.2 Introduction 
 

In a highly simplified view, plant genomes consist of transposable elements (TEs) 

and genes. Both of these components use RNA to transmit coding information between one 

state (DNA) to another (protein). These RNA molecules carry information in their primary 

sequence of bases but also by their shape. This shape is primarily defined by the secondary 

structure of the transcript, which is a product of the intramolecular hydrogen bonds 

between RNA bases.  Secondary structure can mediate the relationship between genotype 

and phenotype because it affects the localization (Bullock et al., 2010), splicing (Buratti & 

Baralle, 2004), and translation (Ding et al., 2014) of mRNAs. As a result, secondary 

structure influences nearly every processing step in the life cycle of transcripts (Vandivier 

et al., 2016).  

Secondary structures can have another effect: they act as a template for small RNA 

(smRNA) production (Carthew & Sontheimer, 2009; Li et al., 2012; Hung & Slotkin, 2021). 

This production takes place through the binding of Dicer-like proteins (DCL) (Axtell 2013; 

Fukudome & Fukuhara 2017) that degrade double-stranded RNA (dsRNA). In other words, 

when single-stranded RNA (ssRNA) forms a hairpin-like secondary structure, DCLs can 

recognize structured ssRNA as dsRNA and then degrade the dsRNA to produce smRNAs. 

This mechanism is essential for the biogenesis of microRNAs (miRNAs), a class of smRNAs 

that are generally ~22-nt in length and that are derived from longer pre-miRNA transcripts 

with strong hairpin secondary structures (Carthew & Sontheimer 2009). However, this 

process is not limited to miRNAs, because 21–24-nucleotide RNAs can also originate from 

the secondary structure of other non-miRNA transcripts (Li et al., 2012, Slotkin et al., 



 

75 
 

2003). These small RNAs can, in turn, cause transcripts to enter into the RNA interference 

(RNAi) pathway (Baulcombe 2004; Li et al., 2012; Cuerda-Gil & Slotkin, 2016; Hung & 

Slotkin, 2021). These observations suggest that sufficiently structured mRNAs, like 

miRNAs, form secondary structures that act as dsRNA substrates for degradation into 

smRNAs.  

Little is known about how host genomes initially distinguish TEs from genes and 

target them for smRNA production, but some studies suggest that hairpin structures in TE 

transcripts act as an immune signal for de novo silencing of certain TEs (Slotkin et al., 2003; 

Sijen and Plasterk, 2003; Bousios et al., 2016; Hung & Slotkin 2021). One such example is 

Mu-killer, a locus that generates small RNAs and thereby silences MuDR elements (a DNA 

transposon) in maize (Zea mays ssp. mays) (Slotkin et al., 2003). Mu-killer consists of a 

truncated, duplicated, and inverted copy of MuDR that, when transcribed, creates a hairpin 

secondary structure and is subsequently cut into trans-acting small-interfering RNAs 

(siRNAs) that target active MuDR transcripts. Another potential example comes from 

Sirevirus long terminal repeat (LTR) retrotransposons in maize (Bousios et al., 2016), 

which occupy 21% of the maize B73 genome (Bousios et al., 2011). In this study, the 

authors mapped smRNAs to full-length Sirevirus copies, reasoning that loci important for 

host-plant recognition and silencing should be associated with a larger number of smRNA 

sequences than other regions of the elements. Indeed, an excess of smRNAs mapped to 

regions that had strong predicted secondary structure due to clusters of palindromic motifs 

(Bousios et al., 2016). These studies present evidence that secondary structure helps 

initiate silencing of some TEs.  In fact, one review has argued that the only characterized 

pathway to de novo smRNA production relies on RNA secondary structure (Hung and 

https://www.zotero.org/google-docs/?dRBJf1
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Slotkin, 2021). [It should be noted, however, that some phased siRNAs are caused by 

miRNA cleavage events that apparently do not require secondary structure (Creasey et al., 

2014).]   

If RNA sequences form miRNA-like hairpin structures, leading to the production of 

smRNAs, two important questions must be addressed. First, how common are miRNA-like 

secondary structures across the immense diversity of plant TEs? One prominent review of 

small RNAs argued that there is an urgent need to annotate hairpins that may have the 

capacity to act as a template for smRNA production (Axtell, 2013), but this need has not yet 

been met. Thus far, the importance of hairpin structure for de novo silencing has been 

implicated only in a few individual TE families. Second, secondary structure is not unique 

to TEs and exists within genes too. How often do genes have such structure, and is there 

evidence that genes form dsRNA substrates in these regions, too? Li et al. (2012) 

documented a positive relationship between stability of mRNA structure and small RNA 

abundance for Arabidopsis thaliana genes, suggesting that genes do form dsRNA substrates. 

Yet these genes are still expressed, potentially due to countermeasures that moderate the 

potential effects of smRNAs on genes, including hypothesized protection against RNAi 

caused by high GC content (Hung and Slotkin 2021) and active gene demethylation (Gong 

et al., 2002; Zhang et al., 2022). Although it has long been thought that miRNA loci may be 

derived from TE sequences (Roberts et al., 2014), there has not yet been, to our knowledge, 

a genome-wide comparison of miRNA-like secondary structures among genes and TE 

superfamilies.  

In this study, we predict secondary structures in genes and TEs of the maize B73 

https://www.zotero.org/google-docs/?i8rFkU
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genome. Secondary structure can be empirically measured through sequencing techniques 

such as DMS-seq and SHAPE-seq (Yang et al., 2018), which is applied to the transcribed 

component of whole genomes (Ding et al., 2014; Ferrero-Serrano et al., 2022). However, 

this approach requires that the sequences of interest are expressed, preventing 

comprehensive investigation of plant TEs, most of which are silent. These methods are also 

difficult to perform on large genomes with high repeat content, so that genome-wide 

‘structurome’ sequencing has thus far only been completed on plants with relatively small 

genomes, like Arabidopsis (Ding et al., 2014; Bevilacqua et al., 2016) and rice, Oryza sativa 

(Ritchey et al., 2017). The second approach, which we adopted here, relies on bioinformatic 

predictions based on genome sequence data. Secondary structure prediction is a subject of 

active research, and methods vary in their predictions and accuracy. Here we employ two 

separate methods that rely on distinct algorithms to identify regions with properties 

similar to miRNA-like hairpins. Briefly, the first uses RNAfold (Lorenz et al., 2011), which 

estimates the minimum free energy (MFE) of the most likely secondary structure of a given 

sequence (Nussinov and Jacobson, 1980; Zuker and Stiegler, 1981).  Following precedence, 

we apply RNAfold in a windows-based approach. The second relies on a newer tool, 

LinearPartition (Zhang et al., 2020), that calculates a partition function for a complete (i.e., 

not windows-based) RNA sequence. The LinearPartition function includes the sum of 

equilibrium constants for all possible secondary structures for a sequence (i.e, not just the 

most likely structure).  We focus specifically on detecting regions with miRNA-like 

secondary structures, because miRNA are known to fold and thereby act as a dsRNA 

substrate for Dicer-like mechanisms.   

After performing computational annotation to predict miRNA-like regions in the 
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genes and TEs of maize, we investigate the relationship between these regions to smRNAs, 

methylation levels, chromatin accessibility and, where applicable, gene expression (Figure 

S2.1). With these data, we address four sets of questions. The first focuses on predicted 

secondary structure: How often do TEs and genes contain regions of miRNA-like regions? 

And are these regions in specific locations? The second set of questions focuses on the 

relationship between secondary structure and smRNAs. Do miRNA-like regions 

consistently map more smRNAs, and, if so, of what size? The question of size is important 

because it is thought that dsRNA degradation via Dicer feeds into post-transcriptional gene 

silencing (PTGS) pathways, which tends to rely on 21- and 22-nt smRNAs. In contrast, 

pathways that lead to transcriptional gene silencing (TGS) tend to rely more often on 24-nt 

smRNAs, although these size distinctions are neither strict nor universal (Fultz & Slotkin, 

2017; Panda et al., 2020). Our third set of questions focuses on the potential genomic 

implications of hairpins and smRNAs. Do these miRNA-like regions have higher 

methylation levels or specific chromatin properties? Finally, we assess the effects of 

miRNA-like secondary structures on gene expression by including data from 26 parents of 

the maize Nested Association Mapping (NAM) lines (McMullen et al., 2009; Hufford et al., 

2021).  

  

2.3 Results 
 

Two methods to predict miRNA-like secondary structures and their comparison 

We adopted two complementary bioinformatic methods to identify miRNA-like 

hairpin regions (Figure 2.1a). The details of their implementation are given in the Materials 
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and Methods. Here we provide an overview of the methods and compare their 

performance. To aid the reader, we also provide terms that are used to characterize 

analyzed sequences (Table 2.1).  

RNAfold: The first method applied RNAfold to sliding windows of 110 nt, following 

previous work (Wang et al., 2009; Bousios et al., 2016). The 110 nt windows were 

originally designed by Wang and co-authors to include regions that map 20-25 nt small 

RNAs, along with ~90 bp of flanking sequence (Wang et al., 2009). This approach 

established that pre-miRNA windows of this size typically have MFEs <-40 kcal/mol (Wang 

et al., 2009); we used that empirical cutoff to define windows of secondary structure with 

miRNA-like stability. By focusing on regions of similar size to pre-miRNA transcripts and by 

employing their empirical threshold cutoff of -40 kcal/mol, we in effect used miRNA loci as 

a ‘positive control’ for ssRNAs that are expected to form secondary structures.  

 We applied RNAfold across features of the B73 reference maize genome (version 

4.0)(Jiao et al., 2017). The features included miRNA precursor loci, TEs and genes. The TEs 

included all families annotated in Jiao et al. (2017), including Long Terminal Repeat 

elements (LTRs), Terminal Inverted Repeat elements (TIRs), Helitrons, Long Interspersed 

Nuclear Elements (LINEs), and Short Interspersed Nuclear Elements (SINEs). Within these 

TE types, we focused on superfamily categories (Wicker et al., 2007), which distinguished 

(for example) between Ty3/RLG and Copia/RLC LTR elements and among TIR elements 

like Mutators/DTM and Harbingers/DTH. [Note that throughout the paper we refer to TE 

superfamilies by their names and also their three-letter designation from Wicker et al., 

2007 (Table 2.2)]. Notably, these annotations do not typically include miniature inverted 

https://www.zotero.org/google-docs/?rU1v4W
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terminal repeats (MITEs), a class of small non-autonomous TEs that often contain strong 

secondary structures. For genes, we studied both the annotated gene—which included 

untranslated regions (UTRs), exons, introns—as well as mature transcripts that lacked 

introns. Altogether, with this method we examined 373,485 features representing 15 

distinct feature categories (Table 2.2). Because we used sliding windows, each nucleotide 

within a feature corresponded to one sliding window (for all but the final 109 nucleotides 

of a sequence). This approach was a massive bioinformatic undertaking, requiring an MFE 

calculation for a total of 3.56 billion windows. 

Because each feature consisted of many RNAfold windows, we used summary 

statistics to characterize local secondary structure in each feature (Table 2.1). These 

included the minimum MFE (minMFE), which was the MFE of the window with the 

strongest predicted secondary structure for each feature, and mean MFE (meanMFE), 

which averaged MFE across windows within a feature. For each feature, we also 

concatenated overlapping windows with MFE < -40 kcal/mol, designating these as lowMFE 

regions (Table 2.1; Figure 2.1a,b).  

One concern about using MFE as a quantitative statistic is that it varies by G:C 

composition (e.g., higher G:C content tends to induce more stable secondary structures) 

and primary sequence (e.g., whether the order of bases forms palindromes and stem-loop 

structures). Because we were primarily interested in secondary structure resulting from 

the latter, we controlled for base composition by randomizing the sequence of each feature 

five times and then repeating MFE predictions each time, requiring another 17.8 billion (=5 

x 3.56 billion) window computations. By randomizing, we identified features that had more 
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stable secondary structures than expected given their nucleotide composition. We then 

classified a feature as “RF-structured” (RF for RNAfold) when it contained windows with 

MFEs < -40 kcal/mol and also had a minMFE significantly lower than permutations (p < 

0.05, one-sided Wilcoxon test, Benjamini and Hochberg corrected) (Table 2.1). Conversely, 

we labeled features as “unstructured” when their minMFE was not significantly lower than 

that of randomized sequences. [We report the differences between randomized and 

observed minMFE values for each feature category in Figure S2.2.] Overall, 76% (286,774 

of 373,485) of features were RF-structured—i.e., contained regions of miRNA-like 

structures by this criterion (Table 2.2).   

LinearPartition: The second prediction method was based on LinearPartition (Zhang 

et al., 2020). This approach did not rely on sliding windows to infer local secondary 

structure but analyzed the complete sequence of each feature. The advantage of this was 

that each feature required only one computational analysis, vastly improving 

computational burden and speed. Accordingly, we applied this method to the same set of 

373,485 features as RNAfold but also to a larger, updated version of maize TE annotations 

(Stitzer et al., 2021), resulting in an expanded dataset of 467,255 features (Table 2.2). 

For each sequence, LinearPartition calculated the partition function, summarized by 

the parameter Q.  For each nucleotide site within a feature, the method calculated a pairing 

probability between all nucleotides in the feature. We focused on nucleotide pairs with 

high probabilities of pairing (> 0.90) and searched within each feature for runs of 

nucleotides that matched widely accepted miRNA annotation guidelines for plants (Axtell 

and Meyers 2018). These guidelines defined hairpins consisting of consecutive stretches of  
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≥21-nucleotides that were likely to pair (>90% probability) with <5 mismatched 

nucleotides, including <3 mismatches in putative asymmetric bulges (i.e., places where the 

gap on one side of a hairpin was > the gap on the other side of the hairpin)(Figure 2.1a; see 

Methods for details). We called sequences that fit these criteria “LP-hairpins” (Table 2.1).  

 It is worth emphasizing similarities and differences between the two methods. Both 

focused on identifying regions of strong local secondary structures within features, based 

on known properties of miRNA-like regions. The MFE method focused on regions of high 

local structure (MFEs < -40 kcal/mol), without reference to the properties of those 

structures, like the length of stem loops. In contrast, LinearPartition focused on regions 

along the complete sequence that matched specific length and size criteria. Because the two 

methods utilized different miRNA-like properties, we did not expect them to correlate 

perfectly throughout the genome.   

Yet, they did yield significant consistencies and overlaps. For example, we 

contrasted the two entire-sequence summary statistics—i.e., meanMFE and the partition 

function normalized for feature length (Qnorm). Across structured features, Qnorm correlated 

strongly with meanMFE (Figure 2.1c)(R2 = 0.73 across all feature types and R2 = 0.97 

across genes; P = 0) and weakly (R2 = 0.04) but still significantly (P = 3.05 x 10-10) with 

minMFE. The low correlation between Qnorm and minMFE was not unexpected, because 

minMFE focuses on one window within a feature, as opposed to the property of an entire 

sequence. However, we also compared the overlap in genomic locations between LP-

hairpins and low (<-40) MFE regions (Figure 2.1a). Across all of the 287,744 RF-structured 

features (Table 2.2), 78.46% of LinearPartition hairpins were within a lowMFE region. 
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Given that lowMFE regions collectively comprised ~22.95% of annotated features, this 

represented a substantial 12.2-fold enrichment of LP-hairpins within lowMFE regions. By 

design, lowMFE regions were much larger (median = 348 nt) than LP-hairpins (median = 

25 nt), and therefore took up a much larger proportion of the space inside of comparable 

features. (In total, lowMFE regions constituted 1.9 x 108 nt vs 1.7x 107 nt for LP-hairpins). 

These comparisons demonstrate that LP-hairpins are based on a narrower definition, but 

that the two methods generally agree. 

Finally, we compared the performance of the two methods based on a control 

dataset: annotated pre-miRNA loci from the B73 reference (n=107; Table 2.2). Most 

(71.0%) of this set were RF-structured (Table 2.2), indicating that the MFE threshold 

defined by Wang et al (2009) generally conformed to existing annotations. Similarly, most 

(66.36%) of the annotated pre-miRNA loci had LP-hairpins (Table 2.2).  

The prevalence and locations of miRNA-like secondary structures  

 

Prevalence of miRNA-like secondary structure across TE superfamilies 

 Using both methods of prediction, we detected substantial variation in the 

prevalence of miRNA-like secondary structures among TE categories. Some TE 

superfamilies contained little evidence of structure.  For example, the LINE (RIL and RIT) 

elements had no RF-structured elements and also had no detectable LP-hairpins (Table 

2.2). Because the 2017 annotation from Jiao et al. (2017) contained few (n=65) RIL and RIT 

elements, we repeated the LinearPartition analysis with an expanded set of n=773 

elements from Stitzer et al. (2021), finding again that only a small subset (~3%) contained 
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hairpins (Table 2.2). SINEs/RST also had very low incidences of miRNA-like structure, with 

no RF-structured elements and <2% containing LP-hairpins (Figure 2.1b). In contrast to 

LINEs and SINEs, LTR elements generally had abundant miRNA-like structures. For 

example, 98% of Copia/RLC elements had RF-structure and 58.0% had LP-hairpins (Table 

2.2; Figure 2.1b). We note, however, that LTR elements were longer on average than the 

other TE subfamilies, and also that there was an overall negative relationship between 

feature length and minMFE across all 15 feature categories (P < 2.2 x 10-16, R2 = 0.20, linear 

model; Figure S2.3).   

Just as the prevalence of miRNA-like regions varied across RNA-based 

superfamilies, they also varied among DNA-based TE superfamilies. Mutator/DTM 

elements were especially notable for the high percentage of elements with LP-hairpins, at 

up to 62.82%, while 32.52% of  CACTA/DTC elements contained LP-hairpins. Fewer than 

half of the annotated Tc1-Mariner/DTT and PIF-Harbinger/DTH elements were RF-

structured or contained LP-hairpins (Table 2.2), but this corresponded to thousands of 

elements in these superfamilies that contain miRNA-like regions.     

It is worth making two overarching observations from the analyses reported in 

Table 2.2. First, the percentage of sequences identified by RNAfold and LinearPartition 

were correlated across the 15 feature categories (R=0.65; p<0.001), suggesting again that 

the two methods identified similar characteristics in most superfamilies. Second, the 

expanded TE dataset of Stitzer et al. (2021) exhibited similar trends to the Jiao et al. (2017) 

annotation dataset (R=0.96; p<0.001).  For example, LINEs, SINEs and hAT/DTA elements 
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generally had low proportions of elements with LP-hairpins in both annotation sets, while 

LTR superfamilies had high proportions in both annotation sets.       

 

Biases in the locations of miRNA-like regions 

We next examined the locations of miRNA-like secondary structure across the 

length of each feature type. For these analyses, we focused only on the 286,744 features 

that were predicted to have RF-structure (Table 2.2). For each feature category, we 

separately mapped the positions of lowMFE regions and LP-hairpins along their lengths 

(Figure 2.2). Consistent with previous work (Bousios et al., 2016), both lowMFE and LP-

hairpins were concentrated within the LTRs of Copia/RLC elements.  In contrast, Ty3/RLG 

elements generally lacked an obvious peak for miRNA-like structures. Most DNA 

transposon superfamilies had relatively uniform distributions of lowMFE regions across 

their lengths (Figure S2.4), but LP-hairpins were biased heavily towards the terminal 

inverted repeats for TIR elements like Mutator/DTM (Figure 2.2), hAT/DTA and 

CACTA/DTC elements (Figure S2.4). Finally, Helitrons/DHH had a distinct 3’ bias for both 

lowMFE regions and LP-hairpins (Figure 2.2).  reflecting the ~11 nt stem-loop structure 

common to Helitron 3’ ends (Kapitonov & Jurka 2007; Xiong et al., 2014). The take-home 

messages were that: i) some superfamilies – like Helitron/DHH, Mutator/DTM and 

Copia/RLC – exhibited notable biases in the locations of miRNA-like regions and ii) these 

inferences were similar between the two prediction methods.  

Distinct sequence motifs could define lowMFE regions. For each TE superfamily, we 

extracted all the sequences of lowMFE regions and input them into the Multiple EM for 

https://www.zotero.org/google-docs/?r2BGT1
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Motif Elicitation (MEME) suite motif discovery tool (Bailey and Elkan, 1994), which finds 

overrepresented sequence motifs within a set of sequences. As expected (Bousios et al., 

2016), we recovered the previously identified consensus Sirevirus palindrome, 

CACCGGACNNNGTCCGGTG (Figure S2.5) as the most abundant motif in Copia/RLC 

elements (MEME e-value = 5.3x10-677).  This motif appeared in 42.9% of RLC structured 

regions. This same palindrome was also the most abundant motif in Helitron/DHH 

transposons (MEME e-value = 1.0e-165), appearing in 5,231 DHH structured regions 

(10.7%). This observation could reflect independent emergence of these motifs in the two 

superfamilies or frequent insertion of one type of element into the other.   

 

miRNA-like secondary structure within genes 

 A higher percentage (69.0%) of genes were RF-structured than contained LP-

hairpins (29.8%) (Table 2.2).  When we examined the distributions of miRNA-like 

structures across genes and their mature transcripts, we found that the two methods 

differed in their predictions. In 85% of genes (Figure 2.2), lowMFE regions overlapped the 

5’ UTRs, where secondary structures are known to participate in ribosome binding and 

translation (Babendure et al., 2006; Matoulkova et al., 2012). In contrast, LP-hairpins were 

fairly uniformly distributed across gene lengths (Figure 2.2), with perhaps a slight bias 

towards the middle of the gene as documented previously in Arabidopsis (Li et al. 2012). 

Most (76.19%) of these LP-hairpins were found in introns, so that far fewer (5.02%) of 

mature mRNA transcripts had LP-hairpins (Table 2.2). The lowMFE results demonstrate 

https://www.zotero.org/google-docs/?mdyqHa
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that 5’ UTRs commonly have regions of local secondary structure but infrequently 

contained LP-hairpins.  

  

Comparing miRNA-like secondary regions to smRNA diversity 

 Correlations between miRNA-like regions and smRNA mapping abundance: Under the 

dsRNA-substrate model, genomic regions of high secondary structure should have 

homology to more smRNAs than non-structured regions. To test the hypothesis, we 

mapped 21, 22, and 24-nt smRNAs from up to 42 published smRNA libraries (see Methods; 

Table S2.1) to the B73 maize genome, and then counted the number of distinct smRNA 

sequences (also known as ‘smRNA species’) (Bousios et al., 2017) that mapped with 100% 

identity to genomic regions. Because of their different functions (Axtell, 2013; Borges and 

Martienssen, 2015), we examined smRNAs in the three size classes (21, 22, and 24 nt) 

separately. Two caveats should be mentioned regarding these small RNAs. First, although 

we suspect many of these small RNAs to be hairpin-derived RNAs (hpRNAs) (Axtell, 2013), 

we do not know their origin and refer to them by the more general ‘smRNA’ term for clarity 

and concision. Second, we do not know that each smRNAs identified here function as 

siRNA, merely that they are the correct size to act as a canonical siRNAs.  

 We first examined the relationship between miRNA-like regions and smRNAs using 

a linear model across all 373,485 features of the Jiao et al. (2017) annotation set, using 

correlation statistics. The correlation coefficient was generally small—e.g., R2 was ~0.1 for 

models incorporating minMFE—but highly significant (Table 2.3).  Moreover, the results 

were significantly positive for all RNAfold and LinearPartition summary metrics (Table 
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2.3).  Extending this approach separately to the 15 individual feature categories, three 

smRNA lengths, and three metrics (minMFE, meanMFE and Qnorm ), 82% of correlations 

were significant after false discovery rate (FDR) correction (Table S2.2).  

Overall, these results indicate a weak but consistent relationship between presence 

of miRNA-like secondary structure in features and the number of smRNAs that map to 

those features. We did find some interesting outliers, however. First, the relationship 

between smRNAs and minMFE statistics were generally not significant for miRNAs (Table 

S2.2), perhaps reflecting small sample sizes (n=107) or perhaps the fact that miRNA loci 

generate few distinct smRNAs, despite being highly expressed.  Similarly, some LINE 

comparisons also were typically not significant; LINEs were heavily saturated with for all 

three smRNA size classes (Figure S2.6) but few had detectable miRNA-like regions.  Second, 

the estimated linear relationships were typically higher for 21 and 22-nt smRNA than for 

24-nt smRNA, which is consistent with their role during the initiation of silencing (Table 

2.3&S2) and with the observation that Dicer-like processing of dsRNA substrates typically 

yield 21- and 22-nt smRNAs. In genes, for example, correlations between minMFE and 21-

22 nt smRNAs were again weak but highly significant (R2 = 0.01, P < 4.12 x 10-106), but the 

correlation with 24-nt smRNAs was not (R2 = 8.35x 10-05, P = 0.072)(Table S2.2).  

We also examined the relationship between miRNA-like structures and smRNA 

counts within features by measuring smRNA mapping skew, which measures the ratio of 

smRNA mapping in miRNA-like vs. non-miRNA-like regions (Table 2.1 and Methods). We 

defined skew to be zero when smRNA mapping was equivalent on a per nucleotide basis 



 

89 
 

between miRNA-like vs. non-miRNA-like regions, and skew ranged from -1.0 to 1.0. When it 

was positive, smRNA mapping was more abundant in miRNA-like regions.   

Generally, TEs in all superfamilies exhibited positive skews, reflecting the tendency 

for more smRNAs to map to LP-hairpins (Figure 2.3a,b) and the lowMFE regions of RF-

structured elements (Figure S2.7).  As just one example, Copia/RLC elements had positive 

skews, with slightly higher skews for 22-nt smRNAs as opposed to 21 and 24-nt smRNAs 

(Figure 2.3a).  These results were confirmed by a linear mixed effects models, because all 

three smRNA lengths were significantly higher in Copia/RLC LP-hairpin regions with all 

three metrics (i.e., minMFE, meanMFE and Qnorm; all P-values < 1.23 x 10-04; Table S2.2; 

Figure S2.8 & S9). Overall, LTR elements had more obvious skew than DNA elements, 

although five of six DNA superfamilies had positive skews for all three smRNA lengths 

(Figure 2.3a). These observations were largely supported by mixed effects models (Table 

S2.3 & S4), where all TE superfamilies showed significantly higher smRNA mapping to both 

LP-hairpin and lowMFE regions at all three smRNA lengths (P-value range 9.3 x 10-04 in 

Rle/RIT elements to 0.0 in many LTRs, TIRs, and helitrons). 

We also examined skew within genes. Genes had homology to far fewer smRNA 

species than most TE types—nearly 100-times less in most cases (Figure S2.6)—but 

smRNA species abundance was roughly equivalent between genes and their transcripts. 

Although genes mapped fewer smRNAs overall, they had stronger skews than any of the TE 

superfamilies. For example, roughly three-fold more smRNAs (of all size classes) mapped 

to lowMFE in genes, compared to the 1.5- and 1.3-fold difference in CACTA/DTC 

transposons and Copia/RLC retrotransposons. This effect was more pronounced for LP-
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hairpins. For example, LTR retrotransposons (which includes the RLC, RLG and RLX 

superfamilies) had a 2.9-fold greater smRNA density in LP-hairpins compared to non-

hairpin regions, but genes had a ~89-fold greater density. Consistent with these 

observations, linear mixed effect models were significant for higher smRNA abundance in 

lowMFE regions and LP-hairpins of genes for all three smRNA lengths (P ≅ 0; Table S2.3 & 

S4). Comparisons of overall smRNA mapping densities between miRNA-like regions and 

other regions in genes and TEs can be seen in Figs S8 (lowMFE) & S9 (LP-hairpins). 

Finally, we included organellar genes as negative controls because they are typically 

sequestered from the cytosolic complexes like DCL and RdR6 and hence should not exhibit 

any skew. smRNAs mapped to organellar genes at low levels, but as expected did not 

exhibit any skew (Figure S2.10).  

 

Expression matters: putatively autonomous vs. non-autonomous TEs 

Non-autonomous DNA transposons are not transcribed (except when they are 

within expressed UTRs or introns), and therefore RNA secondary structure generally 

cannot drive the creation of smRNAs for these elements (Panda et al., 2016). We therefore 

predicted that there could be a difference in skew between autonomous and non-

autonomous DNA elements. To investigate, we separated DNA transposons into 

nonautonomous and autonomous elements using transposase homology data (Stitzer et al., 

2021)(see Methods), and then repeated our skew and linear model analyses. In most cases, 

non-autonomous elements had notably less smRNA skew towards miRNA-like regions than 

autonomous elements (Figure 2.3b), as we had predicted. This pattern was consistent 



 

91 
 

among Helitron/DHH (autonomous mean skew among all smRNA lengths = 0.91, non-

autonomous mean = 0.37), CACTA/DTC (autonomous mean = 0.44, non-autonomous mean 

= 0.34), Harbinger/DTH elements (autonomous mean = 0.37, nonautonomous mean = 

0.27), and Mutator/DTM (autonomous mean = 0.51, non-autonomous mean = 0.05), but it 

was particularly notable for 21 and 22-nt smRNAs (P < 7.5 x 10-31) among Helitrons/DHH 

and Mutator/DTM, most of which are non-autonomous in maize (Stitzer et al., 2021). Note 

that all Mariner/DTT elements were non-autonomous, which may relate to their overall 

lack of skew (Figure 2.3b).   

 

Methylation peaks in miRNA-like regions 

One function of smRNAs is to recruit methylases, leading to RNA-directed DNA 

methylation (RdDM). We reasoned that miRNA-like structures should be more highly 

methylated because they map more smRNAs. We further predicted that this effect should 

be primarily detected in the CHH context, because mCHH is deposited de novo each 

generation (Law and Jacobsen, 2010).   

We employed B73 whole-genome methylation data (Hufford et al., 2021) to 

measure weighted methylation levels (Schultz et al., 2012) across the genome. We then 

plotted methylation levels centered on regions of miRNA-like structure and 2 kb of the 

upstream and downstream sequences. Both LP-hairpins (Figure 2.4) and lowMFE regions 

(Figure S2.11) demonstrated peaks of CHH methylation centered on the region; this peak 

dissipated rapidly, especially for LP-hairpins. These peaks were found in all feature types 

with detectable miRNA-like structures, including RNA elements, DNA elements and genes. 
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We also confirmed that miRNA-like regions had significantly higher levels of CHH 

methylation than other regions by comparing them to randomly chosen unstructured 

regions of the same length as LP-hairpins (Figure 2.4). Finally, we found that CHH 

methylation levels in LP-hairpins were significantly higher than those in the rest of the 

corresponding sequence (paired t-test; P values between 3.43 x 10-81 and 1.16 x 10-165 

among genes, TIRs, LINEs, LTRs, and helitrons), with enrichments as high as ~10x in genic 

hairpins. These observations complement the smRNA mapping results and confirm that 

our miRNA-like regions have detectable epigenetic correlates.  

 

miRNA-like structures and gene expression   

 Genes possess regions with stable RNA secondary structure (Figs 1&2), and this 

secondary structure coincides with the presence of smRNAs (Figure 2.3c & Table S2.3-S2.4) 

and methylation (Figure 2.4 & S11). Yet, genes are usually expressed, which raises the 

question as to whether these miRNA-like structures have a quantifiable relationship to 

gene expression. To address this question, we used previously published RNA-seq data 

from 23 B73 tissues across developmental stages (Walley et al., 2016).  We focused these 

analyses on structured genes with lowMFE regions (as opposed to LP-hairpins), both 

because they were common in the UTRs and gene bodies of genes (Figure 2.2) and because 

5’ secondary structure is known to be important to gene function.  In contrast, LP-hairpins 

were detected in only ~5% of genic transcripts (Table 2.2); however, the results presented 

below for lowMFE regions were often recapitulated with LP-hairpin data.  
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We began by comparing expression in 27,025 structured versus 5,060 unstructured 

genes. Structured genes had significantly higher expression (t-test, P < 2.0 x 10-16)(Figure 

2.5a), and this was true for all tissues (Figure S2.12) as well as for genes that contained LP-

hairpins (Figure S2.13).  We suspected, however, that most unstructured genes were either 

pseudogenes or misannotated. To focus on evolutionarily conserved (and hence 

presumably bona fide) genes, we identified 24,784 B73 genes with syntelogs in Sorghum 

bicolor (Muyle et al., 2021)(see Methods). Among the syntelog set, 16,171 were structured 

and 460 were unstructured.  Structured syntelogs still had a mean expression level that 

was slightly higher than unstructured syntologs (P = 3.7 x 10-4; Figure 2.5a).  More 

important, however, was the quantifiable relationship between the minMFE and gene 

expression. Among structured syntelogs, the relationship was significantly positive—i.e, 

such that gene expression peaked at a minMFE of ~40 kcal/mol (Figure 2.5b).  The 

opposite was true among unstructured genes because higher expression occurred with 

lower MFEs (Figure 2.5b). This pattern implies both a relationship between gene 

expression and the properties of secondary structures and also the existence of an optimal 

minMFE for gene expression. These trends are present for many of the 23 separate B73 

tissues separately (Figure. S2.14) and for the complete gene set of genes—i.e., not just 

genes with syntelogs (Figure S2.15). 

 Among syntelogs, structured genes also mapped significantly more smRNAs than 

unstructured genes (Figure 2.5c), which raises an interesting question: Could this 

phenomenon modulate the expression of genes?  To examine this idea, we examined 

expression data across the 26 nested association mapping (NAM) founder lines (McMullen 

et al., 2009). For these analyses, we assumed that the secondary structure designations 
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predicted in B73 applied to its syntelog across all 26 NAM parents (Hufford et al., 2021). 

We then compared gene expression among lines using the coefficient of variation (CV), 

based on expression values that were normalized across eight tissues in each line (Hufford 

et al., 2021)(see Methods). Our analyses revealed that structured genes had significantly 

higher CVs than non-structured genes (Ps < 0.01, permutation test)(Figure 2.5d). This was 

true both for comparisons between all genes in each group and between a downsampled 

subset of structured genes that was equal in size to the set of unstructured genes. One 

concern about this analysis is that the CV is standardized by the mean, which could bias 

results, but this did not drive our observations for three reasons.  First, mean expression 

did not vary substantially between structured and unstructured syntelogs (Figure 2.5a). 

Second, we fitted a linear model of expression CV as a function of B73 gene expression, but 

the correlation was negative (i.e., more highly expressed genes were slightly less variable 

across lines; R2 = 6.1 x 10-4, P = 1.5x 10-7, estimate = -0.01). Third, we examined CV across 

23 B73 tissues. There was no difference in CV between structured and unstructured 

syntelogs across tissues (Figure 2.5c), illustrating that the CV metric alone does not explain 

the significant difference across genotypes.  

 Can the variable expression of structured genes be explained by smRNAs? We 

predicted that more smRNAs should lead to more expression variation across lines. To 

investigate this possibility, we fit a linear model of expression CV as a function of smRNA 

density and found that CV was positively correlated with smRNA abundance (P = 6.7 x 10-

283; R2 = 0.010). To see if an effect was discernible between structured genes of variable 

minMFE values (as suggested by Figure 2.4b), we separated structured genes into four 

quartiles based on their minMFE and then plotted the number of smRNAs that map to each 
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gene in B73. Consistent with our hypothesis, genes in the lowest minMFE quartile mapped 

more smRNAs than the other three quartiles for all three smRNA lengths, and minMFE was 

significantly but weakly correlated with CV in a linear model (P = 5.8 x 10-79; R2 = 0.0031).  

 This evidence shows that higher CVs for expression are related to the number of 

smRNAs that map to a gene, but additional factors likely cause (or contribute) to 

expression variability across NAM genotypes. One factor is chromatin accessibility. We 

assessed whether accessibility varies more in lowMFE genic regions by using ATAC-seq 

data (Hufford et al., 2021), which defines accessible chromatin regions (ACRs) among 

parents (see Methods). For each NAM parent, we identified whether ACRs overlapped with 

lowMFE regions more than unstructured (MFE > -40kcal/mol) genic regions. We found no 

difference between the two categories (Figure 2.5e). Genetic effects, like SNPs and 

structural variants (SVs), contribute to gene expression variation across the NAM lines, 

particularly given that regions of structure can have altered mutation rates (Hoede et al., 

2006). We therefore also examined SNPs and SVs in these regions, based on the data of 

Hufford et al. (2021). We found that lowMFE regions were less likely to contain SNPs or SVs 

than unstructured genic regions (Figure 2.5e), which superficially discounts the idea that 

higher CVs for expression are caused by genetic effects due to miRNA-like regions having 

notably high mutation rates.   

   

2.4 Discussion 
 

We have profiled miRNA-like secondary structure in annotated features of the maize 

genome. To our knowledge, this study is the first to comprehensively catalog such 
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structures, and we have done so by applying two bioinformatic prediction methods. The 

methods rely on different algorithms (RNAfold vs. LinearPartition), different approaches 

(overlapping windows vs. no windows) and on different characteristics to define miRNA-

like regions. By design, the LinearPartition analyses relied on a narrower definition (Figure 

2.2), and so there were fewer observations. Yet, the two methods provide largely 

concurrent insights about miRNA-like regions, including their relative abundances among 

TE superfamilies (Table 2.2); their locational biases in some TE superfamilies (Figure 2.2); 

their association with elevated smRNA counts in TEs and genes (Figure 2.3); and their 

genome-wide correspondence to peaks of methylation (Figure 2.4).  

 

Detecting miRNA-like secondary structures   

 For detecting secondary structure, we have included two positive controls: miRNA 

precursor loci (Wang et al, 2009) and Copia/RLC elements (Bousios et al., 2016). As 

expected, these two feature categories have extreme statistics. For example, Copia/RLC 

elements have the highest proportion of RF-structured elements (Table 2.2) and also the 

lowest average minMFE, reflecting previously recognized regions of strong secondary 

structure (Figure 2.1). Our other positive control set, miRNA precursor loci, have a high 

proportion of RF-structure and the highest proportion of LP-hairpins (Table 2.2). However, 

these positive controls also indicate an appreciable false negative rate, because 29% (RF-

structure) and 38% (LP-hairpin) of pre-miRNA loci do not have detectable miRNA-like 

structures. It is of course possible that misannotations of miRNA precursors contribute to 

these false negative rates.   
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The methods have additional limitations. We need to first reiterate that the 

approach was not designed to identify all secondary structures. Our goal was to identify 

regions similar to miRNA precursors because they are thought to be involved in forming 

dsRNA substrates that lead to the production of smRNAs.  Second, there are limitations to 

the TE annotation sets.  For example, miniature inverted repeats (MITEs) are not included 

in either annotation set. MITEs are short non-autonomous elements that are characterized 

by their tendency to form stem-loop structures and to insert near genes (Bureau & Wessler, 

1992, 1994), where they are often incorporated in read-through transcripts. They are an 

interesting topic for additional work, but we can provide no insights about them here. 

Third, we know that some summaries are biased—e.g., minMFE is correlated with feature 

length and lowMFE regions are more likely in sequences with high G:C composition. We 

have addressed these biases by using multiple summary statistics, by randomizing the 

primary sequence to test for significant evidence of structure and by using two prediction 

methods. Finally, we recognize that bioinformatic predictions are approximations that may 

not correspond to in vivo assessments (Ding et al., 2014).   

Nonetheless, despite these limitations, the two distinct prediction methods yield 

several similar trends, including higher smRNA mapping and methylation levels in miRNA-

like regions (Table 2.2 and Figs 1,2). One prosaic explanation for these results is that they 

are caused by systematic biases in the prediction methods, but this seems highly unlikely 

because: i) error in secondary structure prediction should lead to randomness—i.e., 

inconsistent correlations, ii) the inclusion of false negatives among unstructured elements 

makes the measured correlations inherently conservative and iii) the results, while not 

identical, are largely consistent between prediction methods.  Since both genes and TEs 
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exhibit this relationship, we conclude that the association between miRNA-like structure 

and smRNA abundance is a general characteristic of the maize epigenome.  Our work 

extends this relationship from a few examples to the genome-wide scale.  

 

miRNA-like regions, epigenetic signals, and potential mechanisms 

Given known pathways of miRNA and smRNA biogenesis (O’Brien et al., 2018; Hung 

& Slotkin, 2021), we believe the most likely explanation for the observed association is that 

miRNA-like secondary structures lead directly to smRNA production via Dicer-like 

mechanisms. This conclusion is bolstered by the fact that smRNA skew is more pronounced 

for expressed genomic regions—like genes and putatively autonomous elements—for 

which this mechanism is expected to be most active (Figure 2.3). There are likely 

exceptions to this pattern, though.  For example, MITEs can be frequently expressed owing 

to their insertion near genes (Zhang et al., 2000). We predict, then, that “expressed” non-

autonomous MITEs will exhibit skews similar to autonomous elements; future work will 

address that hypothesis.    

Based on our bioinformatic analyses, we cannot prove that the structure:smRNA 

relationships are caused by the formation and processing of dsRNA substrates by Dicer-like 

mechanisms . Arguably the most-straightforward way to do so would be to map smRNA 

libraries from maize mutants lacking Dicer-like functions. Unfortunately, we found no such 

libraries, but we did map the available libraries from maize RdDM mutants: mediator of 

paramutation1 (mop1) and required to maintain repression2 (rmr2) (Gent et al., 2014; 

Barbour et al., 2012). These mutants affect the repression of TEs that have already been 
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silenced (Barbour et al., 2012); they are thus not particularly good candidates to test the 

dsRNA-substrate model. We nonetheless assessed the effect of mutants on skew by 

comparing mutant smRNAs to WT individuals from the same study (Figure S2.16), but we 

did not observe any clear or consistent patterns across smRNA lengths or TE superfamilies. 

These comparisons relied on single libraries and are thus more subject to sampling 

variability than our other observations, which were based on joint consideration of dozens 

of smRNA libraries.   

Since we cannot prove that processing of dsRNA substrates is a causal mechanism, it 

is worth considering alternative explanations. For example, structure:smRNA correlations 

could reflect abundance rather than production; one way this could occur is if smRNAs 

generated from miRNA-like regions degrade less quickly. It is hard to imagine how this 

might happen, but it is known that smRNAs that are loaded onto AGO have particular 

biases (Mi et al., 2008) and thus some may be more stable with longer half-lives. Another 

possibility is that these structures correlate with degradation through other, non-DCL 

pathways. Some studies have attempted to correct for degradation and other effects by 

focusing only on genomic regions where the proportion of 21, 22 and 24 nt smRNAs exceed 

an arbitrary threshold compared to smRNAs of all lengths (Lundardon et al., 2020). We did 

not apply such a threshold here, because this approach necessarily assumes that some 21, 

22 and 24-nt smRNAs should be ignored as biologically uninformative. We did, however, 

assess overlaps in genomic positions between the annotated, 21–24-nt siRNA producing 

loci of Lundardon et al. (2020) and our miRNA-like hairpin structures. Relative to random 

chance, we found a modest but significant enrichment in overlapping locations between 

siRNA loci and miRNA-like structures in genes and in all TE superfamilies except SINEs and 
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LINEs (Table S2.5), which generally lack miRNA-like structures (Table 2.2). We repeated 

this exercise with a set of annotated small RNA loci that do not produce 21-24 nt smRNAS 

(Lunardon et al., 2020), revealing no notable enrichment within TEs with a very slight 

enrichment within mRNAs (Table S2.5). Altogether, these analyses suggest that a subset of 

our miRNA-like secondary structures correspond to loci that produce 21–24-nt siRNAs, 

presumably through DCL-like mechanisms.  

We can think of one additional explanation for the association between miRNA-like 

regions and smRNAs. In Arabidopsis, miRNA target sites within mRNAs are significantly 

less structured than surrounding regions (Li et al., 2012), which may confer accessibility to 

the endoribonucleases involved in RNAi (Vandivier et al., 2016). This pattern hints that 

small RNA binding and RNAi could be less effective in structured regions of TEs than in 

non-structured regions, as is likely the case in viruses (Gebert et al., 2019). If this is the 

case, miRNA-like regions of TEs may have evolved to protect those primary sequences from 

targeting through RNAi-like mechanisms. In this explanation, the regions are first highly 

targeted by smRNAs and then structure evolves as a component of the evolutionary arms 

race between TEs and their hosts.  

While we cannot document a definitive mechanism, t precedence suggests that 

processing of dsRNA substrates  likely contributes to the genome-wide structure:smRNA 

relationship. If true, then we can add insights about its effects. First, we can estimate the 

relative amount of smRNAs that are produced via processing of dsRNA substrates 

compared to other smRNA-generating mechanisms. Across the entire dataset of 373,485 

features (Jiao et al., 2017), minMFE explains 10% of the smRNA mapping results for 21-nt 
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smRNAs (Table 2.3), providing a rough estimate for the proportion of smRNAs produced 

from dsRNA substrates. This value is larger for some metrics within specific feature 

categories—e.g., Qnorm explained 24% of 22-nt smRNA mapping variation in genes and 

meanMFE explained 21% of 21nt variation for CACTA/DTC elements (Table S2.2). On 

average, across feature categories and smRNA lengths, the summary statistics minMFE, 

meanMFE and Qnorm explained 8% of mapping variation between miRNA-like regions and 

non-miRNA-like regions (Table S2.2). These low but highly significant values are consistent 

with the fact that dsRNAs are only one of several routes to smRNA production (Carthew & 

Sontheimer, 2009).  

Second, our data show that miRNA-like regions are associated with peaks of 

elevated methylation (Figure 2.4). Since siRNAs guide DNA methylation mechanisms (Law 

and Jacobsen, 2010), these peaks likely reflect causal relationships among structure, 

smRNAs and methylation. It is especially notable that these peaks are elevated for CHH 

methylation, which is deposited de novo each generation and thus represents active 

methylation mechanisms (Law and Jacobsen, 2010).  Methylation in these peaks is also 

elevated in other contexts—e.g., the CG context (Figure 2.4)—such that the peaks resemble 

mCHH islands. mCHH islands are short (~100 bp) regions of elevated methylation typically 

found both up- and downstream of genes. They were first identified in rice as associated 

with MITEs (Zemach et al. 2010). In maize, mCHH islands are associated with several TE 

types, found near roughly half of genes, and enriched near highly expressed genes (Gent et 

al. 2013; Li et al., 2015; Martin et al., 2021). It is not yet known if mCHH islands typically 

correspond to miRNA-like secondary structures, but it is a fitting topic for future 

investigations that may shed further insights into this mysterious epigenetic phenomenon.    
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TE superfamilies vary in the number and pattern miRNA-like regions   

Our work was motivated, in part, by a lack of knowledge about the incipient stages 

of plant host recognition that leads to TE silencing (Bousios and Gaut, 2016). Since 

processing of dsRNA substrates remains the only recognized pathway to de novo smRNA 

production (Hung and Slotkin, 2021), we had hoped that characterizing miRNA-like regions 

would provide clues into properties of host recognition across specific TE superfamilies. 

Our work does not inform this mystery, except to show that most annotated TEs have some 

miRNA-like regions and also to provide a snapshot of variation across TE superfamilies.  

That snapshot shows that DNA elements generally have less evidence for miRNA-like 

structures than LTR elements (Figure 2.1), but non-LTR RNA elements (LINEs and SINEs) 

contain almost no miRNA-like structures (Table 2.2). There is also marked variation among 

LTRs, because Copia/RLC exhibit a concentration of secondary structures in the LTRs, but 

Ty3/RLG do not show a similar locational bias (Figure 2.2). Finally, Helitrons/DHH warrant 

separate mention because 84% are RF-structured, with a strong bias of LP-hairpins at the 

3’ end (Figure 2.2). The lowMFE regions of Helitrons/DHH often contain the same 

palindrome sequence that defines structured regions of Copia/RLC elements (Bousios et al., 

2016).  

One cannot help but wonder why miRNA-like regions are common within TEs. If 

secondary structure can lead to the potential for host recognition through smRNAs, there 

should be selective pressure to lose structure. We suspect that there is a cost to loss related 

to function.  In Sireviruses (the principal representative of the Copia/RLC superfamily), 
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there is evidence that palindromic motifs define the cis-regulatory region of the LTR 

(Grandbastien et al., 2015). In fact, studies of different TE families in different organisms 

have revealed that cis-regulatory regions are often arranged as arrays of complex, 

sometimes palindromic, repeats (Vernhettes et al., 1998; Araujo et al., 2001; Fablet et al., 

2007; Ianc et al., 2014; Martinez et al., 2016), implying that secondary structures often 

assumes a cis-regulatory function. We hypothesize that Copia/RLC elements are engaged in 

a tug-of-war between the functional necessities of secondary structure and the tendency of 

these same regions to act as templates for smRNAs.  We presume similar dynamics apply to 

other TE superfamilies, although clearly this conjecture requires further detailed analyses 

of structure and function in specific TEs. However, the location differences between 

Copia/RLC and Ty3/RLG are interesting in this context (Figure 2.2), because it superficially 

suggests that cis-regulation modules for Ty3/RLG elements have either moved or have 

modified function. Another potential function for miRNA-like regions relates to the fact that 

retrotransposons and autonomous DNA transposons need to co-opt the host’s translation 

machinery to extend their life-cyle. miRNA-like structures may be as crucial for translation 

for TE transcripts as it is for genes (see below).  

 

Genes: evidence for a trade-off  

Our analyses have uncovered a few unexpected features of genes. One is that the 

two methods provide different insights. The RNAfold approach identifies 85% of genes as 

RF-structured (Table 2.2), with an evident bias toward 5’ UTR regions (Figure 2.2). This 

result is not unexpected, given that secondary structures in 5’ UTRs are tied to crucial 
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functions in ribosome binding and translation (Babendure et al., 2006; Matoulkova et al., 

2012).  In contrast, LP-hairpins are primarily found in introns. We conclude that 5’ UTRs 

commonly have miRNA-like regions (as defined by MFEs) but apparently lack the stem-

loop structures identified by LinearPartition. Nonetheless, both lowMFE regions and LP-

hairpins associate positively with smRNAs and demonstrate elevated CHH methylation 

levels within genes (Figs. 3,4 & S11).  

This is not the first such observation for plant genes, because Li et al. (2012) 

discovered that Arabidopsis mRNA transcripts with more stable secondary structures had 

higher smRNA expression and lower genic expression. Our work expands this previous 

work in two ways. First, we have extended the observations to maize; it is notable that 

genes in maize and Arabidopsis share these trends, because maize has a larger genome with 

more TEs. Second, we have shown that secondary structure does not universally correlate 

negatively with gene expression. Rather, the relationship is tiered: there is a qualitative 

difference in expression between genes with and without RF-structure (Figure 2.4A,B), 

probably reflecting that secondary structure in 5’ UTRs is crucial for some aspects of gene 

function. Among genes with RF-structure, however, genes with strong structure (as 

measured by minMFE) tend to be less expressed than genes with moderate RF-structure 

(Figure 2.5B). That is, genes with particularly strong secondary structures (i.e., very low 

MFEs) have lower expression. 

This relationship suggests that there can be “too much of a good thing” when it 

comes to miRNA-like structures. The potential functional consequence of “too much” is 

illustrated across the NAM parental genotypes, because structured genes with higher 

https://www.zotero.org/google-docs/?mdyqHa
https://www.zotero.org/google-docs/?mdyqHa
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coefficients of variation tend to map more smRNAs (Figure 2.5B) and have more variable 

expression among genotypes (Figure 2.5C). We investigated whether this observation 

could be explained by other features of the miRNA-like regions, such as especially high 

variability in chromatin accessibility.  We also investigated SNPs and SVs, because some 

work has shown that structured regions can have higher mutation rates (Hoede et al., 

2006). Unfortunately, none of these variables have provided insights that explain higher 

expression variation across genotypes.  In fact, the miRNA-like regions tend to have fewer 

SNPs and SVs than the rest of the gene (Figure 2.5E), suggesting that the miRNA-like 

regions are under purifying selection.   

Altogether, these results suggest the possibility of an evolutionary tradeoff between 

selection for stable secondary structure against too much secondary structure. Even so, we 

are still left by a paradox: if genes have miRNA-like regions that serve as a template for 

smRNA production, why are they not silenced? We do not have the answer, but we believe 

it must rely on the bevy of differences between hetero- and euchromatin. It is known, for 

example, that genic regions have distinct sets of chromatin markers relative to 

heterochromatin and also that demethylases like Increased in Bonsai Methylation 1 (IBM1) 

and repressor of silencing 1 (ROS1) (Gong et al., 2002; Penterman et al., 2007) actively 

demethylate expressed genes (Saze et al. 2008; Miura et al. 2009). Some aspects of genic 

methylation are under selection (Muyle et al., 2022), and selection will be particularly 

strong against mechanisms that silence genic regions. We hypothesize that these 

mechanisms have evolved in part to counter the potentially deleterious effects of the 

formation of dsRNA structures and subsequent production of smRNAs.  
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Overall, we have created a catalog of miRNA-like structures across many features of 

the maize genome. Our catalog shows that miRNA-like secondary structures are common. 

These regions also correlate weakly, but highly significantly, with smRNA abundance, and 

they associate visibly with DNA methylation, especially in the CHH context. Finally, we 

tentatively suggest that the dynamics of gene expression are affected by these structures 

and their epigenetic associations. We hope this work sparks further exploration of the roles 

of secondary structure in plant genome evolution, because it raises questions about 

unstudied TE categories (e.g., MITEs), about the strength of population genetic evidence 

against mutations in miRNA-like regions (Ferrero-Serrano et al., 2022), whether secondary 

structure characteristics are conserved among species, and whether miRNA-like regions 

contribute to the previously documented relationship between secondary structure and 

stress response (Zhang et al., 2018).   

 

2.5 Materials and Methods 
 

B73 annotation and secondary structure prediction 

Version 4 of the B73 maize genome and version 4.39 of the genome annotation were 

downloaded from Gramene (www.gramene.org). B73 TE annotations were retrieved from 

https://mcstitzer.github.io/maize_TEs/ (Jiao et al., 2017; Stitzer et al., 2021). TE and gene 

annotations were cleaned for redundancy (e.g., the same feature annotated by different 

annotation authorities) using custom scripts and separated into annotation files for 

different feature categories. BED files were then generated for each annotation feature, 
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with a standardized naming convention for each feature: Feature Type::Chromosome:Start 

Position-End Position (e.g., exon::Chr1:47261-47045).  

FASTA files for each feature were generated using BEDtools v2.27 (Quinlan & Hall 

2010) getFASTA. These FASTA files were divided into 110 nucleotide sliding windows (1-nt 

step size) for use in the secondary structure prediction program RNAfold v2.4.9 from 

ViennaRNA (Lorenz et al., 2011). MFE calculations per window were extracted from 

RNAfold predictions using a Python script, and the MFE summary metrics (minMFE and 

meanMFE) were calculated for each feature, based on all windows in that feature. As 

described in the main text, minMFE was calculated as the lowest MFE window in the 

feature and meanMFE was the mean of all 110 bp window MFE values. The partition 

function, Q, was calculated by LinearPartition. Qnorm was calculated by dividing Q by the 

length of each feature in R. BED files representing regions of lowMFE were created by 

combining all overlapping windows of <-40 kcal/mol MFE. Overlapping MFE windows 

were converted to BED format using an inhouse Python script. The scripts used for MFE 

calculations and analyses are available on GitHub 

(https://github.com/GautLab/maize_te_structure).  

To determine whether a feature contained significant structure, the feature 

sequence was randomized by shuffling the position of nucleotides across the length of the 

feature. This approach maintained the GC content of the feature but not the primary 

sequence. Randomized sequences were then subjected to identical MFE calculations—i.e., 

they were split into 110 bp windows for RNAfold prediction. This process was repeated 

five times for each feature, and the minMFE of each randomization was recorded. The 



 

108 
 

significance of observed structure vs the five randomizations was assigned using a 

Wilcoxon one-sided test with Benjamini-Hochberg correction in R.  

For plotting the location of lowMFE regions across features (Figs 2 & S4), we split 

each feature into 100 equally-sized bins across the length of the feature from 5’ to 3’ end 

and counted the number of < -40 kcal/mol regions overlapping each bin. To find motifs in 

lowMFE regions of different feature types, BED files from concatenated low MFE regions 

were extracted using BEDtools v2.27 getFASTA. These FASTA files were fed into the MEME 

motif finder (v5.4.0)(Bailey & Elkan 1994) with the DNA alphabet in Classic mode (i.e., 

enrichment of sequences in a single reference sequence and no control sequence) for each 

feature category. We selected the top 10 overrepresented sequences.  

Separately, we used LinearPartition v1.0 (Zhang et al., 2020) to annotate miRNA-

like regions in each feature. We extracted the sequence of each feature using BEDtools 

getFASTA and ran LinearPartition with default arguments on each sequence. The base-

pairing probability files generated by LinearPartition contain estimated pairing 

probabilities for each pair of likely-pairing positions. We used these probabilities to infer 

the locations of miRNA-like hairpins by searching for consecutive runs of likely pairing 

bases in R using functions from the IRanges and GenomicRanges (Lawrence et al., 2013), 

data.table (Dowle & Srinivasan, 2023), and tidyverse (Wickham et al., 2019) packages. We 

focused on bases with >0.90 pairing probabilities and search for evidence of miRNA-lik 

hairpin structure based on the criteria of Axtell and Meyers (2018).  Specifically, we 

required LP-hairpins to be ≥21-nt long with <5 mismatched nucleotides (<3 of mismatches 

in asymmetric bulges). We did not place an upper limit on the length of predicted LP-
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hairpins, because we sought to find genomic regions with folding potentials equal to or 

greater than known miRNAs.  

 

Small RNA Library Analysis 

 Small RNA-seq libraries were downloaded using NCBI SRA tools and SRAExplorer 

(https://github.com/ewels/sra-explorer) from the sources indicated in Table S2.1. 

Adapters, regions with low quality, and low quality reads were trimmed from small RNA 

RNA-seq libraries using FastQC and cutadapt v0.39 (Bolger et al., 2014). Adapter sequences 

varied among libraries, and so were identified and validated in each library using a custom 

bash script that searched for sets of known maize smRNAs of each length (21–24 nt) in 

each unprocessed library and confirmed the identity of the adapter sequence connected to 

each known smRNA sequence. The list of adapters derived for each library is included in 

Table S2.6. Trimmed reads were then filtered and split based on size matching 21, 22 and 

24 nucleotides in length, creating three FASTQ files for each library. We identified the 

unique smRNA sequences, which we refer to as ‘species’, following previous methods 

(Bousios et al., 2016, 2017).  

smRNA species were mapped using Bowtie 2 v2.4.2 (Langmead & Salzberg 2012) to 

the B73 genome, preserving only perfect alignments. SAMtools v1.10 (Danecek et al., 2021) 

was used to convert and sort the alignment output. BEDtools bamtoBED was used to 

convert the sorted BAM file to BED files. smRNAs from each library were mapped 

separately for all three lengths, generating a total of 72 (3 sizes × 24 libraries) alignment 

files. Both uniquely and non-uniquely mapping smRNAs were used to calculate the number 
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of smRNA species corresponding to each genomic locus (Bousios et al., 2017), and strand 

was not taken into account. Thus, any given position in the genome can be overlapped by 

several smRNA species, up to two-times the length of the smRNA size class in question (21, 

22, or 24). 

Bedtools was used to find intersections and coverage counts (per nucleotide) 

between the smRNA alignment BED files for each library and the MFE region bed files. 

Subsequently, the smRNA alignment BED files were split into two categories: alignments 

that intersected low (<-40 kcal/mol) MFE regions and those that did not. Coverage and 

count files were subsequently generated that contained information of how many smRNA 

species aligned at each nucleotide, and coverage files contained a normalized count per 

nucleotide for classification. Normalization was performed by summing the counts and 

dividing by the length of the region in nucleotides. 

For correlations between smRNA species density vs. MFE measurements of features 

(Table 2.3), linear models of smRNA species per nucleotide as a function of secondary 

structure metrics (minMFE, meanMFE, etc) were fitted using the base R (v4.1.0) lm() 

function. To fit these models, smRNA species were summed across all 24 libraries for each 

feature so that observed smRNA species had an equal weight across libraries. These linear 

models can be expressed as:  

log(smRNA counts per kb across feature + 1) ~ MFE metric 

To test the significance of differences in smRNA species density between high and low MFE 

regions within features, mixed effects models were fit for each smRNA size class using the 

R package lme4 (Bates et al., 2015). In these models, smRNA mapping counts from each 
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library were not combined, meaning that each smRNA library:feature pair was counted 

individually. These mixed effects models can be expressed as:  

log(smRNA counts per kb across region + 1) ~ structure designation + (1|feature) 

Skew measurements (Figure 2.4) were calculated separately for each TE 

superfamily and genes as 

𝑙𝑜𝑤𝑀𝐹𝐸 (
𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑛𝑡 ) − ℎ𝑖𝑔ℎ𝑀𝐹𝐸 (
𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑛𝑡 )

𝑙𝑜𝑤𝑀𝐹𝐸 + ℎ𝑖𝑔ℎ𝑀𝐹𝐸 (
𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑛𝑡 )
 

For these calculations, feature-library pairs with zero smRNA species in either non-

structured or structured regions were removed from each dataset. We further tested skew 

differences from zero using Wilcoxon one-sided tests in R. 

Autonomous vs non-autonomous designations for TEs were defined differently 

depending on TE type, but they were determined based on the presence or absence of open 

reading frames within the TEs, as identified by Stitzer et al. 2021 (downloaded from 

https://github.com/mcstitzer/maize_genomic_ecosystem). TIRs were considered 

autonomous if they contained sequence homology to a transposase, and helitrons were 

considered autonomous if they contained Rep/Hel, as per Stitzer et al. (2021).  

 

Methylation analyses 

 Pre-processed B73 genome-wide methylation data from Hufford et al. (2021) were 

downloaded from 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_J

https://github.com/mcstitzer/maize_genomic_ecosystem
https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release/DNA_METHYLATION_UMRs/DNA_methylation_coverage_bigwig_files/NAM_methylation_coverage_on_B73v5_coordinates
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an2021_release/DNA_METHYLATION_UMRs/DNA_methylation_coverage_bigwig_files/NAM_methylati

on_coverage_on_B73v5_coordinates. These data originated from enzymatic methyl-seq (EM-

seq) and were mapped against the B73 V5 reference. For this analysis, coordinates of 

miRNA-like regions annotated using the B73 V4 reference genome were converted to the 

V5 reference using the EnsemblPlants CrossMap (v0.6.4) converter. 

The methylation data were downloaded as bigWig files; we converted these data to 

genome-wide coverage files by multiplying EM-seq coverage at each cytosine position by 

proportion of methylated and unmethylated reads at each position (yielding, for each 

cytosine, a number of methylated and unmethylated reads at that position). For each region 

with miRNA-like structure, we calculated the weighted methylation level for each cytosine 

sequence context (CG or CHH) by dividing the number of methylation-supporting mapped 

cytosines by the total number of cytosines in the reference within that region (see Schultz 

et al., 2012). To find random control regions for comparison, we separated nucleotide 

positions in each feature into two groups: those that fell within miRNA-like regions and 

those that did not. For each miRNA-like region in each feature, we randomly assigned a 

region of equal size to that miRNA-like region but which did not overlap with the miRNA-

like region. We did not consider methylation of miRNA-like regions in features where over 

half of the features fell within miRNA-like regions, because control regions could not be 

determined by this method.  

 

B73 RNA-seq analyses 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release/DNA_METHYLATION_UMRs/DNA_methylation_coverage_bigwig_files/NAM_methylation_coverage_on_B73v5_coordinates
https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release/DNA_METHYLATION_UMRs/DNA_methylation_coverage_bigwig_files/NAM_methylation_coverage_on_B73v5_coordinates
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 B73 gene expression data were downloaded from the ATLAS expression database 

(www.ebi.ac.uk/gxa/) in transcripts per million (TPM) based on RNA-seq data from 23 

maize tissues (E-GEOD-50191)(Walley et al., 2016). The statistical significance of 

differences between expression of genes in different structure classifications was 

determined using unpaired t-tests between structured and unstructured genes, 

implemented with t.test() in R. Linear models of expression versus each measurement of 

secondary structure were separately fit for expression in each tissue type with lm() in R 

and graphed using ggplot2 (Wickham, 2016). These linear models can be expressed as:  

Log(Gene expression +1) ~ MFE metric 

For each of the downstream analyses, we focused on genes with Sorghum bicolor 

syntelogs. We relied on a list of syntelogs in Table S10 of Muyle et al. (2021).  

 

Comparative analyses among NAM founders 

 Expression, ATAC-seq, SNP data and SV data for each NAM line were downloaded 

with B73 coordinates from CyVerse at 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_

annotation_Jan2021_release (Hufford et al., 2021). Secondary structure predictions were 

performed in B73 assembly V4, so gene IDs were converted to V5 using the EnsemblPlants 

ID History Converter web tool (https://plants.ensembl.org/Zea_mays/Tools/IDMapper). 

Coordinates of TEs and structured regions were converted using the EnsemblPlants 

CrossMap (v0.6.4) converter with the B73_RefGen_v4 to Zm-B73-REFERENCE-NAM-5.0 

parameter. Only genes shared across all lines were included.  

http://www.ebi.ac.uk/gxa/
https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release/SUPPLEMENTAL_DATA/pangene-files
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 Normalized expression data were downloaded in RPKM format from merged RNA-

seq libraries from CyVerse at 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_

annotation_Jan2021_release/SUPPLEMENTAL_DATA/pangene-files. Only data from genes 

shared among all lines (as determined by Hufford et al.) were included. These data include 

RNA-seq normalized across eight tissues in each line: primary root and coleoptile at six 

days after planting, base of the 10th leaf, middle of the 10th leaf, tip of the 10th leaf at the 

Vegetative 11 growth stage, meiotic tassel and immature ear at the V18 growth stage, 

anthers at the Reproductive 1 growth stage. Details for how these data were normalized 

can be found in Hufford et al., (2021). 

 The coefficient of variation (CV) of expression was calculated for each gene between 

the 26 lines using the normalized RPKM expression data from Hufford et al. (2021). For 

each gene, CV was defined as the standard deviation of its expression across lines divided 

by its mean normalized across lines. We calculated CV using the sd() and mean() functions 

in base R. We plotted CVs between categories of structure (RF-structured and RF-

unstructured) using ggplot2 (Wickham 2016) and determined statistical significance of 

differences between categories using unpaired t-tests in R. We measured these differences 

in two different ways: first, using all genes and, second, removing genes with CV = 0 (920 

genes, 3.3% of genes). We also built a linear model with lm() in R to correlate the 

magnitude of gene expression in B73 with the CV of that gene across lines. This linear 

model can be expressed as:  

 

https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release/SUPPLEMENTAL_DATA/pangene-files
https://datacommons.cyverse.org/browse/iplant/home/shared/NAM/NAM_genome_and_annotation_Jan2021_release/SUPPLEMENTAL_DATA/pangene-files
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log(B73 expression + 1) ~ NAM line CV 

 

 We also measured epigenetic and genetic features across the NAM lines, and tracked 

their overlap with miRNA-like regions. For the former, we concatenated ACRs that 

overlapped positions between lines, producing a set of merged ACRs. We produced these 

merged sets using the R libraries IRanges and GenomicRanges (Lawrence et al., 2013). We 

extracted the positions of SNPs from the filtered VCF file from Hufford et al. (2021). The 

expected overlap was calculated as the proportional of genic space taken up by low MFE 

regions * the total length of features. We assessed overlap between ACRs/SVs/SNPs and 

miRNA-like regions using GenomicRanges in R. Custom scripts for these analyses can be 

found at https://github.com/GautLab/maize_te_structure, and additional supplementary 

files can be found at 

https://figshare.com/projects/siRNAs_and_secondary_structure_in_maize_genes_and_TEs/

150714.  

 

 

 

 

 

 

https://github.com/GautLab/maize_te_structure
https://figshare.com/projects/siRNAs_and_secondary_structure_in_maize_genes_and_TEs/150714
https://figshare.com/projects/siRNAs_and_secondary_structure_in_maize_genes_and_TEs/150714
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Figures 

 
Figure 2.1:  Characteristics of miRNA-like secondary structure across two methods.  (A) A 
schematic contrasting the two prediction methods for a genic region on Chromosome 2.  
The LinearPartition (LP) method focuses on identifying small regions with hairpin 
characteristics, while the RNAfold method focuses on regions with low Minimum Free 
Energy (MFE).  This example illustrates lowMFE regions in red, with overlapping LP-
hairpins in blue.  Note that lowMFE regions exceed 110 bp, because they represent the 
concatenation of overlapping windows with MFE < -40 kcal/mol. (B) The correlation 
between meanMFE and Qnorm based on 39,179 genes. (C) The distributions of three 
summary statistics—minMFE, meanMFE and Qnorm —across seven feature categories. In 
the key, helitrons correspond to DHH elements (see Table 2.2 for the three letter 
designations); LTRs consist of RLC, RLG and RLX; LINEs are the RIL and RIT elements; 
SINEs are RST;  and terminal repeat elements consist of DTA, DTC, DTH, DTM, and DTT 
elements. 
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Figure 2.2. Landscapes of miRNA-like regions across feature types. Each row represents a 
metaprofile that combines data from all members of each feature type, based on structured 
members. Features were divided into 100 equally sized bins from the 5’ end to the 3’ end.  
The left column shows the number of features with lowMFE (<-40 kcal/mol) windows, 
while the right column shows the number of features with LP hairpins. A peak in the 
landscape represents a region that commonly contained miRNA-like structures. All panels 
share the same x-axis, which is represented proportionally across the length of features, 
from 0.00 (5’ end) to 1.00 (3’ end).  This figure shows these locations for a subset of the 15 
categories in Table 2.2; the remainder of the categories are shown in Figure S2.4. 
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Figure 2.3. The distribution of skew for smRNA mapping in different feature categories.  
Skew is presented on the x-axis. Height on the y-axis represents the Gaussian estimated 
kernel density of skew values.  Skew measures the relative enrichments of smRNAs in 
miRNA-like regions compared to non-miRNA regions and ranges from 1.0 (enrichment in 
miRNA-like regions) to -1.0 (enrichment in non-miRNA-like regions.  All panels use the 
same x-axis. The dotted vertical line represents zero where smRNA density is not skewed 
to either low or high MFE regions. A. Skew for retrotransposons for 21, 22 and 24-nt 



 

119 
 

smRNAs, separately for Copia (RLC), Ty3 (RLG) and unknown retrotransposons (RLX). B. 
Skew for DNA transposons, with names for the three letter codes provided in Table 2.2. The 
dashed lines represent skew for putatively autonomous elements, while solid lines 
represent non-autonomous elements. C. Skew measured in genes. These graphs are based 
on LP-hairpins, but analogous for lowMFE regions and all feature categories are presented 
in Figure S2.7.  
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Figure 2.4. Methylation at LP-hairpins. The left column shows methylation in the CG 
context (mCG) and the right shows methylation in the CHH context (mCHH). Each row 
represents a different feature type. The blue lines summarize the patterns of methylation in 
the hairpin (variable sizes, median = 25 nt) across all hairpins in a given feature type (e.g., 
all TIR hairpins, gene hairpins, etc.) and their flanking regions, divided into 40 
nonoverlapping 100 bp windows. We assigned a control window to each hairpin in the 
dataset by choosing a random window of the same size as the hairpin within the same 
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element. The red line corresponds to methylation patterns around these randomized 
control loci. 
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Figure 2.5. Expression between structured and unstructured genes, as defined by RNAfold 
analysis, in B73.  The expression data are based on combined data across 23 tissues. A. 
Difference in the overall magnitude of expression in all structured (n=27,034) vs 
unstructured (n=5054) genes and in structured  vs. unstructured genes with a syntelog in 
S. bicolor.  The box plots report the range of the middle quartiles, whiskers report the 
range, and lines represent the median.  B. Expression as a function of minMFE for 
structured (dashed line) and unstructured genes with a S. bicolor syntelog (solid line).  
Both lines report the linear regression; both slopes are highly significant, as indicated by P-
values on the figure.  C. The coefficient of variation (CV) of gene expression across the 26 
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NAM parents compared between structured vs unstructured genes with a S. bicolor 
syntelog. The two categories differ significantly (P < 2.22 x 10-16).  The graph also reports 
CV among B73 tissues, which does not differ significantly between structured and 
unstructured genes (P = 0.32). D. smRNA mapping to structured and unstructured genes 
and for three smRNA lengths. For all three lengths, the difference is significant (P < 2.22 x 
10-16).  The violin plots show the distributions of smRNA counts, and the boxplots are 
formatted the same as in (A.) E. Epigenetic and genetic features in lowMFE regions of 
genes. The plots plot the number of expected and observed features overlapping (or not-
overlapping) the lowMFE region.  For example, the number of ACRs (left graph) 
overlapping lowMFE regions is very similar to the number expected, based on the 
distributions along genes.  In contrast, the numbers of observed SVs (middle) and SNPs 
(right) are highly underrepresented in lowMFE regions. 
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Tables 
 

Table 2.1: Terms defined in the text and that are used to describe and characterize miRNA-
like regions.  

Term Method Explanation 

minMFE RNAfold The Minimum Free Energy (MFE) of the 110 bp window 
with the lowest MFE score within an individual TE or 
gene sequence  

meanMFE RNAfold The average estimated MFE across all 110 bp windows 
in any TE or gene sequence 

lowMFE RNAfold A region or regions of a TE or gene that is defined by 
concatenating overlapping windows of MFE< -
40/kcal/mol 

RF-structured RNAfold Designates any TE or gene that has a significantly lower 
minMFE value than randomized sequences 

LP-hairpin LinearPartitio
n 

Putative hairpin structure identified by combing base-
pairing probabilities from LinearPartition with miRNA 
hairpin criteria 

Qnorm LinearPartitio
n 

The LinearPartition function reports Q, a summary of 
secondary structure across an entire sequence. Qnorm 

adjusts Q by the length of the sequence   

skew Both Measures the relative proportion of distinct smRNAs 
that map to miRNA-like regions of a sequence 
compared to the remainder of that sequence.  Ranges 
from -1.0 to 1.0, where 1.0 denotes that smRNAs map 
only to miRNA-like regions.    
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Table 2.2: Fifteen feature categories and accompanying statistics.  The statistics include 
the number of individual features in each category, based on two annotation versions for 
TEs, and the percentage of features that have miRNA like structure (structured) based on 
RNAfold or detectable LP-hairpins.  

Feature type No1 RF2 LP3 No4  LP 

Genes  39,179 69.00% 29.82% 39,179 29.82
% 

mRNA  133,81
2 

64.80% 5.02% 133,81
2 

5.02% 

miRNA precursor 107 71.00% 66.36% 107 66.36
% 

Helitrons/DHH  49,235 84.00% 13.00% 22,339 6.43% 

hAT/DTA  5,602 59.60% 4.15% 5,096 4.28% 

CACTA/DTC  1,264 79.00% 32.52% 2,768 41.76
% 

PIF-Harbinger/DTH  4,971 38.80% 17.57% 63,216 6.22% 

Mutator/DTM  1,319 60.30% 62.82% 928 57.54
% 

Tc1-Mariner/DTT  458 43.90% 16.69% 67,533 6.75% 

L1 LINE/RIL  36 0.00% 0.00% 477 2.73% 

Rte LINE/RIT  29 0.00% 0.00% 296 3.04% 

Copia/RLC  45,009 98.20% 58.04% 44,242 55.88
% 

Ty3/RLG  72,976 88.00% 40.57% 70,165 38.47
% 

Unclassified-LTR 

/RLX  

18,457 85.90% 38.18% 16,205 32.98
% 

SINEs/RST  1,031 0.00% 1.74% 892 1.46% 

TOTAL5 373,48
5 

286,744 90,088 467,25
5 

182,7
49 

 

1 The number of features in each category in the Jiao et al. (2017) annotation 
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2 The percentage of RF-structured features in each category, as determined by RNAfold 
analyses and permutations.  

3 Percentage of features in each category that contained at least one LP-hairpin as inferred 
from LinearPartition base pairing probabilities and analyses. 

4 The number of features in each TE superfamily based on the updated annotation by 
Stitzer et al. (2021).  

5 Total refers to the total number (No.) of sequences in each annotation set or it refers to 
the number of sequences that contain miRNA-like regions based on the RF-structured or 
LP-hairpin criteria  
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Table 2.3: Correlation value (with FDR corrected p-value in parentheses) between 
secondary structure summary statistics and numbers of smRNA species across all 373,485 
features.  

Summary  

Metric 
21-nt smRNA 22-nt smRNA 24-nt smRNA 

minMFE 0.091 (0.00)  0.103 (0.00) 0.074 (0.00) 

meanMFE 0.017 (0.00) 8.6 x 10-3 (0.00) 0.004 (5.01 x 10-227)  

Qnorm 0.101 (0.00) 0.133 (0.00) 0.089 (0.00) 
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Supplementary Figures 
 
 

 

Figure S2.1: Scheme of analyses carried out. Each sequential layer includes an additional 
analysis performed on annotated features, including genes, ncRNA loci, and TEs. We (1.) 
annotated regions of predicted miRNA-like secondary structure (Figure 2.1 & 2.2; Table 
2.1), then (2.) mapped siRNAs across features of varying secondary structure and between 
regions with miRNA-like structure and without (Figure 2.4; Table 2.2), then (3.) compared 
expression (Figure 2.4) , and (4.) examined underlying genetic and epigenetic features of 
genes with differing secondary structure between 26 inbred NAM lines representing the 
breadth of global maize diversity (Figure 2.5) 
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Figure S2.2. Distributions of percent differences between observed and random minMFEs 
in each feature type. Differences represent how much more negative (and therefore more 
stabily structured) observed minMFEs were compared to mean minMFE across five 
randomizations. To find percent differences, these differences were divided by the 
observed minMFE and multiplied by 100 [e.g., if the observed minMFE was -100 and the 
mean randomized minMFE was -50, percent difference would be ((-100 + -50) / -100 ) * 
100 = 100% ]. Superfamilies are colored by their broader TE category (LTR, TIR, etc.) and 
dots represent the mean of each distribution. The dotted line represents 0%, or zero 
difference from random minMFE. 
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Figure S2.3: Linear models of minMFE as a function of length. Each type of TE was modeled 
separately using its length from 5’ to 3’ end and observed minMFE value. Plots represent 
simple linear models from the lm() function in R, and colored text represents the formulae, 
R2 value, and p-value of each regression. 
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Figure S2.4. Landscapes of miRNA-like regions across feature types. (A) Metaprofiles of 
lowMFE regions across TE superfamilies, and (C) metaprofiles of LP-hairpins across TEs. 
Each row represents a metaprofile combining data from all members of each feature type. 
Features were divided into 100 equally sized bins from the 5’ end to the 3’ end, and the 
number of features with miRNA-like regions overlapping each of these bins was counted. A 
peak in the landscape therefore represents a region of the feature type which often shows 
very stable secondary structure. All rows share the same X axis, which is represented 
proportionally across the length of the feature from 0.00 (5’ end) to 1.00 (3’ end). 
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Figure S2.4 (cont). Landscapes of miRNA-like regions across feature types. (A) Metaprofiles 
of lowMFE regions across TE superfamilies, and (C) metaprofiles of LP-hairpins across TEs. 
Each row represents a metaprofile combining data from all members of each feature type. 
Features were divided into 100 equally sized bins from the 5’ end to the 3’ end, and the 
number of features with miRNA-like regions overlapping each of these bins was counted. A 
peak in the landscape therefore represents a region of the feature type which often shows 
very stable secondary structure. All rows share the same X axis, which is represented 
proportionally across the length of the feature from 0.00 (5’ end) to 1.00 (3’ end). 
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Figure S2.5. Overrepresented motifs in structured/low MFE regions (<-40 kcal/mol) of 
structured features. Structured regions of each superfamily were entered into MEME motif 
finder (See Methods), and logos represent the most highly overrespresented motif found in 
each superfamily. 
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Figure S2.6. Variation in siRNA mapping between feature types. Violin plots show the 
distributions of siRNA mapping densities in log10(siRNA species counts per kilobase) for 
each superfamily/genomic feature, and black dots show the mean of the distribution. 
Panels represent siRNA size classes (21-nt, 22-nt, 24-nt). 
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Figure S2.7. siRNA mapping skew towards lowMFE regions. All panels use the same x-axis, 
which is a measure of skew, and the dotted vertical line represents zero where smRNA 
density is not skewed to either low or high MFE regions. A. Retrotransposons and their 
skew for 21, 22 and 24-nt siRNAs, representing Copia (RLC), Ty3 (RLG) and unknown 
retrotransposons (RLX). B. DNA transposons, with names for the three letter codes 
provided in Table 2.2. The solid lines represent autonomous elements, while dashed lines 
represent non-autonomous elements. C. Skew measured in genes. 
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Figure S2.8. siRNA species mapping density in lowMFE regions vs unstructured regions. 
For each structured feature (minMFE significantly lower than mean randomized minMFE 
(see Methods), siRNAs mapping to the feature were divided into those mapping to lowMFE 
regions (<-40 kcal/mol) and those outside of structured regions. Boxplot central lines show 
the median, and boxes show the 25% and 75% quartiles. Statistical significance in these 
comparisons can be seen in Table S2.3. 
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Figure S2.9. siRNA species mapping density in LP-hairpins vs other regions. For each 
feature, siRNAs mapping to the feature were divided into those mapping to LP-hairpins (<-
40 kcal/mol) and those outside of structured regions. Boxplot central lines show the 
median, and boxes show the 25% and 75% quartiles. Statistical significance in these 
comparisons can be seen in Table S2.4. 
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Figure S2.10. siRNA mapping skew towards lowMFE regions in organellar vs nuclear genes. 
Genes were separated based on position, with mitochrondrial and plastid genes assigned to 
“organellar” and all other genes assigned to “chromosomal.” The dotted line represents 
chromosomal genes, and the solid line represents organellar genes. 
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Figure S2.11. Methylation at lowMFE regions. The left column shows methylation in the CG 
context (mCG) and the right shows methylation in the CHH context (mCHH). Each row 
represents a different feature type. The red lines summarize the patterns of methylation in 
the lowMFE regions in a given feature type (e.g., all TIR hairpins, gene hairpins, etc.) and 
their flanking regions, divided into 40 nonoverlapping 100 bp windows. We assigned a 
control window to each hairpin in the dataset by choosing a random window of the same 
size as the hairpin within the same element. The blue line corresponds to methylation 
patterns around these randomized control loci. 
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Figure S2.12. Expression between structured, random, and unstructured genes in 23 B73 
tissues. “Structured” represent RF-structured genes, “random” represent genes with 
minMFE < -40 kcal/mol but which are not significantly different from the minMFE of 5 
randomizations, and “unstructured” have minMFE > -40 kcal/mol. Expression data are 
from Walley et al., 2016 and were downloaded from the ATLAS expression database (E-
GEOD-50191). Boxplot central lines represent the median, and boxes represent the 25% 
and 75% quartiles. 
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Figure S2.13. Expression between genes with and without LP-hairpins across 23 B73 
tissues. Genes are divided into those with and without detectable Sorghum bicolor 
syntelogs (Muyle et al., 2021). Expression data are from Walley et al., 2016 and were 
downloaded from the ATLAS expression database (E-GEOD-50191). Boxplot central lines 
represent the median, and boxes represent the 25% and 75% quartiles. 
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Figure S2.14. Expression as a function of minMFE in 23 B73 tissues. Expression is 
represented in log10 TPM+1, and structure designations are from the primary sequences in 
B73 (see Figure S2.13). Expression data are from Walley et al., 2016 and were downloaded 
from the ATLAS expression database (E-GEOD-50191). 
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Figure S2.15. Expression as a function of minMFE for RF-structured and unstructured 
genes. In contrast to Figure 2.5, all genes (with and without Sorghum syntelogs) are 
included. 

 

 



 

144 
 

Figure S2.16. siRNA mapping skew for mutant vs wildtype control libraries in LP-hairpins. 
Solid lines represent control (WT) libraries, while dotted lines represent mop1 libraries. 
Skew was calculated as in Figure 2.3. 
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Supplementary Tables 
 

Table S2.1. Small RNA libraries used 

Accession # Reference 
Used in 
RNAfold 
analysis 

Used in 
LinearPartition 

analysis 
Notes 

GSM1342517 Diez et al., 2014 X X 3rd and 4th leaves 

SRR032087 Zhang et al., 2009  X Ear 

SRR032088 Zhang et al., 2009  X Ear 

SRR032089 Zhang et al., 2009  X Ear 

SRR032090 Zhang et al., 2009  X Ear 

SRR032091 Zhang et al., 2009 X X Ear 

SRR1186264 Diez et al., 2014 X X 3rd and 4th leaves 

SRR1917157 Petsch et al., 2015 X X Embryo 

SRR1917158 Petsch et al., 2015 X X Embryo 

SRR2086100 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2086104 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2086116 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2086120 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2086132 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2086136 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2106180 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2106184 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2106196 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR2106200 Lunardon et al., 2016 X X 
Leaf and shoot 

apical meristem 

SRR3684242 Huang et al., 2016 X X Endosperm 

SRR3684389 Huang et al., 2016 X X Endosperm 

SRR895785 Liu et al., 2014 X X Ear 

SRX483603 Diez et al., 2014 X X 3rd and 4th leaves 

SRX708789 Gent et al., 2014  X mop1 WT control 

SRX708787 Gent et al., 2014  X mop1 mutant 

SRX708790 Gent et al., 2014  X mop1 mutant 

SRX708788 Gent et al., 2014  X mop1 mutant 

GSM1178886 Zhai et al., 2013  X hen1 mutant 

GSM913701 Barbour et al., 2012  X rmr2 mutant 
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GSM913702 Barbour et al., 2012  X 
rmr2 mutant 

(heterozygote) 

GSM448853 Zhang et al., 2009  X Ear 

GSM448854 Zhang et al., 2009  X Ear 

GSM448855 Zhang et al., 2009  X Ear 

GSM448856 Zhang et al., 2009  X Ear 

GSM381738 Wang et al., 2009  X Seedling roots 

GSM381716 Wang et al., 2009  X Seedling roots 

GSM448857 Zhang et al., 2009  X Tassel 

SRX120259 Gent et al., 2013  X 
Unfertilized outer 

ear 

GSM306488 Nobuta et al., 2008  X mop1 mutant 

GSM306487 Nobuta et al., 2008  X mop1 WT control 

GSM1178887 Zhai et al., 2013  X hen1 WT control 

GSM433620 Nobuta et al., 2008  X Leaves 

GSM433621 Nobuta et al., 2008  X Leaves 

GSM433622 Nobuta et al., 2008  X Leaves 

 

 

  



 

147 
 

Table S2.2. Correlations between metrics of predicted secondary structure and siRNA mapping density 

within feature types 

Feature 
Structure 

measurement 
21-nt siRNA 22-nt siRNA 24-nt siRNA 

DHH 

minMFE 
P = 3.070e-78 
R2 = 7.100e-03 

P = 2.180e-117 
R2 = 1.070e-02 

P = 3.950e-103 
R2 = 9.400e-03 

meanMFE 
P = 0.000e+00 
R2 = 7.970e-02 

P = 0.000e+00 
R2 = 6.990e-02 

P = 0.000e+00 
R2 = 9.520e-02 

Qnorm 
P = 6.250e-101 
R2 = 9.200e-03 

P = 3.050e-198 
R2 = 1.820e-02 

P = 5.080e-68 
R2 = 6.150e-03 

DTA 

minMFE 
P = 4.770e-198 
R2 = 1.490e-01 

P = 8.580e-194 
R2 = 1.460e-01 

P = 3.610e-109 
R2 = 8.420e-02 

meanMFE 
P = 1.610e-150 
R2 = 1.150e-01 

P = 4.770e-133 
R2 = 1.020e-01 

P = 2.280e-48 
R2 = 3.740e-02 

Qnorm 
P = 5.210e-04 
R2 = 2.020e-03 

 P = 8.510e-02 
R2 = 4.980e-04 

P = 3.360e-07 
R2 = 4.360e-03 

DTC 

minMFE 
P = 1.360e-12 
R2 = 3.900e-02 

P = 9.750e-18 
R2 = 5.660e-02 

P = 4.440e-28 
R2 = 9.120e-02 

meanMFE 
P = 6.710e-68 
R2 = 2.140e-01 

P = 2.940e-48 
R2 = 1.550e-01 

P = 1.920e-41 
R2 = 1.340e-01 

Qnorm 
P = 1.100e-08 
R2 = 2.320e-02 

P = 2.900e-02 
R2 = 3.420e-03 

P = 2.800e-02 
R2 = 3.460e-03 

DTH 

minMFE 
P = 2.990e-76 
R2 = 6.640e-02 

P = 2.740e-48 
R2 = 4.200e-02 

P = 1.460e-32 
R2 = 2.800e-02 

meanMFE 
P = 1.800e-69 
R2 = 6.060e-02 

P = 5.940e-33 
R2 = 2.840e-02 

P = 2.800e-13 
R2 = 1.070e-02 

Qnorm 
P = 5.610e-01 
R2 = 6.430e-05 

P = 6.270e-01 
R2 = 4.500e-05 

P = 1.850e-01 
R2 = 3.340e-04 

DTM 

minMFE 
P = 6.100e-04 
R2 = 8.880e-03 

P = 9.640e-01 
R2 = 1.550e-06 

P = 4.210e-04 
R2 = 9.400e-03 

meanMFE 
P = 1.220e-68 
R2 = 2.080e-01 

P = 1.830e-76 
R2 = 2.290e-01 

P = 2.080e-48 
R2 = 1.500e-01 
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Qnorm 
 P = 5.380e-65 
R2 = 1.910e-01 

P = 3.490e-38 
R2 = 1.150e-01 

P = 4.980e-39 
R2 = 1.170e-01 

DTT 

minMFE 
P = 1.480e-12 
R2 = 1.040e-01 

P = 3.250e-12 
R2 = 1.010e-01 

P = 9.380e-21 
R2 = 1.740e-01 

meanMFE 
P = 2.260e-05 
R2 = 3.870e-02 

P = 3.680e-04 
R2 = 2.750e-02 

P = 1.750e-09 
R2 = 7.650e-02 

Qnorm 
 P = 2.470e-14 
R2 = 6.620e-02 

P = 1.430e-13 
R2 = 6.240e-02 

P = 1.160e-25 
R2 = 1.210e-01 

gene 

minMFE 
P = 5.560e-129 
R2 = 1.480e-02 

P = 4.120e-106 
R2 = 1.210e-02 

P = 7.050e-02 
R2 = 8.350e-05 

meanMFE 
P = 2.850e-124 
R2 = 1.420e-02 

P = 2.520e-158 
R2 = 1.820e-02 

P = 0.000e+00 
R2 = 6.820e-02 

Qnorm 
P = 0.000e+00 
R2 = 1.910e-01 

P = 0.000e+00 
R2 = 2.400e-01 

P = 0.000e+00 
R2 = 1.440e-01 

miRNA 

minMFE 
P = 2.290e-01 
R2 = 1.380e-02 

P = 9.360e-02 
R2 = 2.650e-02 

P = 4.180e-01 
R2 = 6.270e-03 

meanMFE 
P = 3.190e-01 
R2 = 9.470e-03 

P = 8.550e-02 
R2 = 2.790e-02 

P = 1.360e-01 
R2 = 2.100e-02 

Qnorm 
P = 2.050e-01 
R2 = 1.050e-02 

P = 4.430e-02 
R2 = 2.640e-02 

P = 6.540e-01 
R2 = 1.330e-03 

RIL 

minMFE 
P = 4.860e-02 
R2 = 1.100e-01 

P = 6.800e-02 
R2 = 9.460e-02 

P = 1.240e-03 
R2 = 2.670e-01 

meanMFE 
P = 2.780e-02 
R2 = 1.340e-01 

P = 2.960e-02 
R2 = 1.320e-01 

P = 3.180e-04 
R2 = 3.210e-01 

Qnorm 
P = 3.390e-02 
R2 = 1.260e-01 

P = 7.750e-02 
R2 = 8.880e-02 

P = 4.470e-03 
R2 = 2.140e-01 

RIT 

minMFE 
P = 3.090e-01 
R2 = 3.820e-02 

P = 2.380e-01 
R2 = 5.120e-02 

P = 4.010e-01 
R2 = 2.620e-02 

meanMFE 
P = 1.260e-01 
R2 = 8.460e-02 

P = 8.900e-02 
R2 = 1.030e-01 

P = 2.660e-01 
R2 = 4.560e-02 

Qnorm 
P = 3.200e-01 
R2 = 3.670e-02 

P = 5.350e-01 
R2 = 1.440e-02 

P = 1.830e-01 
R2 = 6.480e-02 

RLC 

minMFE 
P = 0.000e+00 
R2 = 6.980e-02 

P = 0.000e+00 
R2 = 6.990e-02 

P = 0.000e+00 
R2 = 1.140e-01 

meanMFE 
P = 0.000e+00 
R2 = 7.130e-02 

P = 0.000e+00 
R2 = 6.270e-02 

P = 0.000e+00 
R2 = 9.500e-02 
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Qnorm 
P = 3.880e-06 
R2 = 1.990e-03 

P = 1.230e-04 
R2 = 1.380e-03 

P = 4.250e-10 
R2 = 3.640e-03 

RLG 

minMFE 
P = 0.000e+00 
R2 = 7.040e-02 

P = 0.000e+00 
R2 = 5.370e-02 

P = 0.000e+00 
R2 = 1.550e-01 

meanMFE 
P = 0.000e+00 
R2 = 1.600e-01 

P = 0.000e+00 
R2 = 1.080e-01 

P = 0.000e+00 
R2 = 2.410e-01 

Qnorm 
 P = 1.370e-
173 R2 = 
4.860e-02 

P = 2.020e-156 
R2 = 4.380e-02 

P = 1.610e-209 
R2 = 5.850e-02 

RLX 

minMFE 
P = 0.000e+00 
R2 = 1.100e-01 

P = 0.000e+00 
R2 = 1.280e-01 

P = 0.000e+00 
R2 = 1.480e-01 

meanMFE 
P = 1.050e-275 
R2 = 7.480e-02 

P = 1.690e-254 
R2 = 6.920e-02 

P = 0.000e+00 
R2 = 9.460e-02 

Qnorm 
P = 1.090e-70 
R2 = 8.720e-02 

P = 1.930e-90 
R2 = 1.110e-01 

P = 8.230e-71 
R2 = 8.740e-02 

RST 

minMFE 
P = 2.240e-41 
R2 = 1.750e-01 

P = 4.840e-30 
R2 = 1.280e-01 

P = 2.780e-46 
R2 = 1.940e-01 

meanMFE 
P = 7.040e-45 
R2 = 1.890e-01 

P = 1.280e-30 
R2 = 1.310e-01 

P = 8.970e-51 
R2 = 2.120e-01 

Qnorm 
P = 4.870e-50 
R2 = 1.930e-01 

P = 7.780e-48 
R2 = 1.850e-01 

P = 2.080e-47 
R2 = 1.840e-01 

All 
features 

minMFE 
P = 0.000e+00 
R2 = 9.060e-02 

P = 0.000e+00 
R2 = 1.030e-01 

P = 0.000e+00 
R2 = 7.380e-02 

meanMFE 
P = 0.000e+00 
R2 = 1.660e-02 

P = 0.000e+00 
R2 = 8.610e-03 

P = 5.010e-227 
R2 = 4.310e-03 

Qnorm 
P = 0.000e+00 
R2 = 1.010e-01 

P = 0.000e+00 
R2 = 1.330e-01 

P = 0.000e+00 
R2 = 8.930e-02 
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Table S2.3. Statistics from mixed-effect models comparing siRNA species mapping density between 

lowMFE and other regions (i.e., regions less than and greater than -40 kcal/mol) of RF-structured 

features (i.e., features with significantly lower minMFE than five randomizations; see Methods) 

Feature 21-nt siRNA 22-nt siRNA 24-nt siRNA 

RLC Estimate = -2.400e-01 | 

P = 0.000e+00 | std. err. 

= 1.860e-03 

Estimate = 1.860e-01 

| P = 0.000e+00 | 

std. err. = 1.750e-03 

Estimate = -2.190e-01 | P = 0.000e+00 

| std. err. = 1.320e-03 

RLG Estimate = 1.580e-01 | P 

= 0.000e+00 | std. err. = 

1.650e-03 

Estimate = 3.000e-01 

| P = 0.000e+00 | 

std. err. = 1.520e-03 

Estimate = 2.070e-01 | P = 0.000e+00 

| std. err. = 1.230e-03 

RLX Estimate = -1.780e-01 | 

P = 0.000e+00 | std. err. 

= 4.140e-03 

Estimate = 5.720e-02 

| P = 5.350e-47 | std. 

err. = 3.970e-03 

Estimate = 2.670e-01 | P = 0.000e+00 

| std. err. = 3.140e-03 

DHH Estimate = -2.830e-01 | 

P = 0.000e+00 | std. err. 

= 2.280e-03 

Estimate = 1.230e-02 

| P = 1.930e-08 | std. 

err. = 2.190e-03 

Estimate = -7.890e-02 | P = 0.000e+00 

| std. err. = 1.680e-03 

DTC Estimate = -5.640e-01 | 

P = 9.980e-279 | std. 

err. = 1.550e-02 

Estimate = -3.370e-

01 | P = 7.810e-101 | 

std. err. = 1.570e-02 

Estimate = -3.630e-01 | P = 8.310e-

208 | std. err. = 1.170e-02 

DTA Estimate = -6.380e-01 | 

P = 0.000e+00 | std. err. 

= 8.910e-03 

Estimate = -5.760e-

01 | P = 0.000e+00 | 

std. err. = 8.500e-03 

Estimate = -4.450e-01 | P = 0.000e+00 

| std. err. = 6.610e-03 

DTH Estimate = -1.270e-01 | 

P = 6.240e-28 | std. err. 

= 1.160e-02 

Estimate = -2.100e-

01 | P = 1.610e-75 | 

std. err. = 1.140e-02 

Estimate = -2.630e-01 | P = 5.490e-

209 | std. err. = 8.470e-03 

DTM Estimate = -9.740e-01 | 

P = 0.000e+00 | std. err. 

= 1.630e-02 

Estimate = -8.830e-

01 | P = 0.000e+00 | 

std. err. = 1.520e-02 

Estimate = -7.690e-01 | P = 0.000e+00 

| std. err. = 1.230e-02 

DTT Estimate = -3.180e-01 | 

P = 7.850e-15 | std. err. 

= 4.060e-02 

Estimate = -4.600e-

01 | P = 6.030e-31 | 

std. err. = 3.920e-02 

Estimate = -4.430e-01 | P = 8.540e-50 

| std. err. = 2.940e-02 

gene Estimate = -8.780e-01 | 

P = 0.000e+00 | std. err. 

Estimate = -7.910e-

01 | P = 0.000e+00 | 

Estimate = -5.400e-01 | P = 0.000e+00 

| std. err. = 4.340e-03 
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= 5.980e-03 std. err. = 5.800e-03 

mRNA Estimate = -1.080e+00 | 

P = 0.000e+00 | std. err. 

= 3.830e-03 

Estimate = -

1.020e+00 | P = 

0.000e+00 | std. err. 

= 3.720e-03 

Estimate = -6.840e-01 | P = 0.000e+00 

| std. err. = 2.870e-03 
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Table S2.4. Statistics from mixed-effect models comparing siRNA species mapping density between LP-

hairpins and non-hairpin regions. 

Feature 21-nt siRNA 22-nt siRNA 24-nt siRNA 

gene Estimate = 1.820e-01 | P = 
0.000e+00 | std. err. = 1.200e-03 

Estimate = 2.960e-01 | P = 
0.000e+00 | std. err. = 1.220e-
03 

Estimate = 5.420e-01 | P = 
0.000e+00 | std. err. = 1.620e-
03 

mRNA Estimate = 2.560e+00 | P = 
0.000e+00 | std. err. = 1.670e-02 

Estimate = 1.980e+00 | P = 
0.000e+00 | std. err. = 1.780e-
02 

Estimate = 1.760e+00 | P = 
0.000e+00 | std. err. = 1.580e-
02 

DHH 
Estimate = 1.070e+00 | P = 
0.000e+00 | std. err. = 1.840e-03 

Estimate = 1.230e+00 | P = 
0.000e+00 | std. err. = 1.970e-
03 

Estimate = 1.520e+00 | P = 
0.000e+00 | std. err. = 2.230e-
03 

DTX 
Estimate = 3.650e+00 | P = 
0.000e+00 | std. err. = 2.590e-03 

Estimate = 3.920e+00 | P = 
0.000e+00 | std. err. = 2.650e-
03 

Estimate = 4.660e+00 | P = 
0.000e+00 | std. err. = 2.910e-
03 

DTT 
Estimate = 2.470e+00 | P = 
0.000e+00 | std. err. = 1.560e-03 

Estimate = 2.830e+00 | P = 
0.000e+00 | std. err. = 1.670e-
03 

Estimate = 3.350e+00 | P = 
0.000e+00 | std. err. = 1.790e-
03 

DTH 
Estimate = 2.940e+00 | P = 
0.000e+00 | std. err. = 1.670e-03 

Estimate = 3.340e+00 | P = 
0.000e+00 | std. err. = 1.740e-
03 

Estimate = 4.220e+00 | P = 
0.000e+00 | std. err. = 1.910e-
03 

DTA 
Estimate = 2.510e+00 | P = 
0.000e+00 | std. err. = 4.970e-03 

Estimate = 2.730e+00 | P = 
0.000e+00 | std. err. = 5.020e-
03 

Estimate = 4.400e+00 | P = 
0.000e+00 | std. err. = 6.160e-
03 

DTM 
Estimate = 1.150e+00 | P = 
0.000e+00 | std. err. = 1.840e-02 

Estimate = 1.560e+00 | P = 
0.000e+00 | std. err. = 1.790e-
02 

Estimate = 2.060e+00 | P = 
0.000e+00 | std. err. = 2.020e-
02 

DTC 
Estimate = 1.640e+00 | P = 
0.000e+00 | std. err. = 8.270e-03 

Estimate = 1.860e+00 | P = 
0.000e+00 | std. err. = 8.750e-
03 

Estimate = 2.640e+00 | P = 
0.000e+00 | std. err. = 1.010e-
02 

RLC Estimate = 6.910e-01 | P = 
0.000e+00 | std. err. = 2.840e-03 

Estimate = 8.010e-01 | P = 
0.000e+00 | std. err. = 3.110e-
03 

Estimate = 7.980e-01 | P = 
0.000e+00 | std. err. = 3.290e-
03 
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RLG 
Estimate = 1.310e+00 | P = 
0.000e+00 | std. err. = 1.940e-03 

Estimate = 1.410e+00 | P = 
0.000e+00 | std. err. = 2.150e-
03 

Estimate = 1.510e+00 | P = 
0.000e+00 | std. err. = 2.370e-
03 

RLX 
Estimate = 1.050e+00 | P = 
0.000e+00 | std. err. = 3.750e-03 

Estimate = 1.170e+00 | P = 
0.000e+00 | std. err. = 4.140e-
03 

Estimate = 1.350e+00 | P = 
0.000e+00 | std. err. = 4.680e-
03 

RIT Estimate = 2.990e-01 | P = 9.250e-
04 | std. err. = 8.970e-02 

Estimate = 3.140e-01 | P = 
3.170e-04 | std. err. = 8.670e-
02 

Estimate = 6.040e-01 | P = 
1.530e-14 | std. err. = 7.670e-
02 

RIL 
Estimate = 2.550e+00 | P = 5.970e-
75 | std. err. = 1.120e-01 

Estimate = 2.080e+00 | P = 
6.640e-63 | std. err. = 1.050e-
01 

Estimate = 1.470e+00 | P = 
1.010e-54 | std. err. = 8.570e-
02 
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Table S2.5. Overlap with siRNA and vs other small RNA loci from Lunardon et al., 2020. 

Small 
RNA 
type1 

Type 
Real 

overlap2  
Expected 
overlap3 

Fold-
enrichment4 P-value5 Corrected 

P-value 
Significant 

enrichment 

21-24 
nt 

helitrons 6.04% 3.67% 1.64 0.00 0.00 TRUE 

21-24 
nt 

TIRs  31.01% 28.87% 1.07 0.00 0.00 TRUE 

21-24 
nt 

LTRs  1.01% 0.81% 1.25 0.00 0.00 TRUE 

21-24 
nt 

LINE 8.93% 11.65% 0.77 0.71 1.00 FALSE 

21-24 
nt 

SINE 6.45% 6.45% 1.00 1.00 1.00 FALSE 

21-24 
nt 

gene 18.61% 6.90% 2.70 0.00 0.00 TRUE 

21-24 
nt 

mRNA 18.61% 7.63% 2.44 0.00 0.00 TRUE 

Other 
sizes 

helitrons 0.20% 0.25% 0.80 0.94 1.00 FALSE 

Other 
sizes 

TIR 
element 

0.96% 0.85% 1.14 0.03 0.28 FALSE 

Other 
sizes 

LTR 0.05% 0.06% 0.90 0.94 1.00 FALSE 

Other 
sizes 

LINE 0.00% 0.00% NA NA NA NA 

Other 
sizes 

SINE 0.00% 0.00% NA NA NA NA 

Other 
sizes 

gene 0.95% 1.10% 0.86 1.00 1.00 FALSE 

Other 
sizes 

mRNA 2.46% 2.10% 1.17 0.00 0.02 TRUE 

 

121-24-nt smRNA loci are putatively produce siRNAs through the DCL pathway. Other sizes (< 21-nt, 23-
nt, and >24-nt) putatively represent products of degradation or production not dependent on the DCL 
pathway. 
2Percentage of miRNA-like loci that overlapped genomic positions with smRNA-producing loci 
3Expected overlap produced from the average overlap in 500 permutations of miRNA-like loci position 
within features. 
4Real overlap divided by expected overlap 
5Significance from permutation test 
Annotated small RNA loci were downloaded from https://plantsmallrnagenes.science.psu.edu/ on 

August 30, 2023 

  

https://plantsmallrnagenes.science.psu.edu/
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Table S2.6. Illumina adapter sequences used to trim each small RNA library with CutAdapt (see 

Methods) 

Library Adapter 

GSM306487 CTGTAGG 

GSM306488 CTGTAGG 

SRR032087 CTGTAGG 

SRR032088 CTGTAGG 

SRR032089 CTGTAGG 

SRR032090 CTGTAGG 

SRR032091 CTGTAGG 

SRR1186264 ATCTCGT 

SRR1917157 AGATCGG 

SRR1917158 AGATCGG 

SRR2086100 TGGAATT 

SRR2086104 TGGAATT 

SRR2086116 TGGAATT 

SRR2086120 TGGAATT 

SRR2086132 TGGAATT 

SRR2086136 TGGAATT 
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SRR2106180 TGCAGCA 

SRR2106184 TGCAGCA 

SRR2106196 TGCAGCA 

SRR2106200 TGCAGCA 

SRR3684242 TCGTATG 

SRR3684389 TCGTATG 

SRR895785 TCGTATG 

SRX483603 ATCTCGT 
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CHAPTER 3 
 

Quantifying evolution in RNA secondary structure among Arabidopsis 
thaliana genes 

 
3.1 Abstract 

 
RNA secondary structure serves important functional roles in plants, but its 

evolutionary dynamics are not well-studied. We characterized evolutionary dynamics of 

putative secondary structure-altering mutations in Arabidopsis thaliana using 

computational predictions and empirical pairing data combined with population genomic 

data from the 1,001 genomes dataset. We classified mutations as structure conserving 

(unpaired mutations: upM) or structure interrupting (pair-changing mutations: pcM) based 

on effects on inferred ancestral secondary structure, which we estimated based on two 

separate methods, one that was computational, and one that was empirical. pcM mutations 

showed reduced nucleotide diversity and reduced allele frequencies compared to pcM 

mutations, and their allele spectra were shifted toward low frequency alleles compared to 

mutations unlikely to affect ancestral secondary structure. Additionally, pcM mutations 

showed varying fitness effects according to their position within genes. We used 

demographic models comparing the allele frequency spectra of pcM vs upM synonymous 

alleles to estimate that synonymous pcM mutations had average scaled selection 

coefficients between 20.3% and 30.3% those of nonsynonymous changes. Our results 

demonstrate weak but significant and pervasive selection on secondary structure.  
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3.2 Introduction 
 

 RNA molecules are single stranded (ssRNA), which gives them the ability to form 

Watson-Crick bonds, as well as less stable bonds (Varani and McClain 2000), between 

bases on the same molecule. This intramolecular base pairing, termed secondary structure, 

largely determines the three-dimensional shape of the molecule. As a result, the capacity 

for an RNA sequence to form secondary structures affects the function of transcribed 

regions of plant genomes in many ways (Vandivier et al. 2016). For example, secondary 

structures influence function by modulating translation (Kozak 1988; Svitkin et al. 2001), 

mRNA splicing (Buratti and Baralle 2004), ribozyme activity (Steitz and Moore 2003), 

localization (Bullock et al. 2010), and protein-RNA interactions (Williams and Marzluff 

1995). Additionally, they affect the epigenetic fate of genes, including their stability (Li et 

al., 2012), small interfering RNA (siRNA) complement, and DNA methylation (Martin et al., 

2022). The ultimate impact of a transcribed genomic region on phenotype (Duan et al., 

2003) and fitness (Innan & Stephen, 2001) is therefore dependent on its capacity to form 

secondary structures, and in humans, mutations that affect mRNA structure have been 

implicated in disease (Halvorsen et al. 2010). Yet, the evolutionary dynamics of mutations 

affecting secondary structures in mRNAs have received little attention in the evolutionary 

biology literature, with most such studies focusing on non-coding RNAs (Nowick et al., 

2019). 

One interesting and unexplored aspect of selection on secondary structure is its 

potential to contribute to adaptation. In protein coding genes, positive selection could, in 

theory, act on both the amino acid sequence and mRNA secondary structure of genes. This 

process is usually viewed from at the protein level through measured by dN/dS, the ratio of 
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nonsynonymous to synonymous mutations in a coding sequence, which quantitates the 

surplus of amino acid-changing mutations in a gene, or through linked-selection (e.g., 

detection of selective sweeps) where the causative mutation is unknown (Booker et al., 

2017). In a new environment, it is likely that the fitness optima of secondary structures 

also change. For example, mRNAs in very cold environments will fold differently from 

mRNAs in hot environments, meaning that the selection pressures for stronger or weaker 

base pairing are likely different between the old and new environments. Ferrero-Serrano et 

al. (2022) recently demonstrated that this was the case with two experimentally-validated 

structure-changing SNPs–termed “riboSNitches” (Halvorsen et al. 2010). Nevertheless, the 

extent to which this phenomenon occurs across the entire transcribed portion of the 

genome, especially concerning structural mutations that alter the stability of structures, 

has not been explored. 

 Selection on secondary structure could also have important methodological 

consequences for our ability to use molecular data to measure selection. This is because the 

interpretation of dn/ds ratios assume that synonymous mutations are neutral with regard 

to fitness (Kimura 1968). Since the 1980s, evolutionary biologists have known that this is 

not entirely correct because codon usage is non-random (Ikemura 1981), and more recent 

studies have demonstrated strong non-neutral fitness effects from synonymous mutations 

(Lawrie et al. 2013; Lebeuf-Taylor et al. 2019). With regard to the fitness effects of 

secondary structure, we know that (i) secondary structures within mRNA coding regions 

are more stable than expected under randomized codon usage (Seffens and Digby 1999), 

(ii) the location of synonymous substitutions is not random with respect to secondary 

structure stability (Chamary and Hurst 2005), (iii) codon usage is constrained towards 
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weaker structure around miRNA-binding sites (Gu et al., 2012), and (iv) synonymous 

variants disrupting computationally-predicted secondary structure exist at reduced 

frequencies in human populations (Gaither et al. 2021), implying that purifying selection 

acts at these sites. Tools such as dN/dS (the ratio of nonsynonymous to synonymous 

mutations in a coding sequence), and the McDonald-Kreitman test for direct selection 

(McDonald and Kreitman 1991), rely on the assumption that synonymous changes at 

degenerate sites are selectively neutral. These measures have been shown to be sensitive 

to even weak selection on synonymous substitutions (Rahman et al. 2021). Depending on 

the strength and prevalence of RNA-level selection, accounting for secondary structure 

could therefore be a prerequisite for distinguishing neutral synonymous variants from less 

neutral variants. 

Another reason such mutations could be evolutionarily interesting is through the 

possibility of pleiotropic effects between the RNA and protein “life stages” of gene 

expression. Nonsynonymous mutations can alter both amino acid sequence and secondary 

structure stability, potentially leading to a conflict between selection for protein function 

(protein-level selection) and mRNA stability (RNA-level selection). For instance, a derived 

missense substitution may enhance the effectiveness of a protein but compromise the 

fitness of its mRNA due an effect on secondary structure [through improper splicing, 

translation, or reduced stability and so on (Vandivier et al. 2016)]. The frequency and 

importance of this conflict depend on the relative strength of selection acting on mutations 

affecting secondary structure, which remains unknown. If such conflict arises, it may 

constrain the efficacy of positive selection by reducing the overall realized fitness 
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coefficient of more effective proteins, as in the case of pleiotropic effects (Fraïsse et al., 

2019). 

 Finally, while secondary structures serve important functions, particularly strong 

secondary structures have unique properties that may have negative effects on mRNA 

stability. To date, several studies have suggested that stable genic hairpins can cause genes 

to behave like pre-microRNA (miRNA) transcripts (Li et al., 2012), which form hairpin 

structures that are targeted by Dicer-like enzymes and are subsequently degraded into 

small RNAs. Like in miRNAs, these structured genes map large numbers of small interfering 

RNAs (Li et al., 2012; Martin et al., 2022), likely because their hairpins are bound by Dicer-

like enzymes. In turn, regions of miRNA-like secondary structure in genes correspond to 

high densities of small RNA mapping as well as high levels of small RNA-associated 

methylation, which often repress gene expression and function (Li et al., 2012). Given that 

small RNA mapping and repressive methylation levels are typically associated with 

silenced sequences, such as transposable elements, it is interesting that many genes 

(between ~30-70% of Zea mays genes, depending on how they are defined) contain these 

regions (Martin et al., 2022). It is possible that evolutionary conflicts arise within these 

regions between the crucial functions of hairpins and a concomitant decrease in stability. 

Alternatively, these structures might be unavoidable if they are constrained by amino acid 

sequence. 

 In this paper, we examine the evolutionary dynamics of mutations that affect 

secondary structure within genes in the Arabidopsis thaliana 1,001 genomes population 

dataset. We establish a two-pronged identification method that includes both 
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computational prediction and empirical data to find a subset of variants that likely change 

RNA structure. We then examine the frequencies of these variants in global Arabidopsis 

accessions to determine (1.) whether these mutations are under selection, (2.) how the 

strength of this selection compares to nonsynonymous variants, and (3.) if RNA-level 

selection can meaningfully conflict with protein-level selection. Finally, we question 

whether structural mutations contribute to local adaptation in differing environments 

using climatic data associated geospatially with Arabidopsis accessions by integrating our 

dataset of structure altering mutations with climate and landscape data. 

 

3.3 Results 

Identifying unpaired mutations (upM) and pair changing mutations (pcM) mutations 

 In many of our analyses, we make comparisons between mutations likely to change 

structure and those unlikely to change structure. Identifying causative mutations that 

change the overall conformation of the RNA molecule (termed “riboSNitches”) is a complex 

and unsolved problem (Ferrero-Serrano et al. 2022). We therefore developed a method to 

identify derived mutations at bases that have a very high likelihood of being ancestrally 

paired in Arabidopsis thaliana (i.e., those that likely contribute to secondary structure) in 

order to perform population genetic analyses. We refer to such mutations as “pair changing 

mutations (pcM)” and those that are unlikely to change secondary structure as “unpaired 

mutations (upM mutations).”   

Some other considerations should be addressed: First, defining mutations that 

change secondary structure is not as straightforward as defining those that change amino 
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acids; while the genetic code is universal and each codon always codes for a specific amino 

acid, a particular RNA transcript may have multiple possible conformations of secondary 

structure with varying stabilities (Mathews, 2004). By adopting our approach to define 

pcM/upM mutations, we are simplifying the true biological complexity of the scenario, 

shifting it from a quantitative problem to a classification problem. In addition to the 

physical complexity of secondary structures, finding RNA bases involved in secondary 

structure (“paired” bases) is itself nontrivial. X-ray crystallography can be used to 

accurately determine the structure of a transcript at one moment in time (Zhang and Ferré-

D’Amaré 2014), but it is prohibitively expensive and cumbersome to perform on a genome-

wide level. Computational prediction of secondary structure is widely used but does not 

always recapitulate known structures from X-ray crystallography and can be 

computationally intensive (Zhang et al. 2020). Finally, sequencing approaches such as 

double-stranded RNA (dsRNA) sequencing (Zheng et al. 2010; Li et al. 2012) and SHAPE-

seq (Kwok et al. 2013; Liu et al. 2021) have also been successfully used in Arabidopsis, but 

they are also error prone, dependent on coverage, and also only capture a single possible 

secondary structure.  

Because of these complications, we defined “paired” bases as those implicated in 

secondary structure by both a computational (LinearPartition) and a sequencing method 

(dsRNA sequencing) and unpaired bases as those captured by neither (Figure 3.1). To 

identify these sites, we first polarized ancestral single nucleotide polymorphisms (SNPs) 

from the Arabidopsis 1,001 genomes project (Weigel and Mott 2009; Alonso-Blanco et al. 

2016) and used these ancestral SNPs to create an ancestral pseudo-transcriptome from the 

TAIR10 assembly (Berardini et al. 2015) by replacing derived alleles present in the Col-0 
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reference genome with the ancestral SNP. We then extracted mRNA sequences from the 

pseudo-ancestral reference and inferred base-pairing within these sequences with 

LinearPartition (Zhang et al., 2020). LinearPartition calculates a partition function for a 

complete RNA sequence, and it sums equilibrium constants for all possible secondary 

structures for a sequence (i.e, not just the most likely structure).  It outputs a base-pairing 

matrix that conveys the estimated probability that two bases pair.  We focused only on base 

pairs with high (>0.90) probability of pairing.   

We overlapped LinearPartition analysis with empirical data, namely dsRNA data 

generated by Zheng et al. (2010).  These data were generated from 6-week-old Col-0 

(flower bud clusters, leaves, and all aerial portions) with the intention of distinguishing 

true paired bases from less-likely paired bases. We found that dsRNA overlapping regions 

were, on average, 26.9 nt long, and spanned a total of 187e6 nt, representing X% of the 

total mRNA database.  Given both LinearPartition and dsRNA data, e defined derived pcM 

mutations as the subset of SNPs: i) that had a LinearPartition probability >0.9, ii) that were 

detected as paired in dsRNA data, and iii) whose presumed paired base did not also contain 

a complementary SNP. For example, if the identified base contained an A->G SNP at 

position 1 and was found to be ancestrally paired with a T at position 20, the SNP at 

position 1 was not counted if position 20 contained a T->C substitution).  

In total, we identified a subset of 201,965 paired bases and 8,469 pcM mutations in 

Arabidopsis genes. We recognize that these likely do not reflect all of the bases involved in 

secondary structure, because we applied strict criteria.  We suspect that many of the bases 

in the “unpaired” and “unclear” groups are likely more weakly paired. To address this 
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concern, we also compared results from less conservative pcM/upM definitions (e.g., 

changing the pairing-probability cutoff and relying only on LinearPartition by not 

considering dsRNA overlap). These less conservative datasets yielded quantitatively 

similar results (Figs S3,4), but for simplicity we focus on the more conservative subset 

described above.  

 

Prevalence and distribution of upM and pcM mutations 

We categorized SNPs based on their predicted impact on amino acid and secondary 

structures. This characterization allowed us to partition their fitness effects between 

distinct "life stages" of gene expression. Because our criteria were strict, genes contained 

far more upM mutations than pcM mutations: about ~200-times more among both 

synonymous and nonsynonymous SNPs (Table 3.1). Therefore, our downstream analyses 

represent a small minority of the total genetic diversity in the 1,001 genomes dataset. We 

also compared the fractions of SNP effects among upM and pcM mutations using SnpEff 

annotations (Cingolani et al. 2012). Intriguingly, upM mutations were more likely to occur 

in untranslated regions (UTRs), and splice sites than pcM, which were more likely to occur 

in coding regions (Table 3.2). This effect could be caused by two factors: i)paired bases 

could be less frequent in these non-coding regions, making identification of pcM mutations 

less likely due to the distribution of structure, or ii) purifying selection maintaining 

ancestral secondary structure is stronger in these regions, so pcM mutations are purged. 

Paired bases were about half as likely to to be found in the UTRs as expected given random 

distributions weighted by the length of these features within genes (i.e., UTRs take up 



 

174 
 

about 15% of the genic space, but only ~8% of paired bases were found within them). 

However, the percentage of 5’ UTR pcM mutations (4.98%) is slightly lower than expected 

given the percentage of paired bases within 5’ UTRs (6.86%). We conducted 10,000 

random samples of subsets (n=8,469) from our complete paired site dataset and observed 

a significant difference (P<0.01) from the anticipated divergence between paired site 

distribution and pcM distribution. 

 

Reduced nucleotide diversity at paired versus unpaired sites 

 Nucleotide diversity at synonymous sites (πS) tends to be higher than at 

nonsynonymous sites (πN), which is generally interpreted as the result of purifying 

selection (Ingvarsson 2010; Osada 2015). A central goal of this paper is to ask whether 

selection on pcM mutations is observable and comparable to selection on missense 

mutations. To do so, we focused only on synonymous sites to avoid the confounding effects 

of selection on nonsynonymous substitutions. We therefore compared nucleotide diversity 

at segregating synonymous sites between pcM (n=3,214) and upM (n=631,838).  We 

hypothesized that, if pcM mutations are non-neutral, pcM diversity (πpcM) should not be 

equal to upM diversity (πupM). If selection on secondary structure is strong and similar to 

that of protein-level selection, we predicted that πpcM should be similar to nonsynonymous 

diversity (πN) (n=864,006). As anticipated, πpcM was significantly lower than πupM, suggesting 

that there may be purifying selection on pcM sites However, πpcM was higher than πN sites, putting it at an 

intermediate level compared to the other two types of sites (medians: πupM = 8.2e-3, πpM = 

7.1e-3, πN = 3.7e-3)(Figure 3.2a; t-test P < 0.001).  
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 We also wished to ask whether it is likely for selection on secondary structure to 

interfere with selection for amino acid sequence. One factor which may influence this 

likelihood is the variation in selection across the length of genes: if different types of 

selection operate in distinct gene regions, potential interference between the two may be 

inconsequential, irrespective of the relative strength of each selection type. For example, 

secondary structure is known to be particularly important at start codons and intron splice 

sites (Li et al. 2012; Vandivier et al. 2016), while amino acid sequence is more important 

towards the middle of the protein (Bricout et al. 2023). To understand these spatial 

differences, we measured π at the three different types of sites across the length of gene 

coding sequences (Figure 3.2b), finding that the distributions differed between site types: 

notably, πN is lowest at the middle of the coding sequence, while πupM is lowest towards the 

edges. The signal for πpM is noisy, perhaps owing to the low n of this category, but it shows 

a dip towards the 3’ end of the coding sequence. We were curious about whether these 

differences in distribution of π are related to specific feature types, such as translation start 

sites (start codons), stop codons, and splice junctions. However, we measured π in each 

category as a function of distance to each of these feature types and found that the 

correlation was nonsignificant in each case (simple linear model P>0.05; Figure S3.1). 

Overall, selection at the protein and RNA levels seems to target different regions of genes, 

but it is not clear which features drive those distributions. 

 

Intermediate levels of selection on structural mutations 
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 We next examined allele frequencies of pcM mutations to search for signatures of 

purifying selection. Based on observed levels of diversity, we hypothesized that 

synonymous pcM mutations exist at lower frequencies than synonymous upM mutations 

but at higher frequencies than nonsynonymous mutations; in other words, we predicted 

that changes to secondary structure should generally be more deleterious than 

synonymous changes that do not affect secondary structure, but less deleterious than 

changes to amino acid sequence. Similarly, we predicted that nonsynonymous pcM 

mutations (i.e., mutations that have an effect on both secondary structure and amino acid 

sequence) should exist at lower frequencies than nonsynonymous upM mutations, due to 

effects at both the RNA and protein level. As expected, we found that the site frequency 

spectrum (SFS) for pcM sites was skewed towards low frequency alleles from that of upM 

sites, with an abundance of singletons and fewer intermediate and fixed mutations, while 

frequencies of mutations with unclear structural effects (i.e., those which were identified 

by either the computational or sequencing approach, but not both) fell at middle 

frequencies between pcM and upM mutations (Figure 3.3a-b). The set of pcM mutations is a 

small subset of total SNPs, so we checked for statistical significance between SFSs in two 

ways: first, using a Kolgorov-Smirnov test, and second using a permutation test (Figure 

3.3c-d; Figure S3.2). Both methods found that the spectra for pcM mutations at both 

synonymous and nonsynonymous sites were highly significantly different from upM 

mutations. Interestingly, the effect was stronger among nonsynonymous mutations: that is, 

nonsynonymous mutations that likely interrupt secondary structure appear to be more 

deleterious than synonymous mutations that interrupt secondary structure (permutation 

nonsyn. P ≃ 0 vs syn. P = 0.01).  
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We evaluated the robustness of these results by investigating datasets based on 

alternative definitions of pcM and upM.  First, we considered sites identified as likely to be 

paired by LinearPartition, without filtering by dsRNA overlap. For both synonymous (n = 

19,252) and nonsynonymous (26,021) pcM, allele frequencies remained significantly 

different between pcM and upM (Figure S3.3). Second, we used less strict cutoffs for bases 

likely to be paired by the computational method (filtering by dsRNA cutoff as in the original 

method). With a base-pairing probability threshold of 0.50 (opposed to the original 0.90), 

both synonymous (n = 20,596) and nonsynonymous (57,349) pcM allele frequencies 

remained significantly different between pcM and upM (Figure S3.4). 

 We next returned to the question of distribution along the length of coding 

sequences. For each polymorphic site, we measured its distance to the nearest start codon, 

the nearest stop codon, and the nearest splice site. We categorized sites as “close” to each 

of these features in order to examine the allele frequencies of pcM mutations that might 

interrupt important secondary structure at these vital locations along the length of mRNAs. 

We assigned each site a binary descriptor describing their distance from such features 

(“proximal” or “distal”) using various threshold values of nucleotide (nt) distance (50 nt, 

100 nt, 200 nt, and 500 nt) and compared SFS between close and far sites for each feature 

type (Figure 3.3e-f). In accordance with our results regarding diminished nucleotide 

diversity at the start and stop sites of coding regions (Figure 3.2), we found that pcM allele 

frequencies tended to be lower near the start and stop codons. We did not find, however, a 

clear signal for intron splice sites (Figure S3.5). 
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 Finally, we used these frequency spectra to infer the strength of selection on pcM 

mutations using ∂a∂I (Gutenkunst et al. 2009; Kim et al. 2017). We first inferred the 

demographic history of European Arabidopsis populations using the synonymous SFS at 

unpaired sites (rather than the unfiltered synonymous SFS, as would typically be used). We 

found that demographic models with a recent bottleneck and a two-epoch model were 

similarly robust to the data, with modern/ancestral population size ratio estimates 

between 21.5x and 43.1x and population size expansion 0.3-0.6*2NAncestral generations ago. 

These inferences of recent population size-change fits well with previous demographic 

inference of Arabidopsis, which is thought to have experienced several bottlenecks and 

expanded from refugia after the last glacial maximum ~20 KYA (François et al. 2008).  

We used both demographic models to separately estimate distributions of fitness 

effects (DFE) from the SFS of pcM SNPs, and we compared these DFE to distributions 

estimated from SFS of upM missense SNPs. By doing so, we aimed to partition the fitness 

effects from changes in secondary structure (synonymous pcM) and compare them to the 

portion of non-structure related fitness effects of mutations which are known to have real 

fitness effects (nonsynonymous upM). Given our a priori expectations about amino acid 

changes having greater effects than mRNA secondary structure changes, we expected the 

DFE to be weaker among (synonymous) pcM than among nonsynonymous mutations, and 

we found that this expectation held true (Figure 3.3g); from the gamma distributions, we 

estimated that synonymous pcM sites had a mean scaled selection coefficient (γ, 

2NAncestralS) = 15.81 for the two-epoch model, and γ = 318.48 for the bottleneck model. 

These mean effect sizes are smaller than the effect sizes for nonsynonymous sites: two-
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epoch γ = 52.21 and bottleneck γ = 1570.28, but they are appreciably different from 

neutrality (γ < 1). 

 

Structure-changing SNPs in the geographic landscape 

 While our previous results hint that secondary structure in many genes may be 

under directional selection, they provide no functional explanation for why pcM mutations 

increase in frequency and become fixed. One potential pathway to this outcome is through 

temperature; secondary structure is guided by intramolecular bonds, and these bonds are 

subject to the same physical properties as any other chemical bond. Therefore, at lower 

temperatures, certain secondary structures that are disfavored at high temperatures may 

occur more frequently, while the opposite occurs at higher temperatures. For the most 

part, plants are sessile and possess no ability to regulate temperature, so they are subject 

to the environment in which they germinate. It is therefore possible that evolution may be 

quite rapid at sites which affect the stability of secondary structures. This phenomenon has 

been observed in Arabidopsis via the computational and experimental validation of two 

“riboSNitches” (SNPs that change the secondary structure of a transcript)(Halvorsen et al. 

2010), which segregate at different frequencies based on geospatial location (Ferrero-

Serrano et al. 2022). 

 The two genes identified by Ferrero-Serrano et al. (2022) represent strong, 

experimentally validated examples of this phenomenon, where the effect of the mutations 

on the overall conformation of the molecule has been determined. Given that we were able 

to detect selection on our set of pcM mutations, we tested whether their findings represent 
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a general trend: in other words, can divergence in frequencies of pcM alleles could be 

detected in geographically distinct subpopulations of the 1,001 genomes dataset, and does 

this variation have a climatic component? To define subpopulations, we used two separate 

methods: first, we used admixture groups from (Alonso-Blanco et al., 2016). Second, we 

used equally-sized geospatial quadrats, defining subpopulations by their coordinates as 

accessions which were located together within those transects.   

For each of the subpopulations, we found mean frequencies of derived synonymous 

pcM alleles on a subpopulation-wide level. We then mapped these frequencies 

geographically (Figure 3.5a; Figure S3.6), finding a slight but clear signal of higher pcM 

allele frequencies in more northern and eastern subpopulations. We then extracted 

climatic variables for each individual in each subpopulation based on its geographical 

coordinates. For each subpopulation, we found the mean for each climatic variable in order 

to provide each population with a summarized mean for each variable. For subpopulations 

defined by admixture groups, we found that climatic variables related to temperature were 

negatively correlated with the frequency of pcM alleles within those populations (Figure 

3.5b-c). This effect was strong in BIO1 (mean annual temperature; linear model P = 0.03, R2 

= 0.51) and BIO6 (minimum temperature of the coldest month; R2 = 0.54, P = 0.024). Other 

variables, such as isothermality (BIO3) and maximum temperature (BIO5) were 

uncorrelated (P > 0.05)(Figure S3.7) For subpopulations defined by spatial quadrats, the 

results were similar–however, a simple linear regression provided a poor fit for the data, 

but still showed a weak negative correlation (R2 = 0.02). Instead, we found that a 

polynomial regression was a better fit, showing a pattern of higher frequencies at both 
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extremes away from the middle (i.e., colder and hotter climates)(generalized linear model 

BIO1: P=2.69e-3, R2=0.24; BIO6: P=2.67e-3 R2=0.15). 

 

3.4 Discussion 

 Our results suggest that secondary structure is a weak but prevalent factor shaping 

the evolution of Arabidopsis genes. By classifying mutations at putative ancestrally 

unpaired sites (upM) versus paired sites (pcM), we found signatures of purifying selection 

maintaining ancestral base pairing, including reduced diversity at paired sites and skewed 

allele frequencies. This paper also represents the first (to our knowledge) attempt to 

compare the strength of this type of selection to selection on mutations that change protein 

products (nonsynonymous mutations). As expected, since synonymous mutations are 

conventionally viewed as selectively neutral, we found that selection on secondary 

structure was weaker than selection on amino acid sequence; depending on the 

demographic model used, we found that γ for these alleles was, on average, about 20.3% to 

30.3% that of nonsynonymous substitutions. Nonetheless, selection on these sites is strong 

enough to alter the frequencies of alleles, a finding that is in agreement with empirical 

work showing the existence of strongly deleterious synonymous sites in Drosophila 

(Lawrie et al. 2013), as well as population genetic estimates in humans that showed 

reduced frequencies of alleles predicted to change secondary structure (Gaither et al. 

2021).  

We should address several important caveats regarding our methodology. First, it is 

important to note that we do not claim to have precise or accurate knowledge about the 
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individual effects of each allele on the broader secondary structure of mRNA. To mitigate 

structural effects from other mutations, we have excluded alleles with potentially 

compensatory mutations within the same gene. However, the identification of genuine 

riboSNitches remains a complex and unresolved challenge, as highlighted by the extensive 

empirical work by Ferrero-Serrano et al. (2022). Our primary goal was therefore to identify 

a set of segregating SNPs that with very high confidence to disrupt ancestral secondary 

structures.  

Our process for identifying ancestral secondary structures is based on a number of 

assumptions. Specifically, we have assumed that the double-stranded RNA (dsRNA) 

structures present in the Col-0 reference also existed in the ancestral state. While this 

assumption almost certainly does not hold universally true, given that Col-0 genes have 

accumulated mutations altering their conformations compared to the ancestral forms, its 

impact on result accuracy should be limited given that we exclude bases with some 

evidence for pairing from the “unpaired” category. Moreover, we have shown that we find 

similar trends with alternative datasets based on lower LinearPartition pairing-likelihoods 

and/or that disregard the dsRNA data. Nonetheless, our conservative approach, which 

required confirmation from both computational and empirical methods, likely 

underestimates the actual count of ancestrally paired bases. Additionally, our methodology 

assumes minimal effects arising from structural variants (we ignore insertions, deletions, 

and inversions). It is evident that these types of mutations can have large effects on 

secondary structure (for example, transposable element insertions are known to be highly 

structured)(Bousios et al., 2016); as further investigations into the evolution of secondary 

structures are conducted, addressing the influence of structural mutations should receive 
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special attention, particularly due to recent findings indicating that secondary structure 

affects the epigenetic response and genome function (Martin et al., 2022). 

While it has been long established that synonymous mutations are not entirely 

neutral (Ikemura 1981), our findings present compelling evidence that mutations 

influencing structure exert a substantial impact on fitness. Our results also appear to 

diverge somewhat from recent experimental investigations into the non-neutrality of 

synonymous alleles (Lawrie et al., 2013), which indicated only a minor influence of 

secondary structure on selection at synonymous sites in Drosophila. It is difficult to directly 

compare our results and those of Lawrie et al., because they first identified signals of 

selection at synonymous sites and then subsequently asked whether structure could 

account for part of the signal. Instead, we first focused on structure and then investigated 

differential selection at structured sites.  There are several other potential explanations for 

the discrepancy between studies. One possibility is Drosophila and Arabidopsis differ with 

respect to the significance of secondary structure. Testing this hypothesis is probably not 

feasible, given the inherent ambiguity in defining structure within species. Nonetheless, 

considering the intertwined relevance of secondary structure and small RNAs (Li et al., 

2012), coupled with the distinct small RNA production dynamics between plant and animal 

genomes (), this prospect should not be entirely dismissed. Alternatively, a more probable 

scenario could be that structure contributes only minimally to the overall fitness effects of 

synonymous alleles, and these fitness effects are entangled with other collinear variables 

(such as proximity to translation start/termination sites). 
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Finally, pcM mutations have quantifiable fitness effects, but are they strong enough 

to interfere with selection at the protein level? To get a sense for how frequently these 

types of pleiotropic effects may occur, we built a simple simulation of the coding portion of 

the Arabidopsis genome. We used ther observed CDS lengths (mean  = 1275.39), the 

observed fraction of pcM mutations at nonsynonymous sites, 0.431% (Table 3.1), and 

inferred DFE to estimate the proportion of nonsynonymous sites and genes where this 

phenomenon may occur. We assumed that the average CDS contains ~66% 

nonsynonymous sites, and that sites with γ < 1 are essentially neutral. From these 

observed/inferred values and assumptions, we estimate that there are roughly 5.06e4 sites 

across 2.00e4 genes (73% of genes) where the selection coefficient for amino acid 

sequence dominates selection for non-neutral pcM mutations. On the other hand, there are 

about 2.59e4 sites where the opposite is true (selection for secondary structure is larger 

selection for protein) across 1.47e4 genes (54%). While these are rough estimates subject 

to numerous caveats, they do suggest that (1.) even the small fitness effects observed 

among pcM mutations in this dataset may affect many sites, and (2.) although the average γ 

for pcM mutations is an order of magnitude smaller than that of nonsynonymous 

mutations, pleiotropic interference from this selection is not proportional to this average 

difference (i.e., RNA-level selection overwhelmed protein-level selection only half as 

frequently as the inverse, rather than 1/10th as frequently). Of course, the evolutionary 

importance of such pleiotropic effects depends on the efficacy of selection, and these effects 

may only infer meaningfully at extremely large population sizes. 

Overall, our work sets a framework for studying the evolutionary interplay between 

selection at the RNA versus protein life stages of gene expression. Our findings also suggest 
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that mRNA structures merit increased attention in plant molecular evolution and perhaps 

gene function. Further disentangling the numerous (perhaps contradictory) pressures 

shaping genome evolution will require integrating structural dynamics into molecular and 

population genetic analysis. 

 

3.5 Materials and Methods 

Segregating sites data 

We downloaded the segregating sites VCF and SnpEff files from the 1,001 Genomes 

data center (https://1001genomes.org/data/GMI-MPI/releases/v3.1/)(Weigel and Mott 

2009; Alonso-Blanco et al. 2016). We downloaded the TAIR10 A. thaliana assembly, A. 

lyrata (v1.0)(Hu et al. 2011) assembly, associated gene/exon/UTR annotations, and CDS 

sequences from EnsemblPlants. dsRNA coverage data was retrieved in from the NCBI Gene 

Expression OmniBus Accession # GSE23439 (Zheng et al. 2010) and converted from the 

TAIR9 to TAIR10 assembly using CrossMap (0.6.4). Assembly conversion was validated by 

checking overlap with TAIR10 genes using Bedtools (2.27.1) intersect. 

 

Identification of derived upM and pcM mutations 

We polarized the ancestral state of biallelic A. thaliana sites in the 1,001 genomes 

dataset by whole genome alignment with A. lyrata using AnchorWave (1.0)(Song et al. 

2022), and anchoring to CDS sequences from A. thaliana. We checked the polarization using 

https://1001genomes.org/data/GMI-MPI/releases/v3.1/
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a separately polarized VCF produced using minimap2, and we found 95% agreement 

between the two methods (i.e., 95% of alleles had the same ancestral state call).  

To identify ancestrally paired and unpaired sites, we first constructed a pseudo-

ancestral genome from the polarized 1,001 genomes VCF using GATK 

FastaAlternateReferenceMaker. We then extracted pseudo-ancestral longest mRNA 

sequences using bedtools getfasta. We ran each sequence through LinearPartition 

(v1.0)(Zhang et al. 2020) and extracted positions from the LinearPartition base pairing 

probability matrices where probabilities were > 0.9 (we separately analyzed sets with less 

strict criteria), and we associated these positions along the length of genes with their 

chromosomal positions. We used samtools tabix to extract VCF positions which overlapped 

computationally inferred pairing bases. We then looked for overlap between these 

positions and the dsRNA coverage data in R (4.2.1) using IRanges (2.30.1) and 

GenomicRanges (1.48.0)(Lawrence et al. 2013). Positions where both criteria were met 

(high base pairing probability and dsRNA coverage) were considered pcM sites. We further 

filtered these sites by finding overlap with potential compensating mutations using the 

base pairing probability files from LinearPartition. We estimated overlap with UTRs and 

introns using GenomicRanges in R. 

 

Nucleotide diversity, allele frequency, and DFE analysis 

We analyzed nucleotide diversity using VCFtools (Danecek et al. 2011). First, we 

extracted subsets of the full 1,001 genomes VCF file for each category (syn. pcM, nonsyn. 

pcM, etc.) using samtools tabix and the annotations from our paired/unpaired site 
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identification above and the 1,001 genomes SnpEff file. We calculated π with the per-site 

method in each gene using VCFtools. We measured distance between sites and various 

genic features (starts, stops, and intron junctions) using GenomicRanges in R.  

Allele frequencies and frequency spectra were calculated in R using custom code 

integrating vcfR (Knaus and Grünwald 2017), data.table (Dowle & Srinivasan, 2023), and 

tidyverse (Wickham et al., 2021) functions. Permutation tests for differences between 

spectra were calculated by looping the sample_n function on the upM mutation VCF file 

10,000 times, building a SFS for each subsample, and taking the difference between that 

permutation spectrum and the true upM spectrum. Sites “distal” and “proximal” from genic 

features were identified using GenomicRanges, and frequency spectra for these categories 

were constructed by subsetting the full VCF in R.  

To estimate the distributions of fitness effects for different mutation types, we used 

dadi (Gutenkunst et al. 2009) with functions from fitdadi (Kim et al. 2017) in Python3. We 

first inferred demography using the synonymous upM SFS, which we read into dadi from 

the VCF file (subset using samtools). We analyzed various demographic models with 

various starting parameters to optimize the most robust demographic models. Our final 

demographic models for the DFE in Figure 3.3 used the following parameters. Two-epoch: 

nu = 26.9, T = 0.113; and bottlegrowth-1d: nuB = 0.00634688, nuF = 2.60504245, and 

T=0.0762755. We estimated the DFE using the synonymous pcM SFS and the 

nonsynonymous pcM+upM SFS separately, modeling DFE as a simple gamma distribution. 

We plotted DFEs in Python using matplotlib (Hunter 2007). We estimated the mean of each 

gamma distribution by multiplying the shape*scale parameter of each. 
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Geospatial and climatic correlations 

 We downloaded geographical coordinates for each accession in the 1,001 genomes 

dataset using the AraPheno database (https://arapheno.1001genomes.org/studies/). We 

defined subpopulations by admixture groups defined in (Alonso-Blanco et al. 2016), and 

defined quadrats by nonoverlapping square areas defined by fixed increments of latitude 

and longitude, and we only analyzed quadrats with >3 accessions. The quadrats used in 

Figure 5 are incremented by 3.5 degrees each. We extracted climatic data from WorldClim 

using raster (Hijmans et al. 2023) in R. For each admixture subpopulation, we found the 

mean of each BIO climatic variable by extracting the climatic data for each accession and 

taking the mean of all accessions in the population. For quadrats, we found the mean within 

the quadrat based on its location. We found frequencies of pcM alleles in each 

subpopulation by subsetting the pcM VCF by accession ID and taking the mean frequency of 

all alleles present in each subpopulation in R. Models of climate variable association were 

determined using the lm() and glm() functions for admixture and quadrat subpopulations 

respectively. 

 

Pleiotropy simulation 

 We multiplied the CDS lengths of each 1:1 A. thaliana:A. lyrata ortholog by 0.66 to 

approximate the number of nonsynonymous sites across the genome. For each gene, we 

assigned each site as either paired or unpaired based on the probability data from Table 

3.1. We then assigned each site a “protein-level” fitness effect (γ) by pseudo-randomly 

https://arapheno.1001genomes.org/studies/
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drawing a value from the nonsynonymous DFE gamma distribution in R. This selection 

coefficient assignment was pseudo-random, because the maximum value of assignments 

was capped at 1,000 (2NAS). We then assigned paired sites a “RNA-level” fitness effect by 

the same method, but this time sampling from the synonymous pcM DFE. We evaluated the 

accuracy of our DFE simulations by comparing the means of these sampled DFE to the 

“true” means estimated from the gamma distributions (shape*scale). We repeated the 

simulation several times, finding that the derived solutions changed minimally.  
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Figures 
 

 

Figure 3.1. Schematic representation of upM/pcM identification method. Three 1,001 
genomes SNPs are shown at positions 6, 12, and 27 within a hypothetical gene: one that is 
unclear (6, left), one that is an upM (12, middle) and one that is a pcM (27, right). Derived 
alleles must have both high LinearPartition base-pairing probability (shown as parentheses 
above) and dsRNA coverage to be considered pcM.  
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Figure 3.2: Nucleotide diversity from 1,001 genomes dataset at synonymous paired, 

synonymous unpaired, and nonsynonymous sites. (A) Distributions of nucleotide diversity 

between site types. (B) π summarized over the length of all analyzed CDS. The x-axis 

represents length-standardized windows across the span of all analyzed genes from the 5’ 
end (transcription start site) to the 3’ end (transcription termination site). 
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Figure 3.3. (A) Unfolded site frequency spectra (SFS) showing derived allele frequencies of 

synonymous alleles categorized by their inferred effect on ancestral secondary structure. 

(B) SFS of nonsynonymous alleles in each category.  Permutation distributions for 
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differences between paired and unpaired SFS at synonymous sites (C)(black dot shows 

missense for scale) and nonsynonymous (D). Violins represent the distribution of 

differences in random samples (same n as paired sites) from the unpaired data, while 

points show the true differences. Differences (y-axis) were calculated as the percentage of 

alleles in each pcM SFS bin subtracted from the percentage in the same upM SFS bin (e.g., 

{0-0.1] in pCM minus {0-0.1] in upM etc.)(E) SFS of distal vs proximal sites (100 nt cutoff) 

to 5’ UTR (start codon). (F) the same as (E)(100 nt cutoff) but for stop codon/3’ UTR 

proximity. Solid bars represent alleles frequencies at sites near intragenic features. 
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Figure 3.4. Distribution of fitness effects (DFE) for mutation types under two demographic 

models. Distributions of the scaled selection coefficient, γ (2*NancestralS) are governed by 

shape and scale parameters estimated from dadi under a simple gamma distribution and 

were inferred from the SFS of synonymous upM (i.e., the subset of mutations unlikely to 
have an effect at either the protein or RNA level). 
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Figure 3.5: Geospatial variation in structural mutations. (A) Mean pcM frequencies within 

admixture groups across geographic space. (B-C) Mean pcM frequencies within admixture 
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groups as a function of mean climate variable within group. (D-E) Mean pcM frequencies 

within quadrat-defined subpopulations as a function of mean climate variable within 
quadrat. Points are colored by the longitude of the middle of the quadrat. 
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Tables 
 

Table 3.1. SNPs categorized by effect on amino acid sequence and secondary structure. 

 
upM pcM 

Structurall
y unclear1 

Nonsynonymou
s 

3,790 864,006 22,231 

Synonymous 3,214 631,838 16,038 

1SNPs detected by the computational method (LinearPartition) or dsRNA coverage, but not 

both. 
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Table 3.2. SnpEff annotations for upM vs pcM SNPs. 

SNP effect 
Numbe
r upM 

Percentag
e upM in 

SnpEff 
category1 

Numbe
r pcM 

Percentag
e pcM in 
SnpEff 

category1 

Percentage 
difference (upM - 

pcM) 

synonymous variant 631838 27.23% 3214 37.95% -10.72% 

missense variant 864006 37.23% 3790 44.75% -7.52% 

disruptive inframe deletion 2825 0.12% 19 0.22% -0.10% 

inframe insertion 2437 0.11% 11 0.13% -0.02% 

inframe deletion 3449 0.15% 14 0.17% -0.02% 

frameshift variant+start 
lost 

450 0.02% 3 0.04% -0.02% 

frameshift variant+stop 
gained 

222 0.01% 2 0.02% -0.01% 

frameshift variant+stop lost 377 0.02% 2 0.02% -0.01% 

initiator codon variant 231 0.01% 1 0.01% 0.00% 

stop retained variant 1315 0.06% 4 0.05% 0.01% 

disruptive inframe 
insertion 

808 0.03% 2 0.02% 0.01% 

start lost 1232 0.05% 2 0.02% 0.03% 

stop lost 1532 0.07% 2 0.02% 0.04% 

splice acceptor variant 3389 0.15% 8 0.09% 0.05% 

splice donor variant 3537 0.15% 3 0.04% 0.12% 

stop gained 15577 0.67% 41 0.48% 0.19% 

frameshift variant 24822 1.07% 64 0.76% 0.31% 

5' UTR premature start 
codon gain variant 

18977 0.82% 42 0.50% 0.32% 

5' UTR variant 161299 6.95% 422 4.98% 1.97% 

splice region variant 94490 4.07% 55 0.65% 3.42% 

3' UTR variant 276907 11.93% 681 8.04% 3.89% 

intron variant 210835 9.09% 87 1.03% 8.06% 
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Total 
232055

5 
 8469   

1Percentage of SNPs in category (upM or pcM) that had a particular SNP effect. 
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Supplementary Figures 

 

Figure S3.1. Correlations between sitewise π (nucleotide diversity) at different site types 
and distance to intragenic features. None of the correlations at paired sites were significant, 
the correlations were weak (R2  < 0.01) but significant for unpaired sites. This is probably a 
reflection of the greater sample size in these site types (Table 3.2) rather than a reflection 
of biologically important differences. Distance to 3’ UTR is given as a negative value (more 
negative = farther from UTR) 
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Figure S3.2. Permutation tests for frequencies of synonymous pcM and upM. These sites 
required a pairing probability > 0.90 (50%) and dsRNA coverage. Violins represent the 
distribution of differences in random samples (same n as paired sites) from the unpaired 
data, while points show the true differences. Differences (y-axis) were calculated as the 
percentage of alleles in each pcM SFS bin subtracted from the percentage in the same upM 
SFS bin (e.g., {0-0.1] in pCM minus {0-0.1] in upM etc.). Differences in bins 1, 9, and 10 were 
significant. 
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Figure S3.3. Site frequency spectrum and permutation tests for frequencies of synonymous 
pcM, unclear, and upM defined without the requirement of dsRNA coverage (all sites with 
base pairing probability > 0.90 were considered paired sites). No unclear category is 
included because only one metric of pairing was used (LinearPartition). 
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Figure S3.4. Site frequency spectrum and permutation tests for frequencies of synonymous 
pcM, unclear, and upM defined with a lower base pairing probability requirement from 
LinearPartition. These sites required a pairing probability > 0.50 (50%) and dsRNA 
coverage. 
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Figure S3.5. SFS of distal vs proximal sites (100 nt cutoff) to intron splice sites. Solid bars 
represent alleles frequencies at sites near intragenic features. pcM alleles do not show 
differences depending on distance from splice sites. 
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Figure S3.6. Geospatial variation in structural mutations. Heatmap shows sums of mean 
pcM frequencies within quadrate-defined subpopulations across geographic space. 
Quadrats were defined arbitrarily by distance. They are non-overlapping, and each 
accession belongs to a single quadrat-population. 
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Figure S3.7. Mean pcM frequencies within quadrat-defined subpopulations as a function of 
mean climate variable within quadrat. Points are colored by the longitude of the middle of 
the quadrat. Lines are defined by a log regression. The correlations for these models were 
not qualitatively different from other models used. 
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CONCLUSIONS 
 

The physical structures of DNA and RNA molecules are crucial for proper genome function and 

evolution. DNA wraps around histone proteins to form chromatin, which controls accessibility and 

transcriptional activity. Meanwhile, RNA folds into structures that determine splicing, translation, and 

localization. Because these three-dimensional aspects of nucleic acid structure influence phenotype, 

natural selection acts on the many processes governing these structures. Moreover, TEs compose the 

majority of genomic space in many species, and they have large effects on both chromatin as well as 

secondary structure.  

In my dissertation, I used epigenetic and genomic information in plants to study the mechanisms 

and effects of epigenetic modifications, small RNA expression, and RNA secondary structure. I hoped to 

bridge the gap between two disparate fields: the bioinformaticians and molecular biologists who study 

epigenetics and RNA structure tend to do so with an eye towards the molecular processes that establish 

and maintain these patterns. Meanwhile—partially because understanding the evolutionary effects of 

these structures is somewhat reliant on understanding their molecular biology—evolutionary biologists 

tend to focus on genes and mutations that change the amino acid composition of their products (or, 

perhaps more frequently, they do not characterize the mechanical effects of the mutations involved in 

evolution).    

In my first chapter, I studied evolutionary dynamics of methylated CHH (mCHH) islands—which 

are peaks of CHH methylation upstream of genes (Gent et al. 2013; Li et al. 2015)—across eight grass 

species spanning the breadth of the Poaceae family with a wide range of genome sizes and structures. 

Using whole genome bisulfite sequencing and expression data, I examined interspecies patterns of CHG, 

CHG and CHH methylation near genes. I found expected patterns, like CG methylation predominating 

over CHG and CHH within genes and methylation being relatively low near transcription start and stop 
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sites (Niederhuth et al. 2016). I also found that peaks of CHH methylation occurred immediately 

upstream and downstream of genes in most species.  

Based on work by Hollister & Gaut ( 2009), I hypothesized that mCHH islands should be more 

frequent in large genomes with more heterochromatin and transposable elements (TEs). However, I 

found no relationship between genome size and mCHH island prevalence or levels, and smaller genomes 

even tended to have a higher proportion of mCHH island genes. Consistent with islands reflecting TE 

silencing, mCHH island genes were closer to TEs than non-island genes in all species. Focusing on maize, 

rice, and barley, I confirmed mCHH islands were associated with DNA transposons, especially terminal 

inverted repeats (TIRs), more than retrotransposons. However, examining mCHH island sequences, 

many islands had little homology to known TEs, indicating that additional factors beyond TE silencing 

contribute to islands. 

I found mCHH island genes were slightly more expressed than non-island genes, but significantly 

so in only a few species. Surprisingly, absence of gene-body methylation (gbM) was a stronger island 

predictor than TE proximity. Analyzing one-to-one orthologs across species, I showed mCHH islands 

were generally not evolutionarily conserved, unlike gbM. Presence of lineage-specific TEs coincided with 

lineage-specific mCHH islands, partially explaining lack of conservation. Additional factors like gbM and 

gene length also correlated with mCHH island conservation. 

My work in Chapter 1 established previously-unknown genic properties correlated with mCHH 

islands, beyond just TE silencing effects, but cast doubt on their evolutionary conservation. Important 

questions remain about how islands form and function. My results implicate aberrant gene 

transcription, which could engage RNA-directed DNA methylation, especially when encompassing 

nearby TEs. mCHH islands may then help moderate TE effects on gene expression, or simply be products 
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of this process. The negative association between mCHH islands and gbM, which suppresses aberrant 

transcription (Teissandier and Bourc’his 2017), fits this model. 

In my second chapter, I studied microRNA (miRNA)-like secondary structures across the maize 

genome, including in TEs and genes. I used two computational methods to identify regions with 

properties resembling miRNA precursor hairpins (Lorenz et al. 2011; Zhang et al. 2020). These miRNA-

like regions were common, present in the majority of annotated features. Different TE types varied in 

prevalence of structures, with DNA transposons and LTR retrotransposons containing more miRNA-like 

regions than non-LTR retrotransposons. The locations of structures also differed among TEs; for 

example, Copia element hairpin structures tend to lie within their LTRs. 

I hypothesized miRNA-like regions may act as substrates for small RNA production through 

Dicer-like processing of double-stranded RNA (Li et al. 2012). As predicted, miRNA-like regions in both 

TEs and genes consistently mapped a higher diversity of small RNAs. In support of our hypothesis, this 

was especially true of small RNAs 21-22 nucleotides in length, which are the lengths usually produced 

from RNA interference/Dicer-like degradation. Additionally in support of this model, the small RNA 

enrichment was reduced in non-autonomous TEs unlikely to be transcribed. I also found miRNA-like 

regions exhibited peaks of DNA methylation, particularly in the CHH context deposited by small RNA-

directed pathways. In many ways, secondary structures correlated with downstream repressive 

epigenetic signals. 

In genes, I propose that tradeoffs occur between important secondary structure and deleterious 

effects of small RNA production. Structured genes were more highly expressed than unstructured genes, 

suggesting functional importance of structure, but genes with extremely stable structures had reduced 

expression. Across diverse maize lines, structured genes also exhibited greater expression variability 
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related to their small RNA levels. This implies secondary structure in genes may spawn small RNAs that 

destabilize expression. 

These genome-wide analysis revealed widespread miRNA-like secondary structures with 

traceable molecular and phenotypic associations. I propose structured regions in genes are experience 

conflict between maintenance of beneficial RNA folding while avoiding excess double-stranded RNA that 

risks small RNA-mediated silencing. My work expands our understanding of the ubiquity of strong 

endogenous structures and their diverse effects on genome regulation and evolution.  

In Chapter 3, I studied mutations affecting mRNA secondary structure in Arabidopsis thaliana 

genes using population genomic data (Weigel and Mott 2009; Alonso-Blanco et al. 2016). I developed a 

novel method to identify derived alleles that likely disrupt ancestral base pairing. I termed these 

mutations "pair changing" (pcM) and compared them to mutations at unpaired sites (upM). I found pcM 

mutations exhibited signatures of purifying selection relative to upM mutations, including reduced 

nucleotide diversity and skewed allele frequencies, indicating selection maintains ancestral mRNA 

structures. The strength of selection on synonymous pcM mutations was weaker than on 

nonsynonymous mutations but sufficient to alter allele frequencies. 

My results suggest RNA-level selection is prevalent but weaker than protein-level selection, as 

expected since synonymous mutations are conventionally viewed as neutral. I found spatial differences 

in diversity levels along genes, with purifying selection targeting distinct regions for amino acid 

sequence versus secondary structure. This spatial separation may limit potential conflicts between 

protein- and RNA-level selection. 

Nonetheless, based on inferred selection coefficients and the prevalence of inferred ancestral 

secondary structure, I estimated that over half of Arabidopsis genes contain sites where secondary 

structure selection could exceed protein-level selection. Hence, pleiotropic effects on both RNA 
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structure and amino acids may conflict at some loci, reducing the realized fitness gains of adaptive 

amino acid substitutions. Overall, my work reveals widespread selection maintaining mRNA structures 

and suggests that RNA-level selection should be considered in molecular evolution and population 

genetics. 
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