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AtPCa‑Net: anatomical‑aware 
prostate cancer detection network 
on multi‑parametric MRI
Haoxin Zheng 1,2*, Alex Ling Yu Hung 1,2, Qi Miao 1, Weinan Song 3, Fabien Scalzo 2,4, 
Steven S. Raman 1, Kai Zhao 1 & Kyunghyun Sung 1

Multi‑parametric MRI (mpMRI) is widely used for prostate cancer (PCa) diagnosis. Deep learning 
models show good performance in detecting PCa on mpMRI, but domain‑specific PCa‑related 
anatomical information is sometimes overlooked and not fully explored even by state‑of‑the‑art 
deep learning models, causing potential suboptimal performances in PCa detection. Symmetric‑
related anatomical information is commonly used when distinguishing PCa lesions from other visually 
similar but benign prostate tissue. In addition, different combinations of mpMRI findings are used for 
evaluating the aggressiveness of PCa for abnormal findings allocated in different prostate zones. In 
this study, we investigate these domain‑specific anatomical properties in PCa diagnosis and how we 
can adopt them into the deep learning framework to improve the model’s detection performance. 
We propose an anatomical‑aware PCa detection Network (AtPCa‑Net) for PCa detection on mpMRI. 
Experiments show that the AtPCa‑Net can better utilize the anatomical‑related information, and 
the proposed anatomical‑aware designs help improve the overall model performance on both PCa 
detection and patient‑level classification.

Prostate cancer (PCa) is the second leading cancer-related cause of death and the most common cancer among 
men in the United  States1. Multi-parametric MRI (mpMRI) is the preferred non-invasive imaging tool for PCa 
diagnosis before  biopsies2,3. According to the Prostate Imaging Reporting and Data System, version 2.1 (PI-
RADS)2,3, a combination of mpMRI findings is used for predicting the probability of clinically significant PCa, 
where the different combinations are used depending on the lesion location, in either transition zone (TZ) or 
peripheral zone (PZ) of the prostate. For example, following the PI-RADS, T2-weighted imaging (T2WI) is the 
primary imaging component for lesions in TZ with an additional assessment by diffusion-weighted imaging 
(DWI), while in the PZ, DWI/apparent diffusion coefficient (ADC) is the essential imaging component with 
an addition of dynamic contrast-enhanced (DCE)  MRI2,3. Therefore, given the significance of varying imaging 
appearances of PCa on mpMRI between TZ and PZ, there is considerable potential to improve PCa detection 
models further when this anatomical prior is thoughtfully incorporated.

With advances in deep learning, many studies proposed deep learning models for the detection of PCa using 
mpMRI. However, the different appearances of PCa lesions in TZ and PZ on different mpMRI components were 
generally not fully integrated into the model  design4–10. Overlooking this zonal-related anatomical prior, but 
treating all lesions equally regardless of the locations, could lead to potential suboptimal model  performance2,3. 
A design that can reflect both the zonal appearance differences and the commonality of them being PCa lesions 
is the key to improving the model’s performance.

Hierarchical label and loss design embed structural information hierarchically among different classes into 
the loss function to better guide the model  training11–13. The design transforms the binary labeling to a more 
structured label space and is able to account for the distinct inter-class property differences while preserving 
shared properties among different  classes11–13. In this study, we propose an anatomical-aware hierarchical loss 
design, the Zonal Loss (ZL). The ZL can direct the model to learn both the unique and shared characteristics 
of PCa lesions across different prostate zones in accordance with clinical practice, thus enhancing the model’s 
detection capabilities.

Furthermore, studies have shown that PCa, benign prostatic hyperplasia (BPH), and the central zone (CZ) 
of the prostate can occasionally present with visual  similarities14,15. This undesirable resemblance between PCa 
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and other prostate tissues complicates the diagnosis process. In clinical practice, symmetric-related information 
as a reference is valuable for distinguishing BPH and CZ from PCa. Research indicates that BPH and CZ tend to 
be visually  symmetric14,15, while PCa is generally presented  asymmetrically16,17. Illustrations of PCa lesions and 
PCa-like visual patterns are shown in Fig. 1. We can observe that BPH and CZ are shown to be similar to PCa 
lesions-low intensity on both ADC and T2WI images and high intensity on high-B DWI images.

The visual similarity of non-PCa prostate tissues not only complicates the diagnostic process but also leads 
to performance degradation in PCa detection models due to the generation of undesired false positive (FP) 
predictions-a common issue in existing deep-learning-based PCa detection  models4–10. By taking symmetric-
related patterns into consideration, FP predictions may be reduced as PCa lesions can be further distinguished 
from BPH and CZ by their asymmetrical appearance differences. Therefore, integrating symmetry-related ana-
tomical priors into the design of PCa detection models may be crucial in reducing potential FP predictions.

Existing study has shown that the human visual system recognizes symmetric patterns by comparing visual 
differences between the original image and the mirrored image after reflecting with respect to an imagined center-
axis18. Inspired by how symmetric patterns stimulate human visual perception, we propose a symmetric-aware 
network architecture that utilizes both original and mirrored mpMRI images for PCa detection. Simulating how 
the human vision system reacts to the symmetric patterns, the network can help distinguish the PCa lesions from 
other prostate tissue with visual similarities, like BPH and CZ, and thus reduce FP  predictions14–17.

In this study, we introduced PCa-related anatomical priors into the deep learning framework design and 
developed an anatomical-aware deep learning network for PCa detection on mpMRI. The proposed network 
leverages symmetry-related information and PCa zonal appearance differences on mpMRI images to form a 3D 
anatomically-aware PCa detection network (AtPCa-Net), enhancing the accuracy of PCa lesion detection. Our 
main contributions include the following: 

1. We exhibit that the introduction of the PCa-related anatomical priors into the DL network architecture 
design helps improve model performance. The extensive experiments demonstrate that either one of the 
anatomical-aware designs of the proposed AtPCa-Net can help improve the PCa detection and patient-level 
classification performance, and the integration of both designs can achieve the best model performance on 
both PCa detection and patient-level classification tasks.

2. We incorporate the symmetric-related clinical priors into the network architecture design to suppress poten-
tial FP predictions. By utilizing symmetric-related visual appearance differences, the design could help 
distinguish PCa from other prostate tissues shown similar visual patterns on mpMRI, thereby reducing 
possible FP predictions. To the best of our knowledge, our study is the first study to achieve FP reductions 
on PCa detection using anatomical-related clinical prior.

3. We integrate the zonal appearance differences of PCa on mpMRI explicitly into the loss design by propos-
ing the Zonal Loss (ZL). Compared with existing models overlooking this property and treating all lesions 

Figure 1.  Examples of a PCa lesion and PCa-like patterns from other prostate tissues, like the BPH and the CZ, 
that can cause FP predictions from three mpMRI scans (A, B, and C). From the left to the right, the first column 
shows the T2WI images, the second column shows the ADC images, and the third column shows the high-B 
DWI images. Red arrows point to a PCa lesion, and blue arrows point to the PCa-like patterns in BPH (B) and 
CZ (C).
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equally regardless of their location, the ZL treats PCa in different prostate zones differently following the 
clinical guideline, and thus helps improve model performance.

4. Compared with other baselines, the AtPCa-Net achieved lower FP predictions while maintaining same 
sensitivity. Although the model still needs to be improved in order to be deployed in clinical practice, the 
results suggests the potential to further reduce the number of unnecessary target biopsies could be caused 
by using current computer-aided diagnosis models.

Related works
Prostate cancer detection
The deep-learning models for PCa detection and classification based on mpMRI have been widely 
 investigated19–22. The models are generally built by convolutional neural networks (CNNs) for their outstand-
ing performance on classification, segmentation, and detection tasks. Recent studies exhibit the feasibility of 
using CNNs for PCa detection using  mpMRI4–10,23. Li et al.23 designed a multi-scale two-branch dilated-con-
volution-based deep learning network to segment both PCa lesions and prostate from mpMRI. Seetharaman 
et al.4 designed a PCa detection network to identify indolent and aggressive PCa separately with the help of two 
different encoder branches for T2WI and ADC images and the fusion of feature maps from multiple levels of 
the encoder branches. Cao et al.8 introduced the idea of ordinal encoding for PCa with different severity doing a 
multi-class classification. The author also designed the mutual finding loss mimicking the process of how radi-
ologists interpret the T2WI and ADC images to detect PCa. Cao et al.9 modified the  FocalNet8 to have a stack 
of adjacent slides as input and did a comprehensive evaluation of the PCa detection performance between the 
radiologists and their proposed model.

There are some existing studies that tried to integrate clinical priors related to different diagnostic focuses for 
PCa in different zones into the PCa detection network  design3,6. Hosseinzadeh et al.5 utilized this zonal-related 
anatomical prior by stacking the prostate zonal segmentation masks together with mpMRI images as part of the 
input to the model and showed the detection performance improved. Vente et al.6 discovered the idea of both 
using ordinal encoding for PCa with different aggressiveness and also feeding prostate zonal masks into the 
PCa detection networks to let the model learn the anatomical relationship between the prostate zones and PCa 
appearance. Duran et al.24 discussed the performance differences between using a prostate mask or using a PZ 
mask as part of the segmentation model input and observed the latter approach got better lesion segmentation 
performance.

Although they provide zonal information from the input, the cross-entropy (CE) loss with binary labeling 
they used explicitly treated all lesions identically regardless of the  location2,3. The ignorance of the lesion appear-
ance differences in different prostate zones might lead to suboptimal PCa detection performance, which could 
be further improved.

As PCa detection models generally suffer from undesired FP predictions, some studies have introduced 
network designs aiming for better FP reduction  ability7,10. Yu et al.7 proposed a multi-scale patch-wise network 
together with a squeeze-and-excitation (SE)  block25. The design tried to reduce FP predictions by letting the 
model learn the FP patterns from the context information provided by the multi-scale patches automatically. 
To suppress FP predictions, Saha et al.10 first introduced an auxiliary network to classify if a given image patch 
contains PCa lesions or not and then multiplied the classification results with the detection probability map to 
conduct the final output. The experiments showed that the FP predictions could be suppressed by the patch-wise 
classification results. However, neither study has considered achieving FP reduction using anatomical-related 
clinical prior, which could also be capable of helping effectively reduce FP predictions.

Anatomical‑aware design for other diseases
There are existing studies investigating how to incorporate anatomical-related clinical priors into the network 
architecture design for various tasks related to other  diseases26–28. Sun et al.26 introduced a weakly-supervised 
knowledge distillation model for breast mass segmentation, with auxiliary networks for reconstruction and 
aggressiveness classification. The anatomy property was designed to be learned from the encoder of the teacher 
model, an autoencoder network reconstructing the input image, and then transferred to the student model, the 
desired breast mass segmentation network. Kamal et al.27 proposed a semi-supervised CNN for thoracic disease 
classification on chest Chest X-ray images. The anatomical information was brought by the prediction masks 
of lung and heart generated from the auxiliary segmentation network and then fed into the main classification 
network as an anatomy-informed reference for an attention module. Ma et al.28 proposed a dual-branch cascaded 
CNN for the segmentation of retinal layers and fluid from optical coherence tomography (OCT) images. The 
model first calculated a relative positional map based on the retinal layer boundaries and then fed them into 
the final segmentation network to inform the model of the anatomical relationships among different retinal 
layers. All the studies showed improvements in model performance when including anatomical-aware network 
architecture design. In this study, the anatomical-aware designs are not only composed of a symmetric-aware 
network architecture for FP prediction reduction but also shown through the design of the hierarchical loss, the 
ZL, considering the diagnostic differences of lesions on different prostate zones following clinical  guideline2,3.

Methods
Overview
We propose a 3D anatomical-aware PCa detection network (AtPCa-Net) to detect whole-mount histopathology 
(WMHP) confirmed clinically significant PCa (csPCa) utilizing the PCa-related anatomical priors. The proposed 
AtPCa-Net consists of two parts. First, a 3D symmetric-aware network takes the symmetric-related informa-
tion into consideration to suppress FP predictions. Second, the ZL structurally integrates the PCa-related zonal 
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differences into the label and loss design. The overall architecture of AtPCa-Net is illustrated in Fig. 2. We adhered 
to the structure of nnU-Net as the backbone for AtPCa-Net because of its good performance on detection and 
segmentation of medical imaging  tasks29.

Dataset
Study population and mpMRI images
This retrospective study was carried out in compliance with the United States Health Insurance Portability and 
Accountability Act (HIPAA) of 1996 with approval from the institutional review board (IRB) of our institu-
tion with a waiver of the requirement for informed consent. All experiments conducted in this study adhered 
strictly to the relevant guidelines and regulations. The whole dataset consists of 652 patients. It is composed of 
two parts: (1) pre-operative mpMRI images from patients (N = 220) who had confirmed PCa lesions (N = 246) 
with whole-mount histopathology after radical prostatectomy (RP), and (2) mpMRI images from patients (N = 
432) who did not have indications of PCa lesions, confirmed by systematic biopsies followed by negative mpMRI 
(PI-RADS≤2). We included mpMRI images with no indications of PCa lesions to balance the data distribution 
on model training and testing, as well as to perform patient-level classification evaluation. We used 5-fold cross-
validation to validate and evaluate the model performance, in which each fold contains 130/131 patients assigned 
randomly from the entire dataset.

All mpMRI images are performed on Siemens 3T scanners with the standardized clinical prostate mpMRI 
 protocol2,3, including T2WI and DWI. We exclude the DCE-MRI images given the limited role of DCE-
MRI2,3,30,31. For T2WI, the repetition time (TR) and echo time (TE) are 3000–5900 ms and 101–109 ms, the 
field of view (FOV) of 20 cm × 20 cm with an in-plane resolution of 0.625 mm × 0.625 mm and through-plane 
resolution of 3 mm. For DWI, we use TR and TE of 4800–5300 ms and 60–81 ms, FOV of 26 cm × 21 cm with 
in-plane resolution of 1.625 mm × 1.625 mm and through-plane resolution of 3.6 mm. The ADC maps were 
calculated using linear least squares curve fitting of voxels in the four DWIs against their corresponding b values 
(0/100/400/800 s/mm2 ). We also denote the DWI images with b = 1400 s/mm2 as high-B value DWI (high-B 
DWI).

Clinical interpretation and annotations
The mpMRI images were reviewed by three genitourinary (GU) radiologists (10+ years of clinical prostate MRI 
reading) as part of the standard clinical procedure following the clinical  guideline2,3. Lesion findings with PI-
RADS score ≥ 3 are reported as MRI-positive findings, and the findings with PI-RADS score < 3 are interpreted 
as MRI-negative findings in this study.

Figure 2.  Architecture of the proposed AtPCa-Net. It combines the 3D symmetric-aware network and the 
proposed Zonal Loss (ZL). The network takes input stack images of T2WI, ADC, high-B DWI, TZ’s mask, 
and PZ’s mask images in an original way and a mirrored way. The weights of encoders at each level from 
the two sides of the figure are shared. At each level, the feature maps from two sides are concatenated first 
together and go through a bridge convolution block that consists of two consecutive 3D convolution blocks, 
then concatenated with the upscaled feature maps from the lower level, and finally upscaled to the upper-level 
decoder layers.
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The ground truth of the lesion annotations is confirmed by WMHP after RP matched to mpMRI prior to RP 
in this study. Blinded to all MRI-related information, the sliced WMHP specimens are examined and reported 
by three GU pathologists (with 14, 8, and 5 years of experience in clinical prostate histopathology interpreta-
tion) as part of the standard clinical procedure. Every PCa lesion was contoured and assigned a corresponding 
Gleason Score (GS) on WMHP. PCa lesions with GS≥ 7 are defined as csPCa and are the detection targets of 
our proposed detection model in this study.

GU radiology research fellows, under the supervision of GU radiologists, retrospectively reviewed each 
mpMRI exam and contoured the region of interest (ROI) of MRI-visible lesions on T2WI images referring 
to the WMHP examination reports. MRI-positive findings are categorized as true positive if the radiological 
findings and the pathological findings are matched or false positive if no corresponding PCa lesion is found in 
histopathology reports. We defined the prospectively missed lesions that are retrospectively identified in the re-
review procedure as false-negative (FN) lesions. The remaining PCa lesions that are MRI non-visible and also 
retrospectively unidentifiable on mpMRI are not included in the study as we cannot accurately contour them.

Compared to data consisting of biopsy-confirmed PCa, ground truth confirmed by WMHP offers additional 
insights into how the model would react to FN cases, which are generally harder to recognize in clinical practice. 
Understanding FN lesions is crucial, as overlooked or underestimated PCa can lead to insufficient treatment and 
undesired oncological  outcomes32,33.

The prostate zonal segmentation of TZ and PZ are treated as part of the AtPCa-Net’s input, shown in Fig. 2. 
The zonal masks are generated using a separate automatic prostate zonal segmentation model, CAT-Net34, to 
explicitly provide the PCa-related anatomical information.

Preprocessing
The T2WI images underwent N4 bias filed correction to compensate for the low-frequency intensity non-uni-
formity35. The high-B DWI and ADC images are registered and resampled with respect to T2WI images using 
rigid spatial transformation while utilizing real-world coordinates information for each patient since the DWI 
and T2WI sequences are acquired temporally closed and only minimal patient motion are  found8,36,37. After the 
registration, high-B DWI, ADC, and T2WI images are rotated with respect to the center line, generated by con-
necting the volumetric center of the prostate and the TZ, to show the symmetric appearance. Then, high-B DWI, 
ADC, and T2WI images are center cropped with the size of 128 × 128 pixels from the original 320 × 320 pixels 
images as all prostates are allocated in the center of the acquired MR images following the clinical  protocol2,3. The 
intensity value of voxels in high-B DWI and T2WI images are linearly normalized to have a value in the range 
of [0, 1]. As the values of ADC maps are quantitative, the voxel intensities are consistent across  patients2,3,8,38. 
Therefore, the intensity on ADC maps is first clipped by a patient-independent value and then normalized to 
be in the range of [0,  1]8.

Symmetric‑aware network architecture
We first introduce the proposed symmetric-aware network architecture design that is capable of taking symmetric 
information into consideration explicitly. The detailed network architecture can be seen in Fig. 2. In this study, 
we implement a UNet-like backbone structure since the UNet-like structures have shown great performances in 
medical-imaging-related segmentation and detection  tasks29. The inputs are the 3D volumetric stack of images 
with a dimension of [ N × Cin × Din ×Hin ×Win ], where N is the batch size, Cin is the number of channels, Din 
is through-plane resolution, [Hin,Win] are in-plane resolution of the input mpMRI images. Different categories of 
images (T2WI, ADC, high-B DWI, binary mask of TZ, or binary mask of PZ) correspond to different channels of 
the input, and each imaging modality has the same volumetric size of [D0,H0,W0] . The network takes two inputs: 
one is the original 3D stack of images, and the other is the 3D stack of images mirrored across the vertical axis.

The weights of all the convolution blocks (ConvBlock) in each encoder layer of the network are shared by 
both the original and mirrored paths. The design of shared-weight encoders has proven to be useful when 
visual comparisons are applied in downstream tasks in the DL network architecture  designs39, similar as how 
the symmetric-related anatomical priors were used to distinguish between benign and cancerous prostate tis-
sue in the clinical practice. By sharing weights on the two encoders, features extracted from both pathways will 
maintain symmetric information. This, in turn, assists the network in learning how to utilize these symmetric 
features, resembling the human visual system, and thus enhances the model’s decision-making process. In each 
level i other than the bottom level, the extracted feature maps Xori

i ∈ [ N × Ci × Di ×Hi ×Wi ] and Xmir
i ∈ 

[ N × Ci × Di ×Hi ×Wi ] from both sides will be first concatenated channel-wisely and format a combined fea-
ture map Xcat

i ∈ [ N × 2Ci × Di ×Hi ×Wi ]. Then Xcat
i  will pass through a bridge block (BridgeBlock), composed 

of two 3D convolution blocks, and finally concatenated together with the upscaled feature map Xup
i+1 from level 

i + 1 . The final concatenation will then be used to do further feature extraction at that level. Detail representa-
tions can be seen in the sub-figure of Decoder Blocks in Fig. 2.

The output of the network is the detection probability map of where suspicious csPCa is allocated. The dif-
ference between the probability map and the ground truth mask is measured by the proposed ZL, which will be 
introduced in the following sub-section.

Zonal loss
Current labeling strategies in PCa detection models generally inadequately account for the significance of PCa’s 
zonal appearance differences, but using CE loss treating all PCa lesions identically regardless of their  location2–10. 
We propose an anatomical-aware hierarchical label and loss design, the ZL, to guide the model to learn the dif-
ferent appearances of PCa lesions in different zones with anatomy-informed constraints.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5740  | https://doi.org/10.1038/s41598-024-56405-7

www.nature.com/scientificreports/

We denote the set of voxels of the PZ region as P , the TZ region as T , and the csPCa lesion region as L for 
a given prostate mpMRI image. Given an input image I ∈ R C×D×H×W and the corresponding binary mask 
M ∈ {0, 1}D×H×W , where C, D, H , W are the channel number, depth, height and width of the input image I , 
for any voxel v ∈ I , the corresponding label voxel m on M in binary CE loss design is given as:

One of the key points of the hierarchical label and loss design is the multi-level labeling design with respect to 
the number of properties each class holds—lower-level classes hold fewer properties and constraints, higher-level 
classes hold more properties and more constraints  correspondingly11–13. According to PI-RADS2,3, PCa lesions 
in PZ mostly require visual information related to DWI, while lesions in TZ require a combined evaluation of 
both T2WI and DWI for accurate diagnosis. We adopt this clinical interpretation process using the hierarchical 
label and loss design by treating the class of TZ lesions as requiring additional information from T2WI images 
compared with the class of lesions in PZ for improved PCa detection on mpMRI. Hence, the ZL design is adept 
at acknowledging the distinct zonal appearance of PCa while preserving the anatomical congruence between 
lesions in the TZ and PZ.

We design a hierarchical labeling with ground truth mask M ∈ {0, 1}2×D×H×W  for a given image 
I ∈ R C×D×H×W . For any voxel v ∈ I , the corresponding label vector m = [m0,m1] ∈ {0, 1}2 in M in our 
loss design is given as:

This label design aims to adopt the clinical prior knowledge to the detection of csPCa lesions. Abnormalities 
should be observed on image sequences related to DWI in common for both the lesions in TZ and PZ ( m0 ), 
and additional abnormal observations from T2WI are needed for lesions in TZ in order to make more accurate 
diagnoses ( m1)2,3.

We denote the probability vector p = [p0, p1] ∈ [0, 1]2 in the output probability map P ∈ [0, 1]2×D×H×W , 
for the corresponding voxel v ∈ I . The modified CE loss can be written as:

where 1 = [1, 1] , and:

The modified CE loss is designed to suppress prediction vector patterns that should not exist. Based on our labe-
ling design, label vector pattern m̂ = [0, 1] is not defined, since solely abnormalities found on T2WI have limited 
contribution to the diagnosis of suspicious  PCa2,3. Therefore, any output probability vectors with p1 > p0 should 
be penalized in order to teach the model not to conduct such predictions. However, the original CE loss with 
binary labeling only computes the loss of each class independently but ignores this inter-class relationship. We 
intentionally add this constraint onto the original CE loss, which is shown in (4) and (5). In (4), p0 = max(p0, p1) 
when m0 = 0 , and in (5), p1 = min(p0, p1) when m1 = 1 both indicate that p0 should be greater than p1 in any 
prediction outputs, and any patterns disobey this rule should be penalized. This modification could further help 
the model converge to a better solution.

In addition, we adopt Focal Loss onto the modified CE loss in Eq. (3) to account for the imbalance in the 
number of voxels between the csPCa lesions and  background40. This would reduce the relative weight for well-
classified voxels and emphasize focus on hard ones like lesion  voxels8,40. The final ZL form follows:

where 1 = [1, 1] , and p ∈ [0, 1]2 is defined in (4) and (5).

Implementation details
In each of the three levels of the network architecture, the channel number is [64, 128, 256] for each level of the 
convolutional layers of the encoders, and [256, 128, 64] for each level of the convolutional layers in the decod-
ers,  correspondingly29. Each level of the convolutional layers comprises four consecutive ConvBlocks, and each 
ConvBlocks consists of a 3× 3× 3 3D convolution kernel, following by a LeakyReLU activation function and 
an instance normalization, following the settings of the nnU-Net29.

Each training procedure takes 60 epochs, with early-stopping strategy applied when no loss degradation for 
30 accumulate epochs was found to avoid potential overfitting issues. Adam  optimizer41 was adopted with the 

(1)m =

{

1 if v ∈ L,
0 otherwise

(2)m =

{

[1, 1], if v ∈ L ∩ T

[1, 0], if v ∈ L ∩ P

[0, 0], otherwise

(3)L (P ,M) =
∑

v

−m log p− (1−m) log (1− p)

(4)p0 =

{

p0 ifm0 = 1
max(p0, p1) ifm0 = 0

(5)p1 =

{

min(p0, p1) ifm1 = 1
p1 ifm1 = 0

(6)L
ZL(P ,M) =

∑

v

−m(1− p)γ log p− (1−m)pγ log (1− p)
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loss function of the Focal  Loss40 by default, the ZL when specifically stated. All models are trained on an Nvidia 
RTX3090 GPU.

Results
Quantitative results
For csPCa lesion detection, we evaluate the overall csPCa detection performance of the AtPCa-Net using the 
free-response receiver operating characteristic (FROC)  analysis20. The FROC curve helps analyze the relationship 
between model detection sensitivity and the level of FP predictions per patient. In the experiment, we consider 
the local maxima on the output probability map as the csPCa detection points. The csPCa detection point is 
defined as a true positive (TP) when the point is within 5 mm of any csPCa ground truth ROIs to account for a 
potential mismatch between the whole-mount specimen and mpMRI of the corresponding  ROI8,20.

We also evaluate the per-patient level classification performance of the proposed AtPCa-Net by defining 
patients with csPCa as positive cases, and patients without csPCa as negative cases. For each patient, we treat 
the highest value on the output probability map as its probability of having csPCa. The evaluation of the per-
patient level classification performance is done by using Receiver Operating Characteristic (ROC) analysis. In 
both ROC and FROC analysis, we evaluate the model performances by 5-fold cross-validation after 1000 times 
bootstrapping. ROCs were compared with DeLong  Test42, and the sensitivity results at each number of FP pre-
dictions per patient were compared using Chi-squared Test, in accordance with 95% confidence interval (95% 
CI), correspondingly.

We performed comparisons between our proposed model and other popular 3D image segmentation models, 
including  SEResUNet25,  ResidualUNet43,  VNet44,  AttentionUNet45,  VoxResNet46,  nnUNet29, and  UNETR47 for 
csPCa detection and patient-level classification. Figure 3 visualizes the comparison of csPCa detection per-
formance among different models via different FROC curves. Figure 4 visualizes the comparison of patient-
level classification performance among different models via ROC curves. Table 1 shows the comparisons of the 
patient level classification AUCs in the format of mean, and the comparisons of csPCa detection performance 
via showing the sensitivity results against 0.5/1/1.5/2/2.5 FP predictions per patient. Our proposed AtPCa-Net 
outperforms all other models on all the FROC measurements on 0.5/1/1.5/2/2.5 FP predictions per patient with 
higher mean sensitivities (p<0.05). The AtPCa-Net also outperforms all other models on the patient-level clas-
sification AUCs (p<0.05).

Compared with some of the existing studies proposing PCa detection using PCa biopsy  results4,5,37, our study 
uses results confirmed by WMHP, which results in additional FN csPCa annotations as the prospectively missed 
csPCa lesions were retrospectively annotated. In order to discuss the possible performance discrepancies caused 
by the dataset’s differences between existing studies and ours, we also perform ROC and FROC analysis to the 
results using the dataset after excluding FN lesions, shown in Table 5. The proposed AtPCa-Net outperforms all 
other baseline  models25,43–47 on both ROC and FROC measurements when using the dataset excluding all FN 
lesions (p<0.05), which keeps consistent to its performance when including FN lesions, as shown in Table 1.

Qualitative Results
We qualitatively evaluate the model performance by showing representative examples of csPCa detection perfor-
mance comparisons in Fig. 5. In Fig. 5, A and B correspond to two patients with csPCa, and C and D correspond 
to two patients without csPCa. Overall, the proposed AtPCa-Net conducted fewer FP predictions with the same 
TP predictions on all cases compared with other  models25,43–47.

Figure 3.  csPCa detection performance comparison via FROC curves, which measured by the detection 
sensitivity (y-axis) against number of false-positive predictions per patient (x-axis). Solid lines are the mean 
FROC curves, and shadow areas represent the corresponding 95% confidence interval.
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We can also observe its ability to suppress symmetric FP predictions with its better ability to distinguish 
symmetric abnormal patterns of csPCa from other normal prostate tissue, like BPH and CZ, compared with 
other  models25,43–47. Patients B and C are representative examples of patients who have BPH, and Patient D is 
a representative example of patients whose CZ’s appearance could mislead the model’s prediction. The BPH, 
pointed by green arrows for Patient B and C on the MR images, and the CZ region, pointed by the yellow arrows 
for Patient D, show visually similar appearances as the csPCa on mpMRI images but with symmetric patterns. 
We can observe that for all patients, other models that do not take the symmetric-related anatomical informa-
tion into consideration misidentify the BPH and the CZ as csPCa and result in FP predictions. Our models can 
correctly detect the csPCa with fewer FP predictions with the help of the symmetric-related anatomical-aware 
architecture design.

Backbone network extension
To show the generalizable potential of the proposed anatomical-aware design, we also try to transplant the 
architecture onto another UNet-like backbone network. We implement the nnUNet++34, a UNet++48 variant, 
with the proposed ZL and symmetric-aware architecture. Similar to the nnUNet-based approach, the weights of 
each non-decoder block are shared. In nnUNet++, the feature maps from both sides of the network merge after 
each skip connection that ends at the decoder blocks on each level, similar to the implementation with nnUNet 
as the backbone network.

Table 2 shows the performance of using the two backbone networks on the original dataset, and Table 3 
shows the performance comparisons when excluding all FN lesions. The AtPCa-Net(nnUNet) and AtPCa-
Net(nnUNet++) represents for AtPCa-Net using nnUNet and nnUNet++ as a backbone network, respectively. 
From both the Table 2 and the Table 3, we can observe that both nnUNet-based AtPCa-Net and nnUNet++-
based AtPCa-Net achieved better detection and classification performance than when only using the nnUNet or 
nnUNet++, respectively (p<0.05). This indicates the generalizable potential of applying the proposed anatomical-
aware design with different backbone networks. From Table 2, we see the nnUNet-based AtPCa-Net performs 
better on patient-level classification and also achieves higher sensitivities at 0.5/1 FP predictions per patient. 

Figure 4.  Patient-level classification performance comparisons via ROC curves, which are measured by the 
sensitivity (y-axis) against the false-positive rate (x-axis). Solid lines are the mean ROC curves, and shadow 
areas represent the corresponding 95% confidence interval.

Table 1.  Patient-level classification and csPCa detection performance comparisons among different models.

Models
Patient classification AUC (%95 
CI)

csPCa detection sensitivity (95% CI)

0.5 FP/Patient 1 FP/Patient 1.5 FP/Patient 2 FP/Patient 2.5 FP/Patient

nnUNet 0.843 (0.803, 0.883) 0.634 (0.571, 0.697) 0.707 (0.651, 0.763) 0.736 (0.684, 0.788) 0.760 (0.707, 0.813) 0.789 (0.735, 0.853)

ResidualUNet 0.834 (0.794, 0.874) 0.595 (0.534, 0.656) 0.650 (0.592, 0.708) 0.727 (0.674, 0.780) 0.772 (0.724, 0.820) 0.797 (0.745, 0.849)

VNet 0.843 (0.801, 0.885) 0.594 (0.529, 0.659) 0.667 (0.604, 0.730) 0.707 (0.644, 0.770) 0.728 (0.667, 0.789) 0.752 (0.696, 0.808)

SEResUNet 0.836 (0.797, 0.875) 0.598 (0.534, 0.662) 0.671 (0.609, 0.733) 0.720 (0.656, 0.784) 0.752 (0.692, 0.812) 0.785 (0.728, 0.842)

VoxResNet 0.857 (0.824, 0.890) 0.553 (0.489, 0.617) 0.634 (0.572, 0.696) 0.675 (0.615, 0.735) 0.699 (0.643, 0.755) 0.744 (0.683, 0.805)

AttentionUNet 0.842 (0.804,  0.880) 0.594 (0.532, 0.656) 0.683 (0.624, 0.742) 0.736 (0.677, 0.795) 0.760 (0.708, 0.812) 0.781 (0.732, 0.830)

UNETR 0.851 (0.815 , 0.887) 0.598 (0.537, 0.659) 0.679 (0.619, 0.739) 0.715 (0.659, 0.771) 0.740 (0.685, 0.795) 0.769 (0.716, 0.822)

AtPCa-Net (Proposed) 0.880 (0.846,  0.914) 0.675 (0.620, 0.730) 0.728 (0.674, 0.782) 0.772 (0.716, 0.828) 0.793 (0.741, 0.845) 0.809 (0.757, 0.861)
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When the rate of FP predictions per patient raises to 2/2.5 FP predictions per patient, the nnUNet++-based 
AtPCa-Net achieves higher sensitivities. In Table 3, nnUNet-based AtPCa-Net outperforms the nnUNet++-
based AtPCa-Net on all situations, except similar on patient-level classification AUC and sensitivity at 1.5 FP 
predictions per patient. We select nnUNet as the backbone as it outperforms the nnUNet++-based AtPCa-Net 
in the majority of situations and represents the nnUNet-based AtPCa-Net as AtPCa-Net if without any other 
descriptions in this paper.

Ablation study
We conduct ablation studies to discover the importance of each component of the proposed AtPCa-Net, shown 
in Table 4. We can observe that either modifying the Focal Loss to the ZL or modifying the network architecture 
to be in the symmetric-aware architecture improves the performance on both per-patient level classification and 

Figure 5.  Visualizations of csPCa detection results among different models  ResUNet43,  VNet44,  SEResUNet25, 
 VoxResNet46,  AttentionUNet45,  UNETR47 on two patients with csPCa (A and B) and two without csPCa (C and 
D). From left to right, the first column shows the T2WI images, the second column shows the ADC images, 
the third column shows the high-B DWI images and all other columns show the detection probability maps 
generated by different models for each patient A, B, C and D correspondingly. Red contours shown on T2WI, 
ADC, and high-B DWI images indicate the contour of csPCa lesions. Yellow arrows point to the regions of CZ, 
and Green arrows point to the regions of BPH on the MR images. Blue crossings represent FP predictions, and 
red crossings represent TP predictions.

Table 2.  Model performance comparisons using different backbone networks.

Models
Patient classification AUC 
(95% CI)

csPCa detection sensitivity (95% CI)

0.5 FP/Patient 1 FP/Patient 1.5 FP/Patient 2 FP/Patient 2.5 FP/Patient

nnUNet 0.843 (0.803, 0.883) 0.634 (0.571, 0.697) 0.707 (0.651, 0.763) 0.736 (0.684, 0.788) 0.760 (0.707, 0.813) 0.789 (0.735, 0.843)

nnUNet++ 0.867 (0.832, 0.902) 0.626 (0.554, 0.698) 0.695 (0.632, 0.758) 0.756 (0.698, 0.814) 0.781 (0.724, 0.838) 0.817 (0.769, 0.865)

AtPCa-Net(nnUNet) 0.880 (0.846, 0.914) 0.675 (0.620, 0.730) 0.728 (0.674,  0.782) 0.772 (0.716, 0.828) 0.793 (0.741, 0.845) 0.809 (0.757, 0.861)

AtPCa-Net(nnUNet++) 0.877 (0.842, 0.912) 0.662 (0.601, 0.723) 0.719 (0.662, 0.776) 0.772 (0.719, 0.825) 0.809 (0.757, 0.861) 0.821 (0.771, 0.871)

Table 3.  Model performance comparisons using different backbone networks after excluding FN lesions.

Models
Patient classification AUC 
(95%CI)

csPCa detection sensitivity (95%CI)

0.5 FP/Patient 1 FP/Patient 1.5 FP/Patient 2 FP/Patient 2.5 FP/Patient

nnUNet 0.873 (0.810,  0.936) 0.783 (0.720, 0.846) 0.862 (0.811, 0.913) 0.889 (0.845, 0.933) 0.915 (0.880, 0.950) 0.921 (0.885, 0.957)

nnUNet++ 0.876 (0.839, 0.913) 0.762 (0.697, 0.827) 0.836 (0.783, 0.889) 0.884 (0.836, 0.932) 0.905 (0.863, 0.947) 0.921 (0.879, 0.963)

AtPCa-Net(nnUNet) 0.898 (0.866, 0.930) 0.825 (0.767, 0.883) 0.873 (0.822, 0.924) 0.900 (0.856, 0.944) 0.931 (0.890, 0.972) 0.931 (0.891, 0.971)

AtPCa-Net(nnUNet++) 0.898 (0.866, 0.930) 0.820 (0.765, 0.875) 0.852 (0.800, 0.904) 0.900 (0.855, 0.945) 0.921 (0.882, 0.960) 0.926 (0.890, 0.962)
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csPCa detection. When all the components are included, which formats the proposed AtPCa-Net, it outperforms 
all other situations when only partial components are included, showing the superiority of our proposed method 
and the usefulness of integrating all the mentioned prostate anatomical-related prior into the model.

Discussion
Our study demonstrated that the anatomical-aware designs, specifically the symmetric-aware architecture and 
the ZL, of the AtPCa-Net can help improve the csPCa detection performance and also patient-level classification 
results. We attribute the improvements in our model not only to the zonal-related knowledge learned under 
the guidance of the anatomically-aware ZL but also to the ability to reduce FP, which is a direct result of our 
symmetric-aware network architecture design.

The proposed anatomical-aware designs in AtPCa-Net help improve model performance on both csPCa detec-
tion and patient-level classification. The ZL shows its effectiveness by taking the lesion appearance differences 
on mpMRI images in different prostate zones into consideration. There are several  approaches5,6 trying to utilize 
the zonal information by stacking the zonal mask as part of input together with the CE loss function and have 
shown improvement in model performance. However, PCa lesions located in different prostate regions are treated 
identically by using the CE loss, ignoring the essential anatomical information related to PCa’s zonal appearance 
differences. By using the ZL, an additional anatomical-aware constraint is added, and the zonal masks are further 
utilized. In addition, the symmetric-aware architecture of the AtPCa-Net helps reduce the FP predictions that are 
related closely to other normal prostate tissue with similar visual appearances as the PCa lesions on mpMRI, like 
BPH and CZ. The symmetric nature of the proposed network design helps distinguish the differences between 
the asymmetric patterns of PCa and the symmetric patterns of other normal prostate tissue. We can see that the 
integration of both the anatomical-aware designs, the ZL and the symmetric-aware architecture, helps improve 
the model performance more compared with the situations when including each individual design only, with 
4.1%/2.1%/3.6%/3.3%/2.0% sensitivity per 0.5/1/1.5/2/2.5 FP/Patient and 3.7% AUC improvements.

In this study, all patients with csPCa are confirmed by the WMHP results. Different from some of the existing 
studies using results confirmed by prostate  biopsies4,5,37, our WMHP dataset has the retrospective annotations 
for MR-visible FN lesions that are prospectively missed. The model performance regarding the FN lesions is 
important as the missing lesions or underestimation of the PCa’s volume and significance could result in inad-
equate therapy and consequently undesired oncologic  outcomes32,33. Although both Tables 1 and 5 show the 
consistent superiority of the proposed AtPCa-Net compared with other models, it also reveals that all model 
performances dropped on both ROC and FROC measurements when including FN lesions compared with the 
situation when all FN lesions are excluded. The results highlight the challenges in automatically identifying FN 
csPCa lesions via deep-learning models, which aligns with the observations from existing study about the dif-
ficulty to identify FN lesions in clinical  practice32. FN lesions are typically tiny and sometimes might be affected 
by the spatial resolution of the MRI imaging, making it hard to be  detected32. Future studies could potentially 
be conducted regarding how to build an effective automatic csPCa detection model focusing on issues related 
to FN csPCa lesions, in conjunction with advancements MR technology to enhance the resolution of mpMRI.

Table 4.  Ablation study of effects of including/excluding components of the AtPCa-Net.

Components Patient classification AUC 
(95%CI)

csPCa detection sensitivity (95%CI)

Sym-aware Zonal loss 0.5 FP/Patient 1 FP/Patient 1.5 FP/Patient 2 FP/Patient 2.5 FP/Patient

0.843 (0.803, 0.883) 0.634 (0.571, 0.697) 0.707 (0.651, 0.763) 0.736 (0.684, 0.788) 0.760 (0.707, 0.813) 0.789 (0.735, 0.843)

� 0.878 (0.843, 0.913) 0.650 (0.586, 0.714) 0.707 (0.643, 0.771) 0.756 (0.693, 0.819) 0.785 (0.729, 0.841) 0.789 (0.731, 0.847)

� 0.854 (0.817, 0.891) 0.642 (0.580, 0.704) 0.707 (0.651, 0.663) 0.744 (0.690, 0.798) 0.781 (0.729, 0.833) 0.793 (0.740, 0.846)

� � 0.880 (0.846, 0.914) 0.675 (0.620, 0.730) 0.728 (0.674, 0.782) 0.772 (0.716, 0.828) 0.793 (0.741, 0.845) 0.809 (0.757, 0.861)

Table 5.  Patient-level classification and csPCa detection performance comparisons of different models 
without FN lesions.

Models
Patient classification AUC 
(95%CI)

csPCa detection sensitivity (95%CI)

0.5 FP/Patient 1 FP/Patient 1.5 FP/Patient 2 FP/Patient 2.5 FP/Patient

nnUNet 0.873 (0.810, 0.936) 0.783 (0.720, 0.846) 0.862 (0.811, 0.913) 0.889 (0.845, 0.933) 0.915 (0.880, 0.950) 0.921 (0.885, 0.957)

ResidualUNet 0.844 (0.803, 0.885) 0.689 (0.610, 0.768) 0.762 (0.686, 0.838) 0.834 (0.769, 0.899) 0.887 (0.835, 0.939) 0.901 (0.853, 0.949)

VNet 0.861 (0.823, 0.899) 0.698 (0.628, 0.768) 0.799 (0.736, 0.862) 0.841 (0.785, 0.897) 0.862 (0.812, 0.912) 0.884 (0.840, 0.928)

SEResUNet 0.860 (0.822, 0.898) 0.725 (0.658, 0.792) 0.799 (0.742, 0.856) 0.852 (0.803, 0.901) 0.884 (0.838, 0.930) 0.900 (0.857, 0.943)

VoxResNet 0.874 (0.841, 0.907) 0.683 (0.616, 0.750) 0.773 (0.713, 0.833) 0.815 (0.762, 0.868) 0.836 (0.784, 0.888) 0.884 (0.836, 0.932)

AttentionUNet 0.857 (0.819, 0.895) 0.735 (0.666, 0.804) 0.820 (0.767, 0.873) 0.857 (0.806, 0.908) 0.884 (0.832, 0.936) 0.910 (0.869, 0.951)

UNETR 0.873 (0.836, 0.910) 0.735 (0.668, 0.802) 0.831 (0.774, 0.888) 0.862 (0.813, 0.911) 0.889 (0.841, 0.937) 0.905 (0.862, 0.948)

AtPCa-Net(Proposed) 0.898 (0.866, 0.930) 0.825 (0.767, 0.883) 0.873 (0.822, 0.924) 0.900 (0.856, 0.944) 0.931 (0.890, 0.972) 0.931 (0.891, 0.971)
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We also evaluated the proposed AtPCa-Net on patients cohorts grouped by different prostate-specific anti-
gen density (PSAD) level. The PSAD level is one of the clinical factors indicating the level of potential risk of 
patients having  PCa49,50. The results can be found in Table S2 and Table S3 in Supplementary Information. In 
all, we showed the csPCa detection and patient-level classification performances of the proposed AtPCa-Net 
on patient cohorts grouped by cut-off PSAD level of 0.15 ng/ml/ml and 0.20 ng/ml/ml, which used as recom-
mended thresholds for evaluating the risk of patients having PCa in existing  studies49,50. The results exhibited 
the proposed AtPCa-Net performed better in patient cohort with higher PSAD compared with the cohort with 
lower PSAD in both cut-off settings. Further improvement could be made to improve the model performance 
when integrating the clinical information with the DL model design. For example, the DL model may be able to 
capture the risk for the patient having csPCa by the imported PSAD level, and then learn to enhance the predic-
tion efficacy accordingly. Collecting potential related clinical and demographic information and discovering how 
to effectively integrating them with the DL model designs could be our future research directions.

Several limitations exist in the study. The model evaluations might be affected by the fact that the WMHP 
dataset was collected from a single institution and with MR machines from a single vendor. In the future, we 
will expand the WMHP dataset with multi-center collaborations and multi-vendor data, improving the diver-
sity of the dataset with multiple clinical settings and patient demographics, and validate the proposed model’s 
generalizability and further solidify our findings. In addition, the real-world diagnosis of PCa generally inte-
grates radiological findings together with clinical test results and demographic  information2,3. However, just like 
other existing  studies4–10,23, our study is limited on only utilizing information from mpMRI images. Potential 
performance improvements could be achieved if including clinical test results and demographic information in 
the csPCa detection model design, since they have shown the ability to improve model performance compared 
with using imaging information only in other computer-aided disease diagnosis  studies51–55. In addition, due 
to the limit role played by the DCE imaging in the clinical practice, we excluded the DCE imaging from the 
model design, like other existing studies with the same research  objectives51–55. As the DCE imaging can provide 
microvascular structure information, it could also potentially contribute to improved PCa diagnosis by provid-
ing imaging information from another  perspectives3. The integration of clinical information and radiological 
findings, and the inclusion of the DCE imaging could be our future research directions.

We have shown that by taking PCa-specific anatomical priors into consideration, the PCa detection model 
improves its performance on both csPCa detection and patient-level classification. We believe the advantage 
comes from the key ideas of fusing the anatomical-related clinical priors into the loss function and network 
architecture design, which can better guide model training. The achievement could potentially influence the 
future designs of the DL-based PCa detection models on how the anatomical priors could help enhance the 
performance when integrating with DL model designs. We hypothesize that integrating the disease-specific 
anatomical-related knowledge into the model design could also potentially improve the model performance for 
other diseases, which could be a future research direction.

Conclusions
We have demonstrated that by integrating anatomical priors into the deep learning network architecture design, 
the model efficacy is enhanced on both clinically significant prostate cancer (csPCa) detection and patient-
level classification. Adopted from the clinical interpretation, the anatomical priors are carefully achieved by a 
symmetric-aware architecture design and the Zonal Loss (ZL), which format the proposed 3D anatomical-aware 
prostate cancer detection network (AtPCa-Net). Our experiments show that the model performance improves 
when either symmetric-related anatomical priors or zonal appearance differences of PCa are considered, with the 
best results achieved when the model incorporates both information. The proposed AtPCa-Net shows superior 
performance to other baseline models in both csPCa detection and patient-level classification, and shows the 
potential to further reduce the number of unnecessary biopsies may be caused by using current DL models. Our 
approach also reveals the potential flexibility of the anatomical-aware designs as they can improve the model 
performance with different backbone networks. How to generalize the anatomical-aware design idea to other 
specific diseases and how to integrate the design with clinical test results and demographic information could 
be our future research directions.

Data availability
The dataset collected from our institution is currently not publicly available, since the IRB only approves its use 
for internal usage. The data might be available for research purposes on reasonable request or institutional col-
laborations. Please contact the corresponding author for any dataset-specific requests.
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