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Silica hollow shells have been developed as a convenient drug carrier and ultrasound 

imaging contrast agent because of their ease of modification and long imaging time. However, as 

an imaging contrast agent, hard silica shells possess the disadvantages of requiring a relatively 

high ultrasound insonation power for imaging and low biodegradability due to their structural and 

chemical stabilities. In order to ameliorate these disadvantages, non-spherical ultrathin silica 

microshells (with a diameter of 2 μm) doped with iron (III) were synthesized that can be imaged 

at low insonation power similar to commercial soft microbubble contrast agents and lasted for 

days. The amount of iron doping provides control over the silica shell thickness and structural 

morphology, which resulted in a 83% lower insonation power threshold compared to thick 

counterpart, as well as enhanced biodegradability. Besides using silica microshells to enhance the 

imaging contrast, nano-sized pure silica shells (NS, with a diameter of 100 nm) was engineered 
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with a small molecule toll-like receptor 7 (TLR7) agonist, 1V209, to enhance the adjuvant 

activities in vitro and in vivo. TLR agonist (TLR7a) and silica NS combination triggered high level 

of IL-1β release while neither unconjugated TLR7a nor silica shells produced IL-1β. An 

immunization study demonstrated that silica nanoshell-conjugated TLR7a (NS-TLR7a) increased 

OVA-specific IgG antibodies a thousand-fold in mice sera and skewed response to a Th1-mediated 

immunity compared to unconjugated TLR7a. NS-TLR7a were administered intratumorally into 

mice and silica shells have a tendency to prolong the agonist accumulation time, leading to an 

increase of the T cell infiltration. When NS-TLR7a was used in combination with checkpoint 

inhibitors, a higher number of infiltrating lymphocytes were induced and the survival rate was 

improved compared to checkpoint inhibitors only. In a two-tumor bearing mouse model, the 

combination therapy (NS-TLR7a+checkpoint inhibitors) showed that not only can the injected 

tumor be induced into remission, but an uninjected contralateral tumor can also be induced into 

remission (abscopal effect). The results demonstrated that the NS-TLR7a+checkpoint inhibitors 

therapy is able to produce a systemic and tumor-specific immune response. 
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Chapter 1: Thickness and Sphericity Control of Hollow Hard Silica Shells through Iron (III) 

Doping: Low Threshold Ultrasound Contrast Agents 

1.1 Abstract 

Silica particles are convenient ultrasound imaging contrast agents because of their long 

imaging time and ease of modification; however, they require a relatively high insonation power 

for imaging and have low biodegradability. In this study, 2 μm ultrathin asymmetric hollow silica 

particles doped with iron (III) (Fe(III)-SiO2) are synthesized to produce biodegradable hard shelled 

particles with a low acoustic power threshold comparable with commercial soft microbubble 

contrast agents (Definity) yet with much longer in vivo ultrasound imaging time. Furthermore, 

high intensity focused ultrasound ablation enhancement with these particles shows a 2.5-fold 

higher temperature elevation than with Definity at the same applied power. The low power 

visualization improves utilization of the silica shells as an adjuvant in localized immunotherapy. 

The data are consistent with asymmetric engineering of hard particle properties that improve 

functionality of hard versus soft particles. 

1.2 Introduction 

Ultrasound contrast agents are used to enhance image contrast and improve diagnostic and 

therapeutic functionality for drug delivery, tumor detection-characterization, and image-guided 

surgeries.1,2,3,4 Among ultrasound contrast agents, microbubbles encapsulated by surfactants, 

lipids, and polymers are the most common. 5,6,7 However, conventional microbubbles and other 

soft-shelled structures suffer from rapid clearance from the injection site, short in vivo imaging 

lifetimes, large bubble size variance, and complex surface modification procedures.8,9,10 Therefore, 

hard particles made with silica are being studied as alternative contrast agents for ultrasound 

imaging because of their long shelf life, persistent imaging properties, high thermal stability, 
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chemical stability, and low toxicity. 11,12,13 

In addition to ultrasound image contrast enhancement, several contrast agents have been 

reported to augment high intensity focused ultrasound (HIFU) therapy. HIFU therapy induces 

tissue necrosis through energy conversion of ultrasound energy to regional hyperthermia, and it 

has gained interest for tumor ablation applications. 14 Microbubbles enhance tumor ablation during 

HIFU therapy; 15,16,17 however, the short in vivo lifetime of their soft shells limits this application. 

Hard silica shells are long lived in tissue and even under insonation and, therefore, may offer better 

potential as HIFU therapy enhancers. 18,19 

Despite the advantages, rigid silica shells still require higher insonation power to fracture, 

which releases gas in situ and produces signal contrast comparable to soft shell particles. Since 

insonation energy deposited in tissue significantly attenuates with increasing penetration depth, 

for deeper tissue imaging, low power threshold imaging for hard silica shells is still required. 

Liberman et al. demonstrated that substitution of a fraction of the initial silica shell precursors with 

organically modified silanes produced thinner nanoshells. These thinner shells decreased 

ultrasound mechanical index (MI) imaging thresholds compared to the control nanoshells 

synthesized with only tetramethyl orthosilicates (TMOSs). 20  

In the present study, it is shown that in addition to substitution of the initial silica precursor 

with phenyl precursors, 20 the iron doping further alters the shell thickness and structural 

morphology. With 3.5% iron doping (corresponding to 0.010% w/v), 2 μm ultrathin iron (III) 

doped particles with irregular particle subpopulations were synthesized and demonstrated a 83% 

lower threshold for ultrasound imaging than non-iron doped particles. The power threshold of 

these asymmetric 2 μm ultrathin iron (III) doped silica hard particles is similar to that of soft shell 

commercial particles, which have much shorter imaging lifetimes.10 The 2 μm ultrathin Fe(III)-
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SiO2 shells also exhibited a larger temperature rise during HIFU insonation compared to thicker 

shells or commercial microbubbles. These new ultrathin asymmetric Fe(III)-SiO2 shells have the 

ability to amplify the immune response and potentially to be utilized as an adjuvant in localized 

immunotherapy which can be readily visualized by ultrasound imaging. In vitro cytokines analysis 

for the asymmetric 2 μm ultrathin silica shells in contact with RAW264.7 macrophages plus 

lipopolysaccharide (LPS), demonstrated a 40-fold increase in interleukin 1β (IL-1β) production 

com- pared to RAW264.7 macrophages plus LPS alone. The imaging, HIFU, and immune 

response results showed that engineering asymmetry opens a new dimension for tuning the 

properties of ultrasound active nanoparticles. 

1.3 Methods 

1.3.1. Materials 

TMOS, trimethyloxyphenylsilane (TMPS), and N1-(3-trimethoxysilylpropyl) 

diethylenetriamine (DETA) were purchased from Sigma-Aldrich (St. Louis, MO) and the 

polystyrene beads were purchased from PolySciences Inc. (Warrington, PA). Iron (III) ethoxide 

was purchased from Gelest Inc. (Moorisville, PA). Heat inactivated human serum was purchased 

from Gemini Bio-Products Inc (West Sacamento, CA). Ultrasound images were acquired with use 

of a Seimens Sequoia 512 (Mountainview, CA), and an Acuson 15L8 imaging transducer. The H-

102 single element transducer used in HIFU experiments was acquired from Sonic Concepts Inc 

(Bothell, WA). Software programs used for data analysis include Matlab (Natick, MA), ImageJ, 

Microsoft Excel (Redomond, WA), GraphPad Prism (La Jolla, CA), and OsiriX (Bernex, 

Switzerland). 

1.3.2. Synthesis of Silica Shells 

A 0.2% DETA solution was prepared in ethanol solvent and vortexed slightly to mix. 
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Subsequently, 100 mL of ethanol, 8 mL of 0.2% DETA solution, and 5 mL of 2 μm polystyrene 

beads were vortex-mixed for an hour to produce cationic polystyrene beads. 270 μL of TMOS was 

added and vortex mixed for an additional 7.5 h to generate robust non-iron (III) doped 2 μm silica 

shells. Trimethoxyboron was also added to the sol gel synthesis to enhance the shell structure as 

previously described.21 To generate thinner shells, the silica precursor amount was reduced to 70 

mol% using a TMOS/TMPS mixture (1:1 molar ratio). The silica precursor solution was added 

into the cationic beads reaction mixture and mixed for an additional 5 h. This reduced amount of 

silica precursor did not allow shell formation after calcination. However, by incorporating iron 

(III) into the silica network to strengthen the shells, an intact thin shell structure was obtained. The 

detailed synthesis process is as follows for four iron (III) doping levels. 1,000, 750, 500, or 250 

μL of the 20 mg/mL iron (III) ethoxide solution were added into the DETA/polystyrene beads 

mixture together with the silica precursor solution, and vortex mixed for 5 h, to produce iron (III) 

doped silica shells. Brown core–shell Fe(III)-SiO2 particles were collected by centrifugation at 

3500 rpm for 5 mins, and washed twice with 15 mL of ethanol. The core–shell particles were 

calcined in air in a muffle furnace, starting from room temperature and heating at 1.5 °C per minute 

to 550 °C to yield ≈20 mg of the rigid hollow particles.  

Step (1): DETA was added into polystyrene beads mixture in ethanol to assist templating 

reaction  

(C8H8 )n + (CH3O)3 Si(CH2)3NHCH2CH2NHCH2CH2NH2 →(C8H8 )n ⋅(CH3O)3 

Si(CH2 )3NHCH2CH2NHCH2CH2NH2......physisorption                                            (1) 

Step (2): TMOS, TMPS, and iron (III) ethoxide were added into polyamine-modified 

polystyrene beads mixture. TMOS and TMPS reacted with H2O presented in the solution and 

started hydrolysis and iron (III) was incorporated into silica network, cationic protonated DETA 
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helped attract anionic deprotonated sol hydrolysis products for templating on the polystyrene bead 

surface 

Si(OR)4 +H2O→HO−Si(OR)3 +R−OH                                                                      (2) 

Step (3): Spin down the iron(III)/silica-polystyrene core–shells. Calcine and obtain hollow 

iron (III) doped silica shells. 

The 70 mol% of TMOS/TMPS mixture was a previously determined to be the optimized 

silica precursor concentration to generate thin silica shells. It was observed that a lower amount 

of initial silica precursor concentration, even with addition of iron ethoxide to strength the shells 

or with addition of increased DETA to attract more silicic acid to the polystyrene bead template 

surface, would fail to robustly generate intact shell. 

1.3.3. Characterization of Particles 

The iron (III) doped silica shell particles were imaged in a JEOL 2100F Transmission 

electron microscope (TEM) operating at 200 kV. TEM samples were prepared by drop-casting the 

shells (diluted in ethanol) on lacey carbon coated copper TEM grids. Energy filtered imaging TEM 

through a Gatan imaging filter (Tridiem) was used to investigate the elemental distribution in the 

sample. In addition, the shell thickness was measured from high-magnification TEM images in 

ImageJ software. 

1.3.4. Biodegradability 

Iron (III) doped or non-iron (III) doped 2 μm silica shells were dispersed at 1 mg/mL 

concentration in heat inactivated human serum. The samples were vortex mixed to suspend the 

particles and incubated at 37 °C in a temperature-controlled water bath. The samples were vortexed 

every 24 h. The human serum was replaced with fresh human serum every 4 d after centrifugation 

and samples were vortexed to resuspend the shells. Every 8 d, a pellet was isolated by 
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centrifugation, washed twice with water, and calcined. scanning electron microscopy (SEM) 

images and energy-dispersive X-ray spectroscopy (EDX) analysis of the pellet at each time point 

were obtained to characterize the extent of biodegradation. 

1.3.5. Ultrasound Contrast Pulse Sequencing and Color Doppler Imaging 

The 2 μm shells were suspended in 1 mL of water at a concentration of 0.4 mg/mL in a 

pipette bulb. Microbubbles (Definity) with gas volumes equivalent to the shells were filled in a 

pipette bulb tube. The bulb was placed in a water bath with an ultrasound transducer placed 

perpendicularly. Ultrasound was applied at 7 MHz for both contrast pulse sequencing (CPS) 

imaging and color Doppler imaging from low to high insonation power, which is referred to as the 

MI values in the study. 

1.3.6. High Intensity Focused Ultrasound 

100 μL of 4 mg/mL PFP-filled Fe(III)-SiO2 shell/water suspension was mixed with 900 μL 

of water in a pipette bulb. Definity microbubbles at the same gas volume as occupied by the silica 

microshells were used for comparison. The bulb was placed in the focal region of the HIFU 

transducer. HIFU power of 100 W was applied at a 100% duty cycle for 10 s. The temperature rise 

for each sample was measured with a thermocouple. 

1.3.7. In Vitro Studies 

RAW264.7 cells (mouse macrophage cell line) were purchased from the American Type 

Culture Collection (Rockville, MD) and cultured in complete Dulbecco’s modified Eagle’s 

medium (DMEM) media (Gibco, Carlsbad, CA). Cells were plated at a concentration of 104 

cells/well and primed with lipopolysaccharide at 100 ng/mL for 2 h before exposure to silica shells. 

IL-1β in the supernatant after 18 h incubation was measured by enzyme-linked immunosorbent 

assay (ELISA) kit (Cat. No. DY401, R&D system, Minneapolis, MN). 



7 

 
7 

1.3.8. In Vivo Studies 

The C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor, ME). 50 μL 

of 4 mg/mL shell/water suspension was intramuscularly injected into the flank of each mouse. 

Color Doppler images were acquired continuously as the MI was increased from 0.06 to the 

maximum clinically allowable MI of 1.9. The threshold is defined as the first signal generated in 

the color Doppler images as the MI is increased. For the signal persistence study, the images were 

taken daily at MI = 1.9 for 10 d. All animal procedures have been approved by the Institutional 

Animal Care and Use Committee (IACUC) at University of California San Diego (UCSD). 

1.4 Results and discussion 

1.4.1. Iron (III) Doping Modulates Shell Thickness 

Iron (III) doped silica shells with a diameter of 2 μm were synthesized with varying iron 

(III) doping concentrations (Table 1.1). TEM and scanning electron microscopy SEM images in 

Figure 1.1 show that the 2 μm iron doped silica shells (0.010%, 0.015%, and 0.020% of iron (III) 

ethoxide-concentrations are shown in weight/volume percentages) formed intact spherical 

structures. When iron (III) doping was reduced less than 0.010%, shell synthesis was not viable. 

Based on EDX analysis in Table 2.1, 0.01%, 0.015%, and 0.02% of Fe(OEt)3 doping 

percent yielded 3.5 ± 1.0, 5.7 ± 1.7, and 6.8 ± 2.9 Fe (III) atomic % in final products, respectively. 

The effect of iron (III) content on shell thickness and structure were quantified using TEM 

and imageJ software. Thickness was defined as the dense layer of the shells as previously 

described.20 Figure 1.1 and Table 1.1 validated that iron (III) content controls shell thickness for a 

given silica precursor. The failure of shell formation with 0.005% iron (III) doping is consistent 

with insufficient iron (III) needed for shell strengthening. The formulations synthesized with 

0.01% of iron (III) ethoxide have a markedly thinner shell thickness when compared to 
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formulations with a higher iron (III) content, and thus were denoted as 2 μm ultrathin Fe(III)-SiO2 

shells (2.7 nm vs 21.1 nm thickness, respectively). Particles with 0.01% of iron (III) ethoxide will 

be referred to as ultrathin, particles with 0.015% of iron (III) ethoxide will be referred to as medium 

thickness, and particles with 0.02% of iron (III) ethoxide will be referred to as thick shell particles. 

Table 1. 1: The starting concentration of iron precursor of Fe-SiO2 shells and the final Fe atomic 
% and shell thickness. 

Iron ethoxide Starting 
Concentration 
 (% in w/v) 

  Fe atomic % (by 
EDX)   Shell thickness (nm) 

  

Sample 

0.020%  6.8 ± 2.9  21.1 ± 5.6  Thick shells 

0.015%  5.7 ± 1.7  6.2 ± 2.3  Medium-thickness shells 

0.010%  3.5 ± 1.0  2.7 ± 1.5  Ultrathin shells 

0.005%   1.1 ± 0.5   --   -- 
 

 
Figure 1. 1: TEM images of iron (III) doped silica hollow shells. 
(a,b) ultrathin, (c,d) medium-thickness, and (e,f) thick iron (III) doped silica shells. 
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1.4.2. Irregular Shells Formed by Low Iron (III) Doping 

A correlation between iron (III) doping and particle sphericity was observed after 

examining more than 100 randomly obtained microscopy images for each sample. While only a 

1.7% ± 1.7% irregular particle subpopulation was found in the medium-thickness Fe(III)-SiO2 

shells (0.015% w/v formula), a 26% ± 3% irregular particle subpopulation was observed in the 

ultrathin Fe(III)-SiO2 shells. Irregular particles were not observed for either high iron (III) doped 

silica shells (0.020% w/v formula) nor non-iron (III) doped silica shells (Figure 1.2). Since iron 

(III) doping lower than 0.005% w/v could not produce an intact sphere structure under the synthetic 

conditions, 0.010% w/v of iron (III) doping was the optimal concentration for obtaining a 

significant fraction of irregular shells.  

Previous studies show that a particle’s shape is a critical factor in mechanical strength, and 

that the structural heterogenicity of the irregular particles can cause discrete local stresses.21,22,23 

For the 26% irregularly shaped subpopulation in the ultrathin particles, it is expected they will 

exhibit lower shell strength, fracture more easily, and, therefore, enhance the ultrasound imaging 

performance at lower insonation powers. Among the ultrathin Fe(III)-SiO2 particles, nanoscale 

deep surface inclusions were also found in some particles, which implies that there may be more 

structural defects in the ultrathin shells that are not visible in TEM. 
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Figure 1. 2: Irregular particle subpopulation from ultrathin iron (III) doped silica shells.  
(a) Synthesis of ultrathin shells with a large subpopulation of irregular shells. (b) Representative 
SEM image of 2 μm Fe(III)-SiO2 ultrathin shells containing spherical and irregular particle 
subpopulations. (c) Representative TEM image of single irregular 2 μm Fe(III)-SiO2 ultrathin 
shell. d) Irregular particle ratios in ultrathin Fe(III)-SiO2 particles, medium- thickness Fe(III)-SiO2 
particles, thick Fe(III)-SiO2 particles and non-iron (III) doped SiO2 particles (Data were analyzed 
for fraction of irregular using Kruskal–Wallis test. P-values are as follows: *P ≤ 0.05, **P ≤ 0.01, 
***P ≤ 0.001). 
 
1.4.3. Low Ultrasound Imaging Threshold for New Ultrathin Fe(III)-SiO2 Shells 

To verify that sphericity and shell thickness of iron (III) doped silica shells control 

ultrasound performance, shells were filled with perfluoropentane (PFP) gas and imaged with 

ultrasonography. The ultrasound sensitivity of the particles was quantified using CPS; CPS 

extracts nonlinear signals to produce images,22 and the CPS signals correspond to echo 

decorrelation events. According to the CPS, 2 μm diameter thick and ultrathin shells began 

generating signals at MI = 0.66 and MI = 0.11, respectively. The average intensity of pixels in CPS 

images was referred to brightness in this study. When the MI started at 0.06, the signal was due to 

background noise which was ≈50 a.u. (Figure 1.3a–c). As the MI increased, the intensity of pixels 
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in CPS images increased far above the background noise. As shown in Figure 1.3a, the 2 μm 

ultrathin shells demonstrated a much lower power insonation threshold for CPS brightness (at 

frame 55; MI = 0.11) than the thick shells (at frame 150; MI = 0.66). The differences in brightness 

profiles are attributed to the thick shells providing a more robust structure so that there are fewer 

shells fractured at low MI. In Figure 1.3a, as the MI was increased, the ultrathin shells generated 

two plateaus at MI = 0.9 and 1.9. For the first plateau, it was hypothesized that the ultrasound 

waves at low insonation power (MI = 0.2–0.9) interacted with the irregular shells that have a 

weaker structure, breaking the irregular shells to release gas and create more non- linear events. It 

was hypothesized that the second plateau represents the 2 μm ultrathin shells with a normal 

spherical structure fracturing to release PFP gas at higher insonation powers and enhancing the 

output ultrasound signals (MI = 1.0–1.9). The effect of shell thickness on threshold power for CPS 

was quantified using a new metric.  

The threshold for CPS brightness was defined as 20% of the maximum brightness at MI = 

1.9. The power threshold of ultrathin, medium-thickness, and thick shells occurred at MIs of 0.2, 

1.0, and 0.97, respectively (Figure 1.3d). By reducing the iron (III) doping and reducing 

corresponding shell thickness and symmetry, the threshold of CPS imaging of ultrathin shells 

decreased by 83% (p-value = 3.00 × 10-5) compared to the thick symmetric non-iron (III) doped 

shells.  

A commercial contrast agent (Definity) was used for com- paring the ultrasound 

performance of fluorocarbon-filled soft shells with the PFP-filled ultrathin Fe(III)-SiO2 hard 

shells. Definity is a clinically used microbubble emulsion filled with octafluoropropane gas that 

has an extremely low CPS threshold, but at the same time it has a large size distribution and short 

imaging lifetime; in vivo studies showed that microbubbles can only be imaged for few minutes.23 
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Definity was tested at equivalent gas volume concentration as silica shells. The ultrathin iron (III) 

doped hard shells and commercial microbubbles have no difference in imaging thresholds (p-value 

= 0.88) and both demonstrated low threshold mean (MI = 0.20 and 0.16, respectively) as shown in 

Figure 1.3d. These results indicate the feasibility of microbubble alternative by rigid ultrathin iron 

(III) doped silica shells that provide a longer imaging usage time.  

Similar to CPS imaging, the enhancement of color Doppler imaging by PFP-filled Fe(III)-

SiO2 hard shells were tested in vitro. Appearance of the first signal of the color Doppler image is 

presented in Figure 1.3e. Consistent with the CPS results, the ultrathin asymmetric shells showed 

a lower threshold com- pared to thick shells. Signals from the 2 μm ultrathin shells and 

microbubbles (Definity) both appeared at MI = 0.2 with similar signals, while that of the thick 

shells first appeared at MI = 1.1. At modest insonation power (MI = 0.4–1.1), ultrathin and medium 

thickness iron (III) doped shells showed a much stronger signal compared to Definity (Figure 

1.3f,g). 
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Figure 1. 3: CPS and color Doppler ultrasound imaging of PFP-filled iron (III) doped silica 
shells, non-iron (III) doped silica shells and microbubbles.  
(a–c) CPS brightness of iron (III) doped silica shells over frames from MI = 0.06 to MI = 1.9. (a) 
Ultrathin Fe(III)-SiO2 2 μm shells, b) medium-thickness Fe(III)-SiO2 2 μm shells, and (c) thick 
Fe(III)-SiO2 2 μm shells. (d) CPS thresholds of non-iron (III) doped 2 μm silica shells, commercial 
microbubbles (Definity), and thick, medium-thickness, and ultrathin Fe(III)-SiO2 shells. (e) Color 
Doppler imaging of 2 μm shells with thick, medium-thick, ultrathin thickness, compared to non-
iron (III) doped shells and microbubbles (Definity). (f) Image of color Doppler ultrasound of 
ultrathin Fe(III)-SiO2 shells at MI = 1.9. (g) Image of color Doppler ultrasound of thick Fe(III)-
SiO2 shells at MI = 1.9. 
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1.4.4. HIFU Enhancement by Ultrathin Fe(III)-SiO2 Shells 

Several commercial microbubble contrast agents such as Levovist, Optison, and Definity 

have been studied to enhance HIFU treatment.24,25 In the present study, the enhancement of HIFU 

by particles was characterized in vitro by comparing the temperature rise of a solution of silica 

shells, commercial microbubbles with same gas volume, and pure water. In Figure 1.4, ultrathin 

Fe(III)-SiO2 shells demonstrated a 33.4 °C temperature rise from 23.1 to 56.5 °C after applying 

100 W 100% duty cycle HIFU for 10 s. Conversely, thick and medium thickness Fe(III)-SiO2 

shells only increased the temperature by ≈15.2 °C from 23.6 to 38.8 °C, and 17.0 °C from 23.4 to 

40.4 °C, respectively. In water without added particles, the temperature only increased by 8.3 °C 

under HIFU exposure, which is approximately a quarter of temperature rise obtained by the 

ultrathin Fe(III)-SiO2 shells. At the same applied HIFU power and the same gas volume 

concentration, commercial microbubbles (Definity) produced only 13.6 °C of temperature rise 

(from 20.5 to 34.1 °C). This is a 2.5-fold smaller temperature rise compared to ultrathin Fe(III)-

SiO2 hard shells. The data con- firms and quantifies the HIFU enhancement effects achieved by 

the ultrathin hard microshells ultrasound contrast agent. 

 
Figure 1. 4: HIFU response of iron (III) doped silica shells, non-iron (III) doped silica shells, 
commercial microbubbles, and absence of shells (pure water). 
0.4 mg/mL silica shells or Definity microbubbles at the same gas volume were applied HIFU (100 
Watts) at 100% duty cycle for 10 s. 
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1.4.5. Biodegradability 

Pohaku-Mitchell et al. demonstrated that by doping iron (III) into nanometer-sized silica 

shells at 6 at% Fe, the silica particles became biodegradable through an iron (III)-chelating 

pathway via transferrin after 17 d incubation with human serum.26 To test the in vitro 

biodegradability of the new ultrathin shells, 2 μm non-iron (III) doped silica shells, thick Fe(III)-

SiO2 shells (6.8 at% Fe), and ultrathin Fe(III)-SiO2 shells (3.5 at% Fe) were immersed in human 

serum for 24 d. The morphology of the silica shells was monitored to determine the progress of 

biodegradation. On the 8th day, both ultrathin and thick Fe(III)-SiO2 shells began merging into 

irregular solid clusters while the nanosized Fe(III)-SiO2 particles remained mostly intact on day 

10 in previous studies.26 On day 24, ultrathin Fe(III)-SiO2 samples pre-dominantly disappeared, 

whereas thick Fe(III)-SiO2 samples remained partially intact. The non-iron (III) doped silica shells 

remained mainly intact in serum over the course of 24 d. It is hypothesized that thinner shells are 

easier to degrade despite the decreased amount of iron (III) doping. Only 3.5 at% of iron (III) 

doping is sufficient to convert nonbiodegradable silica matrix to biodegradable shells while in the 

literature 6% of iron (III) doping gave a much slower biodegradation profile due to the much 

thicker shells.26 

1.4.6. In Vivo Imaging Threshold and Persistence of Fe(III)-SiO2 Shells 

The iron (III) doped silica shells were tested for use as an intraoperative, low threshold 

color Doppler tissue marker in vivo. Imaging was performed at 7 MHz, the previously determined 

optimal frequency. 0.4 mg of ultrathin or thick Fe(III)-SiO2 shell solutions were intramuscularly 

injected into mice, and insonation power was increased from MI = 0.06 to MI = 1.9. The color 

Doppler signal was monitored over different insonation powers to assess the in vivo imaging 

enhancement by the 2 μm shells. Figure 1.5a shows that thick shells began to show the first signal 
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at MI = 1.1 and persisted to MI = 1.9, yet the signals remained faint throughout the MI range. In 

contrast, ultrathin shells produced the first signal at MI = 0.37; a threshold value over 3× lower 

than that of the thicker shells. As the MI increased, the color Doppler signals became stronger until 

MI = 1.9, by which point the signal sur- passed that of thicker shells. With the improved 

performance of in vivo color Doppler imaging and HIFU enhancement, these new ultrathin 

asymmetric iron (III) doped silica hard shells offer added safety in applications of image-guided 

HIFU tumor ablation, by providing HIFU enhancement at reduced power levels.  

To explore the potential utilization as long-term ultrasound biomarkers, these ultrathin 

asymmetric Fe(III)-SiO2 shells were injected into mice flanks and imaged over 10 d at MI = 1.9 to 

assess the signal persistence. The commercially available microbubbles Definity could only be 

imaged within a few minutes after injection on the first day as reported previously. The color 

Doppler of Definity could not be detected after 1 d. Conversely, the gas filled ultrathin 2 μm 

Fe(III)-SiO2 shells could be detected for 10 d in vivo after the initial injection. The results shown 

in Figure 1.5b also indicated that the 2 μm ultrathin Fe(III)-SiO2 shells remained stationary at the 

injected tissue and did not excavate from the injected tissue site. The in vivo imaging stability and 

the long retention time at the injection site suggested the promising application for these ultrathin 

asymmetric shells to be used as tissue labeling agents. 
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Figure 1. 5: In vivo color Doppler ultrasound images of 2 μm Fe(III)-SiO2 shells filled with 
PFP gas. 
(a) Thresholds of thick Fe(III)-SiO2 shells and ultrathin Fe(III)-SiO2 shells. Shells were injected 
into mice intramuscularly and imaged with MIs from 0.06 to 1.9. (b) Signal persistence of ultrathin 
Fe(III)-SiO2 shells. Shells were injected into mice intramuscularly and imaged over the course of 
10 d at MI = 1.9. 
 
1.4.7. 2 μm Ultrathin Fe(III)-SiO2 Shells Can Be Used as an Immune Adjuvant 

The aforementioned advantages for these new ultrathin asymmetric Fe(III)-SiO2 shells, 

such as prolonged persistency and easy visualization, are important in promoting a mature immune 

response and designing immunotherapy strategies, respectively.27 Since silica nanoparticles have 

been previously reported to be a strong immune adjuvant that amplify antibody production and 
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elicit immunological protection response,28 it is hypothesized that these new Fe(III)-SiO2 2 μm 

shells can also effectively activate immune response while being able to generate stable ultrasound 

signals for tracking the adjuvant location. To test their adjuvanticity, innate immune cells, 

macrophages RAW264.7, primed with LPS were incubated with shells and IL-1β in the 

supernatant was measured by ELISA to assess the activation level of macrophages. IL-1β is able 

to enhance dendritic cells activation and T cells priming, stimulating an effective adaptive immune 

response.29 As shown in Figure 1.6, these new ultrathin asymmetric Fe(III)-SiO2 shells induced a 

40-fold increase in IL-1β in cells primed with LPS compared to LPS alone. This result suggests 

that these new Fe(III)-SiO2 shells have the ability to amplify the immunity, indicating the potential 

to be utilized as an adjuvant in immunotherapy with medical imaging capabilities.30 

  
Figure 1. 6: In vitro adjuvanticity of ultrathin asymmetric Fe(III)-SiO2 shells.  
104 cells per well of RAW264.7 were incubated with iron (III) doped silica shells and/or LPS to 
determine the adjuvanticity of these new ultrathin asymmetric Fe(III)-SiO2 shells. 
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1.5 Conclusion 

The extent of iron (III) doping can be used to modify the thickness and structural 

morphology of silica shells. The low iron (III) doping (0.010% w/v) not only generated thinner 

shells but also produced a 26% irregular particle subpopulation among the ultrathin hard shells. 

These new asymmetric ultrathin Fe(III)-SiO2 hard shells demonstrated similar performance to the 

commercial soft particle contrast agent, Definity, which suffers from short imaging duration. HIFU 

sensitization tests showed that asymmetric ultrathin 2 μm Fe(III)-SiO2 shells induced a greater 

HIFU response compared to symmetric thicker shells and microbubbles. The persistency 

experiments demonstrated that these new Fe(III)-SiO2 shells can be imaged in vivo for a much 

longer time compared to commercial microbubbles. The enhanced performance of these new 

Fe(III)-SiO2 shells originates from two structural variances; the thinner shells and the irregular 

particles are mechanically weaker. It has been demonstrated that a new variable, asymmetry, may 

be introduced into hard shelled contrast agents in order to tune their structural integrity. A more 

fragile structure may expand their applications; for example, these new ultrathin asymmetric 

Fe(III)-SiO2 shells capable of amplifying immune response can be used as a local immunotherapy 

with effective ultrasound visualization. 

1.6 Acknowledgement 

Chapter 1, in full, is a reprint of the material as it appears in Advanced Functional Materials 

2019. Huang, Ching-Hsin; Wang James; Yang, Jian; Oviedo, Juan Pablo; Nam, Seungjin; Trogler, 

William C.; Blair, Sarah L.; Kim, Moon J.; Kummel, Andrew C., Wiley, 2019. The dissertation 

author was the primary author of this paper. 



20 

 
20 

Chapter 2: Conjugation of a Small-Molecule TLR7 Agonist to Silica Nanoshells Enhances 

Adjuvant Activity 

2.1 Abstract 

Stimulation of Toll-like receptors (TLRs) and/or NOD-like receptors on immune cells 

initiates and directs immune responses that are essential for vaccine adjuvants. The small-molecule 

TLR7 agonist (TLR7a), imiquimod, has been approved by the US Food and Drug Administration 

(FDA) as an immune response modifier but is limited to topical application due to its poor 

pharmacokinetics that causes undesired adverse effects. Nanoparticles are increasingly used with 

innate immune stimulators to mitigate side effects and enhance adjuvant efficacy. In this study, a 

potent small-molecule TLR7a, 2- methoxyethoxy-8-oxo-9-(4-carboxybenzyl)adenine (1V209), 

was conjugated to hollow silica nanoshells (NS). Proinflammatory cytokine (IL-6, IL-12) release 

by mouse bone-marrow-derived dendritic cells and human peripheral blood mononuclear cells 

revealed that the potency of silica nanoshells-TLR7 conjugates (NS-TLR7a) depends on nanoshell 

size and ligand coating density. Silica nanoshells of 100 nm diameter coated with a minimum of 

∼6,000 1V209 ligands/particle displayed 3-fold higher potency with no observed cytotoxicity 

when compared to an unconjugated TLR7a. NS-TLR7a activated the TLR7-signaling pathway, 

triggered caspase activity, and stimulated IL-1β release, while neither unconjugated TLR7a nor 

NS alone produced IL-1β. An in vivo murine immunization study, using the model antigen 

ovalbumin, demonstrated that NS-TLR7a increased antigen-specific IgG antibody induction by 

1,000× with a Th1-biased immune response, compared to unconjugated TLR7a. The results show 

that the TLR7 ligand conjugated to silica nanoshells is capable of activating an inflammasome 

pathway to enhance both innate immune-stimulatory and adjuvant potencies of the TLR7a, thereby 

broadening applications of innate immune stimulators. 
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2.2 Introduction 

Nanoparticle technology has shown potential to improve immunotherapy. With tailored 

properties such as size, structure, surface chemistry, and drug-loading capacity, nanoparticles can 

increase the therapeutic index of immunostimulatory agents by facilitating entry into antigen-

presenting cells (APCs)31,32,33 and promoting local retention in the tissue.34,35 The prolonged 

retention time can sustain a higher localized agent concentration that amplifies the immune 

response. Employing nanoparticles in addition to immunostimulatory agents can also enhance and 

shape the immune responses toward a cellular- or humoral-biased immunity.36,37,38 Cellular 

immunity that is mediated by T helper 1 cells (Th1) correlates to the induction of cytotoxic T cells 

to fight cancerous cells; humoral immunity that is mediated by T helper 2 cells (Th2) supports B 

cell proliferation to fight extracellular organisms.39 Pattern recognition receptors (PRRs), such as 

Toll-like receptors (TLRs) and NOD-like receptors (NLRs), can activate the immune system and 

are commonly targeted when designing immunostimulatory agents.40 TLR7 is one of the most 

extensively characterized TLRs for drug targeting.41,42 For example, imidazoquinoline compounds 

produce proinflammatory cytokines, which display antitumoral and antiviral activities and are 

being investigated as cancer treatments.43 NLRs, the other common target, including subfamily 

members such as NLRP1, NLRP3, and NLRP4, are important factors in the activation of caspase-

1 in response to proinflammatory stimuli.44 Despite promising specificity, these 

immunostimulatory agents exhibit insufficient immune response induction due to poor 

pharmacokinetics (PK) and thus require better formulation, such as conjugation to nanoparticles, 

to improve efficacy.38,45 

Silica nanoparticles have several advantages for immuno-therapy, which include the ease 

of surface conjugation to a variety of immune-stimulants46 and self-adjuvanticity. While other 
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nanoparticles, such as polymers and lipids, have also been developed,47,48 they have some 

limitations. Liposomes can improve PK;49 however, their thermodynamic instability restrains their 

widespread use in a practical therapeutic setting.50 Cholesterol insertion and PEGylation are used 

to improve liposome stability but may lead to decreased immune responses51,52,53,54 or accelerated 

blood clearance,55 respectively. Polymeric nanoparticles, commonly made of polylactic acid and 

polylactic-co-glycolic acid, are mostly compatible with soluble antigens, which are generally weak 

in immunogenicity and, therefore, may require the addition of commercialized adjuvants.56 

Problems with polydispersity and the requisite sophisticated manufacturing processes have also 

posed major challenges for reproducing a pharmaceutical-grade polymer-nanoparticle-based 

immunotherapy agent.57,58,59 Conversely, silica nanoshells have the advantages of a well-

established surface modification chemistry, a narrow size distribution, a highly tunable particle 

size, high stability in storage, and a high in vivo stability; therefore, they are a promising candidate 

to deliver immune-stimulants.60 In addition, the hollow structure has shown to induce a more robust 

immune response compared to that of solid silica nanoparticles. 61,62 Several silica nanoparticle 

formulations have been reported to possess the self-adjuvanticity of being able to produce high 

titers of IgG antibodies comparable to the immune response induced by the commercial adjuvant 

alum.63,28,64 

In the present study, immunostimulatory potencies of 100-2,000 nm silica nanoshells 

conjugated with TLR7 agonists (TLR7a), termed nanoshell-TLR7a conjugates (NS-TLR7a), were 

investigated. Conjugation of TLR7 agonist (1V209) to 100 nm silica nanoshells at a high surface 

coating density significantly enhanced the agonistic potency compared to the unconjugated 

counterpart. Furthermore, silica nanoshells conjugated with TLR7a stimulated IL-1β production 

through caspase activity, consistent with the silica nanoshells playing a vital role in immune 
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stimulation. In vivo immunization studies using a model antigen showed that the NS-TLR7a 

enhanced Th1-biased cellular and humoral immune responses. These results demonstrate that the 

conjugation of a TLR7a to silica nanoshells amplified the immune-stimulatory effects of the 

agonist, thereby broadening the potential agonistic application of these agents. 

2.3 Experimental 

2.3.3 Materials 

N1-(3-Trimethoxysilylpropyl)diethylenetriamine (DETA, Cat. No. D93856), TMOS, 

TMPS, (3-aminopropyl)triethoxysilane (APTES), N-hydroxysuccinimide (NHS, Cat. No. 130672), 

N-(3- dimethylaminopropyl)-N′-ethylcarbodiimide (EDC), and solvents were purchased from 

Sigma-Aldrich (St. Louis, MO). Polystyrene templates (100−2,000 nm) were purchased from 

Polysciences Inc.(Warrington, PA). 4-[6-Amino-2-(2-methoxyethoxy)-8-oxo-7H-purin-9(8H)-

yl]methylbenzoic acid (1V209) was synthesized as previously described.  Roswell Park Memorial 

Institute medium 1640 (RPMI, Cat. No. 11875-093, Gibco, Thermo Fisher Scientific, Waltham, 

MA) was supplemented with 10% fetal bovine serum (Cat. No. 35-011-CV, Corning Inc., Corning, 

NY), 100 U/mL penicillin, 100 μg/mL streptomycin, and 292 μg/mL glutamine (Cat. No. 10378-

016, Life Technologies, Carlsbad, CA) to prepare the complete media (RP-10). Pan-caspase 

inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK), 

was purchased from Invivogen (Cat. No. tlrlvad, San Diego, CA). 

2.3.4 Instrumentation 

TEM images were captured using a JEOL 1400 electron microscope. UV−vis absorption 

was measured with a NanoDrop ND-100 spectrophotometer (Wilmington, DE) and infinite 

M200 plate reader (TECAN, Mannedorf, Switzerland). 
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2.3.5 ELISA Reagents 

Mouse anti-IL-6 antibodies (Cat. Nos. 554400 and 554402), mouse anti-IL-12 antibodies 

(Cat. Nos. 551219 and 554476), and recombinant mouse IL-6 and IL-12 standards (Cat. Nos. 

554582 and 554594) were purchased from BD Pharmingen (Franklin Lakes, NJ). 

Tetramethylbenzidine (TMB) was used as a substrate for HRP. Mouse IL-1β (Cat. No. DY401) 

and interferon 𝛾 (IFN-γ, Cat. No. DY485) ELISA kits were purchased from R&D System 

(Minneapolis, MN). Chicken ovalbumin (OVA, Cat. No. LS003049) was purchased from 

Worthington (San Diego, CA) and IgG1-AP goat anti-mouse antibody (Cat. No. 1070-04) and 

IgG2a-AP goat anti-mouse (Cat. No. 1080-04) antibody were purchased from Southern Biotech 

(Birmingham, AL). p-Nitrophenyl phosphate tablet (pNPP) was purchased from Sigma-Aldrich 

(Cat. No. 2700, St. Louis, MO). 

2.3.6 Synthesis of 100 nm Nanoshells 

0.2% DETA solution was prepared in ethanol and quickly vortexed. Ethanol (430 mL), 40 

mL of 0.2% DETA solution, 2.5 mL of water, and 6.25 mL of 100 nm polystyrene beads (2.5% 

solids (w/v) aqueous suspension) were mixed and stirred for an hour at 4,000 rpm. Polystyrene 

beads (100 nm) were used as templates for synthesizing silica nanoshells. DETA was physically 

adsorbed onto polystyrene beads and generated a positive surface charge during initial nucleation 

of the polycondensation polymerization. Silica precursor was prepared by suspending 375 μL 

TMOS and 500 μL TMPS in 4 mL of ethanol and briefly vortexed. This precursor solution was 

added to the polystyrene beads/DETA solution and stirred for 5 h at 4,000 rpm. The TMOS formed 

silicic acid and its various deprotonated forms, which interacted with positive charges on the 

surfaces of the beads to propagate polymerization. After 5 h, samples were centrifuged at 3,200 

rpm for 25 min and washed twice with ethanol. Samples were left to dry overnight and calcined at 
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550 °C (ramping at 5 °C/min and soaked at 550 °C for 5 h). The synthesis reaction yields 80−100 

mg hollow 100 nm silica nanoshells. Different sizes of hollow silica shells were synthesized with 

similar methods that were reported in previous studies.21 

2.3.7 1V209 linking Chemistry and Quantification 

1V209 was synthesized as previously described.65 NHS, EDC, and 1V209 were prepared 

at 10 mg/mL in anhydrous dimethyl sulfoxide (DMSO). A 1:1:1 molar ratio of NHS, EDC, and 

1V209 was mixed and pulse-vortexed for 2 h at 3,200 rpm to form a 1V209 solution (1×). 

Meanwhile, silica nanoshells were amine-functionalized as follows. The silica nanoshells were 

suspended in DMSO at 2.5 mg/mL, vortexed, and sonicated until the nanoshells were well 

suspended. APTES solution (2 μL of 10%) was added per mg of silica and pulse-vortexed for 2 h 

at 3,200 rpm. After 2 h, nanoshells were centrifuged at 4,000 rpm for 10 min, washed twice with 

4 mL of DMSO, and resuspended at 20 mg/mL in anhydrous DMSO. Diluted 1V209/NHS/EDC 

solution (110 μL, 0.5× or 0.01×) was added to silica nanoshells per mg of nanoshells and 

corresponded to high- or medium-density coating formulation, respectively. For low-density 

formulations, the volume of diluted 1V209/NHS/EDC (0.01×) added to nanoshells was kept 

constant, but the reaction time was reduced to 30 min. All conjugates were washed twice as before 

and reconstituted at 20 mg/mL based on silica nanoshell mass for further characterization. To 

calculate the number of ligands, a standard curve was created using serial dilutions of known 

concentrations of 1V209. 1V209’s peak absorbance at 283 nm was used to interpolate the number 

of TLR7 ligands conjugated per nanoshell, which was subsequently converted to the total number 

of ligands in the solution. Correction for scattering by the nanoshells was needed for nanoshell 

structure. Inner light scattering caused by the incident light interacting with the hollow nanoshell 

wall and passing through the interior filled with a culturing medium may be amplified by the 
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difference in refractive indices between the solid wall and the culturing medium. Aggregates or 

colloids present in the nanoshell suspension also scatter light elastically from the solution. This 

effect, known as Rayleigh scattering, creates high background interference at the blue end of the 

absorption spectrum.66 Hence, a Rayleigh scattering curve-fitting proportional to λ−4 was applied 

to perform the baseline subtraction, and the number of ligands per nanoshell was quantified after 

scattering background subtraction. Note that by using blank silica nanoshells to estimate the light-

scattering effect, it provided a reasonable baseline correction for the ligand absorbance 

measurement. However, nanoparticle aggregation and self-quenching (if measuring fluorescence) 

may also impact the accuracy of surface concentration estimation. 

2.3.8 Animals 

Female Balb/c and C57BL/6 mice (6−8 weeks old) were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and from Charles River Laboratories (Wilmington, MA) for in vivo 

and bone-marrow-derived dendritic cells (BMDCs) isolation. Mice genetically deficient for TLR7 

were kindly gifted from Dr Shizuo Akira (Osaka University, Osaka, Japan) and maintained by the 

UCSD Animal Care Program. All procedures and protocols were approved by the UCSD IACUC. 

2.3.9 In Vitro Cytokine Induction in mBMDCs and hPBMCs 

Murine BMDCs from C57BL/6 mice or human peripheral blood mononuclear cells 

(PBMCs) isolated from buffy coats obtained from the San Diego Blood Bank (San Diego, CA) 

were prepared as described previously.67 mBMDCs and hPBMCs were plated in a 96-well plate 

at 1 × 105 or 2 × 105 cells/well (150 μL), respectively. Unconjugated 1V209, NS-TLR7a, or silica 

shells were serially diluted in DMSO and diluted further with RP-10 at a final DMSO 

concentration of 0.5%. After incubating 18 h at 37 °C under 5% CO2, the supernatants were 

collected and the levels of cytokines (IL-6, IL-12, and IL-1β) were determined by ELISA. 
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2.3.10 In Vitro Intracellular Tracking of NS-TLR7a in APCs 

BMDCs were plated at a density of 6 × 105 cells/well in #0 cover glass 24-well plates (In 

Vitro Scientific, Noble Park North, Australia) with RP-10 at 37 °C. The cells were treated with 

NS-TLR7a at a 1 μM 1V209 equivalent concentration or vehicle control. Samples were stained 

with lysotracker green (65 nM, Thermo Fisher Scientific) for the late endosome/lysosomes and 

with vybrant dye (50 nM Thermo Fisher Scientific) for nuclei for 30 min. Cell membranes were 

stained with cell mask deep red (Thermo Fisher Scientific) for 5 min before image acquisition. 

Samples were maintained at 37 °C with a 5% CO2 using a 2 stage-top incubator. Images were 

obtained using an oil objective on an SP8 Leica confocal microscope. All samples were monitored 

up to 6 h. 

2.3.11 In Vivo Immunization Study 

Balb/c mice were intramuscularly injected 20 μg OVA with NS-TLR7a, a mixture of 

1V209 and silica nanoshells, unconjugated 1V209, or silica nanoshells on days 0 and 20. The mice 

intraperitoneally (i.p.) received 100 μg OVA on day 39. Mice were sacrificed on day 42, and the 

sera and spleens were collected. Sera were analyzed with IgG1 and IgG2a by ELISA. Splenocytes 

were cultured with OVA (100 μg/mL) in RP-10 for 5 days at 37 °C, and IFN-γ in the supernatant 

was determined by ELISA. 

2.3.12 Statistical Analysis 

One-way ANOVA with Tukey’s post hoc test was employed to compare two or more 

groups. To compare cross- sectional outcomes among two or more groups, one-way ANOVA with 

Dunn’s post hoc test was applied. p < 0.05 was considered statistically significant and denoted as 

*p < 0.05, **p < 0.01, and ***p < 0.001. 
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2.4 Results and Discussion 

2.4.1 Synthesis and Characterization of Silica Shells Conjugated to TLR7 Agonists 

Hollow silica nanoshells were synthesized as previously described.21 Synthesis and 

conjugation processes are depicted in Figure 2.1a. Nanoshells were modified with APTES to 

functionalize the surface with a reactive primary amine group and, subsequently, conjugated to the 

carboxylic end of 1V209, which is a purine derivative TLR7a.65 The TEM images illustrate that 

no morphological changes were observed after 1V209 conjugation to 100 nm nanoshells. The 

linkage between silica nanoshells and TLR7 ligand was confirmed by measuring the absorption of 

1V209 at 283 nm on NS-TLR7a preparations (Figure 2.1b). Additionally, NS-TLR7a fluoresces 

at 450 nm when excited with a wavelength of 283 nm (Figure 2.1c). This attribute enables 

convenient in vitro visualization without additional dye labeling to avoid potential influence on 

the interaction between nanoshells and cells. 

 
Figure 2. 1: Synthesis and characterization of NS-TLR7a.  
(a) Synthesis and conjugation process of NS-TLR7a. (b) UV−vis absorbance spectrum of NS- 
TLR7a. (c) Fluorescence spectrum of NS-TLR7a with high coating density. 
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2.4.2 Higher Ligand Density Increase TLR7 Activation of NS-TLR7a 

The density of TLR7 ligands on carrier impacts functional outcomes of the conjugates.37 

To determine the influence of the ratio of nanoshells to 1V209, three different reactions were 

performed: (1) 0.084 mmol 1V209: 1 mg silica nanoshells reacted 2 h; (2) 0.017 mmol 1V209: 1 

mg silica nanoshells reacted 2 h; and (3) 0.017 mmol 1V209: 1 mg silica nanoshells reacted 30 

min. The amount of 1V209 conjugated to 100 nm nanoshells was quantified using UV−vis 

absorbance with a Rayleigh scattering subtraction. The absorbance spectra showed that a strong 

correlation between the initial concentration of 1V209 during conjugation and the final ligand 

density, 1V209, at the highest molar ratio (0.084 mmol 1V209: 1 mg silica nanoshells) for 2 h of 

reaction time yielded the highest density of 1V209 on the nanoshell surface. Nanoshells conjugated 

with less than 1,000 1V209 ligands per nanoshell are defined as low-density NS-TLR7a, 

1,000−6,000 1V209 ligands per nanoshells are defined as medium-density NS-TLR7a, and above 

6,000 1V209 ligands per nanoshell are defined as high-density NS-TLR7a.  

Prior to testing the efficacy as a function of ligand coating, the effect of ligand density on 

cell viability was evaluated because previous reports have indicated that silica particles may induce 

apoptosis or necrosis in human immune cells and cancer cells.68,69An MTT viability assay was 

employed to assess the cytotoxicity of the NS-TLR7a in BMDCs (Figure 2.2a). BMDCs were 

incubated with high-, medium-, or low-density NS-TLR7a, unconjugated 1V209, or silica 

nanoshells alone. Viability was normalized to the vehicle control (=100%). Medium- and high-

density NS-TLR7a equivalent to 2,500 nM TLR7 ligands yielded 96 and 100% viabilities, 

respectively. The silica nanoshells without conjugation only showed 26% viability. Since the silica 

toxicity is mainly derived from its bare surface, the biocompatible 1V209 ligand coverage likely 

reduces the accessibility of silica surface,70,71,72 thereby mitigating the toxicity as the coating 
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density increases. These data show that conjugation with 1V209 at medium and high coating 

densities counteracted the cytotoxicity of silica nanoshells alone. 

A strong correlation was observed between ligand density and in vitro immune response. 

Downstream cytokines IL-6 and IL-12 were measured to assess dendritic cell (DC) activation. IL-

6 and IL-12 can promote the differentiation of Th1 cells or cytotoxic T cells, which directly 

eliminate pathogens or cancerous cells.73 The agonistic activity of the 1V209 ligand was enhanced 

in both human PBMCs and mouse BMDCs treated with medium- and high-density NS-TLR7a. 

The half-maximal effective concentration (EC50) and maximum effect (Emax) of the drug 

performance were quantified. High-density NS-TLR7a exhibited the lowest EC50 in both IL-6 and 

IL-12 readouts (279 ± 118 nM and 262 ± 20, respectively). The Emax of high-density NS-TLR is 

1.5- and 3-fold higher than that of unconjugated 1V209 for IL-6 and IL-12 cytokine releases, 

respectively. As for the low-density NS-TLR7a, this formulation appeared to have a lower 

potency. These cumulative results indicate that high coating density NS-TLR7a using 100 nm 

nanoshells has the highest efficacy compared to unconjugated 1V209 and to the medium- and low-

density coating NS-TLR7a. 
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Figure 2. 2: NS-TLR7a induces cytokine production and impacts viability in murine and 
human immune cells in a dose-dependent manner.  
Mouse BMDCs (105 cells) or human PBMCs (2 × 105 cells) were plated and incubated with serially 
diluted 100 nm NS-TLR7a at different coating densities for 18 h. (a) Cell viability in BMDCs for 
different coating density NS-TLR7a. Cell viability was measured by the MTT assay. IL-6 released 
in the culture supernatants of (b) mouse BMDCs or (c) human PBMCs incubated with 
unconjugated TLR7a, high, medium, low coating density NS-TLR7a, and NS. IL-6 cytokine was 
measured via ELISA. Cytotoxicity and cytokines were plotted by the concentration of TLR7a that 
were equivalent to unconjugated TLR7a. All data are representative dose−response curves in 
means ± SD and representative of three experiments. *P < 0.05 by two-way analysis of variance 
(ANOVA) with Tukey’s post hoc analysis. 
 

2.4.3 Size of Silica Nanoshell Carriers Influences the Immune-Stimulatory Potency of NS-

TLR7a 

Previous studies demonstrate that innate immunostimulatory potencies of low-molecular-

weight TLR7 ligands correlate with the size of drug carriers.37 Such size-dependent 

immunomodulation can be attributed to various mechanisms such as particle internalization or 

intracellular distribution in DCs that interfere with maturation signaling.74,75 Therefore, it is 

hypothesized that the size of silica nanoshells may influence the immune potencies of the TLR7 

ligand−nanoshell conjugates. To test this hypothesis, 100, 500, and 2,000 nm hollow silica 

nanoshells were synthesized, as previously described76,77 (Figure 2.3a−c), and mouse BMDCs 
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were treated with unconjugated 1V209, silica nanoshells, or NS-TLR7a of various sizes (100, 500, 

or 2,000 nm). 

Differently sized NS-TLR7a were incubated with BMDCs at 1V209 = 2,500 nM. For these 

experiments, the absolute concentration of the 1V209 was kept constant, and all conjugates were 

with fixed coating ligands per area; therefore, the concentration of the silica shells was varied to 

maintain a constant 1V209 concentration. Silica nanoshells (100 nm) conjugated with 1V209 

stimulated the highest cytokine release in BMDCs compared to 500 or 2,000 nm silica nanoshells, 

as shown in Figure 2.3d,e. Since several viruses have diameters of about 100 nm,78, the data was 

consistent with a 100 nm-sized NS-TLR7a, mimicking how pathogens are recognized by APCs 

and, therefore, enhancing the efficacy of the agonist. Silica nanoshells with a 100 nm diameter 

with high coating density demonstrated the most potent response and therefore were chosen for 

further studies. 
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Figure 2. 3: Characterization of silica nanoshells with 100, 500, and 2,000 nm diameters.  
TEM images of (a) 100 nm, (b) 500 nm, (c) 2,000 nm unmodified silica shells. Mouse BMDCs 
(105 cells) were plated and incubated with serially diluted NS-TLR7a with various sizes of 
particles for 18 h. (d) IL-6 and (e) IL-12 released in the culture supernatants of mouse BMDCs 
incubated with unconjugated TLR7a, TLR7a-conjugated 100, 500, and 2,000 NS. For all 
experiments, TLR7a = 2,500 nM. The level of cytokines was measured by ELISA. All data shown 
are means ± SD of triplicates and representative of three independent experiments showing similar 
results. ** and **** denote p < 0.01 and p < 0.0001 by ordinary one-way ANOVA with Tukey’s 
post hoc analysis, respectively. 
 
2.4.4 NS-TLR7a Quickly Enters BMDCs and Specifically Stimulates TLR7 Signaling 

TLR7, located at an endosomal compartment, signals through the MyD88 pathway and 

results in NF-κB activation, leading to proinflammatory cytokine (IL- 6 and IL-12) release to drive 

DCs’ maturation (Figure 2.4a). Therefore, the trafficking of NS-TLR7a into the endosomal 

compartment of DCs is important for the ligand to engage with the endosome in DCs where the 

TLR7 locates. Self-fluorescent properties of 1V209 were used to assess the internalization of NS-
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TLR7a in mouse BMDCs over time, using live imaging confocal microscopy. As shown in Figure 

2.4b, NS-TLR7a associated with the cell membrane of BMDCs within 1 h and were trafficked into 

the cytosol compartment at 2 h post- treatment. By 6 h, the majority of NS-TLR7a localized in the 

late endosome/lysosome subcellular compartments. Collectively, these results showed that NS-

TLR is readily taken up by DCs and accumulates in the late endosome/lysosome. 

Following the confirmation of NS-TLR7a uptake by BMDCs, TLR7a specificity was 

investigated in BMDCs derived from wild-type control (WT) and TLR7 knockout (TLR7KO) 

mice. Level of secreted proinflammatory cytokines IL-6 was used to assess TLR7-mediated NF-

κB activation. LPS, a TLR4 agonist, was used as a positive control. As shown in Figure 2.4c, the 

unconjugated TLR7a, NS- TLR7a, and LPS induced IL-6 in the supernatant of WT BMDCs. 

However, IL-6 was not detectable in TLR7KO BMDCs treated with 1V209 or NS-TLR7a alone. 

Conversely, LPS produced IL-6 in TLR7KO BMDCs as it can still stimulate TLR4. These results 

demonstrated that TLR7a conjugated onto silica nanoshells retain TLR7 specificity. 
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Figure 2. 4: NS-TLR7a enters the endosome compartment of mouse BMDCs.  
(a) Illustration of NS-TLR7a targeting TLR7 located in the endosomal compartments stimulating 
proinflammatory cytokine production and enhancing the immune response. (b) Mouse BMDCs 
were incubated with NS-TLR7a (pink) for up to 6 h. Live cell dyes for the late 
endosome/lysosomes (lysotracker, green), nuclei (DAPI, blue), and membrane (membrane mask, 
white) were added 5−30 min prior to acquisition. Images were acquired 1, 2, and 6 h post-
treatment. Untreated BMDCs served as the 0 h negative control. NS-TLR7a progresses from the 
media, through the membrane, into the cytoplasm, and eventually resides in the late 
endosome/lysosome of the cell. (c) Unconjugated TLR7a (1,250 nM), NS-TLR7a (1,250 nM), and 
100 ng/mL LPS (TLR4 agonist) were incubated with wild-type or TLR7-deficient BMDCs. 
Secreted IL-6 protein levels were measured by ELISA. All data shown are means ± SD and 
representative of three independent experiments showing similar results. **** denotes p < 0.0001 
by ordinary one-way ANOVA with Bonferroni post hoc.
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2.4.5 Combination of TLR7a and Silica NS Activates NLRP3 Inflammasome 

The silica nanoshell alone or as a conjugate may enhance the immune response.79 Several 

studies have reported that the phagocytosis of particulates results in the activation of NACHT, 

LRR, and PYD domain-containing protein 3 (NALRP3), a protein that acts as an intracellular 

PRR.79,80,81,82,83 Upon activation, NALRP3 oligomerizes into a multiprotein complex containing 

NALRP3, caspase-1, and apoptosis-associated speck-like adaptor protein (shown as ASC in Figure 

2.5), which is commonly known as the NLRP3 inflammasome.80 Such inflammasome regulates 

inflammatory cytokines such as IL-1β, activating the innate immune cells.84,85 Inflammasome-

mediated release of IL-1β in BMDCs requires two signals: TLR7a activation and NLR activation. 

Therefore, it was hypothesized that NS-TLR7a can modulate IL-1β production: silica nanoshells 

(NLR activator) trigger inflammasome complex formation concomitant with 1V209 (TLR7 

activator)-signaling pathway activation. To test this hypothesis, BMDCs were treated with varying 

concentrations of NS-TLR7a, and IL-1β levels in the media were measured by ELISA as an 

indicator of inflammasome formation. As shown in Figure 2.5a, NS-TLR7a induced IL-1β 

production in a dose-dependent manner, whereas unconjugated 1V209 or silica nanoshells alone 

stimulated negligible IL-1β release. Previous studies showed that pure TLR agonists induced IL-

1β secretion when there were existing NLRP3 stimuli in the cells such as mitochondrial 

dysfunction-derived signal, adenosine 5′-triphosphate (ATP), nigericin, etc. In the present study, 

pure 1V209 (TLR7a) did not induce IL-1β secretion because 1V209 alone did not have NLRP3 

stimuli (silica nanoshells) to stimulate the NLRP3 pathway and transform pro-IL-1β into releasable 

IL-1β. Treating cells with a mixture of unconjugated silica nanoshells and unconjugated 1V209 

resulted in a similar level of IL-1β release to that seen with NS-TLR7a treatment. These results 

suggest that IL-1β production is dependent on two signaling pathways triggered by the presence 
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of both 1V209 and silica nanoshells but does not require conjugation or cotrafficking through the 

cells. 

To verify that IL-1β release was TLR7-dependent, NS-TLR7a were incubated with 

TLR7KO BMDCs. TLR7KO BMDCs treated with NS-TLR7a failed to release IL- 1β, indicating 

that IL-1β release requires TLR7 activation (Figure 2.5b). The mechanism of pro-IL-1β to IL-1β 

conversion was also verified. Pro-IL-1β is an inactive form and requires caspase to proteolytically 

cleave and generate releasable IL-1β; therefore, WT BMDCs were incubated with a pan-caspase 

inhibitor, Z-VAD-FMK, to assess whether NS-TLR7a- mediated IL-1β release was caspase-1-

dependent. Caspase inhibition blocked IL-1β release in NS-TLR7a -treated cell (Figure 2.5c), 

while IL-6 release was refractory to the presence of Z-VAD-FMK (Figure 2.5d). These results 

indicate that caspase-meditated inflammasome activation by both silica nanoshells and TLR7 

activation leads to IL-1β release, and the induction of proinflammatory cytokines IL-6 was 

independent of caspase-inflammasome activation. 

Figure 2.5e depicts a hypothetical mechanism of action by which NS-TLR7a stimulates the 

innate immune response. The data suggested that these NS-TLR7a can improve the pre-existing 

innate immune-stimulatory agents and trigger IL-1β production without the need for prepriming 

cells, while existing nanoparticles require an extra step of prepriming cells. A two-pronged 

pathway is proposed for NLRP3 inflammasome activation in DCs: the first signal is triggered by 

1V209 to generate NALP3 and pro-IL-1β production through the activation of NF-κB, while the 

second signal is triggered by silica nanoshells. The data are consistent with 1V209 triggering the 

NF-κB pathway and producing pro-IL-1β (inactive form), while silica nanoshells stimulate the 

formation of the NLRP3 inflammasome, which cleaves pro-IL-1β into IL-1β (active form) for 

release. The inflammasome/IL-1 pathway represents a potential therapeutic target for developing 
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novel cancer treatments in responsive tumor types.86,87 

 
Figure 2. 5: NS-TLR7a induces IL-1β release in BMDCs.  
NS-TLR7a (75−2,500 nM, high coating density), unconjugated TLR7a, and NS were incubated 
with BMDCs for 18 h. IL-1β induction in (a) wild-type BMDCs and (b) TLR7-deficient BMDCs. 
NS-TLR7a (2,500 nM) were incubated with wild-type BMDCs in the presence of pan-caspase 
inhibitors (Z-VAD-FMK), and (c) IL-1β and (d) IL-6 inductions were measured. All cytokines 
were measured by ELISA. All data shown are means ± SD in triplicates. Dose−response curve was 
analyzed by one-way ANOVA with Dunn’s multiple comparison test. (e) Current working 
hypothesis of the mechanism of TLR7 signaling and NLRP3 pathway induced by NS-TLR7a.
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2.4.6 NS-TLR7a Enhances Cellular and Humoral Immune Response 

Conjugation of TLR7 ligands onto silica nanoshells can enhance the in vitro potency of 

TLR7 agonistic activity and IL-1β production, and silica nanoshells can support prolonged local 

depot effects that may enhance immune-stimulatory effects when translating to in vivo studies.88 

Therefore, an immunization model using OVA was performed to study the effects of NS-TLR7a 

on the in vivo immune response. IgG2a and IgG1 were used as indicators for Th1-type and Th2-

type immune responses, respectively.89 The Th1-type response, regulating cellular immunity, 

contributes to the development and activation of cytotoxic T cells. Conversely, Th2-type immunity 

regulates the humoral immune response and induces the proliferation and differentiation of B cells. 

Th1-type immunity is critical for cancer immunotherapy and virus elimination, while Th2-type 

immunity is critical for body protection against parasite infection.39,90 Five groups (n = 3−4) of 

mice were immunized with OVA plus (1) silica nanoshells alone, (2) 1V209 alone, (3) mixture of 

1V209 and nanoshells without conjugation (Mix.), (4) NS-TLR7a, and (5) vehicle as a negative 

control. The simple mixture of silica nanoshells and 1V209 without covalent bonds was evaluated 

at the same time to assess whether the linkage between TLR7 ligands and nanoshells is needed to 

have desirable pharmacokinetics. The mice were immunized as protocol shown in Figure 2.6a. 

Antibody production in sera is shown in Figure 2.6b,c.  

NS-TLR7a (covalent bond) enhanced both IgG2a and IgG1, while unconjugated 1V209 or 

vehicle-treated groups showed nearly zero IgG2a (Th1 response) production as measured by 

ELISA. NS-TLR7a treatment showed an approximately 1,000-fold increase in OVA-specific 

IgG2a antibodies compared to silica nanoshells or the mixture of 1V209 and silica nanoshells. 

Unconjugated 1V209 did not enhance IgG2a production, possibly due to rapid clearance from the 

injection site because of the undesirable pharmacokinetics of low-molecular-weight drugs. No 
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synergistic effect on IgG2a production was observed in samples treated with unconjugated silica 

nanoshells and free TLR7a (Mix.). These results indicated that simultaneously activating the two 

pathways was not sufficient to generate a strong Th1 immunity. Because the antigen-specific IFN-

γ response indicates the induction of the Th1-type immunity, IFN-γ production was measured in 

splenocytes isolated from treated mice. Consistent with the trends observed in Th1-type cellular 

responses, treatment with NS-TLR7a stimulated higher antigen-specific IFN-γ release by 

splenocytes. 

Levels of OVA-specific IgG1 antibodies were increased in all treatments containing silica 

nanoshells (Figure 2.6c), which suggests that silica nanoshells can enhance Th2-type response but 

covalent bonding between TLR7 agonists and nanoshells is required for the induction of Th1-type 

immune response. The mechanism of silica self-adjuvants is probably similar to that of the 

commercial adjuvant, alum, that activates the immune system through NLRP3 inflammasome 

formation.91 However, alum is limited to a Th2-type response enhancement and fails have used 

TLR7a adsorbed onto commercialized to elicit an equally efficacious Th1 response.92,93 Some 

studies adjuvant, alum, to improve adjuvanticity. Since alum is neurotoxic and may damage the 

blood−brain barrier, there are serious concerns. In the present study using silica nanoshells as the 

delivery platform of TLR7a, the potential toxicity of silica particle is mitigated by the free surface 

coverage. The MTT assay (Figure 2.2c) that measured the metabolic activity to model the cell 

toxicity showed that the higher coverage (higher 1V209 ligand per nanoshell) silica nanoshells 

displayed lower cytotoxicity, which is likely due to 1V209 ligand blocking the free silica surface. 

This is consistent with previous reports that the surface generation of reactive oxygen species is 

the main source of silica toxicity. 1V209 is a small-molecule drug that has undesired properties, 

such as fast clearance after administration. As shown in Figure 2.6b,c, unconjugated TLR7a 
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(1V209) demonstrated a quiescent adjuvant activity as shown in the low induction of IgG2a and 

IgG1. These results implied that unconjugated TLR7a small molecules (1V209) cleared away 

relatively rapidly from the injection site and thus failed to induce a robust immune response. In 

summary, small-molecule drug TLR7a cannot be retained locally to continuously stimulate the 

TLR7-signaling pathway. Conjugation, however, was able to lengthen the retention time of small-

molecule agonists, leading to continuous recruitment of APCs and sustained stimulation in situ. 

Localizing 1V209 largely benefits the efficacy of this small-molecule TLR7a drug. These data 

together with our in vitro studies implied that the TLR7 ligand−nanoshell conjugates induced both 

inflammasome-dependent IL-1β and inflammasome-independent proinflammatory cytokines that 

enhanced the function of APC and induced the desirable antigen-specific Th1-biased immune 

responses. 

 
Figure 2. 6: Immunization study of NS-TLR7a with OVA as a model antigen.  
(a) Balb/c mice (n = 3−4) were intramuscularly immunized with chicken OVA and NS-TLR7a, 
unconjugated TLR7a mixed with silica nanoshells (Mix.), silica nanoshells or unconjugated TLR7a alone 
on days 0 and 20 and sacrificed on day 42. Serum levels of (b) anti-OVA IgG2a and (c) IgG1 measured by 
ELISA are shown as mean ± standard errors. Data were analyzed with Kruskal−Wallis one-way ANOVA 
with Dunn’s post hoc analysis. * denotes p < 0.05 and ** denotes p < 0.01. 
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2.5 Conclusions 

The present study has shown that the immune potency of small-molecule TLR7 ligands 

was amplified when conjugated to silica nanoshells while retaining the ligand−receptor specificity. 

The amplification is both particle-size-dependent and ligand-density-dependent, where high-

density-coated 100 nm silica nanoshells showed the greatest agonistic activities in vitro. The 

increased coverage of TLR7 ligands on silica nanoshell surfaces mitigated the cytotoxicity of the 

bare silica nanoshells and improved the therapeutic effect. The NS-TLR7a enhanced both TLR7 

signaling and induced the activation of the NALP3 inflammasome to achieve a more robust 

immune response. The induction of proinflammatory cytokines IL-6 and IL-12 was refractory to 

the caspase inhibitor, which indicates that the induction of these cytokines was solely TLR7-

dependent and -independent of caspase-inflammasome activation. Silica nanoshell conjugation 

also resulted in the lengthening of the local drug retention time to maximize drug effects. More 

APCs infiltrate to the administrated site, continuously activate maturation, and strengthen the sub- 

sequent immune response. Based on the in vivo vaccination study, antigen-specific immune 

response was displayed and successfully amplified by NS-TLR7a for both Th1-type and Th2- type 

immune responses. The dual enhancement implies a broader application as vaccine adjuvants or 

even as monotherapy for cancer treatment. These results suggested that conjugates could be used 

in cancer treatment as monotherapy or as a candidate for combinatorial synergistic delivery. 
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Chapter 3: Immunostimulatory TLR7 Agonist-Nanoparticles Together with Checkpoint 

Blockade for Effective Cancer Immunotherapy 

3.1 Abstract 

Mono- or dual-checkpoint inhibitors for immunotherapy have changed the paradigm of 

cancer care; however, only a minority of patients responds to such treatment. Combining small 

molecule immunostimulators can improve treatment efficacy, but they are restricted by poor 

pharmacokinetics. In this study, conjugated TLR7 agonists onto silica nanoparticles show 

extended drug localization after intratumoral injection. The nanoparticle-based TLR7 agonist 

increases immune stimulation by activating the TLR7 signaling pathway. When treating CT26 

colon cancer, nanoparticle conjugated TLR7 agonists increase T cell infiltration into the tumors 

by >4× and upregulate expression of the interferon 𝜸 gene compared to its unconjugated 

counterpart by ≈2×. Toxicity assays establish that the conjugated TLR7 agonist is a safe agent at 

the effective dose. When combined with checkpoint inhibitors that target programmed cell death 

protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), a 10–100× increase 

in immune cell migration is observed; furthermore, 100 mm3 tumors are treated, and a 60% 

remission rate is observed including remission at contralateral noninjected tumors. The data show 

that nanoparticle-based TLR7 agonists are safe and can potentiate the effectiveness of checkpoint 

inhibitors in immunotherapy resistant tumor models and promote a long-term specific memory 

immune function. 
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3.2 Introduction 

Colorectal cancer (CRC) is one of the top three causes of cancer death world-wide, it is 

currently being investigated for immunotherapy.94 Metastatic CRC (mCRC) patients usually 

receive systemic therapy, such as anti-VEGF or anti-EGFR, but often this results in acquired 

resistance resistance.94,95 The checkpoint inhibitor antibodies, targeting programmed cell death 

protein 1 (a-PD-1) and cytotoxic T-lymphocyte-associated protein 4 (a-CTLA-4), block the 

inhibitory signals between T cells/tumor cells and T cells/APC and have shown promising 

therapeutic effects. Checkpoint inhibitors, such as ipilimumab (a-CTLA-4 antibody) and 

nivolumab (a-PD-1 anti-body), improve outcomes for many tumors, which include melanoma, 

advanced lung, and head and neck cancers. They are also being evaluated to treat mCRC patients.96 

However, a large portion of patients, including the majority of mCRC patients, do not respond to 

immune checkpoint inhibitors.97,98,99 

Data from current clinical trials indicate that patients whose tumors are mismatch repair 

deficient (MMRd) are likely to respond to checkpoint inhibitor therapies.100,101,102 It has been 

postulated that the DNA mismatch repair deficiency leads to more neoantigens released that are 

easily recognized by the body’s immune cells to induce tumor-specific immune response. 

Pembrolizumab (a-PD-1 drug) has recently been designated by the FDA for use in MMRd tumors, 

regardless of the tumor location.103 Even though immune checkpoint inhibitors have shown great 

promise for many cancer patients, mismatch repair proficient (MMRp) cancer patients are less 

responsive.102,104 Even in MMRd mCRC, the objective response rate is about 40%.105 Checkpoint 

inhibitors are not effective in MMRp mCRC105 consistent with MMRp cancers having lower 

lymphocyte infiltration into tumors.100 Therefore, rendering these tumors sensitive to 

immunotherapy remains a major challenge,99 and using immunostimulatory agents could be a 
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complementary approach to improve cancer treatment with checkpoint inhibitors. Murine colon 

cancer cell line, CT26, one of the most extensively used syngeneic mouse tumor models that lack 

mutations in mismatch repair genes,106,107,108 was chosen for the present study. 

A previously synthesized nanoparticle-based immunostimulatory agent, which consists of 

a TLR7a conjugated with 100 nm silica NS termed NS-TLR7a (agonist number per nanoshell is 

6,000 or greater),109 has shown improved TLR7 immune adjuvant activity.109 NS-TLR7a 

increased cytokine IL-12 secretion and activated the inflammasome pathway in mouse dendritic 

cells (DCs).109 Furthermore, NS-TLR7a enhanced a Th1-biased immune response that is often 

associated with induction of cytotoxic T lymphocytes (CTL)109 that play a critical role in cancer 

immunotherapy because they recognize and kill cancerous cells.110 In the present study, NS-

TLR7a was used to amplify the immune response combined with checkpoint inhibitors to restore 

the T lymphocytes’ killing capability in an animal model. Such combination therapy has the 

potential to treat MMRp patients by developing tumor antigen-specific T cells at both the tumor 

site and systemically. Nanoparticle-based TLR7/8 agonists were used in a combination treatment 

strategy similar to previous studies. Most previous studies lacked investigation of potential 

immune-related adverse effects and other systemic toxicity, which is a critical problem with potent 

immunostimulating drugs.111,112 Some previous studies used known tumor antigens to induce and 

amplify the immune response,113 but identifying the neoantigens accounting for immune responses 

of spontaneous tumors is very challenging.114 Furthermore, most focused on local control of tumor 

growth and did not address the potential of systemic immune responses and tumor progression at 

distal sites.113,115,116 Experiments reported here have built upon previous work, but have addressed 

some unresolved issues identified previously and have demonstrated both the safety and efficacy 

of the NS-TLR7a/checkpoint inhibitor combination therapy. 
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In this study, the NS-TLR7a was shown to be stationary after injection and thus escaped 

rapid splenic clearance. Compared to systemic injection, the direct injection increases the ratio in 

the tumor to liver by >2,500×. Although NS-TLR7a was retained at the local injection site, it had 

the ability to induce a robust systemic tumor antigen-specific immune response in the CT26 murine 

colon cancer model. The NS-TLR7a increased CD3+ tumor infiltrating lymphocytes (TIL) by 4× 

and upregulated the expression level of the (IFN-𝛾) gene compared to simply administering free 

TLR7a. Compared to unconjugated TLR7a, NS-TLR7a increased cytokine induction in sera that 

returned to baseline after 24 h. Toxicology studies of repeated doses further indicated that the NS-

TLR7a had limited toxicity, and did not significantly affect the complete blood cell (CBC) count 

or hepatic function compared to the control vehicle. NS-TLR7a was, there- fore, combined with 

a-PD-1 and a-CTLA-4 antibody therapies to better inhibit tumor growth by increasing the number 

of infiltrating immune cells 10–100× compared to the vehicle group in the CT26 tumor model. 

The CT26 tumor model had only a modest response to checkpoint inhibitor monotherapy. The 

triple combination therapy including NS-TLR7a, a-PD-1, and a-CTLA-4 induced both injected 

and contralateral tumors into full remission and improved survival rates from 0% with a-PD-1 and 

a- CTLA-4 monotherapy to 60% with NS-TLR7a plus a-PD-1 and a-CTLA-4. Therefore, NS-

TLR7a has potential to be an enhancer for current immunotherapy and may improve the outcome 

of cancer treatment in MMRp colon cancers and perhaps in other MMRp cancers. 

Although small molecule TLR7 agonists are effective innate immune stimulators, there are 

two major problems for their clinical use: (1) because TLR7 is located in an endosomal 

compartment, effective endosomal delivery is required, and (2) TLR7a is quickly cleared after 

local administration. Our previous report demonstrated TLR7a conjugated to silica particles are 

quickly taken up by DCs and exhibit improved immune-potency. 
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3.3 Experimental 

3.4.1 Materials 

Diethylenetriamine (DETA, Cat. No. D93856), TMOS, TMPS, NHS, EDC, and organic 

solvents were purchased from Sigma Aldrich (St. Louis, MO). Hundred nanometer polystyrene 

templates were purchased from Polysciences Inc. (Warrington, PA). 2-(4-Isothiocyanatobenzyl)-

diethylenetriaminepentaacetic acid (DTPA) was purchased from Macrocyclics (Dallas, TX). 

111InCl3 was purchased from Covidien (Mansfield, MA). 4-[6-Amino-2-(2- methoxyethoxy)-8-

oxo-7H-purin-9(8H)-yl]methylbenzoic acid (1V209) was synthesized as previously described. 

Anti-mouse PD-1 (CD279) antibodies (clone RMP1-14, Cat. No. BP0146) or anti-mouse CTLA-

4 (CD152) antibodies (clone 9D9, Cat. No. BP0164) were purchased from BioXcell (West 

Lebanon, NH). RPMI (Cat. No. 11875-093, Gibco) and DMEM (Cat. No. 15-013-CV, Corning) 

were supplemented with 10% fetal bovine serum (Cat. No. 35-011-CV, Corning) and 100 U/mL 

penicillin, 100 μg/mL streptomycin, 292 μg/mL glutamine (Cat. No. 10378-016, Thermo Fisher 

Scientific) to prepare complete media (RP-10 or DMEM-10). 

3.4.2 Animals and Tumor Model 

Mouse colon cancer cell line CT26 (Cat. No. CRL-2638) was purchased from American 

Type Culture Collection. Six- to eight-week-old female BALB/c mice were purchased from The 

Jackson Laboratory. 106 cells/50 μL PBS were s.c. injected into the right and left flanks, and 

treatment was started at a tumor size of approximately 100 mm3. Tumor volume was determined 

by caliper with the modified ellipsoidal formula: volume (mm ) = (width × width × length)/2.117 

Pain and distress in tumor-bearing mice were closely monitored. Procedures causing more than 

momentary or slight pain or distress must be performed with appropriate anesthesia. If a tumor 

becomes ulcerated or necrotic, or if a single subcutaneous (s.c.) tumor exceeds 2 cm in diameter, 
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immediate euthanasia is performed. For multiple s.c. tumors, when the combined volume of tumors 

exceeds 4 cm, euthanasia is performed. All procedures and protocols were approved by the UCSD 

IACUC. 

3.4.3 Histological Analysis 

Tissue samples were fixed in 10% formalin (one part of stock formaldehyde (37–40%) and 

nine parts of water) and transferred to 70% ethanol before paraffin block processing and 

sectioning. Immunohistochemistry used rat anti-CD3 antibody (1:200, Cat. No. ab11089, Abcam). 

Images were obtained using a 10× dry objective on a SP8 Leica confocal microscope. A minimum 

of eight fields were examined per section and at least three sections per sample. Cell count analysis 

was performed using ImageJ and Leica proprietary software. 

3.4.4 RNA Extraction and RT-qPCR Expression Analysis 

CT26-derived tumor tissues from the in vivo studies were collected and flash frozen to −80 

°C for storage. Tissue lysates were prepared with a Next Advance NA-01 tis- sue homogenizer, in 

isolation buffer (sucrose (MW 342.3) 70 × 10-3 m; mannitol (MW 182.2) 190 × 10-3 m; HEPES 

pH 7–8, 20 × 10-3 m; EDTA pH 8, 0.2 × 10-3 m) supplemented with protease and phosphatase 

inhibitors (1:100 dilution; Cat. No. 535140, P5726, Sigma-Aldrich) and RNASE-free 

homogenization beads (Cat. No. SSB14B and SSB32, Next-Advance). Total RNA was extracted 

from cells and/or tissues lysates using the Quick-RNA Miniprep Kit (Cat. No. 11-328, Zymo 

Research), according to manufacturer’s instructions, and reverse transcribed using the iScript 

cDNA Synthesis Kit (Cat. No. 170-8891, Bio-Rad). qPCR was done using SYBR Green and 

results were analyzed using the ΔΔCq method118 and normalized to housekeeping genes 18S and 

GAPDH. Primer sequences were designed using NCBI’s Primer BLAST and spanned exon-exon 

junctions.  
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3.4.5 Biodistribution 

NS-TLR7a was prepared as previously described.109 One milliliter of 3 mg/mL of NS-

TLR7a was functionalized with 2 μL of 1 mg/mL DTPA and pulse-vortexed for 24 h. 

Functionalized NS-TLR7a was washed and resuspended in 0.1 m citrate buffer (pH 6) to 2 mg/mL 

solution. Two milligrams of the NS were incubated with ≈100 μCi of In111 chloride for 30 min. 

Radiolabeled NS-TLR7a was washed twice with buffer and twice with MilliQ purified water. 

During the wash procedure, the In111-labeled NS and the supernatant were measured by dose 

calibrator to track the In111 retention. After washing, In111-NS-TLR7a was resuspended to 4 mg/mL 

in MilliQ purified water for in vivo injection. 100 μL of In111- NS-TLR7a was injected into two-

tumor-bearing mice intratumorally (i.t.) or intravenously. Mice were imaged via planar 

scintigraphy immediately, and then 8, 24, 48, and 72 h postinjection. After 72 h, mice were 

sacrificed. Spleen, lung, heart, right tumor (treated), left tumor (untreated), kidney, and liver were 

collected and the gamma intensity counted. 

3.4.6 Toxicology Analysis 

(1) Sera Cytokine Analysis: Female BALB/c bearing one CT26 tumor was i.t. injected with 

single doses of TLR7a (50 nmol per mouse), NS-TLR7a (50 nmol TLR7a; 1.8 mg NS), NS (1.8 

mg per mouse), or vehicle (n = 4 per group). Blood samples were collected at 0, 2, and 24 h after 

treatment, and sera were isolated. Luminex bead assays were used to determine the systemic 

cytokine levels of IL-6, IL-12, IP-10, and MCP-1, and were measured with the use of a MAGPIX 

machine (Luminex Corporation). (2) Repeated dose toxicology assessment: Female BALB/c mice 

(n = 4–5 per group), each bearing two CT26 tumors on the right and left flanks, were i.t. injected 

with NS-TLR7a or vehicle every other day for a total of 6 doses. Whole blood and sera were 

collected on day 14 post-treatment for CBC and biochemistry analysis. For CBC analysis, ≈50 μL 
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of whole blood was collected in BD microtainer ethylenediaminetetraacetic acid (EDTA) tubes 

(Cat. No. 365-974, BD Vacutainer Labware Medical). The tubes were flicked immediately after 

filling and inverted several times to distribute the anticoagulant. For biochemistry analysis, the test 

requires a minimum of 120 μL of sera in lithium heparin tubes (Cat. No. 22-040-104, Fisher 

Scientific). Both CBC and biochemistry analyses were performed by UCSD Murine Hematology 

and Coagulation Core Laboratory. (3) Single dose toxicology assessment: Four to five BALB/c 

mice per group were s.c. injected with one dose of TLR7a (12.5 nmol per injection), NS-TLR7a 

(12.5 nmol TLR7a; 0.44 mg silica nanoshells per injection), silica NS (0.44 mg per injection), or 

PBS. Approximately 50 μL of whole blood were collected in the BD microtainer EDTA tubes. 

The tubes were flicked immediately after filling and inverted several times to distribute the 

anticoagulant. CBC anal sis was performed by UCSD Murine Hematology and Coagulation Core 

Laboratory. 

3.4.7 Analysis of Tumor-Infiltrating Immune Cells 

Each mouse had two CT26 tumors on the right and left flanks. Hundred micrograms of 

checkpoint inhibitor, a-PD-1 and/or a-CTLA-4 antibodies were injected i.p. three times weekly 

(day 0, 3, 6, 9, 12, 14). A 12.5 nmol of NS-TLR7a in 50 μL PBS were injected i.t. every other day 

for a total of six doses (day 1, 3, 5, 7, 9, 11). Day 0 was defined as the day of first treatment. Mice 

were sacrificed on day 14 for tumor infiltrating lymphocyte analysis. Tumors were dissociated into 

cell suspension using a mouse tumor dissociation kit with use of the gentleMACS Octo Dissociator 

according to the manufacturer’s protocol (Miltenyi Biotec). Cell suspensions were incubated and 

stained with cocktails of anti-mouse CD45 (Cat. No. 103-114, BioLengend) and anti- mouse CD8 

(Cat. No. 48-0081, Invitrogen) antibodies at 4 °C for 30 min. Fixation/Permeabilization Solution 

kits were used for intracellular IFN-𝛾 staining (Cat. No. 17-7311, BD Biosciences) and granzyme 
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B (Cat. No. 515-403, BioLegend). The stained cells were analyzed by flow cytometry (MACS 

Quant, Miltenyi Biotec). 

3.4.8 Statistical Analysis 

The data were pooled from 2 to 4 rounds of experiments and presented as means with 

standard error (SE). To determine the significance between the means of two groups, a t test with 

Welch’s correction was performed. One-way ANOVA was used with a Bonferroni post hoc test 

to compare means of two or more samples. Statistical comparisons of continuous variables 

between groups were performed using two-way ANOVA followed by a Bonferroni post hoc test. 

For TIL data, a Kruskal–Wallis test was performed with Dunn’s multiple comparisons test. n.s. 

indicates not significant and analyses are indicated as * (p < 0.05), ** (p < 0.01), ***(p < 0.001), 

and ****(p < 0.0001). GraphPad Prism software 8.3.1 version was used for all statistical analyses. 

3.4 Results and Discussion 

3.4.1 Locally Injected NS-TLR7a Retained at Tumor  

In the present study, the biodistribution of the locally versus systemically administrated 

NS-TLR7a was performed to investigate whether the conjugation of TLR7a onto nanoparticles 

improves sustained localization of the adjuvant at a local tumor injection site. NS-TLR7a was 

labeled with radioactive In111 and injected i.t. or i.v. into mice. Each mouse had two s.c. CT26 

tumors in the right and left flanks but only one tumor was injected with radiolabeled NS-TLR7a. 

Planar 𝛾-scintigraphy was used to monitor the particle distribution over 72 h (Figure 3.1a). 

Subsequently, organ biodistribution was performed by sacrificing the mice and measuring organ 

radioactivity 72-h postinjection (Figure 3.1b). Scintigraphy shown in Figure 3.1a demonstrates 

that systemically injected (i.v.) NS-TLR7a accumulated in the reticuloendothelial system organs, 

such as liver and spleen, which is typical of most i.v. injected nanoparticles immediately after 
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injection.119,120,121 This accretion continued with time (Figure 3.1a). Conversely, i.t. injected 

nanoparticles were retained at the injected tumor (right flank tumor) site for over 72 h, and only a 

small fraction of nanoparticles accumulated in the spleen, liver, or kidney. A small amount of i.t. 

injected nanoparticles traveled to the contralateral tumor (left flank tumor), as early as 24 h after 

i.t. injection (Figure 3.1a). 

At 72-h postinjection, organs were harvested for gamma counting to quantify the 

nanoparticles in each organ (Figure 3.1b), for the systemically injected group, the nanoparticles 

mainly accumulated in liver (21.4%) and spleen (4.5%). A small portion of nanoparticles (0.3–

0.4%) traveled to the tumor sites, which is likely due to a modest enhanced permeability and 

retention effect (EPR effect). Conversely, locally injected nanoparticles were mainly retained at 

the injected tumor (52.4%), and only small amounts of nanoparticles accumulated in the liver 

(1.4%) or spleen (0.5%). Compared to systemic injection, the direct injection increases the amount 

in the tumor 175× and decreases the amount in the liver 15× so the ratio in the tumor to liver 

increases by >2,500×. A small amount of locally injected nanoparticles traveled to the distant 

tumor (0.3%). The lengthened retention time with the locally injected drug is consistent with the 

high efficacy (vide infra) of the i.t. injected agent. Such retention may further amplify the immune 

response induced by TLR7 activation because the drug can continuously stimulate and drive DCs 

to maturation. The lower amount of nanoparticle uptake at liver and spleen after direct tumor 

injection is consistent with NS-TLR7a residing in the tumor for a long period of time thereby 

having the potential to better activate the innate immune system and enhance tumor antigen 

presentation. 
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Figure 3. 1: Locally injected NS-TLR7a retained at tumor.  
(a, b) Biodistribution of NS-TLR7a. In111 labeled NS-TLR7a were i.t. and i.v. injected into CT26 
tumor bearing mice (n = 5 per group). Each mouse had two tumors in the right and left flanks to 
observe the particle distribution. a) Scintigraphy images of NS-TLR7a i.t. and i.v. injected mice. 
Pure In111 was placed in a tube at the scintigraphic plane as a positive control (green arrow). The 
Red arrows pointing to the left flank tumor that was not injected with nanoparticles. b) i.t. (blue) 
and i.v. (red) injected mice were sacrificed and each organ was harvested for gamma counting at 
72 h after NS-TLR7a injection. Numbers above bars indicate mean values, and ≈0 when the value 
is smaller than 0.1. Note that the gamma counts were divided by grams of tissue so the sum is not 
100%. Data shown are means ± SE of the mean of five mice in the representative of two 
independent experiments showing similar results. Data were analyzed with two-way ANOVA 
using Bonferroni post hoc test. 



55 

 
55 

3.4.2 Locally Injected NS-TLR7a Enhanced the Immune Response 

The effects of i.t. injected TLR7a with or without conjugation onto silica NS were tested 

in a CT26 mouse tumor model. Mice were implanted with 106 CT26 cells, and the treatment began 

when tumors reached 100 mm . Tumor-bearing mice were i.t. treated with TLR7a (12.5 nmol per 

injection), NS-TLR7a (12.5 nmol TLR7a; 0.44 mg NS per injection), NS (0.44 mg per injection), 

or PBS every other day up to 8 days (Figure 3.2a). As shown in Figure 3.2b, the group treated with 

NS-TLR7a exhibited a significant tumor growth regression (>2×) compared to the vehicle or NS-

treated group until 8 days after treatment. 

Tumors were harvested on day 8 for immunohistochemical analysis, and CD3+ cells were 

assessed for T cell subpopulations in the tumor microenvironment [note: CD3+ cells include both 

cytotoxic T cells (CD8+) and T helper cells (CD4+)]. As shown in the representative 

immunohistochemistry images (Figure 3.2c,d), and the quantified data (Figure 3.2e), TLR7a 

conjugated onto NS showed a higher CD3+ cell infiltration (>4×) compared to unconjugated 

TLR7a, which is likely due to prolonged retention of NS- TLR7a in the tumor environment relative 

to unconjugated ligand. This allows sufficient interaction time to activate DC and subsequent 

adaptive immunity. The control of bare NS injection did not lead to higher CD3+ cell infiltration. 

Consistently, the tumors injected with NS-TLR7a exhibited higher IFN-𝛾 expression (a critical 

cytokine for developing adaptive immunity against cancer cells) compared to vehicle, NS, or 

unconjugated TLR7a in harvested tumors (Figure 3.2f), which suggests the presence of activated 

TIL. These data are consistent with the concept that conjugating an immunotherapy agent onto NS 

can improve the in vivo therapeutic effect and modulate the immune cell response to a cancerous 

tumor. 
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Figure 3. 2: Locally injected NS-TLR7a enhanced the immune response.  
Tumor growth regression in mice treated with i.t. NS-TLR7a monotherapy or controls. BALB/c mice were 
implanted with CT26 cells and treatment began when tumors reached 100 mm3. Mice (n = 5 per group) 
were randomized and treated i.t. every other day with vehicle (PBS), silica NS, unconjugated TLR7a, or 
NS-TLR7a. Tumor tissues were collected on day 8 post-treatment for analysis. (a) Experimental protocol. 
(b) Average tumor growth curves. (c,d) Immunohistochemistry (IHC) images of CD3+ cells infiltrating into 
the tumor environments for (e) unconjugated TLR7a or (f) NS-TLR7a locally injected tumor. 
Representative IHC images are shown. (e) Quantified CD3+ T cells from 30 to 46 random IHC images per 
group. (f) IFN-𝛾 gene expression level in tumor samples for vehicle, NS, TLR7a, and NS-TLR7a treated 
groups (n = 4–5 per group). Data shown are mean ± SE of the representative of two independent 
experiments showing similar results. One-way ANOVA with Bonferroni post hoc test was used for 
statistical significance analysis indicated as * p < 0.05, **p < 0.01, ***p < 0.001, and n.s. indicates not 
significant. 
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3.4.3 Negligible Systemic Toxicity by i.t. Injection of NS-TLR7a 

The safety of NS-TLR7a was investigated. First, a systemic cytokine release study was 

performed to determine the potential toxic effects of the NS-TLR7a agent (Figure 3.3a–e). Single 

doses of either TLR7a (50 nmol per mouse), NS-TLR7a (50 nmol TLR7a; 1.76 mg NS), NS (1.76 

mg per mouse), or vehicle were administered i.t. and blood was collected at 0, 2, and 24 h 

postinjection. As shown in Figure 3.3b–e, there was a statistically significant increase of IL-6, IL-

12, IP-10, and MCP-1 in blood samples collected from NS-TLR7a 2 h postinjection (p < 0.005) 

for IL-6, IL-12, IP-10, and MCP-1, respectively. IL-6 and IL-12 are downstream cytokines of 

TLR7 signaling and can help differentiate T cells.122,73 IP-10 and MCP-1 are chemokines that can 

regulate the migration of immune cells.123 After 24 h, all treated samples re- turned to baseline 

levels. No weight loss or behavioral changes were observed in any treatment groups at the given 

doses. These data show that NS-TLR7a induced only a transient systemic cytokine response which 

returns to basal levels by 24 h. 

Systemic toxicology was also evaluated for repeatedly dosed NS-TLR7a because an 

effective immunostimulatory agent (i.e., TLR7 agonists) may result in undesired immune-related 

adverse effects. Four to five female BALB/c mice bearing CT26 tumors on right and left flanks 

were i.t. injected with 12.5 nmol of NS-TLR7a or vehicle (PBS) every other day for six treatments, 

and body weight and behavior were observed over the time of treatment (Figure 3.3f). Repeated 

treatments of NS-TLR7a or vehicle did not induce body weight loss or behavioral changes 

(reduced activity, piloerection, lethargy, or tachypnea). On day 14, blood and sera were collected 

for hematological and biochemical analysis (Figure 3.3g,h). At the given dose and administration 

routes, NS-TLR7a did not induce hepatic, pancreatic, or renal dysfunctions. The electrolyte 

composition also remained stable after treatment. A minor adverse event in the studies was a 
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modest erythrocytopenia (Figure 3.3g) that has been previously reported in an oral dosing study 

of a TLR7a.124 This effect attenuated throughout the study.124 Although it was not statistically 

significant, local NS-TLR7a treatment induced a net reduction of the white blood cells in 

circulation, including lymphocytes, monocytes, neutrophils, eosinophils, and basophils (Figure 

3.3h). The cell numbers of each subtype of white blood cell (neutrophils, eosinophils, basophils, 

lymphocytes, and monocytes) were combined and averaged. The average number was normalized 

to the average number of vehicle treated animals. Figure 3.3h indicated that repeated NS-TLR7a 

therapy had a noticeable trend of reduction after NS-TLR7a therapy compared to the vehicle group 

(p = 0.0523). These data are consistent with other reports that low molecular weight TLR7a induce 

reversible lymphopenia which is type I IFN-dependent and an on-target adverse effect of this 

therapy.125,126 Since lymphopenia induced by TLR7a therapy is transient,127,128 CBC was 

performed 24 h post-subcutaneous injection. Neither NS-TLR7a nor TLR7a treatment showed 

different counts of white blood cells or red blood cells compared to vehicle group, which shows 

that local injection of NS-TLR7a and TLR7a had negligible adverse effects on mice. Collectively, 

a repeated local injection, but not a local single injection of NS-TLR7a, has potential to induce 

erythrocytopenia and lymphopenia, which suggests that further optimization of the dosing 

schedule will be necessary. 
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Figure 3. 3: Negligible systemic toxicity by i.t. injection of NS-TLR7a.  
(a) Single doses of TLR7a (50 nmol per mouse), NS-TLR7a (50 nmol TLR7a; 1.8 mg NS), NS 
(1.8 mg/mouse), or vehicle were i.t. administered (n = 4 per group). Blood was collected at 0, 2, 
and 24 h and sera were isolated. Cytokine levels for of (b) IL-6, (c) IL-12, (d) IP-10, and (e) MCP-
1 were measured using Luminex beads assays. Each dot indicates an individual animal and 
horizontal and vertical bars are means ± SE. One-way ANOVA compared to vehicle group with 
Bonferroni post hoc test was used for assessing statistical significance. (f–h) Toxicology 
investigation of NS-TLR7a. (f) Female BALB/c mice (n = 4–5 per group) each bearing two tumors 
on the right and left flanks were i.t. injected with NS-TLR7a or vehicle every other day for a total 
of six doses. Whole blood and sera were collected on day 14 post-treatment for complete blood 
count and biochemistry analyses. The investigation includes: (g) red blood cells, white blood cells, 
and platelets. h) leukocyte sublet. n.s. indicates not significant and analysis indicated as *(p < 
0.05), **(p < 0.01), ***(p < 0.001), and ****(p < 0.0001).
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3.4.4 Tumor Infiltration Lymphocytes Analysis of the Combination Therapy 

TLR agonists, being strong immunostimulatory agents, can reverse the 

immunosuppressive microenvironment created by tumors.129,130 Intratumoral treatment with 

TLR7a increases the ratio of M1 (antitumor phenotype) to M2 (protumor phenotype) tumor 

associated macrophages.130 TLR7a also causes rapid reduction of myeloid-derived suppressor cells 

(MDSC) within the tumor microenvironment.131 The combined TLR7a and PD-L1 blockade 

results in a reduced number of T regulatory cells in the tumor microenvironment.132 The above 

data (Figures 3.2 and 3.3) showed that NS-TLR7a therapy was safe and reduced tumor 

progression; however, monotherapy with NS-TLR7a only resulted in partial tumor remission. 

Given the known efficacy of anti-PD-1 (a-PD-1) and anti-CTLA4 (a-CTLA-4) therapies and their 

ligand expression in this murine tumor type as well as human colorectal cancer,97 a-PD-1 and a-

CTLA-4 therapies were combined with NS-TLR7a therapy. As single agents, both a-PD-1 and a-

CTLA-4 are known to have modest therapeutic effects; therefore, the potential treatment 

combinations were first screened by determining the TIL population. Five treatment groups were 

used to study the cell population upon combination therapy: (1) vehicle, (2) a-PD-1 + a-CTLA-4, 

(3) NS-TLR7a + a-CTLA-4 + a-PD-1 (triple therapy), (4) NS-TLR7a + a-PD-1, and (5) NS-TLR7a 

+ a-CTLA-4. Single agent therapy was not chosen as a group because previous studies showed 

that single blockade of a checkpoint pathway has limited efficacy on CT26 tumors.133 The 

treatment protocol is shown in Figure 3.4a: NS-TLR7a was i.t. injected and checkpoint inhibitors 

a-PD-1 and/or a-CTLA-4 were i.p. injected. Both the directly injected tumors (treated tumor) and 

the contralateral not directly injected tumors (untreated tumors) were harvested on day 14 after the 

first treatment to study the TIL in the tumor environment. The NS-TLR7a + a-PD-1 + a-CTLA-4 

(triple therapy) treated group showed a greater infiltrated number of CD45+ (leukocytes) and CD8+ 
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cells (cytotoxic T cells) in both treated and untreated tumors (Figure 3.4b,c,f, and g) compared to 

the other therapy combinations. About a 100-fold increase in CD45+CD8+ cells (p = 0.0991 and 

0.0094), in CD45+CD8+IFN-𝛾+ cells (p = 0.0083 and 0.005), and in CD45+CD8+granzyme B+ cells 

(p = 0.0132 and <0.0001) was observed in both treated and contralateral tumors, respectively, 

following triple therapy. This shows that the TIL were activated (Figure 3.4d,e,h,i). The CD8+ 

IFN-𝛾+ cells indicate activation of cytotoxic T cells to destroy tumor cells and the CD8+ granzyme 

B+ cells can mediate apoptosis.134,135,136 The increase of immune cells, IFN-𝛾+ and granzyme B+ 

cells, in both treated and contralateral tumors demonstrate that the improvement of the immune 

response for the triple therapy is systemic, since only one flank tumor site was injected with NS-

TLR7a.  
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Figure 3. 4: TIL analysis and tumor progression curve following the combination therapy.  
(a–i) TIL analysis of NS-TLR7a combination therapy. CT26 colon tumor cells were s.c. implanted 
into female BALB/c mice (4–5 mice per group) at right and left flanks. NS-TLR7a, a-PD-1, and 
a-CTLA-4 were combined to treat CT26 tumor-bearing mice and the immune cell populations in 
the tumor microenvironment were investigated. (a) Experimental protocol. Day 0 is defined as the 
day of the first treatment; NS-TLR7a was i.t. injected into one flank tumor (treated tumor) and 
checkpoint inhibitors were i.p. injected. In the treated tumor, (b) CD45+, (c) CD45+CD8+, (d) 
CD45+CD8+IFN-𝛾+, and (e) CD45+CD8+granzyme B+ cells were enumerated. The same analyses 
were done on the untreated contralateral flank tumors (f–i). Immune cell populations in treated and 
untreated tumors were compared. Each dot indicates an individual animal and vertical and 
horizontal bars are means ± SE of two independent pooled experiments showing similar results. 
Data were analyzed by the Kruskal–Walls test using Dunn’s multiple comparisons post hoc test.   
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checkpoint inhibitors (a-PD-1+a-CTLA-4) were reported to have promising therapeutic treatment 

outcome, and, therefore, this was chosen for comparison with triple therapy which consisted of 

NS-TLR7a, a-PD-1, and a-CTLA-4. To assess abscopal effects by induction of systemic anti-

tumor immune responses, only one (right side) of the two flank tumors was injected with NS-

TLR7a; the treatment protocol is shown in Figure 3.5a. As shown in Figure 3.5b–h, the triple 

therapy with NS-TLR7a, a-PD-1, and a-CTLA-4 induced complete remission at the treated right 

side tumor (complete remission rate: 80%) as well as at the contralateral untreated tumor (complete 

remission rate: 60%). To the authors’ knowledge, this is the highest reported systemic remission 

rate for any two tumor murine colon cancer model in which the starting tumor size is 100 mm3 that 

use nanoparticle-based TLR7/8 agonists combined with checkpoint inhibitors. 

Several previous studies have used nanoparticle-based TLR7/8 agonists combined with 

checkpoint inhibitors or chemodrugs to treat cancer. Combination therapy using polymer 

nanoparticles such as PLGA/PEG to deliver agonists demonstrated a delay in tumor growth;116,137 

however, most studies employed a single-tumor-bearing model, and therefore, it is unknown if 

these treatments induced abscopal effect that triggers systemic antigen-specific responses with the 

potential to treat metastatic tumors. Agonists loaded on cyclodextrin combined with a-PD-1 

showed excellent therapeutic outcome on a two-tumor mouse model;112 however, the study used 

the MC38 tumor model, which is intrinsically responsive to PD-1/PD-L1 blockade.107 

The earlier nanoparticle biodistribution study showed that locally injected nanoparticles 

mainly stay at the injected site (Figure 3.1). This observation suggests that the tumor inhibition 

effects observed for the contralateral tumor is due to a systemic adaptive immune response and 

less likely due to the small amount of NS-TLR7a that traveled to the distant tumor. To further 

validate that triple therapy induced tumor-specific adaptive immune responses, the mice with 
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tumor remission after triple therapy were implanted with CT26 cells on a nontreated flank site, 

and the growth of rechallenged tumors monitored. No tumor growth was detected in the challenged 

mice (rechallenged mouse tumor free rate: 100%), proving that immune memory was produced 

during the initial treatment/remission. 
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Figure 3. 5: Suppression of tumor growth and survival rates with combination therapy.  
CT26 colon tumor-bearing mice (8–10 mice per group) were treated with vehicle, combined 
checkpoint inhibitors (a-PD-1+a-CTLA-4), and checkpoint inhibitors combined with NS-TLR7a 
(a-PD-1+a-CTLA-4+NS-TLR7a). The treatment protocol is shown in (a). The progressions of both 
(b–d) treated tumors and (e–g) untreated tumors were monitored. Checkpoint inhibitors (100 μg; 
a-PD-1 and a-CTLA-4) were injected i.p. three times per week. A 12.5 nmol NS-TLR7a was i.t 
injected every other day. Mice were sacrificed when tumors reached 2,000 mm3 or ulceration 
occurred as required by the UCSD IACUC guideline (policy 9.04). Data were pooled from two 
independent experiments, which showed similar results. (h) Survival was monitored until day 90 
and a Logrank test was used for significance. *means p < 0.05, **means p < 0.01, ***means p < 
0.001, and ****means p < 0.0001. 
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3. 5 Conclusions 

In this study, the therapeutic efficacy of TLR7a conjugated to silica NS was described 

when used as monotherapy and as combination therapy with checkpoint inhibitors. Conjugating 

TLR7a onto NS lengthened the TLR7a retention at the locally injected tumor. As shown in the 

biodistribution study, i.t injected NS-TLR7a was retained 175× higher in the tumor and 15× lower 

in the liver when compared to i.v. injected NS-TLR7a. When i.t. NS-TLR7a was combined with 

checkpoint inhibitor therapy to treat a colorectal cancer model (CT26) that only has modest 

responses to checkpoint inhibitor immunotherapy, a 10–100× increase in tumor infiltrating 

lymphocytes and complete tumor remission was observed; treated and contralateral (untreated) 

tumors had complete remission rates of 80% and 60%, respectively. Triple therapy induced 

abscopal effects on distant tumors, and the cured treated mice that were rechallenged with CT26 

cells rejected the implanted cells, indicating that the triple therapy induced tumor antigen-specific 

systemic immune response. In summary, i.t. injection of NS conjugated TLR7a may provide a 

method to induce a safe and more robust antitumor immune response to checkpoint inhibitor 

immunotherapy, against cancer types that are less responsive to checkpoint inhibitor treatments. 
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