
UC Berkeley
UC Berkeley Previously Published Works

Title
Measurement of the B0→D*-Ds*+ and Ds+→ϕπ+ branching fractions

Permalink
https://escholarship.org/uc/item/3z30d2h9

Journal
Physical Review D, 71(9)

ISSN
2470-0010

Authors
Aubert, B
Barate, R
Boutigny, D
et al.

Publication Date
2005-05-01

DOI
10.1103/physrevd.71.091104

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3z30d2h9
https://escholarship.org/uc/item/3z30d2h9#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


PHYSICAL REVIEW D 71, 091104(R) (2005)

RAPID COMMUNICATIONS
Measurement of the B0 ! D��D��
s and D�

s ! ��� branching fractions

B. Aubert,1 R. Barate,1 D. Boutigny,1 F. Couderc,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 V. Tisserand,1 A. Zghiche,1

E. Grauges-Pous,2 A. Palano,3 M. Pappagallo,3 A. Pompili,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4

G. Eigen,5 I. Ofte,5 B. Stugu,5 G. S. Abrams,6 A. W. Borgland,6 A. B. Breon,6 D. N. Brown,6 J. Button-Shafer,6

R. N. Cahn,6 E. Charles,6 C. T. Day,6 M. S. Gill,6 A. V. Gritsan,6 Y. Groysman,6 R. G. Jacobsen,6 R. W. Kadel,6 J. Kadyk,6

L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orimoto,6 M. Pripstein,6

N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 M. Barrett,7 K. E. Ford,7 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7

S. E. Morgan,7 A. T. Watson,7 M. Fritsch,8 K. Goetzen,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8

T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 N. Chevalier,9 W. N. Cottingham,9 M. P. Kelly,9

T. Cuhadar-Donszelmann,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 D. Thiessen,10 A. Khan,11

P. Kyberd,11 L. Teodorescu,11 A. E. Blinov,12 V. E. Blinov,12 A. D. Bukin,12 V. P. Druzhinin,12 V. B. Golubev,12

V. N. Ivanchenko,12 E. A. Kravchenko,12 A. P. Onuchin,12 S. I. Serednyakov,12 Yu. I. Skovpen,12 E. P. Solodov,12

A. N. Yushkov,12 D. Best,13 M. Bondioli,13 M. Bruinsma,13 M. Chao,13 I. Eschrich,13 D. Kirkby,13 A. J. Lankford,13

M. Mandelkern,13 R. K. Mommsen,13 W. Roethel,13 D. P. Stoker,13 C. Buchanan,14 B. L. Hartfiel,14 A. J. R. Weinstein,14

S. D. Foulkes,15 J. W. Gary,15 O. Long,15 B. C. Shen,15 K. Wang,15 L. Zhang,15 D. del Re,16 H. K. Hadavand,16 E. J. Hill,16

D. B. MacFarlane,16 H. P. Paar,16 Sh. Rahatlou,16 V. Sharma,16 J. W. Berryhill,17 C. Campagnari,17 A. Cunha,17

B. Dahmes,17 T. M. Hong,17 A. Lu,17 M. A. Mazur,17 J. D. Richman,17 W. Verkerke,17 T. W. Beck,18 A. M. Eisner,18

C. J. Flacco,18 C. A. Heusch,18 J. Kroseberg,18 W. S. Lockman,18 G. Nesom,18 T. Schalk,18 B. A. Schumm,18 A. Seiden,18

P. Spradlin,18 D. C. Williams,18 M. G. Wilson,18 J. Albert,19 E. Chen,19 G. P. Dubois-Felsmann,19 A. Dvoretskii,19

D. G. Hitlin,19 I. Narsky,19 T. Piatenko,19 F. C. Porter,19 A. Ryd,19 A. Samuel,19 S. Yang,19 S. Jayatilleke,20 G. Mancinelli,20

B. T. Meadows,20 M. D. Sokoloff,20 F. Blanc,21 P. Bloom,21 S. Chen,21 W. T. Ford,21 U. Nauenberg,21 A. Olivas,21

P. Rankin,21 W. O. Ruddick,21 J. G. Smith,21 K. A. Ulmer,21 J. Zhang,21 A. Chen,22 E. A. Eckhart,22 J. L. Harton,22

A. Soffer,22 W. H. Toki,22 R. J. Wilson,22 Q. Zeng,22 B. Spaan,23 D. Altenburg,24 T. Brandt,24 J. Brose,24 M. Dickopp,24

E. Feltresi,24 A. Hauke,24 H. M. Lacker,24 E. Maly,24 R. Nogowski,24 S. Otto,24 A. Petzold,24 G. Schott,24 J. Schubert,24

K. R. Schubert,24 R. Schwierz,24 J. E. Sundermann,24 D. Bernard,25 G. R. Bonneaud,25 P. Grenier,25 S. Schrenk,25

Ch. Thiebaux,25 G. Vasileiadis,25 M. Verderi,25 D. J. Bard,26 P. J. Clark,26 W. Gradl,26 F. Muheim,26 S. Playfer,26 Y. Xie,26

M. Andreotti,27 V. Azzolini,27 D. Bettoni,27 C. Bozzi,27 R. Calabrese,27 G. Cibinetto,27 E. Luppi,27 M. Negrini,27

L. Piemontese,27 A. Sarti,27 F. Anulli,28 R. Baldini-Ferroli,28 A. Calcaterra,28 R. de Sangro,28 G. Finocchiaro,28 P. Patteri,28

I. M. Peruzzi,28 M. Piccolo,28 A. Zallo,28 A. Buzzo,29 R. Capra,29 R. Contri,29 M. Lo Vetere,29 M. Macri,29 M. R. Monge,29

S. Passaggio,29 C. Patrignani,29 E. Robutti,29 A. Santroni,29 S. Tosi,29 S. Bailey,30 G. Brandenburg,30

K. S. Chaisanguanthum,30 M. Morii,30 E. Won,30 R. S. Dubitzky,31 U. Langenegger,31 J. Marks,31 U. Uwer,31 W. Bhimji,32

D. A. Bowerman,32 P. D. Dauncey,32 U. Egede,32 J. R. Gaillard,32 G. W. Morton,32 J. A. Nash,32 M. B. Nikolich,32

G. P. Taylor,32 M. J. Charles,33 G. J. Grenier,33 U. Mallik,33 J. Cochran,34 H. B. Crawley,34 W. T. Meyer,34 S. Prell,34

E. I. Rosenberg,34 A. E. Rubin,34 J. Yi,34 N. Arnaud,35 M. Davier,35 X. Giroux,35 G. Grosdidier,35 A. Höcker,35
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We present measurements of the branching fractions B�B0 ! D��D��
s � and B�D�

s ! ����, based on
123� 106 ��4S� ! B 	B decays collected by the BABAR detector at the PEP-II asymmetric-energy
e�e� B factory. A partial reconstruction technique is used to measure B�B0 ! D��D��

s � and the decay
chain is fully reconstructed to measure the branching fraction product B�B0 ! D��D��

s � �B�D�
s !

����. Comparing these two measurements provides a model-independent determination of the D�
s !

��� branching fraction. We obtain B�B0 ! D��D��
s � � �1:88	 0:09	 0:17�% and B�D�

s ! ���� �
�4:81	 0:52	 0:38�%, where the first uncertainties are statistical and the second systematic.

DOI: 10.1103/PhysRevD.71.091104 PACS numbers: 13.25.Hw, 12.39.St, 13.25.Ft
Published measurements of B�B0 ! D��D��
s � [1,2] are

limited by the uncertainties on the D�
s partial decay rates.

A substantial improvement can therefore be obtained using
a partial reconstruction technique where the D�

s is not
explicitly reconstructed. The measurement of B�B0 !
D��D��

s � provides a test of the details of the factorization
assumption [3] in the relatively high q2 regime [4]. Partial
reconstruction in addition allows an unbiased measurement
of the D�

s ! ��� branching fraction, which has impor-
tant implications for a wide range of Ds and B physics, as
most of theDs decay branching fractions are normalized to
it [1]. As an example, an improved measurement of
B�D�

s ! ���� would reduce the experimental uncer-
tainty on the constraint on the Unitary Triangle parameter
� from the measurement of the CP violating asymmetry in
B0 ! D�	�
 decays [5].

We used �123	 1� � 106 B 	B decays collected at the
PEP-II asymmetric-energy e�e� B factory with the
BABAR detector, which is described in detail elsewhere
[6]. We provide here a brief description of the detector
components relevant for this analysis. Charged-particle
trajectories are measured by a silicon vertex tracker
(SVT) and a drift chamber (DCH) immersed in a 1.5 T
solenoidal magnetic field. The five-layer SVT enables
tracks with low transverse momentum to be reconstructed.
The energy and direction of photons and electrons are
measured by a CsI(Tl)-crystal electromagnetic calorimeter
(EMC). Charged-particle identification is obtained from
the measurement of energy loss in the tracking system,
and from the measurement of the number and the angle of
Cherenkov photons in a ring-imaging Cherenkov detector
(DIRC).

To study efficiencies and backgrounds and to validate
the analysis we use several event samples produced with a
Monte Carlo (MC) simulation of the BABAR detector
based on GEANT4 [7] and reconstructed through the
same chain as the data.

The B0 ! D��D��
s ! �D�

s ��� 	D
0��� decay [8] is re-

constructed using two different methods. The first method
combines the fully reconstructed D�� decay with the pho-
ton from the D��

s ! D�
s � decay, without explicit D�

s

reconstruction. Denoting the measured yield by N Ds , we
can write:
091104
B �B0 ! D��D��
s � � B1 �

N Ds

K
P
i
�"iBi�

: (1)

Here K � 2NB 	Bf00B�D��
s ! D�

s ��B�D�� ! 	D0���,
NB 	B is the number of B-meson pairs, f00 � 0:499	
0:012 [9] is the fraction of ��4S� ! B0 	B0 decays, Bi is
the branching fraction of 	D0 decay mode i, "i is the
efficiency for partially reconstructing the B0 with a photon,
a low momentum (‘‘soft’’) pion and a 	D0 reconstructed in
mode i.

The second method, based on full reconstruction of the
B0 ! D��D��

s decay viaD�
s ! �����! K�K��, mea-

sures the branching fraction product B2 � B�B0 !
D��D��

s � �B�D�
s ! ����:

B 2 �
N Ds!��

KB��! K�K��
P
i
�"0iBi�

; (2)

where N Ds!�� is the number of reconstructed decays and
"0i is the efficiency for fully reconstructing the B0, includ-
ing reconstruction of �! K�K�. The D�

s ! ���

branching fraction is measured from the B2=B1 ratio:

B �D�
s ! ���� �

B2

B1
�

N Ds!��
P
i
�"iBi�

N DsB��! K�K��
P
i
�"0iBi�

;

(3)

where the factor K drops out. Although the efficiencies "i
and "0i are in general different, they include common
factors and many systematic uncertainties cancel in the
ratio.

To extract the signal in partially reconstructed events, we
compute the ‘‘missing mass’’ recoiling against the D���
system, assuming that a B0 ! D���X decay took place:

mmiss �
���������������������������������������������������������������������������������
�EB � ED� � E��

2 � �pB � pD� � p��2
q

; (4)

where all quantities are defined in the ��4S� center-of-
mass (CM) frame. While the photon andD�� energies (E�,
ED�) and their three-momenta (p�, pD�) are measured,
kinematical constraints are needed to determine the B
four-momentum (EB, pB). In order to do that we equate
theB-meson energy withEbeam, the beam energy in the CM
-4
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FIG. 1 (color online). Fit (solid line) to the measured missing-
mass distribution. The background component is shown as the
dashed line.
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frame, and calculate the cosine of the opening angle #BD�

between the B and the D�� momentum vectors from 4-
momentum conservation in the B0 ! D��D��

s decay. This
leaves the azimuthal angle of the B meson around the D��

direction as the only undetermined parameter in the kine-
matics of the decay. MC studies show that an arbitrary
choice of this angle (we fix cos�BD� � 0) introduces a
negligible spread (of the order of 1:5 MeV=c2) in themmiss

distribution. The mmiss distribution of signal events peaks
at the nominal D�

s mass [1] with a width of about
15 MeV=c2.

We suppress unphysical D��� combinations by requir-
ing j cos#BD� j � 1:2 and events from e�e� ! u 	u;
d 	d; s	s; c 	c production by requiring the ratio of the second
to the zeroth Fox-Wolfram moments [10] to be less than
0.3.
D�� candidates are reconstructed in the 	D0�� mode

using 	D0 decays to K���, K�������; K����0, and
K0
s�

���, listed here in order of decreasing purity. The �2

probabilities of both the D0 and D� vertex fits are required
to be greater than 1%. The D�� momentum in the ��4S�
frame must satisfy 1:4< pD� < 1:9 GeV=c. We require
the reconstructed mass of the D0 to be within 3 standard
deviations (�mD0 ) of the measured peak value, and QD� �

mD� �mD0 �m� to satisfy Qlo <QD� <Qhi, where the
choice of limits Qlo � 4:10� 5:20 MeV=c2 and Qhi �
6:80� 7:90 MeV=c2 around the nominal value QPDG

D� �

5:851 MeV=c2 depends on the D0 decay mode. Kaon
identification is required in K����0 and K�������

modes. The K0
S from the K0

S�
��� mode must have an

invariant mass within 15 MeV=c2 of the nominal K0
S mass

and a flight length greater than 3 mm.
If more than one D�� candidate is found, we first retain

those that have the 	D0 reconstructed in the decay mode
with the highest expected purity. If ambiguities persist at
this stage, we choose the best candidate based on the track
quality of the soft pion and finally on the minimum value of
�2 � ��QD� �QPDG

D� �=�QD� �
2 � ��mD0 �mPDG

D0 �=�mD0 �
2,

where �QD� is the measured resolution on QD� .
Photon candidates are chosen from clusters of energy

deposited in the EMC that are not associated with any
charged track. The energy spectrum of photons from the
D��
s ! D�

s � decay is rather soft (E� & 0:4 GeV) and this
makes controlling the background due to random photon
associations one of the main challenges in the analysis. We
require E� > 142 MeV and use the energy profile of the
cluster to refine the photon selection, requiring a minimum
cluster lateral moment [11] of 0:016, and a minimum
Zernike moment A20 [12] of 0:82. We also reject photon
candidates that form in combination with any other photon
in the event a �0 whose invariant mass is between 115 and
155 MeV=c2 and whose momentum in the CM frame is
greater than 200 MeV=c. This selection retains more than
one photon candidate in about 10% of the events. In these
occurrences we choose the one that maximizes the value of
091104
a likelihood ratio based on the energy and the shape of the
reconstructed cluster.

The cuts are chosen to maximize the expected statistical
significance of the selected signal using MC. The combi-
natorial background is dominated by B0 	B0 events. None of
the background components peak at the D�

s mass in the
mmiss distribution. The reconstruction and selection effi-
ciency, evaluated on simulated events, is h"Bi �P
i�"iBi� � �5:15	 0:03� � 10�3.
We extract the signal yield using an unbinned

maximum-likelihood fit to the mmiss distribution. The sig-
nal peak is well described by a Gaussian probability den-
sity function (p.d.f.). We parameterize the combinatorial
background with the threshold function B�mmiss� �

B0�1� e��mmax�mmiss�=b��mmiss=mmax�
c. Figure 1 shows the

result of the fit to the missing-mass distribution. The width
of the Gaussian signal distribution is taken from MC
simulation. The signal yield is N Ds � 7488	 342 events,
corresponding to a branching fraction B�B0 !
D��D��

s � � �1:88	 0:09�%, where the quoted error is
purely statistical.

We now describe the full reconstruction of the B0 !
D��D��

s ! �D�
s ��� 	D

0��� chain, with 	D0 decaying into
the four modes considered, andD�

s ! ��� ! K�K���.
Two kinematical variables are used: �E � EB � Ebeam

and the energy-substituted mass mES �
������������������������
E2beam � p2B

q
.

The two variables have very little correlation; for signal
events �E peaks around zero and mES at the B-meson
mass. After applying selection cuts (described below) on
the D��

s and D�� candidates, we retain the combination
with the smallest value of j�Ej. The number of fully
reconstructed B0 candidates is then obtained from a fit to
the mES spectrum.

The selection ofD�� candidates and most of the require-
ments on photon candidates are identical to those adopted
in the partial reconstruction analysis. Because of the addi-
-5



TABLE I. Summary of systematic uncertainties.

Source B1 [%] B2 [%] B2=B1 [%]

p.d.f. modeling 4.8 4.8
Comb. background 2.9 2.9
MC statistics 0.6 3.2 3.3
Peaking background 2.8 2.8
B counting 1.1 1.1
f00 2.4 2.4
Soft pion efficiency 2.2 2.2
D�� Tracking efficiency 2.4 2.4
D�� Vertexing efficiency 2.0 2.0
D�
s Tracking efficiency 2.6 2.6
D�
s Vertexing efficiency 2.0 2.0

Photon efficiency 1.8 1.8
�0 eff. ( 	D0 ! K����0) 1.2 1.2
�0 veto 4.7 4.7
Particle identification 0.4 0.4
Polarization uncertainty 0.8 0.8
D0 branch. fract. [1] 3.2 3.2
B�D�� ! 	D0��� [1] 0.7 0.7
B�D��

s ! D�
s �� [15] 0.8 0.8

B��! K�K�� [1] 1.2 1.2

Total systematic error 9.1 10.7 7.9
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FIG. 2 (color online). Fit (solid line) to the measured mES

distribution. The background component is shown as the dashed
line.
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tional kinematical constraints on fully reconstructed B
decays, the combinatorial background level is much
smaller; we can therefore relax the requirement on E�,
thus improving the statistical significance of our sample.
We reconstruct � candidates from pairs of oppositely
charged tracks, with at least one track satisfying kaon
selection criteria; D�

s candidates are formed by combina-
tion with an additional track, with charge opposite to the
soft pion from theD�� decay. A mass within 	50 MeV=c2

of the nominal D�
s mass [1] is required. Finally, D�� and

D�� mass constraints are imposed in order to improve the
mES and �E resolution of the B0 candidate. We require the
mD�

s
�mDs mass difference to be between 125 and 160

MeV=c2, the reconstructed � mass to be between 1.008
and 1.035GeV=c2, E� to be greater than 90 MeV, and j�Ej
to be less than 50 MeV.

We perform an unbinned maximum-likelihood fit to the
mES distribution with the sum of a Crystal Ball [13] func-
tion, and a threshold ARGUS [14] function; the latter
accounts for the combinatorial background. From the fit
to the data sample, shown in Fig. 2, we obtain �247	 19�
events in the signal region defined as mES > 5:27 GeV=c2.

MC studies indicate a peaking contribution due to real
B0 ! D��D��

s events, where either the 	D0 does not decay
into the reconstructed modes, or the D�

s does not decay
into ���. We subtract the peaking background applying a
correction factor to take into account that the values of the
B0 ! D��D��

s and D�
s ! ��� branching fractions that

we have measured are different from those used in the
simulation, with an iterative procedure. The resulting num-
ber of peaking background events expected in the data
sample is 35	 6 events; this uncertainty is taken into
account in the systematic error. After subtraction of the
peaking background events, the final signal event yield is
N Ds!�� � �212	 19�. Taking into account the recon-
struction and selection efficiency h"0Bi �

P
i�"

0
iBi� �

�6:16	 0:24� � 10�3, evaluated on simulated events, we
determine B2 � B�B0 ! D��D��

s � �B�D�
s ! ���� �

�8:81	 0:86� � 10�4, where the error is statistical only.
The main sources of systematic uncertainties on the

B0 ! D��D��
s branching fraction measurement are listed

in the second column (B1) of Table I. We compared the
resolution of the Gaussian p.d.f. in data and MC by fitting
the missing-mass distribution in the very clean sample of
fully reconstructed B0 ! D��D��

s events. We disentangle
in this way the effect of the experimental resolution on the
width of the signal peak from the correlations in the fit
between the width and the background parameters. We
obtain �data=�MC � �1:01	 0:05�. We repeated the mmiss

fits changing the Gaussian width by this uncertainty, and
varying the background parameters by their errors. We also
considered alternative parametrizations for the background
shape. We assign the maximum deviation from the central
value as systematic uncertainty, labeled in Table I as ‘‘p.d.f.
modeling’’. The MC statistics uncertainty is the statistical
091104
error on the efficiency determination. The systematic un-
certainties due to tracking, vertexing, photon and �0 re-
construction efficiencies, and particle identification are
evaluated using independent control samples. The effect
of the �0 veto is evaluated from fully reconstructed events.
The uncertainty due to the dependence of the efficiency on
the polarization of the B0 ! D��D��

s decay is assessed
from MC samples generated with complete longitudinal
and transverse polarization. In the full reconstruction
analysis the error on peaking background is due to the
MC statistics and to the uncertainty on the relevant 	D0

and D�
s branching fractions; the uncertainty on the com-
-6
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binatorial background is estimated using the �E sideband
(j�Ej> 200 MeV) as an alternative way of computing the
number of background events under the mES peak. Several
systematic uncertainties in the full reconstruction are in
common with the partial reconstruction analysis, and
therefore cancel in the ratio of Eq. (3). The single photon
efficiency is well reproduced by the MC (the data/MC ratio
is essentially flat and equal to 1) for E� < 0:5 GeV; the
associated systematic uncertainty is therefore independent
on the minimum photon energy requirement. All remain-
ing sources are listed in the last column of Table I.

We repeated both the partial and the full reconstruction
analyses on generic MC samples consisting of B0 	B0,
B�B�, and low-mass q 	q events, finding no bias. The result
is also stable over different data-taking periods. Finally, the
likelihoods of the fits to the data are in good agreement
with the values expected from a large set of parametrized
MC experiments.

In summary, we have measured the B0 ! D��D��
s

branching fraction

B �B0 ! D��D��
s � � �1:88	 0:09	 0:17�%; (5)

where the first uncertainty is statistical and the second is
systematic. This result is independent of the partial decay
rates of the D�

s mesons. It is consistent with a previous
091104
BABAR measurement [2] and with the world average, and
reduces the total uncertainty by a factor of about three.
The measurement is in agreement with the predictions of
the factorization model B�B0 ! D��D��

s �theor � �2:4	
0:7�% [4].

We have measured the branching fraction of D�
s !

���decay:

B �D�
s ! ���� � �4:81	 0:52	 0:38�%: (6)

This result represents an improvement by about a factor of
two over previous measurements [1,16].
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