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SENSITIVITY STUDIES OF A
STANDING-WAVE FREE-ELECTRON LASER

Govindan Rangarajan and Andrew M. Sessler

Lawrence Berkeley Laboratory, University of California,

Berkeley, CA 94720

ABSTRACT

A standing-wave free-electron laser (SWFEL) has been proposed for use in a
two-beam accelerator (TBA). We modify the previous one-dimensional discrete
cavity model of the SWFEL by introducing drifts between cavities. We also
vary the input beam energy as a function of the bunch number. In this new
model, we obtain a stable equilibrium solution for a well-bunched beam (even
after including all nonlinear terms). We obtain analytic expressions cha.ra.cterizing
this equilibrium in the limit of small cavity lengths. We study the dependence of
fluctuations in signal phase along the device as a function of detuning, input beam
energy, beam length, current errors, and initial signal field amplitude. We are
able to find an optimized sét of parameters for which the output energy changes
by less than 3% across the cavities for a 1% detuning. The maximum change in

signal phase is less than 0.12 radians.

INTRODUCTION
A “two-beam accelerator” (TBA) has been proposed[l] as a device capable
of achieving high accelerating gradients required for the next generation linear
colliders. One possible configuration is to use a standing-wave free-electron laser
(SWFEL)[2, 3] as a power source for the high gradient structure in a TBA. In

this device, irises are placed along the FEL wiggler to form a series of microwave



* cavities, and induction cells are placed between cavities to reaccelerate the beam
(see Figure 1). The standing-wave signal that builds up in the cavities as the beam
passes through is coupled to a parallel high-gradient radio-frequency accelerator.

The SWFEL has been studied in some detail in earlier papers[2-5]. In this
paper, we study the discrete;ca.vity model introduced in Ref. [5] in greater detail.
First, we introduce a new feature by putting drifts between cavities. Using this
additional degree of freedom, we obtain an equilibrium solution for a well-bunched

beam. Finally, we perform sensitivity studies around this equilibrium.

EQUILIBRIUM SOLUTION

Previously, an equilibrium solution was obtained[3] for a well-bunched beam
in the continuous model of the SWFEL by linearizing the equations of motion. In
this section, we obtain a general equilibrium solution (again for a well-bunched
beam) using the full nonlinéar set of equations. Moreover, this equilibrium solu-
tion does not assume small cavity lengths.

We start with the one-dimensional equations of motion in a discrete cavity
model of the SWFEL. Since the model and the equations of motion have been
discussed in detail elsewhere[5], we restrict ourselves to a brief description. The
discrete-cavity model takes into account time-of-flight effects within the cavity
and applies the reacceleration field only between cavities, where the ponderomo-
tive force is absent. As in previous SWFEL models, only a single signal frequency
is considered.

Within a cavity, we solve the conventional wiggle-averaged FEL equations.
Denoting the particle phase (k, + k,,)z —w,t by 0;, the particle energy by «;, and

taking Z to be the independent variable, the equations are given as follows

d0j - w w a2
-—--=kw ks—'-_s_ . - = THwTs .
= + - 1+ 5 2D.a,a cos(0,+¢)} ) (1)
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Here a, and ¢ denote the field amplitude and field phase respectively. The cou-
pling coefficient D, is given by

D, = [Jo(€) = 11(8)]/2, (4)

where ¢ = w,a2 /(8ck,7?). The coefficient 9 is given by

87 el D.ay,
"= tome k (5)

The full interaction of the electron beam with the SWFEL structure can be

represented symbolically by the following recursion relations:

Ok =0k i1 + F;(ak,z-l, V-1 (@s) k=15 Bht—1)s (6)
Yed = Tri-1 + Fy(Oka-1, Yri-1, (@s) k11, Bk p-1) + ATk,1-1, (7)
(@)t = (as)k-kcri + FalOk—rrs VoK1 (@)K 0y Br-K,1)5 (8)
Bkt = G-kt + Fo(Ok—kr 1y VrKr05 (@5) k=K1 ,1y PhKc10)- 9)

Here, 6 and «v are n-vectors where n is the number of particles in a bunch. The
quantities Ok, Yr1, (@s)k,1, and ¢, represent values of 8, v, a,, ‘a.nd ¢ for the
kth bunch at the beginning of the lth cavity. The functions Fj, F,, F,, and
Fy represent the FEL interaction within a cavity. The quantity A~x; is the
reacceleration field for kth bunch after the lth cavity. The bunch skip factor K’
is equal to the number of bunches that pass through by the time the forward
traveling radiation field makes a round trip within a cavity (see Ref. [5] for

further details):

K' m 2L,/ As. | (10)



Here, L. is the length of the cavity and the. signal wavelength ), is the average
separation between electron bunches.

We are now in a position to derive an equilibrium solution. In a discrete-
cavity model, an equilibrium solution is a solution where all the cavities behave
in an identical fashion. The equilibrium is derived for a well-bunched beam i.e. §
and v in Eqs. (6) and (7) are now scalars representing the average particle phase
and average energy of an electron bunch. First, we modify the discrete-cavity
model by introducing a drift space after each cavity. All drift spaces are taken
to be identical to one another. The drift space is designed as follows. Consider
the first bunch of electrons traversing the first cavity. By the time it exits the
cavity, its # would have changed by a finite amount, say Af. The drift space is
designed such that it exactly compensates for this change. That is, the particle
phase changes by an amount —A@ when passing through the drift. When the

drift spaces are incorporated into our model, Eq. (6) is modified as follows

Ory = Ora—1 + Fo(Ok1-1, Yri-1, (@s)ki-1, Pri-1) — AF. (11)

Since we cannot change the drift length from bunch to bunch we have to
ensure that all bunches undergo the same change A in the first cavity. Only
then will the 8 correction scheme work for all bunches. This is achieved by

choosing the input energy -, such that the following condition is satisfied

Fy(Or,1, k35 (@s)k1, k1) = A0 YV k. (12)

Next, we choose the reaccleration field such that it restores the energy lost by a

bunch in a cavity i.e.

Ay = —Fy (O s Vi1, (@s)kpy bky) YV kand L. (13)

Finally, the input radiation field amplitude and phase are taken to be the same

for all cavities (i.e. (a,)1; and ¢;; are independent of I). Once we satisfy all



these conditiqns; we obtain a cavity-independent equilibrium. This can be seen
as follows. From Eqs. (7) and (13), we find that yxi = 7k1 V k. From Egs.
(11) and (12), we find that by, = 8x1 V k. Using these two equalities and the
fact that (a,)12 = (g,)11 and ¢12 = ¢11, we find from Egs. (8) and (9) that
(@s)kz2 = (@s)k1 and ¢rz = ¢y for all k. Thus, the first two cavities behave
in an identical fashion. Repeating this argument, one can easily show that the
behaviour of any dynamical variable is independent of I. Since the drift spaces
compensate for the change in 8 and the reacceleration field compensates for the
change in 7, the electron bunches see exactly the same initial conditions in all
the cavities. Therefore, the resulting solution of the FEL equations is identical
for all cavities.

The above equilibrium solution only fixes the input value of one variable - .
The input values of the remaining variables are determined as follows. It is well
known that multi-particle stability arguments favour a value of the equilibrium
ponderomotive phase ¥ (= 8 + ¢) close to zero. However, other considerations
like sensitivity to detuning (see the next section for further details) favour a ¢
close to m/2. As a compromise, we typically take ¥ to be a constant equal to

7 /3. This fixes 0,:

Or1 = —dx1 +7/3. (14)

We still have to fix ¢;; and (a,)1,1. Usually, ¢, is taken to be zero. To reduce
sensitivity to detuning (see next section), (@)1, is taken to be as high as is
practically possible.

For long cavities, it is not possible to give an analytic expression for the
equilibrium solution. However, this is possible for very short cavities where the

continuous model is valid. This is the subject of our next subsection.



A. Equihbfiuﬁ Solution in the Continuoué Model
The continuous model is obtained by taking the cavity length to be so short
that the Euler formula can be used to integrate the FEL equations within a
cavity. From Eqs. (1)-(3) and (6)~(9), we obtain the following results (assuming
a well-bunched beam) |

Fo/Lo= ko + by — 22 = 22 1+-‘-’2£—2Da§cos(o+¢) (15)

8 ¢ = hw s — ° - 2C’Y2 ) zlwls )

Fy/L.= —D,%%"—a, sin(0+¢), (16)

Fu/L=n2CEE), (a7)
cos(6 +

Fy/Lo=n=t ) (18)

as”y
Substituting the above expressions into Eqs. (7)-(9) and (11), we can convert

them into the following differential equations:

B byrb— = 2 [14 % 2Diae,cox0 4 0)| B0, (19)
;‘g = —D,%’-%"c, sin( + ¢) — ;Ec, (20)
6;; _ n,Sin(i+ %5), (21)
% _ ,,'&S(:;viﬂ, (22)

Here, z denotes the longitudinal distance along the device, E, is the external
reacceleration field, and s denotes the normalized distance from the beam head.

The quantity Af is the change in 6 pér unit length for the first electron bunch:

— Dzawwa

Af = =—a,(s = 0) cos Y(s = 0). | (23)

r

Here we have assumed that the first electron bunch comes in with the resonant
energy 4, and the ponderomotive phase 1(s = 0). The field coupling coefficient

n' is given as follows:



7]' = ‘qu/2, (24)
where L, is the length of the beam.
For an equilibrium solution, we require 6 and + to be z-independent. Denoting

the equilibrium values by a subscript 0, we obtain the following result from Eq.
(19):

2c 2 c
2(s) = 25
| 70(e) (kw + ks — w,/c — A0) (25)
Typically, A8 < (k, + k, — w,/c). Therefore, we get
D.a,w,a.0(8) cosip(s)
200\ e N2 20
'70(3) ~ % C(kw + k, _ w’/c) . (26)
From Eq. (20), we get
eE, _ D,a, as0(8) sin t(s) . (27)

m.c? - c Yo(3)

Before we can proceed further, we have to fix 6o(s), which is a free parameter.

To simplify calculations, we choose it as follows [cf. Eq. (14)]
0o(s) = —do(s) + 7 /3. (28)
That is, the equilibrium ponderomotive phase 9 is a constant independent of s.
Now, we can solve for a,(s) and ¢o(s) from Egs. (21) and (22). Assuming a
constant current i.e.
n'(s) = 7o, (29)

we get the following expression for a,(s) and ¢o(s):

as0(s) ~ as(0) + Qé—s’i:ﬂs, (30)
#o(8) = ¢o(0) + cot 1o In [1 + %s] . (31)

By substituting these results into Eqs. (26)-(28), we can obtain analytic expres-
sions for all quantities of interest. Similar expressions can be obtained for the

linearly ramped current case.



' NUMERICAL RESULTS

In this section, we numerically study the SWFEL model described in the
previous section. We perform sensitivity studies around the new equilibrium
described in Eqs. (12) — (14). First, we study a short cavity case (where L. = A,
= 1.83 cm) and then a long cavity case (where L. = 14.7 cm). The simulation
parameters are listed in Table 1. We set the initial signal level |as(0)| by assuming
some input power per unit length P, and balancing this with cavity-wall losses,
specified by an assumed cavity Q. The average beam current has been chosen to
give an output energy per unit length of 10 J /m. For multiparticle simulations,
we use a 1% spread in v and a 10% spread in 6. Typically, we use 200 simulation

particles.

A. Studies 'using short cavities

In this subsection, we numerically study a SWFEL using short FEL cavities.
- Length of each cavity is taken to be A,. In this case, our model of the SWFEL
reduces to the continuous model introduced earlier[3] (other than for the drifts).
All studies are performed around the equilibrium solution described in the previ-
ous section. This equilibrium is achieved in our numerical simulations by varying
the input beam energy according to Eq. (25) and by fixing the drift length.s us-
ing Eq. (23). For the parameters given in Table 1, the variation in beam energy
from the head to the tail of the beam is less than 4% (for a constant current, the
input energy decreases linearly [cf. Eqs. (26) and (30)]). The reacceleration field

compensates for the average energy lost in the previous cavity.
First, we study the effects of detuning on the output microwave energy per
unit length W, and signal phase ¢. Detuning is achieved by offsetting the input
energies of ail particles by a fixed fraction Ayp/7o. Figure 2 shows the effects

of 0, 0.5, and 1 percent detuning on W,,; and ¢ for a well-bunched beam. As



expeéted, for zeré detuning~ we get a perfect equilibriurh solution. In this case,
we have verified that the analytic formulas given in Egs. (30) and (31) agree
quite well with the numerical simulations. However, for non-zero detuning, the
amplitude of phase fluctuations exceeds the required tolerances (the maximum
change in signal phase, (A¢)maz, needs to be less than 0.2 radians for the TBA
to operate properly(3]).

We can get around this problem as follows. From earlier studies{4], we know
that most of the phase ripple is introduced in the early part of the beam where
|ao(s)] is small. This can be seen heuristically as follows. By linearizing around
the equilibrium solution, we obtain the following dependence of the phase fluc-

tuation amplitude ¢, on the detuning Avo/7o:

— ) —

ds @50% Yo

a¢l ~ s COS 1/)0 372- (32)

Thus, ¢; builds up in amplitude when a,o(s) is small i.e. when s is small. There-

fore, we can reduce the buildup by modifying the input beam energy as follows:

Yin(8) = Y0(8) [1 + A’YZO T ex;(ﬁ-;fﬁ ] , (33)

where we set so/Ly = 0.2 and 8s/L, = 0.05. With this modification, the magni-
tudes of phase fluctuations are within tolerance limits (cf. Figure 3). We repeat
the calculation using many particles. In this case, the average input is given
by Eq. (33). Again, the phase fluctuations are manageable (cf. Figure 4). These
findings show that, in order to meet the tolerances on ¢ fluctuations, the beam
energy needs to be near 7o for at most only the first 20% of the beam. This mod-
ulation of 7o should be achievable in practice beacuse of reduced beam loading
near the head of the beam.

The above argument also suggests that we can reduce ¢ fluctuations by in-

creasing the input power (thereby increasing a,0(0)). This is found to be true.



| However, modifying the infut beam energy as shown in Eq. (33) works better
than increasing P;,. And once Eq. (33) is implemented, any increase in P;, has
little effect. Therefore, in all simulations that follow, we will use 7;, as given by
Eq. (33).

Using Eq. (32), we can justify the choice of .7r /3 for the equilibrium value
of 5. We see that the magnitude of ¢, fluctuations is reduced as 1o — /2.
However, multiparticle stability requirements favour a o value close to zero.
Using numerical simulations, .we find that 1 = 7/3 is a good compromise value.

Equation (32) also suggests that the magnitude of phase fluctuations can be
reduced by going to a higher input 7. A higher input v is achieved by keeping
w, and a,, constant and increasing \A,,. To keep the output power level constant,
we need to increase beam current as we increase 4. Figure 5 shows the variation
of (Ad)maer as a function of input v for a 1% detuning. We see a significant
reduction in (A®)maz as the input beam energy increases thus verifying the above
hypothesis. However, we can not increase the input beam energy beyond a certain
point. The initial cost of generating a very high energy beam would become too
high (since the efficiency of a TBA decreases with a higher input beam energy)
and the additional requirement of a higher beam current would lead to beam
breakup problems. Keeping these considerations in mind, we have proposed an
optimized set of parameters in Table 1. For these parameters, (A¢)maz is only
0.12 radians for a 1% detuning.

If one increases the wiggler strength a,, whﬂe keeping the input v fixed,
(A¢)mar increases. On the other hand, if A, is held fixed and a,, is increased
(thus increasing input v also), (A¢)me, remains approximately constant. This is
because increasing a,, increases (A¢)mqr Whereas increasing v decreases (A¢)maz-

Therefore, if both are increased, these two effects cancel one another leading to

10



a constant (A¢)maz-

Further, we find that a 2% error in beam current has no significant effect
on (A@)maz- Neither does a random 1% error in the magnitude of reacceleration
field. For very short beams, (A@)maz tends to be higher. However, once the beam
length exceed a critical value (~40 cms), (Ad)maz settles down to a stable value

independent of L,.

B. Studies using long cavities

In this subsection, we perform sensitivity studies around the equilibrium so-
lution using cavities of length 14.7 cm. This is done to check if long cavity lengths
lead to new physical effects not present in the continuous model. We find that |
there are no significant deviations from the results obtained for the continuous
model. As in the continuous model, specifying 7in according to Eq. (33), in-
creasing input power, and increasing input 7 all help reduce ¢ fluctuations (see
Figures 6 and 7). However, there is one case where the long cavity case appears
(at first glance) to differ significantly from the continuous model. For a cavity
of length 14.7 cm, we find that the beam length has to be greater than 300 cm
before (Ad)maz settles down to a stable value independent of L;. This apparent
discrepancy goes away when one analyses the situation more closely. If we look
at the last bunch in a beam of length L;, out of the Ly/), bunches that have
preceeded it, it can interact only with L,/2L. bunches [cf. Eq. (10)]. And this
number is approximately equal for both the continuous model (where L. = 1.8
cm and critical beam length is ~40 cm) and the long cavity case (where L, =
14.7 cm and critical beam length is ~300 cm).

Finally, we find results similar to ones obtained above even if we increase the

cavity length further — to 22 cm and further to 38.5 cm.

11



SUMMARY

We have developed a discrete cavity model of a SWFEL incorporating drifts
in between (‘;a,vities. A new equilibrium solution was found for this model (when
the electrons are well bunched) by varying thé input beam energy as a function
of bunch number. We performed sensitivity studies around this new equilibrium.
Remarkably similar sensitivities were observed irrespective of the cavity length.
Keeping the beam energy close to the equilibrium value for the initial part of the
beam was found to decrease sensitivity to detuning by a significant amount. A
higher value of the input beam energy also led to decreased sensitivity. Errors in
beam current and reacceleration field magnitudes did not lead to any significant
increase in signal phase fluctuations. Using these results, we have been able
to find a set of parameters for which the SWFEL has a tolerable sensitivity to
detuning. One result that should help in future studies is the observation that
the continuous model and the discrete cavity model behave in a similar fashion.

Therefore, one needs to study only the more tractable continuous model in great

detail.
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TABLES

TABLEI. Simulation parameters for the standing-wave FEL

M

Parameter

Nominal value

Optimized value

average beam current (I3)
beam length (L) |
resonant energy (7r)
wiggler strength (ay)
wiggler wavelength (Ay)
wiggler length (L)
waveguide height (h)
waveguide width (w)
signal frequency (w,/2m)
cavity quality (Q)

input power (P;n)

output energy (Wout)

=

1.8 kA
440.0 cm
16.4

14

37 cm
40 m
3cm

10 cm
17.1 GHz
10*

8 kW/m
10 J/m

14

32 kA

440.0 cm

32.2

14

39.3 cm
40 m
3cm

10 cm
17.1 GHz
10

8 kW/m
10 J/m

ﬁ



FIGURES

FIG. 1. Conceptual layout of one section of a standing-wave TBA.

FIG. 2. Single-particle simulations of the continuous model for the nominal pa-
rameters given in Table 1. Three values of Avo/70 are studied. Figure 2a shows the
output energy per unit length Wou: and Figure 2b shows the wave phase ¢ as functions

of z.

FIG. 3. Single-particle simulations of the continuous model for the nominal pa-
rameters given in Table 1. Three values of Avo/70 are studied. In these simulations,
Avo/70 is zero near the beam head and increases to the indicated value (0.5% or 1.0%)
near s/Ly = 0.2. Figure 3a shows the output energy per unit length Wou: and Figure

3b shows the wave phase ¢ as functions of z.

FIG. 4. Multi-particle simulations of the continuous model for the nominal pa-
rameters given in Table 1. Three values of Avo/70 are studied. In these simulations,
Ao/ is zero near the beam head and increases to the indicated value (0.5% or 1.0%)
near s/Ly = 0.2. Figure 4a shows the output energy per unit length W,.: and Figure

4b shows the wave phase ¢ as functions of 2.

FIG. 5. Single-particle simulations of the continuous model for the nominal pa-
rameters given in Table 1. This figure displays the variation of (A¢)mar as a function

of the input beam energy 7o for Ayo/70 = 1%. The input beam energy is varied by

15



keepihg w, and a,, fixed and varying only Ay.

FIG. 6. Single-particle simulations of the discrete cavity model (L, = 14.7 cm)
for the nominal parameters given in Table 1. Three values of Avo/70 are studied. In
these simulations, Ayo/7o is zero near the beam head and increases to the indicated _
value near s/Ly = 0.2. Figure 6a shows the output energy per unit length W,y and

Figure 6b shows the wave phase ¢ as functions of z.

FIG.7. Single-particle simulations of the discrete cavity model (L. = 14.7 cm) for
the nominal parameters given in Table 1. This figure displays the variation of (A¢)maz
as a function of the input beam energy 7o for Avo/70 = 1%. The input beam energy

is varied by keeping w, and a,, fixed and varying only Ay.

16
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