
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Mapping Kelp Forests Using Existing and Emerging Remote Sensing Techniques

Permalink
https://escholarship.org/uc/item/3z3681hn

Author
McPherson, Meredith L

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3z3681hn
https://escholarship.org
http://www.cdlib.org/


 
 

UNIVERSITY OF CALIFORNIA 
SANTA CRUZ 

 
MAPPING KELP FORESTS USING EXISTING AND EMERGING REMOTE SENSING 

TECHNIQUES  
 

A dissertation submitted in partial satisfaction 
of the requirements for the degree of 

 
DOCTOR OF PHILOSOPHY 

 
in 
 

OCEAN SCIENCES 
 

by 
 

Meredith L. McPherson 
 

June 2021 
 
The Dissertation of Meredith L. 
McPherson is approved by: 
 
 
Professor Raphael M. Kudela, chair 
 
 
Professor Mark H. Carr 
 
 
John P. Ryan, Ph.D. 
 
 
Laura Rogers-Bennett, Ph.D. 

 
 
__________________________________ 
Quentin Williams 
Acting Vice Provost and Dean of Graduate Studies



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by 
 

Meredith L. McPherson 
 

2021 



 iii 

  
TABLE OF CONTENTS 
 
LIST OF FIGURES             V 

LIST OF TABLES             X 

ABSTRACT            XII 

DEDICATION          XIII 

ACKNOWLEDGMENTS         XIV 

INTRODUCTION             1 
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

 
1. LARGE-SCALE SHIFT IN THE STRUCTURE OF A KELP FOREST ECOSYSTEM CO-OCCURS 

WITH AN EPIZOOTIC AND MARINE HEATWAVE  
1.1 ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      7 
1.2 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      8 
1.3 RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   11 
1.4 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    18 
1.5 METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   24 
1.6 REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     29  
1.7 SUPPLEMENTAL MATERIAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    36 
1.8 SUPPLEMENTAL REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    46 

 
2. KELP PATCH-SPECIFIC CHARACTERISTICS LIMIT DETECTION CAPABILITY OF RAPID 

SURVEY METHOD FOR DETERMINING CANOPY BIOMASS USING REMOTE SENSING 
TECHNIQUES 

2.1 ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    48 
2.2 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    49 
2.3 METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   54 
2.4 RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   68 
2.5 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    72 
2.6 REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   81   
2.7 SUPPLEMENTAL MATERIAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    86 

 
3. UTILIZING A MULTIYEAR DATASET OF UNOCCUPIED AIRCRAFT SYSTEM IMAGERY 

TO VALIDATE LANDSAT DERIVED GIANT KELP CANOPY  
3.1 ABSTRACT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 92  
3.2 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 93 
3.3 METHODS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  98 
3.4 RESULTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   105 



 iv 

3.5 DISCUSSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    113 
3.6 CONCLUSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    118 
3.7 REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     121 
3.8 SUPPLEMENTAL MATERIAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    129 

 
CONCLUSION          132 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 
 

 
 

 



 v 

LIST OF FIGURES 
 
FIGURE 1.1 - Spatial and temporal variability of bull kelp canopy area in northern 
California from 1985 – 2019. (a) Sonoma and Mendocino county region of study and 
SST domain (Esri World Imagery – Esri, CGIAR, USGS HERE, Garmin, FAO, 
METI/NASA, EPA, Earthstar Geographics) and inset with a global map indicating the 
northern California region with a red star, (b) annual timeseries heatmap of kelp 
canopy summed within 90 m latitudinal bins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
 
FIGURE 1.2 - SST distribution and kelp canopy area in northern California during 
prominent El Niño and MHW events from 1985 - 2019. Kernel density functions for 
SST anomalies during (a) the 1997/1998 El Niño, (b) the 2014-2015 NE Pacific MHW 
event (i.e., ‘blob’ and El Niño), and (c) relatively normal conditions before and after 
the MHW event (2012/2013 and 2018/2019, respectively). Shaded grey areas (a – c) 
represent ±1 SD from the long term mean SST index. Solid black lines (a - c) represent 
the physiological threshold for bull kelp at 17ºC (𝜎!"#$%&'!" = 3.5) and the NO3 deplete 
(NO3 = 0) threshold (𝜎!"#$%&'!" = 0.48). (d) Kelp canopy coverage through time with 
relevant oceanographic and biological events overlaid onto the timeseries as follows: 
a shaded yellow bar during the 1997/1998 El Niño; a shaded red bar during the 
2014/2015 ‘blob’; a shaded orange bar during the overlapping ‘blob’ and 2015/2016 
El Niño; a shaded yellow bar during the 2015/2016 El Niño; and a dashed grey line in 
which SSWD in sunflower stars was first observed in 2013. Annual error estimates 
(black error bars) for kelp canopy area were determined using the normalized root 
mean square error (NRMSE) between CDFW arial flyover surveys and USGS Landsat 
imagery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
 
FIGURE 1.3 - Results of Partial Least Squares Regression analysis for environmental 
and biological drivers of kelp canopy area from 1985 – 2019. Component 1 partial 
least squares regression (PLSR) x weights (top row) from environmental indices across 
1985 to 2016 (a) and both environmental and biological indices from 2003 to 2016 (b). 
PLSR models and forecasts using all components overlaid on satellite derived kelp 
canopy (c,d). See supplementary data for detailed PLSR results (Table S1.1). Predictor 
variable acronyms are as follows: purple urchin density - ‘Purple Urchin’; seasonal 
nitrate concentrations - ‘Summer NO3’ and ‘Spring NO3’; marine heatwave days - 
‘MHW Days’; seasonal sea surface temperature – ‘Summer SST’ and ‘Spring SST’; 
mean significant wave height – ‘Mean Hs’; Pacific Decadal Oscillation – ‘PDO’; 
North Pacific Gyre Oscillation – ‘NPGO’; Multivariate El Niño/Southern Oscillation 
Index – ‘MEI’. See Methods for detailed description of how each environmental 
variable influence kelp canopy dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
 
FIGURE 1.4 - Temporal trends of important environmental and biological drivers of 
ecosystem change in northern California kelp forests. Standardized indices of (a) bull 
kelp canopy coverage, MHW days, purple urchin density, and sunflower star density 
where data is available. Standardized indices overlaid with Ordinary Least Square 



 vi 

Regression (OLSR) fits (except in 4c 2003 – 2013 where a 2nd degree polynomial LSR 
is applied) prior to and after the NE Pacific MHW for (b) bull kelp canopy coverage 
and nitrate concentration, (c) sunflower star density, (d) MHW days, and (e) purple 
urchin density. See supplementary data for detailed LSR results and error statistics 
(Figure S1.2 and Table 1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   17  

 
FIGURE S1.1 - PLSR models and forecasts using physical drivers (a) and physical and 
biological drivers (b) overlaid on satellite derived kelp canopy. Forecasted scenarios 
use environmental variables (MEI, NPGO, PDO, Mean Hs, seasonal SST (spring and 
summer), MHW days, and seasonal NO3 (spring and summer) conditions at the 
climatological mean for 2017 to 2019. For all other years (1985 - 2016 and 2003 - 
2016), these variables are the environmentally derived indices. . . . . . . . . . . . . . . . . . . 37  

FIGURE S1.2 – Least squares regression (LSR) fits for standardized indices of 
environmental ((a) bull kelp, (b) spring nitrate, and (d) MHW days) and biological ((c) 
sunflower star and (e) purple urchin) preceding the NE Pacific MHW and following 
the NE Pacific MHW. Date ranges depended on data availability for each variable. An 
ordinary LSR (OLSR) was applied to all variables except the sunflower star’s 
preceding NE Pacific MHW date range (panel c; 2003 – 2013) where a second degree 
polynomial LSR was applied. For variable-wise regression statistics see S4. Shading 
around the regression lines represents the 95% confidence intervals. . . . . . . . . . . . . . 38 
 
FIGURE S1.3 - Box and whisker plot for all predictor (environmental and biological) 
and response (kelp canopy) variables. Variable-wise outliers are defined as datapoints 
outside 1.5 times the interquartile range (1.5*IQR; black points). Total sample number 
across the entire variable timeseries is represented by nt. Sampling frequency (annual, 
monthly, daily, or hourly) is depicted by the grey boxes near the x-axis. . . . . . . . . . . . 42 
 
FIGURE S1.4 - Temporal (a) and spatial (b and c) representation of sub-tidal sampling 
efforts in Sonoma and Mendocino Counties in the northern California, USA region 
between 2003 and 2018 by California Department of Fish and Wildlife (CDFW) and 
Reef Check California. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 
 
FIGURE S1.5 - Correlation matrix of all environmental and biological variables used in 
the partial least squares regression (PLSR) analysis. The upper panel corner shows 
the scatter plots Pearson correlation coefficients (r) for each pair-wise relationship. 
The lower corner shows the kernel density distribution for each pair-wise relationship. 
The diagonal shows the data distribution for each variable. Strong co-linearity exists 
between seasonal sea surface temperature (SST) and nitrate (NO3) conditions. . . . . . 44  
 
FIGURE S1.6 - Partial least squares regression (PLSR) component- and variable-wise 
cross-validation results presented as the mean squared error (MSE) for (a) 
environmental indices (1985 – 2016) and (b) environmental and purple urchins (all 
indices; 2003 – 2016). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 



 vii 

 
FIGURE 2.1 - a) A map of the California coastline illustrating specific areas where 
survey sites were located in Mendocino County (magenta box) and Monterey County 
(green box). Each smaller map, outlined with the color corresponding to Mendocino 
or Monterey, depicts the stitched mosaic of each UAV image (red points), the outline 
of the kelp bed within that mosaic (white polygon), and the 3600 m2 dive site (white 
square) for each site: b) Noyo Harbor, c) Portuguese Beach, d) Point Pinos, e) Otter 
Cove, f) Hopkins Marine Station, and g) San Carlos Beach. . . . . . . . . . . . . . . . . . . . . . 57  

FIGURE 2.2 - Raster images of MicaSense RedEdge-M scaled near-infrared reflectance 
(𝜌()*)	 values for each dive survey site: a) Noyo Harbor (NH), b) Portuguese Beach 
(PB), c) Point Piños (PP), d) Otter Cove (OC), e) San Carlos Beach (SCB), f) Hopkins 
Marine Station (HMS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
 
FIGURE 2.3 - Relevant morphometric characteristics of Nereocystis and Macrocystis 
adult sporophytes (image credit: Niky Taylor; UCSC). . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
 
FIGURE 2.4 - The probability distribution of Nereocystis bulb diameter for a) Noyo 
Harbor, b) Portuguese Beach, c) Point Piños. d) Scatter plot of Nereocystis canopy 
biomass against bulb diameter fitted with linear regressions for Alaska (blue line), 
Mendocino (teal line), Monterey (green line), and all regions combined (black line). e) 
Scatter plot of Macrocystis canopy biomass against frond number fitted with linear 
regressions for all data from Santa Barbara, CA (blue line), summer data from Santa 
Barbara (blue dashed line), Monterey, CA (green line), and all regions combined 
(black line). Regression details listed in Table S2.1. Grey shaded areas represent 
regression 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 

FIGURE 2.5 - Canopy biomass against matchups of MESMA kelp fraction for each site 
(down) and resolution (across; 0.1 m, 3 m, 5 m, 10 m) for a-d) Noyo Harbor; e-h) 
Portuguese Beach; i-j) Point Piños; m-p) Otter Cove; q-t) San Carlos Beach; u-x) 
Hopkins Marine Station with OLS regression (black lines) and 95% confidence 
intervals (grey shading). See Table 2.4 for regression statistics. Grey shaded areas 
represent regression 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
 
FIGURE 2.6 - Genera specific matchups of canopy biomass and MESMA kelp fraction 
for 30 m resolution data. The relationships include all possible pixel matchups across 
the three sites for each genus (n = 12 matchups per genera). Grey shaded areas 
represent regression 95% CI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
 
FIGURE 2.7 - Left column: Semi-variogram (spherical model fit) for each station. Right 
column: Site-specific transect canopy biomass (grey lines) with mean transect canopy 
biomass (black line) a,f) Noyo Harbor; b,g) Portuguese Beach; c,h) Point Pinos; d,i) 
Ocean Cove; e,j) San Carlos Beach; f,k) Hopkins Marine Station. . . . . . . . . . . . . . . . . 73 
 



 viii 

FIGURE S2.1 - Images of morphometric measurements for Macrocystis and Nereocystis. 
a) Diver removing whole Macrocystis sporophyte in situ at the holdfast (Hopkins 
Marine Life Refuge). b) Macrocystis sporophyte transport from water to a clean and 
dry location on land. c) Entire Macrocystis sporophyte spread across tarp before 
dividing into 2 m sections. d) Field technicians measuring morphology of each 2 m 
section of a Macrocystis sporophyte. E) Nereocystis canopy spread out on clean dock 
ready to be measured. F) Josie Iselin taking counting Nereocystis blades for 
morphometric measurement. Photo credit: a) Sara Hamilton (OSU), b-f): Meredith 
McPherson. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
 
FIGURE S2.2 - First row: Noyo Harbor; Second row: Portuguese Beach; Third row: 
Point Pinos; Fourth row: Otter Cove; Fifth row: San Carlos Beach; Sixth row: Hopkins 
Marine Station. Across columns: 0.1 m, 3 m, 5 m, 10 m, 30 m pixel resolution. . . . . . 87 
 
FIGURE S2.3 - Histograms of pixel kelp fraction for each genera and resolution. Top 
row: Nereocystis; Bottom row: Macrocystis. Across columns: 0.1 m, 3 m, 5 m, 10 m, 
30 m pixel resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 
 
FIGURE 3.1 - Regional map of the Santa Barbara Channel including the study sites 
Arroyo Quemado (A) and Mohawk Reef (B) overlaid with historical mean Landsat 
MESMA kelp fraction from 1984 – 2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 
 
FIGURE 3.2 - Example processing steps for comparing sUAS and Landsat imagery to 
kelp canopy fraction from imagery collected on May 10th, 2018 at Arroyo Quemado. 
The unmasked stitched sUAS color imagery (A) is masked for land and waves (B) and 
classified for kelp canopy (C) using a simple band ratio classification approach. The 
sUAS imagery is degraded to 30 m resolution (D) and compared to 30 m resolution 
Landsat MESMA kelp fraction (E). A matchup analysis was conducted at the site and 
pixel scales using the difference between sUAS and Landsat canopy fractions (F) and 
direct correlation (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
 
FIGURE 3.3 - Differences between environmental conditions (tidal height, wave height, 
east current velocity, and north current velocity) between the sUAS and Landsat flight 
times for Arroyo Quemado (A) and Mohawk Reef (B) on all matchup dates through 
time. Wave height and current velocity difference are shown on the left y-axis. Tidal 
difference is shown on the right y-axis. The shaded grey area corresponds with the 
current magnitude case study shown in Figure 3.4 and the dotted black line to the only 
Arroyo Quemado sUAS flight within that date range (May 10, 2018). Lines connecting 
data points do not imply a continuous dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 
 
FIGURE 3.4 - (A) Landsat MESMA kelp canopy for each ETM+ or OLI satellite overpass 
at Arroyo Quemado between January and July 2018 with the corresponding day/time 
east (E) and (N) current magnitude. The dotted black line represents the day of the only 
available sUAS and Landsat matchup for this time period (May 10, 2018). The black 



 ix 

star indicates the sUAS kelp canopy area referenced on the right y-axis scale. (B) 
Stitched sUAS imagery from Arroyo Quemado on May 10, 2018. (C) Pixel-based 
difference in kelp canopy fraction between the sUAS and Landsat for the May 10, 2018 
matchup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 
 
FIGURE 3.5 - Seasonal and Landsat sensor specific kernel density distributions of pixel-
based differences between sUAS and Landsat at Arroyo Quemado (A and C) and 
Mohawk Reef (B and D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 
 
FIGURE 3.6 - (A) Predicted sUAS kelp fraction values based on the Reduced Major Axis 
(RMA) regressions plotted as a function of Landsat MESMA fraction for each matchup 
date (regression information shown in Table S3.1), regardless of the binary decision 
tree classification. Regression lines are color coded by the mean Landsat MESMA 
fraction and overlaid with the results of a general additive model (GAM) for all pixels 
across all dates/sites (r2 = 0.727, p < 2e-16). The grey line represents the 1:1 line 
between sUAS and Landsat kelp fractions. (B) RMA regression slope values as a 
function of the mean Landsat MESMA fraction overlaid with a power model fit (r2 = 
0.638; RMSE: 1.281). The horizontal grey line represents a regression slope of 1. The 
vertical grey line indicates the power model’s estimated mean Landsat MESMA 
fraction where RMA regression slope equals 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 
 
FIGURE 3.7 - Site sUAS kelp canopy area plotted as a function of Landsat kelp canopy 
area for (A) Arroyo Quemado and (B) Mohawk Reef including all pixels regardless of 
the binary decision tree classification (circles) and only including pixels that were pre-
classified as kelp (triangles).  Site kelp canopy area through time for (C) Arroyo 
Quemado and (D) Mohawk Reef for the sUAS (solid line), including all pixels 
regardless of the binary decision tree classification (dashed line), and only including 
pixels that were pre-classified as kelp (dotted line). Regression statistics shown in 
Table S3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
 
FIGURE 3.8 - sUAS color imagery (A, D, and G), Landsat MESMA fraction (B, E, and 
H), and sUAS kelp fraction as a function of Landsat MESMA fraction (C, F, and I) for 
three different case studies. Top row (A - C): October 6, 2017 Arroyo Quemado. Middle 
row (D - F): March 18, 2019 Mohawk Reef. Bottom row (G - I): June 16, 2017 Mohawk 
Reef. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 
 
FIGURE S3.1 - General additive model (GAM) best fit line for all pixels across all 
dates/sites (r2 = 0.727, p < 2e-16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 
  



 x 

LIST OF TABLES 
 
TABLE S1.1 - Component-wise PLSR results for each date range (Figure 1.3). . . . .  36 
 
TABLE S1.2 - Least squares regression (LSR) fits for standardized indices of 
environmental (bull kelp, spring nitrate, MHW days) and biological (purple urchin and 
sunflower star) show in Fig. 1.4 and S3. Date ranges presented for each timeframe 
(preceding MHW, following MHW, full timeseries) depended on data availability for 
each variable. Preceding the NE Pacific MHW, the date ranges of 1985 to 2013 and 
2003 to 2013 were used for environmental and biological variables, respectively. 
Following the NE Pacific MHW, date ranges were from 2014 to 2019 and 2014 to 2018 
were used for environmental and biological variables, respectively. Full timeseries 
date ranges were 1985 to 2019 for environmental variables, and 2003 to 2018 for 
biological variables. Bolded and grey highlighted cells designate statistically 
significant relationships (p < 0.05). Ordinary LSR was used for all trends presented 
below with the exception of the preceding MHW sunflower star trend, where a second 
order polynomial LSR was applied (indicated with *).. . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
 
TABLE S1.3 - Index data sources for all environmental (largescale and local-scale) and 
biological indices. Detailed descriptions of large and local-scale forcings and their 
influences on kelp dynamics are listed below the table. . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
 
TABLE 2.1 - Detailed description of each survey location including region (Mendocino 
County or Monterey Peninsula), kelp genera, dive site coordinates, dive survey date, 
UAV survey date, and mean tidal height during each UAV survey. . . . . . . . . . . . . . . . . 55 
 
TABLE 2.2 - Detailed information of site-specific sporophyte collection including site 
name, region, kelp genera, latitude/longitude, and collection dates. . . . . . . . . . . . . . . 61 
 
TABLE 2.3 - ANCOVA results for the effect of region (and seasons for Macrocystis) on 
the slope and intercepts of the relationship between the dependent variable (bulb 
diameter or frond count) and canopy biomass. * denotes significance. . . . . . . . . . . . . 62 
 
TABLE 2.4 - ANCOVA results from regression slopes across all sites and resolutions 
presented in Figure 2.6 and Table S2.2. * denotes significance. . . . . . . . . . . . . . . . . . . 68 
 
TABLE 2.5 - Estimates of the range (a), nugget (𝜂), and sill (C) from semi-variogram 
analysis on 𝜌()* data shown in Figure 2.2. * represents statistical significance. . . . . 71 
 
TABLE S2.1 - Spectral characteristics (center wavelengths and full-width at half-max 
(FWHM) values in nanometer) for each relevant satellite band (blue, green, red, red-
edge, and NIR). Within each cell the top value is the band’s center wavelength and the 
bottom value is the band’s FWHM. n/a denotes where band information doesn’t exist 
or isn’t available. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 



 xi 

 
TABLE S2.2 - Results from pairwise Tukey’s HSD post-hoc test for location specific 
Nereocystis bulb diameters. * denotes significance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
 
TABLE S2.3 - Regression statistics from Figure 2.6. * represent a significant 
relationship between MESMA kelp fraction and in situ canopy biomass based on a p-
value less than 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 
 
TABLE 3.1 - Landsat overflight/sensor and sUAS flight times for each date and site. .100 
 
TABLE S3.1 - RMA regression statistics corresponding to each matchup date across 
both sites in Figure 3.6. Standard deviations for RMA regression slopes and intercepts 
are included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 
 
TABLE S3.2 - Logarithmic and RMA regression statistics corresponding to Figure 3.7 
where sUAS kelp canopy area is plotted as a function of Landsat kelp canopy area for 
Arroyo Quemado (AQ) and Mohawk Reef (MO). ‘All Landsat’ indicates that all pixels 
(regardless of the binary decision tree classification) were included in the calculation 
of kelp canopy area. ‘Classified Landsat’ indicates that only pixels identified as kelp 
via the binary decision tree classification were included in the calculation of kelp 
canopy area. For AQ ‘All Landsat’ a logarithmic regression (shown on Figure 3.7) 
was used to optimize curve fitting. We have also included RMA regression statistics for 
that category below for comparison and reference to the ‘Classified Landsat’ RMA 
regression fits but are not displayed on Figure 3.7 in the main text. Standard deviations 
for logarithmic coefficients (‘Coef’) and RMA regression slopes and intercepts are 
included. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 
  



 xii 

ABSTRACT 
 
MAPPING KELP FORESTS USING EXISTING AND EMERGING REMOTE SENSING 
TECHNIQUES  
 
MEREDITH L. MCPHERSON 
 
 

Canopy forming kelp species (Order: Laminariales), the foundation of 

productive and species-rich ecosystems along rocky coastlines in temperate and Arctic 

regions, generate a diversity of provisioning, regulating, and supporting ecosystem 

services. In the northeast Pacific region, giant kelp (Macrocystis pyrifera) and bull kelp 

(Nereocystis luetkeana) are the dominant canopy forming kelps, which can be detected 

using remote sensing techniques. Historically, fixed-winged-aircraft-based aerial 

surveys and spaceborne satellites have been used to study canopy forming kelps via 

remote sensing, but increasingly unoccupied aircraft systems (UASs) are an emerging 

tool for kelp mapping. The following dissertation utilizes existing and emerging remote 

sensing techniques to advance the field of kelp remote sensing and provides insight into 

kelp monitoring and restoration; notably the implementation of ecosystem-based and 

adaptive management strategies using long-term in situ and remote sensing datasets. 
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INTRODUCTION 
 

Canopy forming kelp species (Order: Laminariales) thrive along rocky 

coastlines in temperate and Arctic regions1,2 and are the foundation of productive and 

species-rich ecosystems that generate a diversity of provisioning, regulating, and 

supporting ecosystem services3. These services include three-dimensional habitat 

structure, biodiversity, nutrient cycling, coastline defense, recreational and commercial 

fisheries, and harvestable biomass4. Global rates of kelp forest loss have generally 

increased over the last 20 years (despite high regional variability) due to a combination 

of short and long-term anthropogenic influences2, such as climate change5,6, increasing 

frequency and intensity of marine heatwaves7–11, and overfishing12. As such, observing 

and understanding these systems (via both long-term monitoring and targeted studies) 

is vital to protecting, preserving, and restoring these coastal ecosystems. 

In the northeast Pacific region (Aleutians Islands, Alaska to Baja California, 

Mexico) giant kelp (Macrocystis pyrifera) and bull kelp (Nereocystis luetkeana) are the 

dominant canopy forming kelps, which can be detected using remote sensing 

techniques. Historically, fixed-winged-aircraft-based aerial surveys13,14 and spaceborne 

satellites7,15–21 have been used to study canopy forming kelps via remote sensing. 

Increasingly unmanned aerial vehicles (UAVs) or small unoccupied aircraft systems 

(sUASs) are emerging as a cost-effective and flexible approach for kelp mapping 

applications. Together, these platforms provide a powerful suite of tools that have 

allowed scientists and managers to (1) gain a broader understanding of spatial 

variability in the environmental and biological processes driving kelp dynamics7,17,19, 
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(2) observe regional and genera-specific patterns of kelp canopy in response to large-

scale discrete climatological events7,10, and (3) develop targeted observation strategies 

for restoration22, aquaculture23, localized ecosystem events24, and high-frequency 

temporal observations25. 

The following dissertation utilized existing and emerging remote sensing 

techniques to advance the field of kelp remote sensing. Chapter 1 focuses on exploring 

northern California historical kelp dynamics and recent response to a large-scale, multi-

year marine heatwave using a nearly 35-year timeseries developed from USGS Landsat 

imagery7. This analysis showed that that northern California kelp forests, while 

temporally dynamic, were historically resilient to fluctuating environmental conditions, 

even in the absence of key top sea urchin predators. A series of coupled environmental 

and biological shifts between 2014 and 2016 resulted in the formation of a persistent, 

altered ecosystem state with low kelp biomass and primary productivity. Chapter 2 

investigated methodological approaches and challenges for determining canopy 

biomass via remote sensing by combining rapid in situ diver and UAV surveys. Via 

this approach, consistently determining canopy biomass from remote sensing at a 

variety of spatial resolutions was challenged by kelp patch-specific spatial 

characteristics. Chapter 3 utilized a multi-year dataset of near simultaneous matchups 

of UAV and Landsat imagery to validate and improve a long-term time-series of kelp 

canopy area and biomass. High-frequency environmental variability and kelp bed 

size/biomass were important for driving matchup performance and error, which may 

influence detection of sparse beds with low canopy expression. Overall, the findings of 
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this dissertation are applicable to monitoring and restoration strategies, with respect to 

implementing ecosystem-based management and adaptive management strategies 

using long-term in situ and remote sensing datasets. 
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LARGE-SCALE SHIFT IN THE STRUCTURE OF A KELP FOREST ECOSYSTEM 
CO-OCCURS WITH AN EPIZOOTIC AND MARINE HEATWAVE  
 
Meredith L. McPherson, Dennis J.I. Finger, Henry F. Houskeeper, Tom W. Bell, 
Mark H. Carr, Laura Rogers-Bennett, and Raphael M. Kudela 
 
 
Abstract 
 

Climate change is responsible for increased frequency, intensity, and duration 

of extreme events, such as marine heatwaves (MHWs). Within eastern boundary 

current systems, MHWs have profound impacts on temperature-nutrient dynamics that 

drive primary productivity. Bull kelp (Nereocystis luetkeana) forests, a vital nearshore 

habitat, experienced unprecedented losses along 350 km of coastline in northern 

California beginning in 2014 and continuing through 2019. These losses have had 

devastating consequences to northern California communities, economies, and 

fisheries. Using a suite of in situ and satellite-derived data, we demonstrate that the 

abrupt ecosystem shift initiated by a multi-year MHW was preceded by declines in 

keystone predator population densities. We show strong evidence that northern 

California kelp forests, while temporally dynamic, were historically resilient to 

fluctuating environmental conditions, even in the absence of key top predators, but that 

a series of coupled environmental and biological shifts between 2014 and 2016 resulted 

in the formation of a persistent, altered ecosystem state with low primary productivity. 

Based on our findings, we recommend the implementation of ecosystem-based and 

adaptive management strategies, such as (1) monitoring the status of key ecosystem 

attributes: kelp distribution and abundance, and densities of sea urchins and their 

predators, (2) developing management responses to threshold levels of these attributes, 
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and (3) creating quantitative restoration suitability indices for informing kelp 

restoration efforts.  

Introduction 
 

Coastal marine ecosystem response to climate change in the 21st century is 

predicted to manifest in various ways, including through habitat contraction, species 

range shifts, and losses of biodiversity and functionality1. These responses can manifest 

through both long-term gradual changes and more episodic events2,3. However, it can 

be difficult to distinguish the impacts of gradual (e.g., increasing mean temperatures) 

and irregular (e.g., increasing storm frequency) climate-induced shifts from changes in 

underlying naturally stochastic events (e.g., El Niño Southern Oscillation (ENSO)). 

One such example is the ocean warming phenomenon of marine heatwaves (MHWs). 

Global oceanic and atmospheric drivers influence regional frequency, duration, and 

intensity of MHWs4,5, all of which are increasing4,6. In eastern boundary current 

ecosystems, such as the California Current, MHWs are highly correlated to changes in 

nutrient availability given the strong correlation between temperature and nutrients7,8 

(e.g., anomalously high sea surface temperature (SST), low nitrate concentration 

[NO3]).  MHWs can have notable impacts on coastal ecosystems, such as seagrass 

beds9, coral reefs10 and kelp forests11, and especially on the foundation species and 

ecosystem engineers (e.g., seagrasses, corals, kelps) that define these systems. 

Furthermore, the specific impacts of climate induced changes to these habitat forming 

sessile organisms via the coupled impacts of regional non-climate change human 
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influences and species thermal tolerance, greatly increases their vulnerability relative 

to mobile species12. 

Canopy forming kelp species (Order: Laminariales) thrive along temperate 

rocky coastlines, and are the foundation of productive and species-rich ecosystems that 

generate a diversity of provisioning, regulating, and supporting ecosystem services13. 

Despite high regional variation, global rates of kelp forest loss have generally increased 

over the last 20 years due to a combination of short and long-term anthropogenic 

influences14. Furthermore, the influences of ocean warming on kelp forest systems have 

been observed across nearly every ocean basin11. Intense warming has occurred in 

localized coastal regions of Western Australia15,16, the Tasman Sea Region17, New 

Zealand18, Baja California19,20, Nova Scotia, Canada21, and northern California22. 

While the direct ecological implications of MHWs on kelp forests are not fully 

understood,  MHWs can alter ecosystem structure and functioning via shifts in kelp 

community species composition15,23,24 leading to dramatic ecosystem shifts from 

healthy forest to algal turf reefs25 or sea urchin barrens26. These shifts between 

alternative stable states of these kelp forests often reflect cascading interactions across 

trophic levels through bottom-up (i.e. environmental influences on kelps) and top-

down27–29 (i.e. changes in predator control of grazers) processes.  

Along the coast of northern California (Figure 1.1a; Mendocino and Sonoma 

Counties), anomalously warm seawater temperatures persisted from 2014 to 2016 

(Figure 1.2b) caused by an ocean warming event (termed ‘the blob’) associated with 

global climate change and a strong El Niño event30 (collectively referred to as the NE 
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Pacific MHW). The year prior (2013), the onset of a sea star wasting syndrome (SSWS) 

epidemic caused dramatic population declines in multiple species of sea stars including 

the sunflower star, Pycnopodia helianthoides, along the entire northeast Pacific 

coastline (Figure 1.2d)22,31. The sunflower star was the primary predator of sea urchins 

in northern California since the historic extirpation of sea otters (Enhydra lutris)32. 

Aligned with these events, forests of bull kelp, Nereocystis luetkeana, exhibited an 

unprecedented ecosystem shift from healthy forests to ‘urchin barrens’ devoid of 

macroalgae along more than 350 km of coastline22. Prior to this regime shift, the 

forested ecosystem likely persisted because the cool, nutrient-rich waters that fueled 

kelp production and food availability to urchins33,34 was balanced by top-down urchin 

predation by the sunflower star35. 

 In contrast to giant kelp, which can live for many years and continuously 

produce new reproductive and vegetative fronds, bull kelp’s annual life history is 

limited to the production of a single stipe and its reproductive blades in its lifetime36,37. 

As such, mechanisms for spore dispersal are limited to a narrow window between the 

maturity of the kelp and the onset of fall and winter storms, which usually dislodge 

adult bull kelp from the substrate (except in areas protected from wave energy). These 

factors lead to high spatial and temporal variability in the distribution and abundance 

of the surface canopy that can be observed through remote sensing techniques. 

Satellite imagery provides a unique perspective on how surface canopy forming 

kelps respond to both acute climate manifestations and in situ biological trends leading 

to ecosystem phase shifts and can compensate for the scarcity of historical kelp data in 
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northern California. This dataset precedes the recent influence of the NE Pacific MHW 

allowing us to explore the contribution of environmental and biological factors on short 

and long-term trends of kelp canopy coverage. Using a 34-year time series of kelp 

canopy coverage derived from United States Geological Survey (USGS) Landsat 

imagery in combination with large-scale, local-scale, and biological drivers, we infer 

that historically declining predator densities might have laid the groundwork for the 

observed ecosystem phase shift in northern California initiated by a multi-year MHW. 

The persistent lack of kelp from 2014 to 2019 does not appear to be the result of 

unfavorable environmental conditions alone, but by a combination of unfavorable 

conditions for kelp productivity (related to warm SST and low nutrients) and conditions 

favorable for the persistence of urchin populations, including recruitment and low rates 

of mortality stemming from the absence of predators, disease, and starvation. Thus, 

while fluctuating environmental conditions occurred throughout the past three decades, 

the combination of abrupt changes in environmental and biological conditions likely 

hindered the ability of the ecosystem to recover as it had over the past three decades. 

This work provides context for monitoring biological trends and environmental 

response in surface canopy forming kelp forest ecosystems globally where satellite 

monitoring can be applied. These techniques are becoming increasingly important for 

designing adaptive management strategies to mitigate the impacts of long-term and 

abrupt environmental stressors.  

Results 
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Northern California bull kelp displayed a dynamic inter-annual pattern of 

canopy coverage38,39 across the 34-year satellite-derived record prior to 2014 (Figure 

1.1b). The onset of NE Pacific MHW and prior mass mortality of sunflower stars via 

SSWS coincided with dramatically reduced kelp canopy area in 2014 (Figure 1.2d and 

1.4a). Mean sea surface temperature (SST) anomalies during the MHW event from 

2014 to 2015 were approximately 2 standard deviations warmer, with extreme SST 

anomalies reaching 3 to 4 standard deviations above the long-term mean distribution 

(Figure 1.2b). Anomalously cool, nutrient-replete conditions ideal for bull kelp growth 

were observed in 2012 and 2013 (Figure 1.2c), but canopy area fell dramatically in 

2014 and has remained suppressed through 2019 even though environmental conditions 

became more favorable to kelp (Figure 1.1b and 1.2d). The spatial range of bull kelp 

was also compressed across the last three decades (Figure 1.1b). Specifically, the 

meridional range of kelp narrowed with complete disappearance within the northern-

most region of the study area (north of Fort Bragg) after 2008 and in the southern-most 

region after 2012. The northern and southern portions of the historical kelp canopy 

distribution within our study area are regions characterized by sandy sediment40 (poor 

substrate for kelp spore settlement36), resulting in sparser and patchier distribution than 

the rockier coastline between Fort Bragg and Jenner prior to the NE Pacific MHW. In 

addition to range reductions, the total loss of canopy area was spatially apparent 

beginning in 2014 when sparse, patchy conditions began dominating historically dense 

regions of the coastline (e.g. Point Arena; Figure 1.1b). 
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Figure 1.1. Spatial and temporal variability of bull kelp canopy area in northern California from 
1985 – 2019. (a) Sonoma and Mendocino county region of study and SST domain (Esri World Imagery 
– Esri, CGIAR, USGS HERE, Garmin, FAO, METI/NASA, EPA, Earthstar Geographics) and inset with 
a global map indicating the northern California region with a red star, (b) annual timeseries heatmap of 
kelp canopy summed within 90 m latitudinal bins. 
Esri. "World Imagery" [basemap]. Scale Not Given. "World Imagery Map". December 12, 
2009. https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9. (Jan 26, 
2021). 

 

Spatial and temporal variability were clearly apparent in the satellite-derived 

northern California kelp record. Based on results from partial least squares regression 

(PLSR) analyses, patterns of change in these systems were generally described by co-

varying mechanistic drivers of environmental and biological processes (Figure 1.3a and 

b; Table S1.1) including nitrate (NO3) availability, SST (relevant to [NO3] and 

physiological temperature thresholds), large-scale ocean-atmospheric forcing (e.g., 

Multivariate El Niño Southern Oscillation Index (MEI), North Pacific Gyre Oscillation 

(NPGO), Pacific Decadal Oscillation (PDO); all which drive local patterns of [NO3] 
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and SST), the seasonal timing of swell (significant wave height (Hs), which influences 

spore dispersal), and grazer (purple sea urchin) abundances.  

Figure 1.2. SST distribution and kelp canopy area in northern California during prominent El 
Niño and MHW events from 1985 - 2019. Kernel density functions for SST anomalies during (a) the 
1997/1998 El Niño, (b) the 2014-2015 NE Pacific MHW event (i.e., ‘blob’ and El Niño), and (c) 
relatively normal conditions before and after the MHW event (2012/2013 and 2018/2019, respectively). 
Shaded grey areas (a – c) represent ±1 SD from the long term mean SST index. Solid black lines (a - c) 
represent the physiological threshold for bull kelp at 17ºC66 (𝜎!"#$%&'!" = 3.5) and the NO3 deplete (NO3 
= 0) threshold (𝜎!"#$%&'!" = 0.48). (d) Kelp canopy coverage through time with relevant oceanographic 
and biological events overlaid onto the timeseries as follows: a shaded yellow bar during the 1997/1998 
El Niño; a shaded red bar during the 2014/2015 ‘blob’; a shaded orange bar during the overlapping ‘blob’ 
and 2015/2016 El Niño; a shaded yellow bar during the 2015/2016 El Niño; and a dashed grey line in 
which SSWD in sunflower stars was first observed in 2013. Annual error estimates (black error bars) for 
kelp canopy area were determined using the normalized root mean square error (NRMSE) between 
CDFW arial flyover surveys and USGS Landsat imagery67.  

 
Our results revealed that including grazer dynamics in a predictive model more 

accurately represented sustained low kelp biomass after environmental perturbations 

from the NE Pacific MHW than the same predictive model with grazer abundance 

omitted. Environmental drivers correctly represented bull kelp response to low NO3 
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and high SST conditions across the NE Pacific MHW regardless of whether the event 

was included in the temporal representation of the PLSR model (Figure 1.3c solid black 

line) and forecast (Figure 1.3c dashed black line) results. Forecasted model results 

using  

 

 
Figure 1.3. Results of Partial Least Squares Regression analysis for environmental and biological 
drivers of kelp canopy area from 1985 – 2019. Component 1 partial least squares regression (PLSR) 
x weights (top row) from environmental indices across 1985 to 2016 (a) and both environmental and 
biological indices from 2003 to 2016 (b). PLSR models and forecasts using all components overlaid on 
satellite derived kelp canopy (c,d). See supplementary data for detailed PLSR results (Table S1.1). 
Predictor variable acronyms are as follows: purple urchin density - ‘Purple Urchin’; seasonal nitrate 
concentrations - ‘Summer NO3’ and ‘Spring NO3’; marine heatwave days - ‘MHW Days’; seasonal sea 
surface temperature – ‘Summer SST’ and ‘Spring SST’; mean significant wave height – ‘Mean Hs’; 
Pacific Decadal Oscillation – ‘PDO’; North Pacific Gyre Oscillation – ‘NPGO’; Multivariate El 
Niño/Southern Oscillation Index – ‘MEI’. See Methods for detailed description of how each 
environmental variable influence kelp canopy dynamics. 
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only environmental drivers indicated that bull kelp was expected to partially recover in 

2017 once SST and NO3 concentrations rebounded from extreme anomalous conditions 

(Figure 1.3c). However, full bull kelp recovery in the environmental-only model 

forecasts may be hindered by NO3 concentrations that remained below the long-term 

average after the NE Pacific MHW.  Including urchin (grazer) dynamics in the PLSR 

analysis show that low kelp canopy biomass conditions persist regardless of the 

anticipated effects of environmental drivers to kelp recovery (Figure 1.3d). 

Furthermore, simulating a recovery of environmental drivers to the long-term 

climatological mean across 2017-2019 suggested that high urchin conditions 

disproportionately suppress kelp relative to environmental drivers (Figure S1.1). 

Northern California kelp has historically responded to fluctuations in 

temperature extremes such as the 1997/1998 El Niño event (depicted in Figure 1.4a by 

the sharp peak in the 1997 annual number of MHW days) but have been resilient to 

widespread collapse. The substantial declines (well below the long-term mean) in 

sunflower stars evident in 2013 (Figure 1.4c; Figure S1.2 and Table S1.2; m = -0.23 m-

2 yr-1 ; p = 0.01) set the stage for a system-wide phase shift into an urchin barren state 

initiated by the NE Pacific MHW event22. Increases in purple urchin densities lagged 

anomalously low sunflower star densities by one year, spurred by reduced top-down 

forcing by sunflower stars41 and a large purple urchin larval recruitment event in 201442 

(Figure 1.4). Bull kelp and sunflower stars also exhibited stepwise functions across the 
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MHW event (Figure 1.4b and 1.4c). Absolute mean densities for both organisms 

stabilized close to zero, represented by the anomalously low index  

 
Figure 1.4. Temporal trends of important environmental and biological drivers of ecosystem 
change in northern California kelp forests. Standardized indices of (a) bull kelp canopy coverage, 
MHW days, purple urchin density, and sunflower star density where data is available. Standardized 
indices overlaid with Ordinary Least Square Regression (OLSR) fits (except in 4c 2003 – 2013 where a 
2nd degree polynomial LSR is applied) prior to and after the NE Pacific MHW for (b) bull kelp canopy 
coverage and nitrate concentration, (c) sunflower star density, (d) MHW days, and (e) purple urchin 
density. See supplementary data for detailed LSR results and error statistics (Figure S1.2 and Table 
S1.2). 
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values between 2013-2018 for sunflower stars and between 2014-2019 for bull kelp 

(Figure 1.4c; Figure S1.2 and Table S1.2). Despite temperature anomalies returning to 

near normal distributions (Figure 1.2c) and spring nitrate concentrations rebounding 

slightly from minimums observed in 2016 (Figure 1.4b), barren conditions likely 

persist because of a widespread shift in purple urchin foraging behavior34 (Figure 1.4e; 

slope = 3.1 ± 0.67 m-2 yr-1; p = 0.02) and sustained high densities (mean = 14.8 ± 8.3 

m-2) hinder a reversal back to healthy kelp forest state (Figure 1.4e).  

Discussion 

Northern California kelp forests experienced environmental and biological 

perturbations that likely resulted from the combined effects of (1) the absence of top-

down control on urchin populations during and after the NE Pacific MHW (Figure 

1.4c), (2) abrupt and persistent shifts in SST and nutrient conditions across the NE 

Pacific MHW that were beyond the physiological thresholds of optimum bull kelp 

growth and reproduction, and (3) an eruption in the population and grazing intensity of 

the herbivorous purple sea urchin. Previous work on the dynamics of marine and 

terrestrial ecosystem shifts sheds light on how these transitions in northern California 

were initiated by environmental events43–45 and preceded by low ecosystem resilience.  

Co-varying environmental parameters, including SST and nitrate 

concentrations, historically maintained fluctuating yet stable long-term trends of bull 

kelp conditions in northern California (Figure 1.4d; p > 0.05). However, differences in 

the expression of kelp forest canopy dynamics between two foundational kelp genera 

across the NE Pacific MHW highlights that the annual life cycle of bull kelp makes 
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them particularly sensitive to acute stressors36, such as MHWs and prolonged nutrient 

deplete conditions (Figure 1.2 a-c). This is evidenced by the fact that the stepwise 

decline in northern California bull kelp canopy area across the NE Pacific MHW was 

not observed in giant kelp (Macrocystis pyrifera) canopy biomass at a regional scale in 

southern California19 and northern Baja California19,20,24. These observations suggest 

that giant kelp responded strongly to the NE Pacific MHW as a function of the genera’s 

physiological temperature threshold and latitudinal gradients in SST magnitudes19, 

most likely because they were near their southern range and thermal limit in the 

northern hemisphere (Baja California, Mexico to Aleutian Islands, AK). In contrast, 

bull kelp forests in our study area, which lie in the middle of their distribution (Point 

Conception, CA to Unimak Island, AK), did not experience patchy spatial and temporal 

recovery after the onset of the NE Pacific MHW but maintained very low biomass 

conditions between 2014 and 2019, perhaps exacerbated by low propagule pressure 

resulting from patchy, sparse kelp densities and an annual life history strategy36. 

Furthermore, sea urchin dynamics differed between northern California and 

southern/Baja California. Increases in crowned sea urchin density (and decreases in 

invertebrate species richness) in localized areas of the Baja region indicate enhanced 

grazing pressure, in addition to temperature stress, may have occurred but not on a 

regional scale20. 

Regional-scale sea urchin larval recruitment dynamics are associated with 

large-scale environmental drivers and subsequent population dynamics42. Anomalously 

high larval recruitment was observed in Fort Bragg, CA, peaking in 2015 and increased 
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larval settlement appeared to be correlated with juvenile and adult urchin densities 

during the NE Pacific MHW. Although there are no reliable in situ data available for 

sea urchin densities prior to 2003 from the northern California region, there are purple 

urchin settlement data as early as 1990 from Fort Bragg (1990-201642) and Westport, 

Pt. Cabrillo, and Pt. Arena (1990-199346). These settlement records show there was 

anomalously high larval settlement from 1993 to 1994 and 1998. Despite bull kelp 

canopy area being anomalously low between 1995 and 1998 (Figure 1.4b), there is no 

evidence of complete kelp forest collapse or ecosystem shift during that period and no 

way to verify that high juvenile urchin densities coincided with the high larval 

densities. Furthermore, anomalously low kelp conditions do not always follow or co-

occur with sea urchin larval settlement events (e.g. Figure 1.4b 2003 – 2007; Okamoto 

et al. 2020 Figure 1.3a). Given the positive relationship between SST and larval 

settlement in northern California42 and predictions of more frequent and/or severe 

MHW47, restoration efforts in northern California would benefit from a greater 

understanding of localized sea urchin population dynamics in that region. 

Observed historical declines in predator diversity is reflective of a reduction in 

ecosystem resilience. The sequence of biological events in northern California, 

beginning with the extirpation of sea otters in the 1800s, appears to have reduced the 

resilience of kelp ecosystems across the entire region44,48. Throughout California, a 

suite of predators (e.g. sunflower stars, sea otters, California Sheephead fish34), and 

their complementary effects, play an essential role in maintaining stable forested states 

by enhancing resiliency via size-dependent predation43, even when environmental 
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perturbations occur. In sea urchin barrens, urchins are starved and lack energetic value 

to predators with high metabolic rates49. Moreover, behaviorally mediated predators 

often track changes in the distribution of profitable prey, which further complicates 

implications for recovery. Urchin barrens are characterized by low urchin gonad index; 

because the gonads are what urchin predators target and consume, urchin barren states 

potentially limit increased predation of this particular prey50. The high urchin densities 

observed in northern California have induced starvation conditions and reduced 

nutritional value50. Additionally, since the overall ecosystem biodiversity of urchin 

barrens is severely reduced51, opportunities for predator (otters, sunflower stars, etc.) 

recovery is diminished. Ecosystem recovery is further limited by evidence that the 

effects on prey can lag behind the recovery of a predator52. 

Despite potential limitations of urchin barrens on predator recovery, 

reintroduction of sea otter populations into urchin barrens has resulted in phase shifts 

back to forested states in some locations (e.g. Aleutian Islands26). It is unclear from this 

analysis what future phase state dynamics will occur with the reintroduction of a top 

predator given the strong potential that this urchin barren constitutes a kelp forest 

alternative stable state26. Although we refer to the recent wide-spread kelp forest loss 

as a phase shift and cannot currently provide proof of a true kelp forest alternative 

stable state, Filbee-Dexter and Scheibling 2014 argues that in most cases the formation 

of urchin barrens can be regarded as such. Considering that the dynamics of the wide-

spread urchin barren in northern California has similar patterns to other urchin barrens, 
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hysteresis (discontinuous phase shift) and strong positive feedbacks may maintain the 

current state for a prolonged period of time. 

Whatever mechanisms of system-wide resilience that existed prior to the 

complete loss of sunflower stars in 2014 were eliminated by its removal22,24,29. Though 

recovery of other sea star species has been observed across the NE Pacific coastline, 

the sunflower star remains locally extinct from kelp forest and intertidal ecosystems 

along the entire region. Evidence suggests that the pathogen associated with SSWS in 

the sunflower star was not temperature dependent, nor responsible for disease observed 

in other asteroids throughout the region53. This may explain why recovery for 

sunflower stars across the region, and in turn kelp forest recovery in northern 

California, remain absent despite temperature and nutrient conditions recovering 

slightly in 2017.  Furthermore, the clear phase shift observed in other biological and 

environmental conditions in northern California (Figure 1.4b, d, and e), such as 

sunflower star populations, began to decline well before the NE Pacific MHW in a 

negative exponential fashion (Figure 1.4c). This indicates more gradual changes in 

predator abundances prior to large-scale environmental disturbances. The scarcity of 

historical community-level data within this ecosystem prior to 2000 further limits 

hypothesis development and testing of the influence of biological parameters on 

ecosystem patterns, and highlights the need for continued consistent, long-term in situ 

datasets that cannot be obtained via remote sensing. 

Our results indicate a potential return of kelp under a forecasted scenario of 

mean SST and nitrate conditions, but that a full recovery is suppressed by urchin 
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herbivory (Figure S1.1). Therefore, it is likely that additional mechanisms beyond a 

return to mean environmental conditions will be necessary in northern California to 

reduce urchin population densities to enable a phase shift back to forested conditions. 

Historically, natural processes such as density-dependent sea urchin disease 

outbreaks54 and exposure to large ocean swell events55 induce mass mortality of 

urchins. In the absence of urchin disease or effective human intervention to reduce 

grazer densities, the existing widespread extent of urchin barrens may continue long 

into the future with devastating impacts to forest-associated fisheries.  

We show that this persistent multi-year event has not been seen in the region 

for the observable past. As a result, innovative management strategies will need to be 

developed to address the broad scale collapse of bull kelp forests in northern California 

and the loss of the fisheries this system once supported. Furthermore, managers of 

canopy kelp forest ecosystems around the world should work to prioritize time series 

measurements of remotely sensed and in situ data for biological and environmental 

parameters before, and even after, ecosystem shifts occur. Long-term time series can 

be used to quantify historical baselines, set thresholds for monitoring criteria, develop 

restoration targets, and track ecosystem recovery. Additionally, the implementation of 

environmental forecasting models56 should be used to determine if current and future 

environmental and/or biological conditions are impeding kelp recovery or the likely 

persistence of recovered forests. Establishing these adaptive management techniques 

for perturbed and healthy coastal ecosystems around the globe is crucial for 

understanding and predicting phase shift dynamics57,58 and restoring foundation 
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species, and the ecosystem services they provide, especially in the face of increasing 

frequency and intensity of MHWs as a result of climate change. 

Methods 
Determining kelp canopy coverage - Bull kelp forests are readily identified by multiple 

existing high spatial resolution satellite and airborne platforms because their floating 

surface canopies have strong reflectance in the near-infrared, similar to terrestrial 

vegetation, and are optically distinct from the surrounding water. We utilized kelp’s 

spectral signature to generate a remote timeseries of bull kelp canopy coverage in order 

to investigate the influence of environmental factors on canopy area across more than 

three decades (1985 to 2019) of US Geological Survey (USGS) Landsat imagery. 

Cloud-free Landsat 5, 7, and 8 imagery were collected as close to historical maximum 

canopy extent as possible (August through early-November) and analyzed using 

multiple endmember spectral mixture analysis (MESMA)59, which is more robust than 

band ratio methods such as the Normalized Difference Vegetation Index (NDVI), a 

commonly used algorithm for detecting kelp38,60.  

Environmental and biological drivers of bull kelp canopy -  Although most kelp decline 

occurs at small scales driven by local processes38, losses of northern California bull 

kelp in 2014 occurred across nearly 350 km of continuous coastline (Figure 1.1b). 

Therefore, the environmental and biological drivers of kelp were investigated in the 

context of regional scale kelp dynamics that occurred across the NE Pacific MHW 

(Table S1.3 and Figure S1.3). The large-scale environmental forcings included the 

Multivariate El Niño/Southern Oscillation Index (MEI), North Pacific Gyre Oscillation 

(NPGO), and Pacific Decadal Oscillation (PDO). Local-scale environmental forcings 
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included multiple signatures corresponding with coastal upwelling dynamics, including 

sea surface temperature (SST) and surface nitrate concentrations (NO3), and significant 

wave height (Hs).  

The climatology for each index was removed and then the index was 

standardized to each variable’s mean and standard deviation.  For environmental 

indices (1985 to 2019) that were measured at hourly (Hs) and daily frequency (SST and 

NO3), data were temporally binned into monthly averages across 1985 to 2019. 

Standardized indices were calculated by removing the long-term monthly climatology 

from absolute monthly means and normalizing to the standard deviation. To scale 

monthly indices to the annual frequency of the kelp index, the monthly climatologically 

corrected indices were averaged to annual or seasonal values (e.g. spring SST and 

spring NO3). The annual frequency of marine heatwave (MHW) days was determined 

from daily satellite SST measurements based on published methodology from Hobday 

et al.61. Sea surface NO3 concentrations were calculated from SST-NO3 relationships 

developed for northern California by Garcia-Reyes et al.62 (Table S1.3).  

Biological indices, including purple sea urchin (Strongylocentrotus purpuratus) 

and sunflower star (Pycnopodia helianthoides) densities, were obtained from 

California Department of Fish and Wildlife (CDFW; 2003 - 2018) and Reef Check 

California (2007 – 2018)63  subtidal rocky reef habitat surveys (Figure S1.4). Both 

organizations conduct annual surveys through the summer and early fall in northern 

California. Reef Check California utilizes trained citizen scientists to support coastal 

ecosystem monitoring, management, and to promote stewardship of sustainable kelp 
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forest communities. Reef Check California surveyed 27 sites in the northern California 

Sonoma and Mendocino counties between 2007 and 2018 (Figure S1.4) ranging 

between 7 and 22 sites annually. Each site consisted of 2 depth strata (inshore: 0 – 10 

m and offshore: 10 – 20 m) and 6, 60 m2 (2 x 30 m) invertebrate and algal transects. 

Three 60 m2 transects were conducted in each depth strata generally parallel to shore. 

Partial transects densities were calculated when more than 50 individuals of a species 

were counted along a distance of at least 5 m.  

CDFW subtidal surveys occur as part of the agency’s kelp ecosystem 

management program64. CDFW surveyed 12 sites in the northern California Sonoma 

and Mendocino counties between 2003 and 2018 (Figure S1.4) ranging between 2 and 

11 sites annually. Random transects were placed within four depth strata (0 – 4.5 m, 

4.5 m – 8.3 m, 9 – 13.7 m, and 13.7 – 18.3 m), divided equally within the full depth 

range (0 –18 m) with 60 m2 transects (2 x 30 m). Transect locations were at 

predetermined random GPS coordinates greater than 70 m apart and generally parallel 

to shore. At each site 15–55 transects were surveyed, with equal numbers of transects 

per depth stratum. All organisms were counted and recorded within the transect area 

regardless of density distribution.  

Annual densities for the entire study region were determined by taking the mean 

of all 60 m2 transects conducted by Reef Check California and CDFW. Standardized 

indices were calculated by removing the long-term annual climatology from absolute 

annual means and normalizing to the standard deviation. 
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Statistics and Reproducibility: Determining the drivers of bull kelp canopy coverage -  

Following determination of maximum annual kelp canopy coverage, a partial least 

squares regression65 (PLSR) was used to investigate the temporal response of kelp 

canopy coverage in northern California (Mendocino and Sonoma Counties; Figure 

1.1a) to large- and local-scale oceanographic and biological processes. PLSR combines 

principle component analysis (PCA) and multiple linear regression to maximize 

covariance between the predictor and response variables. This method works 

particularly well where (1) strong collinearity occurs between predictor variables 

(Figure S1.5) and (2) a relatively low number of observations would otherwise reduce 

model performance65. Many of the variables used in this study present strong multi-

collinearity (Figure S1.5) especially between seasonal SST, seasonal NO3 and PDO. 

PLSR analysis was conducted using the PLSRegression function in the Python 

3.7 sklearn.cross_decomposition machine learning statistical module. Using a k-fold 

cross-validation technique, environmental variables were selected by calculating the 

mean squared error (MSE) and determining the optimal configuration via the lowest 

MSE (Figure S1.6a). The cross-validation showed that the number of predictor 

variables had little influence on the performance of the environmental-only indices’ 

first component (Figure S1.6a). Therefore, a one component, 9 variable configuration 

was selected. Although a two component, 4 variable configuration was optimal for 

environmental and biological indices combined (Figure S1.6b), the study’s goal was to 

compare how the ‘environmental-only’ model results changed when adding biological 
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forcing (purple urchins). As a result, a one component, 10 variable configuration was 

selected.  

 After determining and modeling important drivers of kelp canopy area, a least 

squares regression (LSR) approach was utilized to understand significant and 

insignificant temporal changes in relevant biological and environmental indices (kelp 

canopy area, spring NO3, MHW Days, sunflower star density, and purple urchin 

density) across the entire timeseries, prior to (pre-2014) the NE Pacific MHW, and 

following (post-2013) the NE Pacific MHW. For all indices, except the pre-2014 

sunflower star index (which was optimized to a polynomial LSR), ordinary LSRs were 

fit to data. This simple correlative approach was valuable for understanding how these 

relevant variables changed on both long and short-term timescales with relevance to 

dramatic declines in kelp canopy coverage. Trendline error (Figure S1.2) and 

regression statistics (Table S1.2; slope, r2, and p-value) are presented in the 

Supplementary material. 
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Supplemental Material 
 
 
Supplementary Table 1 (Table S1.1) – Component-wise PLSR results for each date 
range (Figure 1.3). 

 
 Full Timeseries Preceding MHW Recent Decade With Biological 

Forcings 
Date Range 1985 – 2016 1985 – 2013 2003 – 2016 2003 - 2016 

Component 1 r2 0.303 0.224 0.517 0.498 
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Supplementary Figure 1 (Figure S1.1) – PLSR models and forecasts using physical 
drivers (a) and physical and biological drivers (b) overlaid on satellite derived kelp 
canopy. Forecasted scenarios use environmental variables (MEI, NPGO, PDO, Mean 
Hs, seasonal SST (spring and summer), MHW days, and seasonal NO3 (spring and 
summer) conditions at the climatological mean for 2017 to 2019. For all other years 
(1985 - 2016 and 2003 - 2016), these variables are the environmentally derived indices.  
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Supplementary Figure 2 (Figure S1.2) – Least squares regression (LSR) fits for 
standardized indices of environmental ((a) bull kelp, (b) spring nitrate, and (d) MHW 
days) and biological ((c) sunflower star and (e) purple urchin) preceding the NE Pacific 
MHW and following the NE Pacific MHW. Date ranges depended on data availability 
for each variable. An ordinary LSR (OLSR) was applied to all variables except the 
sunflower star’s preceding NE Pacific MHW date range (panel c; 2003 – 2013) where 
a second degree polynomial LSR was applied. For variable-wise regression statistics 
see S4. Shading around the regression lines represents the 95% confidence intervals. 
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Supplementary Table 2 (Table S1.2) - Least squares regression (LSR) fits for 
standardized indices of environmental (bull kelp, spring nitrate, MHW days) and 
biological (purple urchin and sunflower star) show in Figure 1.4 and Figure S1.3. Date 
ranges presented for each timeframe (preceding MHW, following MHW, full 
timeseries) depended on data availability for each variable. Preceding the NE Pacific 
MHW, the date ranges of 1985 to 2013 and 2003 to 2013 were used for environmental 
and biological variables, respectively. Following the NE Pacific MHW, date ranges 
were from 2014 to 2019 and 2014 to 2018 were used for environmental and biological 
variables, respectively. Full timeseries date ranges were 1985 to 2019 for 
environmental variables, and 2003 to 2018 for biological variables. Bolded and grey 
highlighted cells designate statistically significant relationships (p < 0.05). Ordinary 
LSR was used for all trends presented below with the exception of the preceding MHW 
sunflower star trend, where a second order polynomial LSR was applied (indicated with 
*). 
 

Index 

Preceding MHW 
(1985 – 2013 or 2003 – 2013) 

Following MHW 
(2014 – 2019 or 2014 -2018) 

Full Timeseries 
(1985 – 2019 or 2003 to 2018) 

slope r2 p-
value 

slope r2 p-value slope r2 p-value 

Bull kelp -4.6x10-4 1.6x10-5 0.98 3.7x10-3 2.1x10-2 0.78 -
3.0x10-2 

9.2x10-
2 

7.7x10-2 

Spring 
nitrate 

3.5 x10-2 0.11 8.6x10
-2 

2.8x10-2 0.024 0.77 6.4x10-4 5.4x10-
5 

0.97 

MHW days -5.5x10-3 4.2x10-3 0.74 -0.64 0.66 5.03x10-2 2.7x10-2 7.4x10-
2 

0.11 

Purple 
urchin 

9.8x10-3 0.46 3.03x1
0-2 

0.56 0.88 1.8x10-2 0.25 0.64 3.1x10-4 

Sunflower 
star 

*-0.21 *0.84 *1.3x1
0-6 

-2.1x10-
2 

0.72 6.8x10-2 -0.21 0.84 1.3x10-6 
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Supplementary Table 3 (Table S1.3) – Index data sources for all environmental 
(largescale and local-scale) and biological indices. Detailed descriptions of large and 
local-scale forcings and their influences on kelp dynamics are listed below the table. 
 

Response Variable Predictor Variables 
1985 – 2019 2003 - 2018 

Kelp Index Largescale Indices Local-scale Indices Biological Indices 
USGS Landsat 

derived canopy area -  
https://earthexplorer.us

gs.gov 
 

NPGO - 
http://www.o3d.or

g/npgo/ 

SST - 
https://www.ncei.noaa
.gov/erddap/griddap/n
cdc_oisst_v2_avhrr_b
y_time_zlev_lat_lon.h

tml 
 

Purple urchin and 
Sunflower star densities - 
http://data.reefcheck.us/1 

and California Department 
of Fish and Wildlife 

(L.R.B) 
 

 PDO - 
http://research.jisa
o.washington.edu/

pdo/ 
 

MHW Days - 
Hobday et al. 20162 

 

 MEI - 
https://www.esrl.n
oaa.gov/psd/enso/

mei/ 
 

[NO3] - Garcia-Reyes 
et al. 20143 

 

  Hs -  
https://www.ndbc.noa
a.gov/ - station 46013 

 

 

    
 
 
SST Index –SST conditions effect the distribution (physiological temperature threshold), gametophyte 
maturation4, and the seasonal growth rates5.    
 
NO3 Index – Nitrate conditions fuel growth seasonally. Growth rates are primarily high in the spring and 
early summer due to the availability of nutrient rich water brought to the surface by seasonal upwelling. 
Growth rates are generally low in the summer due to limited nitrate conditions 5,6. 
 
Hs Index – Bull kelp are an annual algal species and in exposed regions, such as the northern California 
coast, are typically removed by strong wave forces during fall and winter storms.  Therefore, seasonal 
and annual trends in significant wave height influence canopy distribution 6. 
 
MEI Index – the Multivariate El Niño/Southern Oscillation (ENSO) Index (MEI.v2) is indicative of 
global climate disruptions and derived from five different variables (sea level pressure, sea surface 
temperature, zonal and meridional components of the surface wind, and outgoing longwave radiation). 
Disruptions to oceanographic conditions via ENSO patterns influence SST, NO3, and wave height 
conditions (Hs). Studies have found ENSO to be an important driver of kelp dynamics across the globe7–
11. 
 
NPGO Index – the North Pacific Gyre Oscillation is an oceanic climate index derived from the second 
mode of sea surface height variability in the northeast Pacific and influences sea surface nutrient 
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dynamics in the North Pacific Gyre and California Current. Many studies in the NE Pacific have found 
NPGO to be an important driver of regional kelp dynamics10,12,13. 

 
PDO Index – the Pacific Decadal Oscillation index is derived from the first mode of sea surface 
temperature variability in the north Pacific poleward of 20°N. Many studies in the NE Pacific have found 
PDO to be an important driver of regional kelp dynamics10,12,13.  
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Supplementary Figure 3 (Figure S1.3) – Box and whisker plot for all predictor 
(environmental and biological) and response (kelp canopy) variables. Variable-wise 
outliers are defined as datapoints outside 1.5 times the interquartile range (1.5*IQR; 
black points). Total sample number across the entire variable timeseries is represented 
by nt. Sampling frequency (annual, monthly, daily, or hourly) is depicted by the grey 
boxes near the x-axis. 
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Supplementary Figure 4 (Figure S1.4) – Temporal (a) and spatial (b and c) 
representation of sub-tidal sampling efforts in Sonoma and Mendocino Counties in the 
northern California, USA region between 2003 and 2018 by California Department of 
Fish and Wildlife (CDFW) and Reef Check California.  
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Supplementary Figure 5 (Figure S1.5) – Correlation matrix of all environmental and 
biological variables used in the partial least squares regression (PLSR) analysis. The 
upper panel corner shows the scatter plots Pearson correlation coefficients (r) for each 
pair-wise relationship. The lower corner shows the kernel density distribution for each 
pair-wise relationship. The diagonal shows the data distribution for each variable. 
Strong co-linearity exists between seasonal sea surface temperature (SST) and nitrate 
(NO3) conditions. 
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Supplementary Figure 6 (Figure S1.6)– Partial least squares regression (PLSR) 
component- and variable-wise cross-validation results presented as the mean squared 
error (MSE) for (a) environmental indices (1985 – 2016) and (b) environmental and 
purple urchins (all indices; 2003 – 2016).  
 

 
 

 
 
 
 

b 

a
a 
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KELP PATCH-SPECIFIC CHARACTERISTICS LIMIT DETECTION 
CAPABILITY OF RAPID SURVEY METHOD FOR DETERMINING CANOPY 
BIOMASS USING REMOTE SENSING TECHNIQUES 
 
Meredith L. McPherson and Raphael M. Kudela 
 
Abstract 

 Restoration and cultivation of kelp forests is a potential tool for both habitat 

protection and carbon sequestration in response to global climate change. However, 

accurate estimates of biomass are required to determine carbon export and burial rates. 

Remote sensing data are advantageous for deriving region-specific estimates of carbon 

pools and quantifying regional and global rates of carbon sequestration by canopy-

forming kelp. However, development and validation of these metrics is lacking in the 

scientific literature because most remote observation of kelp utilizes canopy area rather 

than biomass. This study attempted to close that gap by exploring and validating sub-

regional differences in canopy biomass estimates. Kelp sporophytes were collected and 

measured for morphometric characteristics and genera-specific allometry to canopy 

biomass. Kelp density was measured using a rapid in situ diver survey approach and 

coupled with unmanned aerial vehicle (UAV) imagery to quantify kelp canopy biomass 

at a range of pixel spatial resolutions (ground sampling distance). We successfully 

determined kelp canopy biomass from UAV imagery at 33% of the survey sites, but 

consistently determining canopy biomass from remote sensing at a variety of spatial 

resolutions was challenged by kelp patch-specific spatial characteristics. The 

morphologies of bull kelp in Monterey were significantly different than other regions 

measured, which means that sub-regional differences should be considered when 
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making estimates of canopy biomass using remote sensing. Although the use of kelp 

canopy area in both scientific and monitoring applications continues to be relevant for 

a wide range of applications, further work is required to understand differences in 

canopy biomass at the regional and sub-regional scale. As such, we recommend 

implementing long-term monitoring programs across the northeast Pacific region and 

beyond to validate remote sensing derived biomass estimates beyond the small number 

of existing well-characterized sites. 

Introduction 

Kelp forests are highly productive and diverse  nearshore systems that thrive in 

temperate and Arctic regions (Steneck et al., 2002). Spanning approximately 25% of 

the world’s coastlines (Wernberg et al., 2019), these biogenic habitats support a range 

of goods and services of ecological (three-dimensional habitat structure, biodiversity, 

nutrient cycling, etc.) and economic (coastline defense, recreational and commercial 

fisheries, harvestable biomass) value (Teagle et al., 2017). Kelp forests are also 

threatened by the influence of anthropogenic factors such as climate change (Wernberg 

et al., 2016; Rasher et al., 2020), increasing frequency and intensity of marine 

heatwaves (Oliver et al., 2017; Cavanaugh et al., 2019; Straub et al., 2019; Dexter et 

al., 2020; McPherson et al., 2021), and overfishing (Ling et al., 2009). Managers have 

recently begun promoting restoration, protection, and cultivation of kelp forests as a 

potential tool for carbon sequestration and ocean acidification amelioration in response 

to global climate change (Phillips et al., 2018; Macreadie et al., 2019; Crowfoot et al., 

2020).  
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aerial vehicles (UAVs). Historically, the most common kelp mapping approaches have 

evaluated kelp canopy area rather than biomass because (1) many mapping campaigns 

are conducted by state natural resource departments that prioritize canopy extent as a 

metric for kelp as a harvestable and managed natural resource (e.g. California 

Department of Fish and Wildlife (CDFW), Oregon Department of Fish and Wildlife 

(ODFW), Washington Department of Natural Resources (WDNR), Alaska Department 

of Fish and Game, etc.), and (2) species- or region-specific relationships between pixel 

spectral characteristics and biomass have not been widely developed nor validated. 

While there is significant value in monitoring kelp canopy area, quantifying rates of 

primary productivity and carbon sequestration at scales from 10s to 100s km will 

continue to be limited unless estimates of region and genera-specific biomasses can be 

derived from remote sensing data. As such, understanding and accurately quantifying 

canopy biomass parameters at a variety of spatial scales (local, regional, and global) 

has significant value to scientists and managers. 

Studies reporting validation of remote sensing derived estimates of biomass are 

limited but effective resources to build upon. Stekoll et al. (2006) created the first 

remote estimates of kelp canopy biomass for Nereocystis and Allaria fistulosa in 

southeast Alaska using high spatial resolution (0.5 – 2 m) multispectral (4 band) 

airborne data and rapid ground truthing techniques in 2002 and 2003. Canopy coverage 

estimated using normalized difference [(𝜌nir – 𝜌blue)/(𝜌nir + 𝜌blue)] was validated to 

biomass by measuring in situ density counts and sub-bulb diameter in 16 m2 surface 

quadrats. Cavanaugh et al. (2010, 2011) found a strong correlation between spectral 



 50 

To date, few studies have explored rates of carbon export and burial from 

macroalgal habitats (Krause-Jensen and Duarte, 2016; Ortega et al., 2019) and none 

have explored regional or genera-specific rates, but a global assessment by Krause-

Jensen and Duarte (2016) approximate burial rates at 173 TgC yr-1 in coastal and deep 

sea sediments. These studies are limited by the uncertainties in estimates of total 

macroalgal extent and the quantity of macroalgal derived carbon (source, export, and 

burial; Krause-Jensen and Duarte, 2016). Although species distribution models 

(SDMs) have been used to estimate spatial distribution of non-surface canopy forming 

kelp biomass (Gorman et al., 2013; van Son et al., 2020), remote sensing and satellite 

derived data are advantageous for deriving region-specific estimates of carbon pools 

(biomass) and for quantifying regional and global scale canopy-forming kelp carbon 

sequestration rates. Furthermore, satellites are more capable of high frequency 

temporal measurements than in situ surveys. This is important because kelp forests and 

macroalgal habitats are spatially and temporally dynamic (Dayton et al., 1999), where 

distribution, canopy expression, and biomass are driven by both (1) environmental 

conditions such as temperature, nutrient availability, and physical disturbance (waves 

and swell) and (2) patch-level biological and physical factors such as grazing, spore 

dispersal, and substrate type.  

 In the northeast Pacific region (Aleutians Islands, Alaska to Baja California, 

Mexico) giant kelp (Macrocystis pyrifera) and bull kelp (Nereocystis luetkeana) are the 

dominant canopy forming kelps and are easily observed with remote sensing 

techniques, such as plane-based aerial surveys, spaceborne satellites, and unmanned 
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band information and canopy biomass using 10 m and 30 m spatial resolutions for 

southern California Macrocystis along the Santa Barbara coast (using both normalized 

difference vegetation index (NDVI) and multiple endmember spectral mixture analysis 

(MESMA)). This was aided by long-term subtidal monitoring of Macrocystis biomass 

(Rassweiler et al., 2008) within permanent approximately 1600 m2 plots. Subsequently, 

the relationship between MESMA derived pixel kelp fraction and Santa Barbara 

Macrocystis canopy biomass has been used to make regional estimates of canopy 

biomass from Baja California, Mexico to Año Nuevo, California using USGS Landsat 

imagery across more than 30 years (Bell et al., 2015; Cavanaugh et al., 2019; Bell et 

al., 2020b). Despite the robust nature of the satellite-derived canopy biomass for the 

Santa Barbara coastal sites, there may be significant sub-regional differences in 

sporophyte morphology and allometry affecting the broader regional validity of this 

relationship.  

In addition to the applicability of biomass predictions, there is increasing 

motivation to apply higher spatial resolution (<30 m) imagery, to kelp mapping efforts 

in regions where complex shoreline topography exists (Nijland et al., 2019) and 

significant kelp canopy declines have occurred (McPherson et al., 2021). To date, a 

range of platforms with varying spatial resolutions have been applied to kelp mapping 

efforts (Schroeder et al., 2019). Multispectral USGS Landsat imagery (30 m spatial 

resolution) has been widely used because of the large temporal and spatial scales at 

which data are freely available (Cavanaugh et al., 2010, 2011; Bell et al., 2015, 2020b; 

Young et al., 2015; Beas-luna et al., 2020; Friedlander et al., 2020; McPherson et al., 
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2021). Studies comparing the suite of sensors (Landsat 5, 7, and 8) to higher spatial 

resolution imagery (e.g. CDFW/ODFW aerial survey data, Digital Globe World View-

2 imagery) have found that though false positives (water pixels mis-identified as kelp) 

by Landsat are uncommon, the sensor often misses pixels containing less than 20% 

kelp (Hamilton et al., 2020; Finger et al., 2021).  Furthermore, the difference between 

relatively high (~ 2 m) and moderate (30 m) spatial resolution is pronounced when 

canopy coverage is low (Finger et al. 2021; kelp reflectance signals are lower than 

Landsat’s detection capabilities) or coastline features (large tidal range and complex 

topography) limit detection of fringing kelp beds within a 30 m buffer to the shore 

(Nijland et al., 2019). Mora-soto et al. (2020) and Huovinen et al. (2020) were the first 

studies to use European Space Agency (ESA) Sentinel-2 (10 m) imagery to map 

Macrocystis. The creation of a global kelp map by Moro-Soto et al. (2020) was 

validated against previously surveyed or observed beds, but the approach was not 

effective at detecting bed sizes < 1 hectare (10,000 m2).  

Increasingly, scientists and managers are using UAV platforms to customize 

and validate kelp mapping efforts. UAVs offer flexibility for studying kelp beds at 

local, and potentially regional, scales and have applicability in offshore aquaculture 

(Bell et al., 2020a), satellite remote sensing validation (Bell et al., 2020a; Mora-Soto et 

al., 2020), and may supplement expensive aerial surveys by resource 

management/monitoring efforts (Hohman et al., 2019) in some places, despite tradeoffs 

in the total area covered using UAVs versus other platforms and logistical challenges. 

Other tradeoffs include local scale variability; Cavanaugh (2020) illustrated the 
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significance of tidal height and current velocity on changes in kelp canopy area, but the 

effect was variable across sites. Furthermore, there is potential for quantifying fine-

scale physiological and biological metrics using UAVs given sufficient understanding 

of patch dynamics and the influence of local physical and environmental factors. 

Due to the limited validation of biomass across regions and genera, and the wide 

range of remote sensing data available at a variety of spatial resolutions, we developed 

a rapid survey approach to determine kelp canopy biomass at a range of spatial 

resolutions using a UAV. Due to the high spatial resolution of UAV imagery, data can 

be modified to represent a variety of spatial resolutions by binning to simulate various 

remote sensing platforms. The aim of this study was to understand the influence of (1) 

regional differences in allometric relationships for biomass prediction, and (2) complex 

patch characteristics and spatial resolution on characterizing and determining canopy 

biomass via remote sensing.  

Methods 

Survey locations – Six sites along the California coastline were selected for in situ diver 

and remote sensing surveys in July and August 2019 (Figure 2.1; Table 2.1). The length 

of time between conducting the dive and UAV surveys for sites did not exceed 30 days. 

Three of the sites consisted of pure Nereocystis, two in Mendocino County in northern 

California and one along the northeastern side of the Monterey Peninsula (Figure 2.1a- 
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d). The other three consisted of pure Macrocystis along the northeastern side of the 

Monterey Peninsula in central California (Figure 2.1a, e-f). Site locations were chosen  

based on accessibility to kelp beds, protection from large swell, collection and transport 

of kelp to shore, and ease of accessibility for UAV flight operations.  

Table 2.1. Detailed description of each survey location including region (Mendocino County or 
Monterey Peninsula), kelp genera, dive site coordinates, dive survey date, UAV survey date, and mean 
tidal height during each UAV survey. 

Site Name Site 
Region Kelp genera Location 

Dive 
Survey 
Date 

UAV 
Survey 
Date 

UAV 
survey 
tidal 

height (m) 
Noyo 

Harbor 
(NH) 

 

Mendocino 
County Nereocystis 39.42880 

-123.81016 
August 7, 

2019 
August 8, 

2019 0.766 

Portuguese 
Beach (PB) 

 

Mendocino 
County Nereocystis 39.30283 

-123.802 
August 8, 

2019 
August 8, 

2019 1.716 

Point Piños 
(PP) 

 

Monterey 
Peninsula Nereocystis 36.629691, 

-121.91903 

August 14 
and 28, 
2019 

September 
12, 2019 1.337 

Otter Cove 
(OC) 

 

Monterey 
Peninsula Macrocystis 36.639664, 

-121.92801 
July 26, 

2019 
July 2, 
2019 1.098 

San Carlos 
Beach 
(SCB) 

 

Monterey 
Peninsula Macrocystis 36.61268 

-121.89496 
July 22, 

2019 
July 3, 
2019 0.143 

Hopkins 
Marine 
Station 
(HMS) 

Monterey 
Peninsula Macrocystis 36.62162 

-121.90198 
July 10, 

2019 
July 5, 
2019 0.976 

       
 

Field surveys of kelp density and biomass – In situ surveys were used to develop 

spatially resolved estimates of canopy biomass for Nereocystis and Macrocystis across 

six sites via 1) assessment of subtidal stipe (frond) density and 2) sporophyte collection 

and morphometric measurement of genera-specific allometry.  Results from field-based 

data were applied in a matchup analysis to pixel-based results from UAV surveys.  
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Subtidal surveys were designed to rapidly assess stipe density across many kelp 

beds without employing labor and time-intensive techniques used at permanent sites 

for biomass estimation by other organizations, such as the SBC LTER in Santa Barbara,  
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Figure 2.1.  a) A map of the California coastline illustrating specific areas where survey sites were located 
in Mendocino County (magenta box) and Monterey County (green box). Each smaller map, outlined 
with the color corresponding to Mendocino or Monterey, depicts the stitched mosaic of each UAV image 
(red points), the outline of the kelp bed within that mosaic (white polygon), and the 3600 m2 dive site 
(white square) for each site: b) Noyo Harbor, c) Portuguese Beach, d) Point Pinos, e) Otter Cove, f) 
Hopkins Marine Station, and g) San Carlos Beach.  
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CA. Dive sites consisted of 3600 m2 square plots surveyed in a bicycle spoke 

configuration (Figure 2.1b-g white points and Figure 2.2). At five of the six sites 

(Portuguese Beach, Point Piños, Otter Cove, San Carlos Beach, and Hopkins Marine 

Station; Figure 2.2b-f), eight separate transects were conducted. At Noyo Harbor 

(Figure 2.2a), only 4 of the 8 transects were conducted because ocean conditions 

limited dive operations. Point Piños was surveyed across two separate days (Table 2.1) 

because ocean conditions limited dive operations after the first 4 transects were 

conducted on August 14, 2019.  

Survey teams consisted of two divers. One navigated each compass heading 

(30°, 60°, 120°, 150°, 210°, 240°, 300°, and 330°) and reeled out the transect tape to 

40 meters, while the other counted stipes (fronds) within a two-meter swath along the 

transect tape. Stipe (frond) counts were recorded for every five-meter interval (area = 

10 m2), which we have termed the ‘transect interval’.  Each individual transect began 

at the five-meter mark to avoid overlap of stipe (frond) counts at the center of the 

bicycle spoke. As a result, each complete dive survey consisted of a series of 4 or 8, 70 

m2 transects or a total dive survey area of 280 m2 (Noyo Harbor) or 560 m2 (Portuguese 

Beach, Point Piños, Otter Cove, San Carlos Beach, and Hopkins Marine Station).  
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Figure 2.2. Raster images of MicaSense RedEdge-M scaled near-infrared reflectance (𝜌!"#)	 values for 
each dive survey site: a) Noyo Harbor (NH), b) Portuguese Beach (PB), c) Point Piños (PP), d) Otter 
Cove (OC), e) San Carlos Beach (SCB), f) Hopkins Marine Station (HMS). 

Adult sporophytes (Figure 2.3), defined as the mature stage of the Nereocystis 

and Macrocystis diploid lifecycles, were indiscriminately collected for morphometric 

measurement and canopy biomass determination across multiple locations in central 

and northern California (Table 2.2) in 2018 and 2019, including five of the six dive 

sites surveyed in 2019 (Noyo Harbor, Point Piños, Otter Cove, Hopkins Marine Station, 

and San Carlos Beach). Specifically, we measured morphology at 4 sites for 

Macrocystis (total of 11 sporophytes) in 2019 and 6 sites for Nereocystis (total of 86 

sporophytes) in 2018 and 2019 (Table 2.2). Divers removed sporophytes from the 

substrate manually by cutting the primary stipe just above the holdfast (Figure 2.3), 

brought them to the surface and then to shore where morphometric measurements were 

conducted on a clean surface (Figure S2.1b-f).  When tissue hydration could not be 

maintained using fresh seawater, a portable pop-up tent was used to shade samples 

(Figure S2.1c and d).  
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Figure 2.3. Relevant morphometric characteristics of Nereocystis and Macrocystis adult sporophytes 
(image credit: Niky Taylor; UCSC). 

Nereocystis morphometric measurements were made for stipe length and width, 

bulb diameter, sub-bulb diameter (15 cm below the base of the bulb), longest blade 

length/width, longest blade weight, number of blades, canopy weight (top 1 m of stipe 

including all the blade biomass), stipe weight, and total plant weight (Figure 2.4d; n = 

86). Central and northern California data from 2018 and 2019 were combined with data 

collected on the western coastline of Prince of Wales Island, Alaska in 2018 (Pearson 

et al. 2019; Figure 2.4d; n = 55).   

blade

blade

surface canopy surface canopy
frondbulb

sub-bulb

stipe

holdfast

stipe

pneumatocyst

primary stipe holdfast

15cm

Bull Kelp (Nereocystis luetkeana) Giant Kelp (Macrocystis pyrifera)
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Table 2.2. Detailed information of site-specific sporophyte collection including site name, region, kelp 
genera, latitude/longitude, and collection dates. 

 
Site Name Site Region Kelp genera Location Collection Date(s) - # 

of sporophytes 

Casper Cove 
 

Mendocino 
County 

 

Nereocystis 
 

39.36218 
-123.81973 

Sept. 17, 2018 – 10 
 

Albion Cove 
 

Mendocino 
County 

 

Nereocystis 
 

39.22754 
-123.77197 

Sept. 18, 2018 – 15 
 

Bodega Marine 
Lab 

 

Sonoma 
County 

 

Nereocystis 
 

38.31094 
-123.07061 

Sept. 25, 2018 – 17 
 

Noyo Harbor 
 

Mendocino 
County 

 

Nereocystis 
 

39.42865 
-123.81221 

Sept. 19, 2018 – 12 
Aug. 7, 2019 – 22 

Point Piños 
 
 

Monterey 
Peninsula 

 

Nereocystis 
 

36.64104 
-121.93052 

Aug. 28, 2019 – 10 
 

Hopkins Marine 
Station 

 

Monterey 
Peninsula 

Macrocystis 
 

36.62162 
-121.90198 

July 8, 2019 – 2 
July 10, 2019 – 1 
July 17, 2019 – 1 

 

San Carlos Beach 
 

Monterey 
Peninsula 

 

Macrocystis 
 

36.61266 
-121.89496 

July 22, 2019 – 1 
July 31, 2019 – 1 

 

Ocean Cove 
 
 

Monterey 
Peninsula 

 

Macrocystis 
 

36.62969 
-121.91903 

July 26, 2019 – 1 
Aug. 8, 2019 – 1 
Aug. 26, 2019 – 1 

 
Steamer Lane 

 
Santa Cruz 

 
Macrocystis 

 
36.95174 

-121.02295 
Aug. 16, 2019 – 2 

 
 

Macrocystis sporophytes were divided into 2 sections, the sub-surface canopy 

and surface canopy (Figure 2.3). The surface canopy was determined by measuring the 

depth of the holdfast prior to collection. Within each section, morphometric 

measurements were made for total tissue weight and number of fronds. Central 

California Macrocystis data were combined with SBC LTER measurements of canopy 

biomass and frond counts from 2002 and 2003 (Nelson et al. 2021; Figure 2.4e; n = 

36). For both genera, lengths were measured to the nearest mm using a diver transect 
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tape and weights were measured to the nearest 0.01 kg using a portable electronic 

balance.  

Table 2.3. ANCOVA results for the effect of region (and seasons for Macrocystis) on the slope and 
intercepts of the relationship between the dependent variable (bulb diameter or frond count) and 
canopy biomass. * denotes significance. 

 
Genera Group Degrees of 

freedom (df) 
F p-value Effect size 

Nereocystis Location 2 11.6 *2.3 x 10-5 0.15 

Nereocystis Bulb Diameter 
(cm) 

1 84.7 *5.3 x 10-16 0.38 

Macrocystis Location 2 2.6 8.5 x 10-2 0.074 

Macrocystis Sporophyte 
frond 

1 44.6 *6.9 x 10-9 0.41 

 

Sub-bulb diameter was the strongest predictor of both whole Nereocystis and 

canopy biomass (r2 = 0.56 and 0.44, respectively), and was consistent with Stekoll et 

al. (2006) for bull kelp in Alaska. Bulb diameter was the second strongest predictor of 

whole Nereocystis and canopy biomass (r2 = 0.51 and 0.43) and was used in this study 

to estimate in situ canopy biomass from subtidal counts of stipe density because bulb 

diameter could be quickly measured by divers or from a boat at the surface of the kelp 

canopy.  

At each Nereocystis dive site measurements of bulb diameter were 

indiscriminately measured within the 3600 m2 dive survey plot.  Both sites displayed a 

gaussian probability distribution of diameters (Figure 2.4a-c). Though the range of bulb 

diameter at Point Piños (Figure 2.4c; 7.06 ± 0.96; n = 148) was slightly larger than 

Noyo Harbor (Figure 2.4a; 6.50 ± 0.76; n = 80) and Portuguese Beach (Figure 2.4b; 

6.44	±	0.64; n = 79), their means and standard deviations were similar. 
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Figure 2.4. The probability distribution of Nereocystis bulb diameter for a) Noyo Harbor, b) Portuguese 
Beach, c) Point Piños. d) Scatter plot of Nereocystis canopy biomass against bulb diameter fitted with 
linear regressions for Alaska (blue line), Mendocino (teal line), Monterey (green line), and all regions 
combined (black line). e) Scatter plot of Macrocystis canopy biomass against frond number fitted with 
linear regressions for all data from Santa Barbara, CA (blue line), summer data from Santa Barbara (blue 
dashed line), Monterey, CA (green line), and all regions combined (black line). Regression details listed 
in Table S2.1. Grey shaded areas represent regression 95% CI. 
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The mean bulb diameter was then used to determine the mean canopy biomass per 

sporophyte at each dive site using the relationships developed in Figure 2.4d. The total 

biomass for each transect interval (10 m2) was determined by taking the product of the 

stipe counts within each transect interval and the site-specific mean canopy biomass 

per sporophyte.  

At each Macrocystis dive site the total canopy biomass per transect interval was 

determined with the relationship developed for the Monterey Peninsula (Figure 2.4e) 

using the total number of fronds counted within each transect interval to calculate the 

corresponding canopy biomass. For both Nereocystis and Macrocystis allometric 

relationships presented in Figure 2.4, an ANCOVA and post-hoc Tukey Test was run 

using the Python 3.1 pingouin statistics module (Vallat 2018) to determine the effect 

of region (and season) on the slope and intercepts of the relationship between the 

dependent variable (bulb diameter or frond count) and canopy biomass.  

UAV data acquisition and processing – High resolution multispectral imagery were 

obtained at each site (Table 2.1) using a DJI Matrice 100 quadcopter mounted with a 

MicaSense RedEdge-M.  The RedEdge-M simultaneously captures data in five spectral 

bands, the blue (475 nm), green (560 nm), red (668 nm), red-edge (717 nm), and near-

infrared (NIR; 840 nm) (See Table S2.1 for FWHM).  The RedEdge-M was equipped 

with a downwelling light sensor (DLS) for all flights. To calibrate reflectance for each 

flight, we imaged a spectral calibration panel with known reflectance before, during, 

and after each flight. Our along-track overlap between consecutive images was 80% 

and side-track overlap between consecutive flight lines was 75%. Sun glint can distort 
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the reflectance of pixels when imagery is collected when the sun is at or close to zenith 

(90º). To avoid glint contamination, we conducted flights at or close to optimal sun 

angle (~45º).   

RedEdge-M imagery was processed in the photogrammetric software Pix4D 

Mapper (Pix4D, 1008 Prilly, Switzerland). Raw images with pixel values in digital 

numbers (DN) were converted to radiance (W/m2/nm/sr) using a built-in radiometric 

calibration. Radiance was then converted to reflectance and mosaicked into 

orthomosaics. The stitched orthomosaics for each spectral band were exported as 

GeoTIFFs. Individual band orthomosaics were then merged and subset to the 

appropriate dive site coordinates (Table 2.1) using the Python 3.1 functions 

gdal_translate and gdalwarp (GDAL/OGR Contributors 2021), respectively. UAV 

imagery from each site was binned to 5 different spatial resolutions (0.1 m, 3 m, 5 m, 

10 m, and 30 m) using the Python 3.1 function gdalwarp and average interpolation as 

the resampling method.  The 3, 5, 10, and 30 m spatial resolutions were chosen for this 

analysis because of the availability of existing and historical satellite imagery at these 

four resolutions and their applicability to kelp monitoring. The relevant sensors include 

PlanetScope (3 m), Planet RapidEye (5 m), ESA Sentinel-2 (10 m), and Landsat (30 

m) of which the relevant wavelengths for detecting kelp are described in Table S2.1.  

Pixel based kelp detection - Multiple Endmember Spectral Mixture Analysis 

(MESMA) was used to determine the fractional coverage of kelp within each imaged 

pixel. MESMA was originally developed for terrestrial systems by Roberts et al. 

(1998). MESMA calculates the spectral similarity of a given pixel to one or more 
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reference spectra, termed endmembers. This method has been applied in Macrocystis 

and Nereocystis systems using a two-endmember model (kelp and water) for 30 m 

resolution USGS Landsat 7 and Landsat 8 imagery with specific endmembers 

developed for each kelp genera and sensor (Cavanaugh et al., 2011; Bell et al., 2015, 

2020a; Hamilton et al., 2020; Finger et al., 2021; McPherson et al., 2021).  We used 

endmember average root mean square error (EAR) analysis (Dennison and Roberts, 

2003) to determine a single kelp endmember that best represented the entire RedEdge-

M library of Macrocystis and Nereocystis kelp spectra.  

Matchup analysis between UAV and diver-based data – A matchup analysis was 

conducted to compare in situ derived canopy biomasses to MESMA derived kelp 

fractions at 5 different spatial resolutions (0.1 m, 3 m, 5 m, 10 m, and 30 m). This 

analysis was used to determine the influence of pixel resolution on canopy biomass 

detection via a pixel’s MESMA kelp fraction. For resolutions less than 30 m, where a 

single pixel overlapped with no more than one transect interval location per pixel, a 

matchup was defined as all pixels whose center points fell within a 5 m radius to the 

center of the transect interval. All pixels that fell within the radius were averaged, 

resulting in a single mean kelp fraction per transect interval location. For 30 m 

resolution imagery, a matchup was defined as the average of all canopy biomass values 

within a single pixel resulting in a single mean canopy biomass per 30 m pixel kelp 

fraction. An ANCOVA was run using the Python 3.1 pingouin statistics module to 

determine the effect of pixel resolution (covariate) and site (covariate) on the slope of 
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the relationship between MESMA kelp fraction and canopy biomass (dependent 

variable).  

Semi-variogram analysis – A geostatistical approach was used to model kelp patch 

spatial autocorrelation by calculating the semi-variance of each dive site’s MicaSense 

RedEdge-M NIR reflectance (𝜌NIR) at 10 cm pixel resolution (Figure 2.2). We used the 

Python 3.1 Variogram and DirectionalVariogram classes within the SciKit-GStat 

(skgstat) module to determine the semi-variance (𝛾), which can be described as half of 

the measured variance between pairs of values separated by an increasing lag distance 

between pixels (h): 

𝛾(ℎ) = 	 !
"#(%)

∗ 	∑ (𝜌#'((𝑥)) − 𝜌#'((𝑥)*%)"
#(%)
)+! 		   Eq. (1) 

where 𝜌NIR are the observations at locations xi and xi+h and N(h) is the number of point 

pairs at that lag. Semi-variance parameters were estimated by fitting spherical models 

to the empirical semivariograms: 

𝛾 = 𝜂 + 𝐶 ∗ (1.5 ∗ 	%
,
− 0.5 ∗ 	%

$

-
)		    Eq. (2) 

where 𝜂 is the nugget, C is the sill, and 𝛼 is the range. The 𝜂 describes the total 

unresolved variability, or noise, while C describes the total resolved variability. The 𝛼 

describes the distance at which the semi-variance reaches a maximum and, therefore, 

the distance of spatial autocorrelation. Spherical models are ideal when the increase in 

semi-variance is steep or being estimated within a small region (such as the 60 m length 

scale of this study). Because some kelp beds exhibit anisotropy, we first calculated and 

modeled the directional (north-south and east-west) semi-variance of each site. 
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Anisotropy was manually determined by comparing the sill (C), nugget (𝜂), and range 

(𝛼)  for each site’s directional semi-variograms. Since 𝛼 indicates autocorrelation, and 

therefore patch-size, we used significant 𝛼 differences between north-south and east-

west to determine anisotropy at each individual site. While differences in C were 

observed, the differences in 𝛼 between the directional semi-variances were small. As 

such we concluded that the survey sites used in this study are relatively isotropic. 

Results 

 Region-specific differences in morphology were detected for Nereocystis 

(Figure 2.4d), but not Macrocystis (Figure 2.4e). ANCOVA results indicated that there 

were significant differences between Nereocystis bulb diameters measured across 

different locations (Alaska, Mendocino County, and the Monterey Peninsula). Post-hoc 

Tukey Tests (Table 2.2) revealed that the morphology of Monterey Peninsula 

Nereocystis (Figure 2.4d; green lines) were significantly different from the morphology 

of Nereocystis in Alaska and Mendocino. Conversely, ANCOVA results indicated that 

there was not a significant difference between canopy biomass characteristics for 

Macrocystis allometry (Monterey Peninsula and Santa Barbara).  

Table 2.4. ANCOVA results from regression slopes across all sites and resolutions presented in Figure 
2.5 and Table S2.2. * denotes significance. 

 
Group Degrees of 

freedom (df) 
F p-value Effect size 

Site 5 100.8 *5.1 x 10-12 9.7 x 10-1 

Pixel Resolution 1 2.2 x 10-2 8.7 x 10-1 1.7 x 10-4 
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Figure 2.5. Canopy biomass against matchups of MESMA kelp fraction for each site (down) and 
resolution (across; 0.1 m, 3 m, 5 m, 10 m) for a-d) Noyo Harbor; e-h) Portuguese Beach; i-j) Point Piños; 
m-p) Otter Cove; q-t) San Carlos Beach; u-x) Hopkins Marine Station with OLS regression (black lines) 
and 95% confidence intervals (grey shading). See Table 2.4 for regression statistics. Grey shaded areas 
represent regression 95% CI. 

Across all six central and northern California study locations, site 

characteristics dominated the relationship between MESMA kelp fraction and canopy 

biomass (Figure 2.5; Table 2.Table 2.4; Table S2.3). A strong predictive relationship 

between canopy biomass and kelp fraction was observed at two of the study sites, 
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Portuguese Beach (Nereocystis; Figure 2.5e-h) and San Carlos Beach (Macrocystis; 

Figure 2.5q-t), for 0.1 m, 3 m, 5 m, and 10 m pixel resolutions (Table S2.3).  

 
 
Figure 2.6. Genera specific matchups of canopy biomass and MESMA kelp fraction for 30 m resolution 
data. The relationships include all possible pixel matchups across the three sites for each genus (n = 12 
matchups per genera). Grey shaded areas represent regression 95% CI. 

No significant relationship was observed for 30 m resolution relationships between 

MESMA kelp fraction and canopy biomass for Nereocystis or Macrocystis combined 

across all six sites (Figure 2.6). Both measured canopy biomass and mean kelp fraction 

values ranged significantly across sites (Figure 2.5). Portuguese Beach (Figure 2.5e-h) 

had the largest range in canopy biomass (0 – 63.3 kg m-2) and Point Piños exhibited the 

smallest range in kelp fraction (0 – 0.25). Conversely, Hopkins Marine Station (Figure 

2.5p-t) had the smallest range in canopy biomass (1.7 – 9.7 kg m-2), and the largest 

range in kelp fraction (0 – 1.04). ANCOVA results (Table 2.4) of the effect of pixel 
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resolution and site characteristics on the slope of the relationship between canopy 

biomass and kelp fraction (Figure 2.5; Table S2.3) indicate that site characteristics 

drove the variability in regression slope across the survey sites (p-value = 5.1 x 10-12), 

rather than the pixel resolution (p-value = 8.7 x 10-1).  

Table 2.5. Estimates of the range (a), nugget (𝜂), and sill (C) from semi-variogram analysis on 𝜌!"# data 
shown in Figure 2.2. * represents statistical significance.  

 
Site Range – a 

(m) 
Nugget - 𝜼 Sill – C Slope of in situ 

biomass  
(kg m-2/m) 

p-value of in 
situ biomass 

slope 
NH >60 3.5 x 10-13 6170.5 -3.4 x 10-3 9.1 x 10-1 

PB 17.9 0.99 987.0 -4.4 x 10-1 *9.97 x 10-3 

PP 33.9 0.99 26.0 -9.9 x 10-2 3.7 x 10-1 

OC >60 0.99 1827.0 4.8 x 10-3 8.5 x 10-1 

SCB 34.2 0.99 6311.8 -9.6 x 10-2 *1.3 x 10-2 

HMS >60 0.99 1229.7 4.3 x 10-2 5.5 x 10-2 

 

Distinct spatial patterns existed in the canopy structure across the survey sites (Figure 

2.7a-f; Table 2.5). Unlike Noyo Harbor (Figure 2.7a) and Hopkins Marine Station and 

(Figure 2.7f), a clear negative exponential trend emerged for Portuguese Beach (Figure 

2.7b) and San Carlos Beach (Figure 2.7c). The range (a; Table 2.5), which represented 

the distance at which pixel 𝜌#'( 	values no longer displayed autocorrelation, for the two 

sites were 17.9 m and 34.2 m, respectively. Ranges from Noyo Harbor, Otter Cove, 

and Hopkins Marine Station were > 60 m, beyond the spatial scale of the survey site. 

There did not appear to be any trend in the images unresolved variability (𝜂) or resolved 

variability (C) across the four sites (Table 2.5). The spatial structure observed within 

the canopy via 𝜌#'( 	was mirrored in the in situ along-transect canopy biomass 
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measurements (Figure 2.7e-g). The along-transect view of each individual transect 

(grey) and mean of all transects (black) show spatial structure in the in situ biomasses 

for Portuguese Beach (Figure 2.7g) and San Carlos Beach (Figure 2.7j) where the slope 

of the mean along-transect biomass values was significant for these two sites (Table 

2.5). The Point Piños kelp bed appeared to be an exception to the pattern observed 

across the other sites. Although there was no significant pattern observed in the slope 

of the in situ biomass, a was 33.9 m. 

Discussion 

Regional and site-specific validation of remote sensing derived canopy biomass 

estimates for Nereocystis and Macrocystis is noticeably lacking from the scientific 

literature. We showed the limitations of applying a single relationship derived from one 

location to disparate sites and that reliable, consistent quantification of biomass is 

difficult and highly dependent on specific patch characteristics and spatial variability 

across sites. These factors influenced the ability to make accurate assessments of 

canopy biomass across a range of spatial resolutions appropriate for detecting kelp 

canopy using remote sensing (Figure 2.5Figure 2.7; Table 2.3 -2.Table 2.5; Table S2.2).   

Significant regional differences in allometric relationships for canopy biomass 

existed between Monterey Nereocystis and other regions investigated (Figure 2.4). 

Though there were no observed differences in the relationship between Santa Barbara 

Macrocystis canopy biomass and frond count when considering seasonal effects 

(Figure 2.4e), the relationship for Monterey Macrocystis, which were all measured in 

summer 2019, exhibited a different slope than Santa Barbara.  Seasonal differences in 
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Figure 2.7. Left column: Semi-variogram (spherical model fit) for each station. Right column: Site-
specific transect canopy biomass (grey lines) with mean transect canopy biomass (black line) a,f) Noyo 
Harbor; b,g) Portuguese Beach; c,h) Point Pinos; d,i) Ocean Cove; e,j) San Carlos Beach; f,k) Hopkins 
Marine Station. 
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kelp canopy expression patterns may be driving small differences between canopy 

biomass and frond count as a result of physical and environmental drivers between 

Santa Barbara and central California (Bell et al., 2020b). While differences between 

regions are small, it is important to recognize these differences and take them into 

account when making canopy biomass estimates via remote sensing platforms across 

large spatial domains. 

The in situ diver survey approach developed in this study was similar to 

methodology for Landsat derived Macrocystis canopy biomass (Rassweiler et al., 2008; 

Cavanaugh et al., 2011) and aerial survey derived Alaska Nereocystis biomass (Stekoll 

et al. 2006) in that disparate kelp beds were measured to quantify canopy biomass and 

then associated with spectral characteristics of kelp canopy. However, the goal of this 

in situ survey design was to rapidly assess as many large sites (3600 m2) as possible by 

only collecting stipe (frond) counts within each 5-m section of the transect. The bicycle 

spoke pattern allowed us to have 8 transects of reasonable length (35 m) within each 

survey site.  By assessing a large area, we could then compare in situ measurements of 

canopy biomass to a range of pixel spatial resolutions. Ultimately, this particular survey 

approach shed light on (1) the influence of patch dynamics and characteristics on 

determining canopy biomass, and (2) the significant advantages of site-specific long-

term monitoring for determining canopy biomass. Neither the SBC LTER or Stekoll et 

al. (2006) sampling approaches considered the influence of patch dynamics or spatial 

resolution on remote sensing derived canopy biomass estimates. 
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Semi-variance patterns (Figure 2.7) indicated that if a kelp patch was larger than 

the spatial area of the dive survey (i.e. a break down in autocorrelation did not occur 

within the survey area; a >60 m), we were limited in our ability to develop a robust 

working relationship between canopy biomass and kelp fraction using this dive survey 

method. If the kelp patch was smaller than the spatial area of the dive survey (i.e., pixel 

autocorrelation broke down within the dive survey area; a < 60), we were able to 

identify a relationship between canopy biomass and kelp fraction. This pattern in the 

semi-variance results described sites with a distinct kelp patch surrounded by water. 

Biomass at these sites also had a strong correlation with MESMA kelp fraction pixel 

matchups. Out of the six sites, Portuguese Beach (Figure 2.2b; Figure 2.5e-h; Figure 

2.7b,g) and San Carlos Beach (Figure 2.2e; Figure 2.5q-t; Figure 2.7d,i) were clear 

examples of this pattern, exhibiting dense, relatively homogenous stipe (frond) counts 

inside the kelp bed and a relatively homogenous absence of stipes (fronds) outside of 

the kelp bed. This indicates a potential mismatch between diver survey results and 

remote sensing because surveying large patches is quantified best by satellite remote 

sensing but isn’t feasible for in situ surveys. 

Patterns of canopy expression also appear to be important when using MESMA 

kelp fraction to quantify canopy biomass. Hopkins Marine Station exhibited the biggest 

range in MESMA kelp fraction (Figure 2.5u-x), while mean tidal height during the 

UAV survey was ~1 m (Table 1.1). Where kelp was present, high MESMA fractions 

indicated very dense canopy coverage. However, dive surveys didn’t capture this range 

in canopy biomasses, likely because the sporophyte distribution at the bottom was 
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relatively sparse and patchy leading to an under representation of the canopy 

characteristics. Conversely, Point Piños exhibited the smallest range in MESMA kelp 

fraction values and the highest range in canopy biomass values (Figure 2.5i-l), while 

mean tidal height during the UAV survey was ~1.3 m (Table 1.1).  High kelp canopy 

biomass was not captured in the UAV imagery despite being measured in late summer 

(early September) when Nereocystis canopy maxima occurs. This may have occurred 

because even though sporophyte distribution was dense and relatively homogenous 

across the survey site, (1) the depth of the site (~30 m) limited some sporophytes from 

reaching the surface, and (2) specific characteristics of Nereocystis canopy expression.  

Despite SBC LTER’s robust prediction of Santa Barbara Macrocystis canopy 

biomass estimates from 30 m Landsat (Cavanaugh et al., 2011; Bell et al., 2020b), we 

had little success developing a significant relationship between MESMA kelp fraction 

and canopy biomass for binned 30 m resolution UAV imagery. This is likely due, in 

part, to the spatial and canopy characteristics of the kelp beds sampled in this study, 

the limited in situ and UAV sampling, and environmental variability influencing 

surface expression of the canopy. In general, the Nereocystis canopy spectral signature 

was low at 30 m resolution across all three sites and, as a result, MESMA kelp fractions 

of zero were common even if kelp canopy was detected at higher spatial resolutions 

(Figure S2.2). The poor relationship observed for Macrocystis at 30 m resolution may 

be a result of the inability to accurately capture enough variability in patchy biomass 

coverage at the benthos (2, 70 m2 transects) to represent surface canopy expression 

across the entire 900 m2 pixel using diver surveys.  
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In general, MESMA kelp fraction values observed across all three Nereocystis 

sites were lower than the Macrocystis sites (Figure S2.3). This influenced (1) the 

general patterns observed between the two genera’s predictive relationships between 

MESMA kelp fraction and canopy biomass predictions and (2) the ability to accurately 

determine canopy biomass. Patterns may be attributed to each genera’s canopy 

structure/morphology, and local tide/current conditions of the stations sampled (Jensen 

et al., 1980; Koehl, 1984; Schroeder et al., 2019).  Nereocystis has a single gas-filled 

stipe and pneumatocyst (Figure 2.3). The blades (length ≅ 1 m), which can number up 

to the hundreds, are concentrated at the top of the sporophyte and do not float on the 

water surface without sufficient tidal and current forcing. As a result, much of the 

biomass in the canopy is not floating on the water surface at our study sites and, 

therefore, the spectral signature of the kelp canopy observed from a remote sensing 

platform is relatively low. This results in a narrower range of MESMA kelp fractions, 

while canopy biomasses range significantly depending on the density of Nereocystis 

sporophytes.  

In contrast to Nereocystis, the morphological characteristics of Macrocystis 

tended to underrepresent canopy biomass. Macrocystis blades grow along the entire 

frond from the base to the growing tip (meristem). More of the canopy biomass is 

floating because the base of each Macrocystis blade (length ≅ 30 cm) contains a single 

pneumatocyst. Additionally, a single Macrocystis sporophyte can contain up to ~100 

fronds clustered together (Figure 2.3; Figure S2.1a). Therefore, dense floating canopies 

of Macrocystis fronds can form, often with many fronds laying on top of each other at 
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the surface. Since the distribution of individual sporophytes at the substrate are often 

sparse and non-homogenously distributed across a kelp patch, disparities can develop 

between diver counts of fronds and the expression of the surface canopy, and an under-

representation of canopy biomass relative to MESMA kelp fraction. 

Patterns in environmental and biological drivers of kelp canopy 

coverage/biomass have been widely studied in the NE Pacific region, and more 

specifically in California and Oregon, using remote sensing techniques. However, few 

studies have investigated regional patterns and validation of canopy biomass derived 

via remote sensing.  In this study, we shed light on limitations and challenges in 

determining and validating remotely derived kelp canopy biomass for Macrocystis and 

Nereocystis in central and northern California and, based on our findings, recommend 

implementation of long-term monitoring programs, such as those used by the SBC 

LTER, across the region for both Macrocystis and Nereocystis. It is also clear from this 

study that, while significantly time and energy intensive, additional work across 

different regions and sites is required to fully understand the legitimacy of applying 

allometric relationships developed at one kelp bed to an entire region or, even nearby 

kelp beds. If regional differences are small, and the errors in applying those methods 

to different regions are acceptable (as they appear to be for Monterey) broad remote 

sensing biomass estimates may still be useful. If a greater understanding of regional 

patterns and differences among kelp canopy biomass is achieved, rates of physiological 

metrics, such as NPP, and carbon sequestration can be robustly quantified. However, 

the challenges presented here reinforce the use of kelp canopy area in both scientific 
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and monitoring applications, especially in cases where biomass is not of primary 

importance.   
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Supplemental Material 
 

 
Supplemental Figure 1 (Figure S2.1). Images of morphometric measurements for Macrocystis and 
Nereocystis. a) Diver removing whole Macrocystis sporophyte in situ at the holdfast (Hopkins Marine 
Life Refuge). b) Macrocystis sporophyte transport from water to a clean and dry location on land. c) 
Entire Macrocystis sporophyte spread across tarp before dividing into 2 m sections. d) Field technicians 
measuring morphology of each 2 m section of a Macrocystis sporophyte. E) Nereocystis canopy spread 
out on clean dock ready to be measured. F) Josie Iselin taking counting Nereocystis blades for 
morphometric measurement. Photo credit: a) Sara Hamilton (OSU), b-f): Meredith McPherson. 
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Supplemental Figure 2 (Figure S2.2). First row: Noyo Harbor; Second row: Portuguese Beach; Third 
row: Point Pinos; Fourth row: Otter Cove; Fifth row: San Carlos Beach; Sixth row: Hopkins Marine 
Station. Across columns: 0.1 m, 3 m, 5 m, 10 m, 30 m pixel resolution. 
  



 88 

 
 

 
Supplemental Figure 3 (Figure S2.3). Histograms of pixel kelp fraction for each genera and resolution. 
Top row: Nereocystis; Bottom row: Macrocystis. Across columns: 0.1 m, 3 m, 5 m, 10 m, 30 m pixel 
resolution. 
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Supplemental Table 1 (Table S2.1). Spectral characteristics (center wavelengths and full-width at half-
max (FWHM) values in nanometer) for each relevant satellite band (blue, green, red, red-edge, and 
NIR). Within each cell the top value is the band’s center wavelength and the bottom value is the band’s 
FWHM. n/a denotes where band information doesn’t exist or isn’t available. 

Band MicaSense 
RedEdge-M 

PlanetScope Planet 
RapidEye 

ESA 
Sentinel-2 

USGS 
Landsat 

Blue 475 
32 

485 
n/a 

475 
n/a 

492 
66 

480 
60 
 

Green 560 
27 

545 
n/a 

555 
n/a  

560 
36 

561 
57 
 

Red 668 
14 

630 
n/a 

660 
n/a 

665 
31 

655 
38 
 

Red-Edge 717 
12 n/a 

710 
n/a 

 
n/a n/a 

NIR 842 
57 

820 
n/a 

805 
n/a 

833 
106 

865 
28 
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Supplemental Table 2 (Table S2.2).     Results from pairwise Tukey’s HSD post-hoc test for location 
specific Nereocystis bulb diameters. * denotes significance. 
 

Location A Location B Mean (A) Mean (B) Std. Error p-value 
Alaska Mendocino 2.56 3.90 0.467 0.012 
Alaska Monterey 2.56 8.97 0.905 *0.001 

Mendocino Monterey 3.90 8.97 0.889 *0.001 
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Supplemental Table 3 (Table S2.3).  Regression statistics from Figure 2.5. * represent a significant 
relationship between MESMA kelp fraction and in situ canopy biomass based on a p-value less than 
0.05. 
 

Station Spatial 
Resolution 

(m) 

n Slope (m) Intercept (b) Standard 
Error (SE) 

p-value 

Noyo 
Harbor 
(NH) 

0.1 28 1.99 3.19 4.15 >0.05 
3 28 1.24 3.31 3.89 >0.05 
5 28 2.40 3.18 3.92 >0.05 
10 28 1.11 3.38 4.19 >0.05 

Portuguese 
Beach 
(PB) 

0.1 56 63.35 2.23 12.86 *8.3 x 10-6 
3 56 64.64 1.87 12.53 *2.1 x 10-6 
5 56 69.55 1.75 11.99 *3.6 x 10-7 
10 56 55.27 5.29 11.83 *2.03 x 10-6 

Point 
Piños 
(PP) 

 

0.1 56 5.14 22.10 26.55 >0.05 
3 56 22.29 21.16 26.19 >0.05 
5 56 14.41 21.79 23.61 >0.05 
10 56 1.80 1.89 1.63 >0.05 

Otter Cove 
(OC) 

 

0.1 56 1.80 1.89 1.63 >0.05 
3 56 1.68 1.92 1.59 >0.05 
5 56 3.08 1.68 1.71 >0.05 
10 56 1.79 2.01 1.51 >0.05 

San Carlos 
Beach 
(SCB) 

 

0.1 56 7.87 1.16 1.86 *8.01 x 10-5 
3 56 7.81 1.21 1.96 *1.8 x 10-4 
5 56 8.07 1.21 1.93 *9.2 x 10-5 
10 56 8.41 1.39 1.83 *2.2 x 10-5 

Hopkins 
Marine 
Station 
(HMS) 

0.1 56 2.60 0.67 1.74 >0.05 
3 56 2.88 0.44 1.77 >0.05 
5 56 0.09 2.54 1.31 >0.05 
10 56 -0.31 2.77 1.15 >0.05 
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UTILIZING A MULTIYEAR DATASET OF UNOCCUPIED AIRCRAFT SYSTEM 
IMAGERY TO VALIDATE LANDSAT DERIVED GIANT KELP CANOPY  

 
Meredith L. McPherson and Tom W. Bell 

 
Abstract 
 

Long-term and large-scale monitoring of marine, freshwater, and terrestrial 

systems are crucial for detecting changes and drivers of ecosystems. This is especially 

true as climate change alters the environmental conditions that maintain a given 

ecosystem’s function and stability. Traditionally, satellites have been used for large-

scale monitoring approaches because they can make observations at spatial scales from 

10s to 100s of kms. Small unoccupied aircraft systems (sUAS) have recently emerged 

as a valuable remote sensing tool in environmental biology because they are logistically 

flexible. Though these platforms provide the opportunity to observe an area quickly 

and on demand, they lack the spatio-temporal resolution that satellites provide.  

However, because of their flexibility and the high spatial resolution, sUASs reduce 

challenges associated with validation and ground-truthing of satellite imagery. They 

have significant potential to help improve and better understand variability in important 

long-term satellite derived timeseries. Utilizing a unique four-year dataset of near-

simultaneous matchups of sUAS color imagery and Landsat multispectral data, we 

investigated specific methodological behavior and results from an automated 

classification and spectral unmixing approach developed for a multi-decade timeseries 

of giant kelp canopy with the goal of continued improvement to the dataset.  

Specifically, validating areal estimates and the detection of processes influencing pixel-

scale variability. We focused on three specific aspects that influence estimates of kelp 
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canopy at the pixel and kelp bed scale, including spatio-temporal variability in ocean 

conditions, and the spectral unmixing and classification of kelp versus seawater. 

Though this study was designed to reduce temporal offsets, and therefore 

environmental variability, we observed the impacts of current velocity on kelp canopy 

fraction between matchups and in a seasonal timeseries of Landsat. Specific kelp bed 

features, such as seasonal changes in bed size and canopy density/biomass were 

important for driving matchup performance and error. We found that pre-classification 

of kelp and seawater is necessary from a quality control perspective because MESMA 

can be noisy across Landsat sensors, but that it resulted in higher uncertainty of kelp 

canopy from sparse kelp beds.  Therefore, we can expect more error in Landsat 

MESMA estimates when observing low canopy biomass or fringing kelp bed 

conditions that result in low pixel canopy fractions. Overall, this study provides broader 

context for validation approaches to satellite derived timeseries by utilizing a unique 

multiyear dataset and exploring pixel and patch-scale uncertainties. We recommend 

considering particular use cases where methodological caveats may influence data 

products, especially with respect to restoration programs and metapopulation studies. 

Introduction 

 Development and maintenance of long-term timeseries is crucial for detecting 

changes and drivers of ecosystem status and health in marine, freshwater, and terrestrial 

systems. These datasets allow us to understand ecosystem baselines and dynamics, and 

are particularly relevant as climate change alters the environmental conditions that have 

historically maintained a given ecosystem’s function and stability (Doney et al., 2012; 
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Collins et al., 2019). Many long-term studies often focus on investigating dynamics of 

ecosystems with context to environmental conditions, discrete disturbances, or known 

associations with other organisms at specific spatial scales (Stenseth et al., 2002; 

Mackas et al., 2012; Mieszkowska et al., 2014; Hermosilla et al., 2018). While long-

term in situ monitoring at small spatial scales has value, particularly for organismal 

level interactions and dynamics, observations at large spatial scales (10 km to 100 km), 

using spaceborne sensors, can help describe local- to global-scale trends. 

Large-scale monitoring of ecosystems generally utilizes observations of 

foundational primary producers (e.g. phytoplankton, seagrasses, grasslands, tree 

canopies, and floating algae). Distinct or defined spectral signatures of these 

foundational species allow for large temporal and spatial monitoring using remote 

sensing methods. Ocean color timeseries from across more than 40 years (1978 - 

present) at ~ kilometer scale resolution have been utilized to study phytoplankton 

ecology at regional to global scales (Alvain et al., 2005; Behrenfeld et al., 2005; Ryan 

et al., 2009; Kahru et al., 2012), and led to an increased understanding of the role of the 

surface oceans in carbon cycling (Westberry et al., 2008). However, there are 

limitations to these datasets for coastal marine and inland freshwater systems that 

require higher spatial resolution and signal to noise-ratios (Kudela et al., 2019), and 

improved atmospheric correction than are available from legacy satellite platforms 

such as SeaWiFS and MODIS. In terrestrial ecosystems, the availability of 30 m 

resolution imagery from USGS Landsat across more than 30 years (1982 - present) has 

aided in detecting land disturbances (Fraser et al., 2011; Margono et al., 2012; Masek 
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et al., 2013), determining land use/cover (Nguyen et al., 2020), and mapping global 

distribution of mangroves (Giri et al., 2011). Landsat has also been advantageous for 

studying canopy forming kelps, which have a spectral signature that is similar to 

terrestrial vegetation (high reflectance in the near infrared band) and are relatively 

bright compared to the surrounding water. Because these systems grow in a narrow 

band along the coastline (< 1 km), observations are limited to relatively high spatial 

resolution satellites (10 - 30 m; Cavanaugh et al., 2011).  

Small unoccupied aircraft systems (sUAS) have emerged as the newest 

application for scientific data collection via remote sensing and are becoming 

increasingly popular in environmental biology (Nowak et al., 2019). These platforms 

are more flexible than satellites with respect to their ability to observe an area at high 

spatial resolution quickly and on demand using a range of sensors from simple, low-

cost color cameras (Larrinaga and Brotons, 2019) to complex, high-cost hyperspectral 

imagers (Banerjee et al., 2020; Bell et al., 2020a). These platforms have been used to 

make event-based observations (i.e. detecting noxious flowering plants; Müllerová et 

al., 2017), monitor restoration efforts (i.e. tidal marsh restoration; Haskins et al., 2021), 

monitor harmful algal blooms and water quality (Kislik and Dronova, 2018; Cheng et 

al., 2020), map ecologically sensitive marine habitats (i.e. seagrass meadows; Ventura 

et al., 2018), derive forestry inventory (Wu et al., 2021), etc. Furthermore, because 

there is a need for rapid and easily accessible approaches to ground-truthing in remote 

sensing studies, many sUAS approaches combine methodological advances with 

satellite validation efforts (Gray et al., 2018; Iizuka et al., 2018; Martin et al., 2018; 
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Riihimäki et al., 2019; Topouzelis et al., 2019). As a result, this technology reduces 

challenges associated with validation and ground-truthing of Landsat and has 

significant potential to help validate areal estimates and understand the pixel-scale 

variability observed in long-term timeseries of kelp canopy area and biomass.    

The number of studies utilizing Landsat derived timeseries of kelp canopy in 

the northeast Pacific region and beyond (Butler et al., 2020; Friedlander et al., 2020) 

has risen over the last decade, resulting in an increased understanding of spatial 

variability in the environmental and biological processes driving kelp dynamics. On 

the California coastline, El Niño Southern Oscillation (ENSO) was previously thought 

to be the dominant large-scale driver of kelp (Zimmerman and Kremer, 1984; Tegner 

and Dayton, 1987), but appears to be more coupled with anomalously low kelp years 

rather than dynamical annual fluctuations, particularly for bull kelp (Nereocystis 

leutkeana) in northern California (McPherson et al., 2021) and Oregon (Hamilton et 

al., 2020). Rather, the North Pacific Gyre Oscillation (NPGO; Di Lorenzo et al., 2008), 

is consistently a strong correlate with kelp canopy area and biomass (Cavanaugh et al., 

2011; Bell et al., 2015; McPherson et al., 2021). Wave disturbance influences giant 

kelp (Macrocystis pyrifera) negatively (Cavanaugh et al., 2011; Bell et al., 2015) and 

bull kelp positively (Hamilton et al., 2020; McPherson et al., 2021), while spatial 

variability in wave exposure along the central and southern California coastline drive 

giant kelp canopy biomass (Bell et al., 2015) and persistence (Young et al., 2015) 

patterns. Long-term satellite records from Landsat have also been used to observe 

regional and genera-specific patterns of kelp canopy in response to discrete 
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climatological events, such as marine heatwaves (MHWs), which are increasing in 

frequency, duration, and intensity (Oliver et al., 2018; Laufkotter et al., 2020). Kelp 

response to MHW events in the northeast Pacific has been variable and Landsat has 

provided evidence of (1) a wide-spread phase-shift between healthy bull kelp forest 

and urchin barren along 350 km of the northern CA coastline (McPherson et al., 2021), 

(2) stability to MHW perturbations in Oregon kelp forests (Hamilton et al., 2020), and 

(3) spatial variability in the resistance and resilience in southern and Baja California, 

(Arafeh-Dalmau et al., 2019; Cavanaugh et al., 2019), likely because it is near the 

southern tip of giant kelp’s range in the northern hemisphere where temperature crosses 

giant kelp’s physiological threshold.   

 Given the importance of satellite-derived estimates for understanding spatio-

temporal dynamics of kelp canopy area and biomass, it is necessary to validate the 

methodological approaches and findings of these datasets as they grow and become 

widely available for use by managers and scientists (e.g., 

https://kelp.codefornature.org/ from The Nature Conservancy) and improved 

spaceborne sensors become available (September 2021: Landsat 9 will become the fifth 

30 m resolution sensor in the Landsat suite). In essence, the evolution of quality control 

measures must be a continuum as the dataset evolves and changes. Though an 

automated approach for classifying giant kelp canopy has been developed (Bell et al., 

2020b) and quality control for imagery contamination (clouds, glint, and Landsat 7 

ETM+ scan line error) has sufficiently improved the data product since its origin, 

ground truthing and validation of satellite imagery at the pixel scale has continued to 
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be challenging. The availability of sUAS technology provides a useful approach to 

determining performance of classification schemes for Landsat relative to very high 

resolution (10 cm) imagery. In this study, we addressed questions geared towards 

understanding specific methodological behavior and results from the established 

automated classification (Bell et al. 2020b) and spectral unmixing approach (Multiple 

Endmember Spectral Mixture Analysis; MESMA; Roberts et al., 1998). Utilizing a 

unique four-year dataset of near-simultaneous matchups of color imagery from an 

inexpensive sUAS platform and multispectral Landsat 7 ETM+ and 8 OLI imagery 

from two kelp beds in the Santa Barbara Channel we specifically asked: 

1. How does high spatio-temporal variability in ocean conditions (tides, wave 

height, and current magnitude) influence kelp canopy characteristics and 

matchup performance between sUAS and Landsat kelp canopy fraction? 

2. What are the pixel and site scale patterns in matchup performance between 

the sUAS and Landsat kelp canopy fraction? Are these patterns a function 

of sensor or seasonal impacts on Landsat?   

3. How does the Landsat binary decision tree pre-classification method 

influence kelp detection at the pixel and site scale? How do we use this 

information to inform the scales at which the classification methods might 

influence patterns of regional or local scale kelp patterns and dynamics? 

Methods 



 99 

Study sites and imagery acquisition – A multi-year timeseries of matchups for giant 

kelp canopy was developed using near-simultaneously collected aerial 3-band (blue, 

green, red) color and satellite multispectral imagery between 2017 and 2020 at two 

naturally occurring kelp beds in the Santa Barbara Channel (Arroyo Quemado and 

Mohawk Reef; Table 3.1; Figure 3.1). The dataset consisted of 19 days of overlapping 

sUAS and Landsat imagery (11 days at Arroyo Quemado and 8 days at Mohawk Reef) 

where imagery acquisition from the two different platforms was no more than 

approximately 3 hours apart. Color imagery was acquired using a sUAS, the DJI 

Phantom 4 Pro equipped with a 20 MP (1” CMOS sensor, 84° FOV) camera. All 

camera settings were set to automatic, and no spectral calibration was conducted. 

Flights were conducted between 8:30 a.m. and 12 p.m local time during clear sky 

conditions at an altitude of 120 m above ground level. Georeferenced orthomosaics of 

color imagery were created using the photogrammetic software Agisoft Metashape Pro 

Version 1.5.0 (Figure 3.2A). Land and breaking waves were masked in the imagery 

prior to classification of the kelp canopy (Figure 3.2B). Landsat 7 ETM+ and Landsat 

8 OLI satellite imagery corresponding to each sUAS flight was downloaded from the 

USGS Earth Explorer website (earthexplorer.usgs.gov) as Collection 1 Level-2 

atmospherically corrected surface reflectance. Six of the 19 Landsat images were 

ETM+ and 13 were OLI (Table 3.1). Prior to kelp canopy classification, each Landsat 

image was subset to the appropriate site bounding box based on sUAS imagery 

collected for that corresponding day. Additional Landsat imagery for Arroyo Quemado, 
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beyond matchups with the sUAS imagery, were collected for January 2018 to July 2018 

and used to investigate the impact of current magnitude on kelp canopy dynamics. 

Table 3.1. Landsat overflight/sensor and sUAS flight times for each date and site. 

Site Date sUAS Flight 
Time (Local) 

Landsat Overflight 
Time (Local) 

Landsat 
Sensor 

 
 
 
Arroyo 
Quemado 
(34.467°N 
120.118°W) 

May 31, 2017 10:30 11:34 OLI 
June 16, 2017 8:30 11:34 OLI 
October 6, 2017 11:00 11:35 OLI 
December 1, 2017 10:00 10:37 ETM+ 
May 10, 2018 10:30 11:35 ETM+ 
December 12, 2018 10:00 10:34 OLI 
January 29, 2019 10:30 10:34 OLI 
June 30, 2019 10:00 11:24 ETM+ 
July 24, 2019 10:00 11:34 OLI 
March 4, 2020 11:30 10:34 OLI 
April 21, 2020 11:00 11:34 OLI 

Mohawk 
Reef 
(34.934°N 
119.73°W) 

June 16, 2017 10:30 11:34 OLI 
August 3, 2017 11:30 11:34 OLI 
October 6, 2017 12:00 11:35 OLI 
February 3, 2018 11:00 10:36 ETM+ 
March 18, 2019 11:00 11:34 OLI 
June 22, 2019 11:30 11:34 OLI 
March 12, 2020 10:30 11:12 ETM+ 
November 23, 2020 9:30 9:59 ETM+ 

 
 

Environmental conditions influencing canopy dynamics – Tidal height, wave height, 

and current velocity were collected for each site, date, and imagery acquisition time 

across the study period. Tidal height (m) was acquired for each Arroyo Quemado and 

Mohawk Reef survey date using the matlab function t_xtide, which calculates tidal 

height based on measurements from the Santa Barbara Harbor tidal station. For sUAS 

flights, which took approximately 30 minutes to complete, data were extracted 30 min 

on either side of the mean flight time in Table 3.1. For Landsat imagery, which is 

collected near instantaneously, data were extracted for the specific flyover time (Table 

3.1). Hourly significant wave height data for both sites were downloaded from the 
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Coastal Data Information Program (CDIP;  http://cdip.ucsd.edu/MOP_v1.1/) and 

extracted from the closest hourly increment to each flight time. Current velocity data 

were acquired from Acoustic Doppler Current Profilers (ADCPs) deployed across the 

three-year study period at each site (Washburn et al., 2021b, 2021a) by the Santa 

Barbara Channel Coastal Long Term Ecological Research (SBC LTER) program. 

ADCP data were available in 15-minute intervals and extracted from the closest data 

collection interval to the sUAS flight and Landsat overflight times.  

 
Figure 3.1. Regional map of the Santa Barbara Channel including the study sites Arroyo Quemado (A) 
and Mohawk Reef (B) overlaid with historical mean Landsat MESMA kelp fraction from 1984 – 2020. 
 

Estimating kelp canopy fraction from sUAS color imagery – Floating kelp canopy was 

classified in high resolution (10 cm) aerial color imagery using a band ratio of the red 

band to blue band (Bell et al., 2020a). Pixel values greater than or equal to 1 were 

classified as kelp canopy, and values less than 1 were classified as seawater. This 
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simple band ratio showed superior separability of kelp canopy and water compared to 

other commonly used color band indices (Cavanaugh et al., 2021) and areal estimates 

from this method were nearly identical to those from calibrated multispectral imagery 

 
Figure 3.2. Example processing steps for comparing sUAS and Landsat imagery to kelp canopy fraction 
from imagery collected on May 10th, 2018 at Arroyo Quemado. The unmasked stitched sUAS color 
imagery (A) is masked for land and waves (B) and classified for kelp canopy (C) using a simple band 
ratio classification approach. The sUAS imagery is degraded to 30 m resolution (D) and compared to 30 
m resolution Landsat MESMA kelp fraction (E). A matchup analysis was conducted at the site and pixel 
scales using the difference between sUAS and Landsat canopy fractions (F) and direct correlation (G). 
 
 
(Bell et al., 2020a). Following canopy classification, color imagery was spatially 

degraded from 10 cm to 30 m pixel resolution using a ‘nearest neighbors’ approach 

(Matlab function knnsearch) to identify color imagery pixels within each Landsat pixel 

coordinate (Figure 3.2D). 
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Estimating kelp canopy fraction from Landsat multispectral imagery –  Giant kelp 

canopy was identified using a two-step processing scheme based on Cavanaugh et al., 

2011 and Bell et al., 2020b  that, first, identified kelp canopy pixels based on a binary 

decision tree classification and, second, determined the fractional cover of kelp canopy 

inside each pixel using Multiple Endmember Spectral Mixture Analysis (MESMA; 

Roberts et al., 1998). The binary decision tree classifier used ETM+ bands 1-5 and 7 

and OLI bands 2-7 to classify each pixel as one of four categories: seawater, cloud, 

land, and kelp (Bell et al., 2020b). The classifier was trained by clustering pixels 

containing variable cloud, seawater, and kelp conditions using a k-means clustering 

algorithm. Each pixel within a cluster was then manually classified into one of the four 

classes and used to train the decision tree classifier. MESMA estimated kelp canopy 

fraction by modeling each pixel as a linear combination of two spectral endmembers, 

kelp and seawater (Cavanaugh et al., 2011). Images that contained cloud cover or 

ETM+ scan line errors inside the sUAS flight area were not included in this analysis. 

A single static kelp endmember was used across each image, while 30 dynamic 

seawater endmembers were selected from consistently non-kelp covered areas for each 

Landsat image to account for changing seawater conditions. The final modeled kelp 

fraction was selected for each pixel based on the minimum root mean square error 

(RMSE) out of 30 seawater endmembers (Figure 3.2E).  Kelp canopy fraction was 

determined for each pixel, regardless of the binary decision tree classification. We 

explored the influence of both the binary decision tree classifier and MESMA on 
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matchup performance with pixel kelp fraction estimated with sUAS color imagery 

(Figure 3.2G). 

Kelp canopy matchup analysis – A matchup analysis between sUAS and Landsat kelp 

canopy coverage was conducted using two approaches. The first approach compared 

total kelp canopy area using 1) only pixels in the image that were pre-classified as kelp 

using the binary decision tree classification scheme and 2) all pixels in the image 

regardless of whether they were pre-classified as kelp or seawater. Kelp canopy area 

was calculated by summing the individual pixel areas (kelp canopy fraction times the 

900 m2 pixel area) within each image. The second approach compared pixel-specific 

kelp canopy fractions between the sUAS and Landsat imagery (Figure 3.2F). Matchups 

of location (pixel) specific kelp canopy fractions were investigated by calculating the 

difference between the sUAS and Landsat (Figure 3.2F) or directly correlating values 

for a given site and date (Figure 3.2G). Reduced major axis (RMA) regression was used 

to determine individual correlations between pixel-based Landsat MESMA fraction 

and sUAS kelp fraction.  

A RMA regression was selected because this model accounts for the error in 

both sUAS and Landsat kelp fractions. This linear regression approach minimizes the 

sum of the areas (using both the horizontal and vertical distances to the resulting line), 

rather than minimizing error in only the vertical direction. As such, neither the kelp 

canopy fractional values from the sUAS or Landsat are considered independent or 

dependent and the algebraic solution of x or y from the resulting regression equation is 

reliable. A general additive model (GAM) was used to determine the overall 



 105 

relationship between pixel-based Landsat MESMA fraction and sUAS across all dates 

and sites. GAM is ideal when the relationship between x and y are not assumed to be 

linear, while allowing regularization of the predictor function to avoid overfitting the 

data. A one-term power model was used to model the relationship between site level 

RMA regression slopes and mean Landsat MESMA fraction. 

Results 

Environmental conditions influencing canopy dynamics – In general, environmental 

conditions (waves, tidal height, or current velocity) at Arroyo Quemado and Mohawk 

Reef did not appear to consistently explain differences in pixel level kelp canopy 

fractions or site level kelp canopy area between the sUAS and Landsat. Environmental 

conditions present between sUAS and Landsat flight times at each site were relatively 

consistent (Figure 3.3). Differences between the environmental conditions were 

generally between 0.2 and -0.2 m for tidal height, and 0.05 to -0.05 for current velocity 

(m s-1) and wave height (m), with tidal height showing the largest difference range and 

more notably at Arroyo Quemado (Figure 3.3A) than Mohawk Reef (Figure 3.3B). 

Wave height conditions were the least variable environmental factor at both sites. 

Variability in east current magnitude and direction did, however, appear to 

influence kelp canopy detection from the satellite at the bed scale and variations in 

seasonal trends in kelp canopy area were apparent in Landsat canopy area at Arroyo 

Quemado (Figure 3.4). Though the general trend in canopy area increased through the 

winter and into spring of 2018 and declined into late summer (Figure 3.4A), 
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fluctuations were inversely related to the (along shore) east current magnitude, in 

particular, rather than the (cross shore) north current magnitude. Relatively high  

 
Figure 3.3.  Differences between environmental conditions (tidal height, wave height, east current 
velocity, and north current velocity) between the sUAS and Landsat flight times for Arroyo Quemado 
(A) and Mohawk Reef (B) on all matchup dates through time. Wave height and current velocity 
difference are shown on the left y-axis. Tidal difference is shown on the right y-axis. The shaded grey 
area corresponds with the current magnitude case study shown in Figure 3.4 and the dotted black line to 
the only Arroyo Quemado sUAS flight within that date range (May 10, 2018). Lines connecting data 
points do not imply a continuous dataset. 

 

magnitude east current velocities corresponded to dips in canopy area and relatively 

low current velocities with peaks in canopy area (Figure 3.4A). The result of this effect 

is apparent in an Arroyo Quemado sUAS image (Figure 3.4B) and the differences in 

pixel-based kelp canopy area between the two sets of imagery (Figure 3.4C) collected 

on May 10, 2018. Current velocities around the southern (outer) edge of the kelp bed 

drag surface fronds below the water surface (Figure 3.4B inset) and kelp canopy 

fraction differences between the sUAS and Landsat were obvious in the same region 

(Figure 3.4C). The sUAS estimates of kelp canopy fraction were under-predicted 

relative to the Landsat imagery across almost the entire bed (indicated by the blue 
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pixels), but the influence of current is more apparent on the edge of the kelp bed in this 

particular example. 

 
 

Figure 3.4. (A) Landsat MESMA kelp canopy for each ETM+ or OLI satellite overpass at Arroyo 
Quemado between January and July 2018 with the corresponding day/time east (E) and (N) current 
magnitude. The dotted black line represents the day of the only available sUAS and Landsat matchup 
for this time period (May 10, 2018). The black star indicates the sUAS kelp canopy area referenced on 
the right y-axis scale. (B) Stitched sUAS imagery from Arroyo Quemado on May 10, 2018. (C) Pixel-
based difference in kelp canopy fraction between the sUAS and Landsat for the May 10, 2018 matchup. 
 

Kelp Canopy Matchup Analysis – Slight differences in the response to specific seasonal 

(spring/summer and fall/winter) and sensor (Landsat 7 ETM+ and Landsat 8 OLI) 

specifications were observed across Arroyo Quemado and Mohawk Reef (Figure 3.5). 

At Arroyo Quemado, Landsat overpredicted kelp canopy fraction relative to the sUAS 

(negative values) for spring/summer (Figure 3.5A) and Landsat 7 (Figure 3.5C) 

matchups, and conversely, the sUAS over predicted kelp canopy fraction (positive 
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values) relative to Landsat for fall/winter (Figure 3.5A) and Landsat 8 (Figure 3.5C). 

Pixel differences of kelp canopy fraction for both seasons and Landsat sensors at 

Mohawk Reef were generally centered around zero (Figure 3.5B) and didn’t appear to 

show strong bias towards either the sUAS or Landsat data.  

 

Figure 3.5. Seasonal and Landsat sensor specific kernel density distributions of pixel-based differences 
between sUAS and Landsat at Arroyo Quemado (A and C) and Mohawk Reef (B and D). 

 

 Correlation strength between Landsat MESMA fraction and sUAS kelp fraction 

were linked to patterns in the site and date specific RMA regressions slopes (Figure 

3.6). Slope values close to one corresponded with higher mean Landsat MESMA 

fractions (Figure 3.6A and B; Table S3.1). Steeper RMA regression slopes, to the left 

of the 1:1 line, corresponded to mean Landsat MESMA fractions closer to zero.  
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Figure 3.6. (A) Predicted sUAS kelp fraction values based on the Reduced Major Axis (RMA) 
regressions plotted as a function of Landsat MESMA fraction for each matchup date (regression 
information shown in Table S3.1), regardless of the binary decision tree classification. Regression lines 
are color coded by the mean Landsat MESMA fraction and overlaid with the results of a general additive 
model (GAM) for all pixels across all dates/sites (r2 = 0.727, p < 2e-16). The grey line represents the 1:1 
line between sUAS and Landsat kelp fractions. (B) RMA regression slope values as a function of the 
mean Landsat MESMA fraction overlaid with a power model fit (r2 = 0.638; RMSE: 1.281). The 
horizontal grey line represents a regression slope of 1. The vertical grey line indicates the power model’s 
estimated mean Landsat MESMA fraction where RMA regression slope equals 1. 
 
 
Although each individual date was modeled using a RMA regression, the overall 

relationship between Landsat and sUAS kelp fraction displayed a non-linear trend 

(Figure 3.6A; Figure S3.1; GAM fit: r2 = 0.727, p < 2e-16) where Landsat MESMA 

fractions exceeded 1.2. Both sites displayed a steep drop off in the RMA regression 

slope between mean Landsat MESMA fractions of approximately 0 to 0.1 and 

stabilized around 1 for mean fractions greater than 0.1. A power model fit indicated 

that a slopes greater than 1 corresponded to mean Landsat fractions of less than 0.2 and 

slopes of approximately 1 generally corresponded to mean Landsat fractions greater 

than 0.2 (Figure 3.6B).   

The influence of site-level characteristics of matchup performance and kelp 

canopy area was observed between Arroyo Quemado and Mohawk Reef when 
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investigating the performance of the Landsat binary decision tree classifier and 

MESMA against the sUAS (Figure 3.7 ‘classified Landsat’ vs. ‘all Landsat’). The 

relationships between Landsat and sUAS kelp canopy area at Arroyo Quemado 

followed a similar trend regardless of whether seawater classified pixels were included 

in the calculation of kelp area or not and estimates of Landsat area were slightly larger 

than the sUAS in high biomass/density conditions (Figure 3.7A). Increases in canopy 

cover are associated with seasonal increases in density and canopy biomass 

(Cavanaugh et al., 2011; Bell et al., 2015), which leads to higher reflectance in the NIR 

and the effect of these increases on MESMA kelp fraction become apparent in our 

matchup analysis at MESMA fractions of approximately 0.6 where the GAM best fit 

line begins to curve towards the right and away from a linear relationship between the 

two detection methods (Figure 3.6A; Figure S3.1). Kelp canopy area at Mohawk Reef 

was approximately one order of magnitude lower than Arroyo Quemado, with 

significantly more scatter around RMA regression lines (Figure 3.7B). Similar trends 

were observed in the individual timeseries at each site, with little deviation between 

canopy area determined by Landsat and the sUAS at Arroyo Quemado (Figure 3.7C) 

and more spread between each individual approach at Mohawk Reef (Figure 3.7D). 

Case studies of the pre-classification – Three case study examples from Arroyo 

Quemado and Mohawk Reef highlighted how the binary decision tree classification 

scheme presented challenges and limitations in retrieving kelp canopy area from 

Landsat (Figure 3.8).  The Arroyo Quemado Oct. 6, 2017 image was characterized by 
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Figure 3.7. Site sUAS kelp canopy area plotted as a function of Landsat kelp canopy area for (A) Arroyo 
Quemado and (B) Mohawk Reef including all pixels regardless of the binary decision tree classification 
(circles) and only including pixels that were pre-classified as kelp (triangles).  Site kelp canopy area 
through time for (C) Arroyo Quemado and (D) Mohawk Reef for the sUAS (solid line), including all 
pixels regardless of the binary decision tree classification (dashed line), and only including pixels that 
were pre-classified as kelp (dotted line). Regression statistics shown in Table S3.2. 
 

relatively sparse floating canopy (Figure 3.8A; sUAS area = 34000 m2; mean sUAS 

kelp fraction = 0.13) and Landsat MESMA kelp fractions of less than 0.2 across the 

entire kelp bed (Figure 3.8B and C). Most pixels were classified as water by the binary 

decision tree classifier (Figure 3.8C), though visually there was significant kelp canopy 
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present in the sUAS image (Figure 3.8A). Landsat MESMA also significantly 

underpredicted kelp fraction relative to the sUAS (Figure 3.8C; slope = 3.03 ± 0.07). 

The March 18, 2019 Mohawk Reef imagery was characterized by a very sparse floating 

canopy and small kelp patch (Figure 3.8D and E; sUAS area = 256 m2; mean sUAS 

kelp fraction = 0.02). All Landsat pixels were classified as water by the binary decision 

tree classification method, but good agreement between MESMA and the sUAS 

indicated that MESMA detected very sparse kelp coverage (Figure 3.8F), though 

visually Landsat appears to miss kelp canopy on the eastern and northern portions of 

the bed. The June 16, 2017 Mohawk Reef imagery was characterized by dense floating 

canopy (Figure 3.8G and H; sUAS area = 12000 m2; mean sUAS kelp fraction = 0.23). 

The relationship between Landsat MESMA fraction and sUAS kelp fraction fell along 

the 1:1 line (Figure 3.8I), showing strong agreement between the two. Landast 

MESMA fraction slightly overestimated sUAS fractions above values between 0.8 – 

1.1. In general, pixels less than 0.2 are classified as seawater by the binary decision tree 

classification method (Figure 3.8; Figure S3.1), but the three case studies presented 

here show kelp being detected by the sUAS at fractions well below 0.2.  
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Figure 3.8. sUAS color imagery (A, D, and G), Landsat MESMA fraction (B, E, and H), and sUAS kelp 
fraction as a function of Landsat MESMA fraction (C, F, and I) for three different case studies. Top row 
(A - C): October 6, 2017 Arroyo Quemado. Middle row (D - F): March 18, 2019 Mohawk Reef. Bottom 
row (G - I): June 16, 2017 Mohawk Reef. 
 

Discussion 

Influence of Environmental conditions on canopy dynamics – Arroyo Quemado and 

Mohawk Reef are two relatively protected sites in the Santa Barbara Channel. This 

region of the southern California coastline is generally defined by lower tidal ranges, 

currents, and wave height than more northerly and exposed regions within giant kelp’s 

geographical distribution (i.e., central California; Bell et al., 2015). Despite the fact that 

this study was conducted for a relatively protected region and designed specifically to 

reduce environmental variability between Landsat flyovers and sUAS flights (Figure 

3.3), the impacts of current velocity were observed on matchups of kelp canopy 

fraction. These impacts were most apparent on the edge of the kelp bed (Figure 3.4B 
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and C), and the patterns we observed were spatially similar to previous findings from 

Arroyo Quemado sUAS imagery where increases in tidal height submerged the sparse 

edge of the bed, but not the dense center (Cavanaugh et al., 2021).  

The temporal offset between the matchups in this study was not long enough to 

find significant differences between the two sensors at the bed scale, and changes in 

kelp canopy were only apparent when comparing pixel scale kelp canopy fraction 

(Figure 3.4). We attributed much of the spatial dynamics of the bed to current velocity, 

but it’s likely that tidal height and current velocity are coupled in this region, and the 

timescales at which our matchups occur limit our ability to detect changes as a result 

of tidal height. This indicates that spatial scales, temporal scales, and study design are 

important when investigating the influence of environmental conditions, especially 

tides, on kelp canopy area. It is challenging to detect fine-scale spatial dynamics with 

Landsat canopy cover alone, even across 8 to 16 day repeat flyover timescales. Previous 

findings indicate that differences in patch/bed scale canopy biomass reflected offsets 

in tidal state between the eight-day gap between Landsat 5 TM and 7 ETM+ sensors, 

which led to biases in kelp canopy biomass across Landsat tiles for giant kelp (Bell et 

al., 2020b). The influence of tides on bull kelp canopy area across annual timescales 

was not apparent (Finger et al., 2021), but become significant when observed over 

higher temporal and spatial resolutions (every 10 minutes: Britton-Simmons et al., 

2008; every 1 hour: Cavanaugh et al., 2021).  

When we compared Landsat MESMA kelp canopy area over a growth season 

at Arroyo Quemado (January to July 2018) to simultaneous measurements of current 
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magnitude (Figure 3.4A), reductions in canopy area were associated with increases in 

east current magnitude. This was especially obvious between mid-May and mid-June 

when strong current magnitudes corresponded with a dip in canopy area and subsequent 

recovery that coincided with weak current magnitudes in mid-June. The single sUAS 

flight during this time period was collected on the day Landsat measured peak canopy 

area and was 40% lower than Landsat. Differences in canopy detection on the edge of 

the kelp (Figure 3.4B inset and 3.4C) may be a result of rapidly changing conditions 

along the edge of the bed from tidal and current conditions across the timescale the two 

images were collected. The effects of the environmental conditions on kelp at the edge 

of the bed on May 10, 2018 (Figure 3.4B) represented the largest difference in current 

magnitude between the Landsat and sUAS imagery across the entire dataset. Current 

magnitudes at the Landsat flyover were close to zero and stronger during the sUAS 

flight. The difference observed across such a short window of time indicates the 

influence of high frequency changes in ocean conditions on canopy characteristics. 

Influence of MESMA on Kelp Canopy Matchup Analysis – One important distinction 

between the sUAS and MESMA fractional estimates of kelp canopy is that the sUAS 

calculation of canopy fraction originates from a binary estimate of kelp or seawater and 

fractions are limited to a threshold of 1. This results in a measurement of total kelp 

canopy cover. The linear unmixing approach of MESMA is not limited to an upper 

threshold value and can exceed a value of 1 because MESMA measures both canopy 

cover and surface frond density/biomass relative to pre-defined endmember spectra. It 

is inexact to describe MESMA kelp canopy fractions as an overestimate of the sUAS 
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because these two methods determine kelp canopy fraction differently. In fact, robust 

linear relationships between in situ canopy biomass and MESMA kelp fraction have 

been established (Cavanaugh et al., 2011; Bell et al., 2020b) because upper limits on 

MESMA kelp fraction do not constrain this relationship. Although the fractional 

threshold value of 1 for both aerial and sUAS methods can’t be defined as a perfect 

MEMSA comparison, the relationships between MESMA and sUAS kelp fraction 

helps to further validate large scale aerial estimates of canopy area to Landsat using the 

MESMA method (Hamilton et al., 2020; Finger et al., 2021) because similar to the 

sUAS approach applied here, plane-based aerial survey estimates of kelp canopy cover 

generally rely on a binary pixel classification method. 

Specific kelp bed features, such as seasonal changes in bed size and canopy 

density/biomass (Figure 3.5A and B; 3.6A; 3.7C and D), rather than specific Landsat 

sensors and their associated errors (Figure 3.5C and D), were more important for 

driving matchup performance and error across the two sites.  Arroyo Quemado, which 

is a larger, denser kelp bed than Mohawk Reef, had good matchup between the sUAS 

and Landsat MESMA (Figure 3.7A and C). Mohawk Reef, which is relatively small 

and sparse showed more scatter between the matchups (Figure 3.7B and D). As a result, 

we can expect more error in Landsat MESMA estimates when observing low canopy 

biomass or fringing kelp bed conditions. These conditions commonly occur in regions 

where benthic substrate conditions are not suitable for continuous kelp colonization 

(Young and Carr, 2015; Nijland et al., 2019) or biological and environmental 
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disruptions have resulted in a kelp ecosystem collapse (Johnson et al., 2011; Butler et 

al., 2020; McPherson et al., 2021).   

Verification of pixel classification on Kelp Canopy Matchup Analysis – The binary 

decision tree classification method is an important step in the automated processing 

scheme to develop long-term timeseries of kelp canopy area and biomass for the 

northeast Pacific region because it shortens processing time and computation demand. 

However, it is important to understand how this approach influences the overall 

timeseries product and local/regional estimates of canopy area and biomass.  We found 

that the classifier generally classified MESMA kelp fractions of < 0.2 as seawater 

(Figure 3.8; Figure S3.1) and, therefore, is conservative. This resulted in low kelp 

densities commonly being classified as seawater across both sites.  Similar to site 

differences in performance of MEMSA, the implications of the pre-classification step 

on Mohawk Reef were greater than Arroyo Quemado (Figure 3.7B and D) because it’s 

generally a smaller kelp bed with lower biomass kelp pixel fractions. This resulted in 

larger errors between the sUAS and MESMA (for pixels classified as kelp) and a strong 

deviation from the 1:1 line between total canopy area (Figure 3.7B). Despite these 

challenges, the classifier is necessary from a quality control perspective because 

MESMA can be noisy across Landsat sensors (especially Landsat 5 TM and 7 ETM+) 

and is unpredictable at a regional scale beyond the spatial scales used in this study. 

Problems with image quality/noise (i.e., haze, glint, scattering from turbid pixels) that 

we did not observe across in the sensor matchups at Arroyo Quemado and Mohawk 

Reef can dramatically alter the accuracy of both the classifier and MESMA 
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performance. Together, these uncertainties ultimately influence the accuracy of canopy 

area cover and biomass estimates. 

Conclusions  

This study provides broader context for validation approaches to satellite 

derived timeseries by utilizing a unique multiyear dataset of near-simultaneous 

matchups between sUAS color imagery and multispectral Landsat data, and helps work 

towards developing approaches to improve a regional northeast Pacific kelp canopy 

timeseries. By exploring pixel and bed scale uncertainties with regard to environmental 

processes, pre-classification, and MESMA methods, we have a more nuanced 

perspective on factors influencing the timeseries results. Though we observed changes 

in pixel-scale kelp canopy fraction and bed-scale area due to environmental fluctuations 

of currents and tides, the quarterly (3 month) means used in the current kelp canopy 

Landsat product likely reduces these effects by averaging out temporal variability (Bell 

et al., 2020b). Furthermore, since nearly all Landsat pixels below a MESMA fraction 

of 0.2 are removed by the automated pre-classification step, end-users can have high 

confidence in the Landsat dataset for regional scales trends in kelp canopy cover. 

However, defining exact error based on bed size is difficult because the study was only 

conducted for two kelp beds in the Santa Barbara Channel and kelp canopy fractions 

can vary significantly across seasons (regardless of bed size) and within a bed. Rather, 

pixel scale uncertainty appears to be more relevant to end-users studying local kelp 

patterns in sparse and/or fringing kelp beds.  
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Future applications of the Landsat kelp canopy dataset should take into account 

the particular use cases where this knowledge is relevant, such as kelp restoration 

efforts and metapopulation studies. Due to the high spatio-temporal resolution at which 

imagery is collected and its cost-effective nature, large-scale satellite mapping 

approaches are playing a vital role in observing the effectiveness of restoration 

programs and detecting recovery from widespread urchin barrens to kelp forest in the 

northeast Pacific region (Hohman et al., 2019). It would be beneficial for early and 

accurate detection of kelp recovery to inspect the MESMA outputs of all pixels 

(regardless of whether a pixel is defined as kelp or seawater by the binary decision tree 

classification step) since recovering kelp beds may be below fractions of 0.2. 

Additionally, metapopulation studies should apply a conservative temporal period of 

absence/presence (over 1 year) before classifying patches as empty or extinct (needing 

recolonization) since kelp canopy can be present at very low densities and avoid 

detection by Landsat. This approach will likely improve estimates of connectivity and 

likelihood of persistence through more accurate estimates of patch size, and 

extinct/extant status (Castorani et al., 2015). 
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Supplemental Material 
 
Supplemental Table 1 (Table S3.1). RMA regression statistics corresponding to each 
matchup date across both sites in Figure 3.6. Standard deviations for RMA regression 
slopes and intercepts are included. 
 
 

Site Date Slope Intercept r 

 
 
 

Arroyo Quemado 
(34.467°N 

120.118°W) 

May 31, 2017 0.826 ± 0.031 0.039 ± 0.013 0.828 

June 16, 2017 0.842 ± 0.023 0.038 ± 0.009 0.906 

October 6, 2017 3.032 ± 0.068 -0.029 ± 0.005 0.931 

December 1, 
2017 2.103 ± 0.046 -0.089 ± 0.011 0.934 

May 10, 2018 0.960 ± 0.020 -0.091 ± 0.013 0.901 

December 12, 
2018 4.417 ± 0.214 0.040 ± 0.005 0.556 

January 29, 2019 2.500 ± 0.066 0.024 ± 0.004 0.887 

June 30, 2019 2.301 ± 0.076 -0.021 ± 0.008 0.832 

July 24, 2019 4.429 ± 0.325 -0.035 ± 0.009 0.451 

March 4, 2020 1.770 ± 0.097 -0.040 ± 0.021 0.804 

April 21, 2020 1.175 ± 0.033 0.047 ± 0.010 0.877 

Mohawk Reef 
(34.934°N 
119.73°W) 

June 16, 2017 0.918 ± 0.038 0.011 ± 0.011 0.930 

August 3, 2017 0.912 ± 0.052 -0.044 ± 0.012 0.844 

October 6, 2017 9.672 ± 1.089 -0.026 ± 0.011 0.367 

February 3, 2018 1.595 ± 0.081 -0.058 ± 0.007 0.819 

March 18, 2019 1.319 ± 0.177 -0.018 ± 0.006 0.892 

June 22, 2019 2.148 ± 0.120 0.003 ± 0.004 0.785 

March 12, 2020 2.053 ± 0.113 -0.048 ± 0.016 0.835 

November 23, 
2020 2.113 ± 0.098 -0.048 ± 0.009 0.820 
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Supplemental Table 2 (Table S3.2). Logarithmic and RMA regression statistics 
corresponding to Figure 3.7 where sUAS kelp canopy area is plotted as a function of 
Landsat kelp canopy area for Arroyo Quemado (AQ) and Mohawk Reef (MO). ‘All 
Landsat’ indicates that all pixels (regardless of the binary decision tree classification) 
were included in the calculation of kelp canopy area. ‘Classified Landsat’ indicates that 
only pixels identified as kelp via the binary decision tree classification were included 
in the calculation of kelp canopy area. For AQ ‘All Landsat’ a logarithmic regression 
(shown on Figure 3.7) was used to optimize curve fitting. We have also included RMA 
regression statistics for that category below for comparison and reference to the 
‘Classified Landsat’ RMA regression fits but are not displayed on Figure 3.7 in the 
main text. Standard deviations for logarithmic coefficients (‘Coef’) and RMA 
regression slopes and intercepts are included. 
 
 

Site Group Coef 1 
(a) 

Coef 2 
(b) 

Coef 3 
(c) Type Python function 

AQ All 
Landsat 

146628.0 
± 

103230.3 

216352.1 
± 

206543.3 

-2582271.2 
± 

2027032.4 

logarithmic regression:  
a * log2(x + b) + c 

scipy.optimize 
curve_fit 

Site Group Slope Intercept r Type Python function 

AQ All 
Landsat 

0.7042 ± 
0.0535 

20651.3 ± 
3816.6 0.9741 RMA regression pylr2 regress2 

AQ Classified 
Landsat 

0.7053 ± 
0.0583 

24891.4 ± 
3955.05 0.9692 RMA regression pylr2 regress2 

MO All 
Landsat 

0.9684 ± 
0.2556 

905.8 ± 
2121.02 0.7911 RMA regression pylr2 regress2 

MO Classified 
Landsat 

1.4995 ± 
0.498 

2961.5 ± 
2149.6 0.669 RMA regression pylr2 regress2 

 
  



 131 

Supplemental Figure 1 (Figure S3.1). General additive model (GAM) best fit line for 
all pixels across all dates/sites (r2 = 0.727, p < 2e-16). 
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CONCLUSION 
 

Remote sensing data are highly advantageous for mapping kelp canopy and 

have evolved through time from simple photogrammetric collection for estimating 

harvestable biomass1 to complex hyperspectral imaging for canopy physiological 

condition2,3. Plane-based aerial surveys were historically, and continue to be, important 

for mapping kelp canopy area4,5. However, our (1) access to continuous, moderate-

resolution multispectral imagery and (2) understanding of the spatio-temporal patterns 

and drivers of kelp canopy dynamics were greatly improved after the development and 

expansion of a satellite-derived timeseries of kelp canopy from 30 m resolution Landsat 

across the last decade6–8. Despite continued technological improvements, data gaps 

continue to exist, especially for specific regional (i.e. northern California), kelp genera 

(i.e. bull kelp), and methodological (i.e. MESMA) observations and validations. Due 

to the importance of these satellite-derived data in applications from kelp ecology9, to 

management10, monitoring, and restoration11, this dissertation prioritized investigating 

those data gaps and the improvement of kelp mapping efforts. 

The new observational and methodological perspectives presented in this 

dissertation improve the overall science of kelp canopy ecosystem dynamics and the 

quality of data accessible to end-users across multiple fields. However, I include 

recommendations for future efforts in the kelp remote sensing sphere, especially as 

technological advances, including improved spaceborne sensors, UASs, and processing 
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schemes/platforms (i.e. Google Earth Engine and TNC Kelp Watch) continue to 

become more widely available.  

First, Landsat imagery has proved to be valuable for assessing regional-scale 

trends in kelp canopy coverage and has greatly increased the understanding of spatial 

variability in the environmental and biological processes driving kelp canopy dynamics 

in the northeast Pacific region (Chapter 1). This long-term timeseries is now available 

from Baja California, Mexico the Washington, USA - Canadian border. As a result of 

this increased data availability and collaboration, the number of studies utilizing 

Landsat derived timeseries of kelp canopy in the northeast Pacific region has risen over 

the last decade6,8,9,12–16. Since application of the Landsat dataset to other temperate 

regions has been sluggish (only two studies exist in the literature17,18), expanding 

beyond the northeast Pacific to other temperate regions will be highly advantageous for 

studying global variability in processes that drive kelp canopy dynamics and ecology.  

Second, the development of similar regional-scale datasets for emerging 

spaceborne sensors with higher spatial resolutions should be prioritized. These sensors 

can help to account for low biomass and sparse kelp patches/pixels that are difficult 

and labor intensive to detect using Landsat 30 m resolution imagery (Chapter 3). 

Additionally, higher resolution satellite imagery may be more advantageous and 

provide better matchup to aerial survey data than Landsat, which has been shown to 

underestimate kelp area relative to state-funded, plane-based imagery14,19. Obvious 

platforms for future development of kelp timeseries include Planet Scope (3 m 

resolution; available from 2016) and ESA Sentinel 2 (10 m resolution; available from 
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2105). State agencies are increasingly interested in using spaceborne imagery to replace 

the costly arial surveys, especially with imagery of comparable pixel resolutions (< 3 

m). Despite the appealing spatial resolution of Planet Scope, significant hurdles are 

associated with the data processing pipeline, imagery quality (radiometric calibration 

and georeferencing), and cost of imagery acquisition at large spatial scales. However, 

progress to produce a reliable kelp canopy dataset has been made by scientists at UC 

Los Angeles (pers. comm. K. Cavanaugh).  

A global timeseries dataset of kelp canopy exists from Sentinel 2 imagery20, but 

authors note that it’s not reliable for kelp beds smaller than 1 hectare (10,000 m2). 

Therefore, the particular methodological approaches might present similar challenges 

as Landsat (Chapter 3), but Sentinel 2 may, in some ways, be advantageous to Planet 

Scope data because imagery is high-quality and freely available. Ultimately, it would 

be valuable to directly compare the kelp canopy estimates from each sensor (Planet 

Scope, Sentinel 2, and Landsat) to assess the caveats and benefits of each platform and, 

therefore, provide thorough recommendations to agencies looking to implement/fund 

development of these datasets.       

  Third, there are several opportunities to implement localized studies and 

validation efforts using UAS platforms. Targeted improvement and validation of the 

Landsat kelp canopy timeseries using high resolution, multispectral UAS datasets will 

help improve uncertainty estimates of MESMA kelp canopy fraction and allows for a 

more direction comparison to Landsat data than 3-band color imagery (Chapter 3). 
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However, there are barriers associated with obtaining expensive multispectral sensors 

and the appropriate UAS platforms that might limit this data collection.  

The flexibility of UAS platforms are practical tools for validation of canopy 

biomass estimates (even in long-term validation studies) because in situ diver or canopy 

surveys can be conducted simultaneously with imagery acquisition rather than 

coordinating dive efforts with clear sky satellite overpasses (Chapter 2). Furthermore, 

the collection of these data can be combined with citizen science efforts that overlap 

with in situ surveys (i.e. Reef Check California) or expand likelihood for data collection 

in remote regions of the coastline. 

Beyond the practical applications of UASs for validation, these tools can be 

used to investigate seasonal to annual fluctuations in kelp canopy physiology and kelp 

bed phenology. Existing studies of kelp canopy physiology using hyperspectral 

imagery have demonstrated within patch variability of Chl:C and nitrogen content 

(metrics for blade health and senescense)2,3. Hyperspectral sensors, and 10-band 

multispectral sensors (MicaSense Blue-Edge) mounted to UASs provide an 

opportunity to assess these physiological dynamics at local scales, with applications to 

kelp ecology, aquaculture, and restoration. 

Satellites have thus far been used to investigate seasonal fluctuations in kelp 

canopy dynamics2, but UASs allow for higher frequency observations that may help 

refine observations and timeseries of localized kelp response to discrete events, such 

as storms and marine heatwaves, without relying on satellite imagery. Moreover, 

timing of spring canopy emergence can be correlated to specific temporal and spatial 
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environmental conditions, offering insight into phenological changes associated with 

climate change and other discrete events. 

Beyond specific science recommendation for future research using existing and 

emerging remote sensing techniques, this dissertation provides targeted suggestions for 

management and restoration strategies. Overall, time series measurements of remotely 

sensed and in situ data for biological and environmental parameters relevant to kelp 

forest ecosystems should be prioritized as they are relevant to development of adaptive 

management strategies (quantifying historical baselines, setting thresholds for 

monitoring criteria, developing restoration targets, tracking ecosystem recovery, and 

implementing environmental forecasting models; Chapter 1). If management agencies 

continue to prioritize blue carbon as a worthwhile climate change related policy, long-

term monitoring programs for biomass validation across the northeast Pacific region 

should be established beyond a small number of existing well-characterized sites to 

understand sub-regional to regional canopy characteristics and matchups (Chapter 2). 

Finally, though an automated processing scheme for Landsat kelp canopy timeseries7 

has sufficiently improved the data product quality since its origin, future applications 

of the Landsat kelp canopy dataset should take into account particular use cases, such 

as kelp restoration efforts and metapopulation studies, where kelp pixels in sparse 

and/or fringing kelp beds are removed by (Chapter 3).  
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