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ABSTRACT

The aim of the present study was to determine the usefulness of a patient-
derived orthotopic xenograft (PDOX) nude-mouse model of a doxorubicin-resistant 
metastatic Ewing’s sarcoma, with a unique combination of a FUS-ERG fusion and 
CDKN2A deletion, to identify effective drugs for third-line chemotherapy of the 
patient. Our previous study showed that cyclin-dependent kinase 4/6 (CDK4/6) 
and insulin-like growth factor-1 receptor (IGF-1R) inhibitors were effective on the 
Ewing’s sarcoma PDOX, but not doxorubicin, similar to the patient’s resistance to 
doxorubicin. The results of the previous PDOX study were successfully used for 
second-line therapy of the patiend. In the present study, the PDOX mice established 
with the Ewing’s sarcoma in the right chest wall were randomized into 5 groups when 
the tumor volume reached 60 mm3: untreated control; gemcitabine combined with 
docetaxel (intraperitoneal [i.p.] injection, weekly, for 2 weeks); irinotecan combined 
with temozolomide (irinotecan: i.p. injection; temozolomide: oral administration, 
daily, for 2 weeks); pazopanib (oral administration, daily, for 2 weeks); yondelis 
(intravenous injection, weekly, for 2 weeks). All mice were sacrificed on day 15. 
Body weight and tumor volume were assessed 2 times per week. Tumor weight was 
measured after sacrifice. Irinotecan combined with temozolomide was the most 
effective regimen compared to the untreated control group (p=0.022). Gemcitabine 
combined with docetaxel was also effective (p=0.026). Pazopanib and yondelis did 
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not have significant efficacy compared to the untreated control (p=0.130, p=0.818). 
These results could be obtained within two months after the physician’s request and 
were used for third-line therapy of the patient.

INTRODUCTION

Ewing’s sarcoma (ES) is a rare and aggressive disease 
that mostly effects children and teenagers [1, 2]. The 
development of multi-agent chemotherapy has improved 
outcome [3–6], but is not effective for ES patients with 
metastasis [7]. Furthermore, the heterogeneity of ES makes 
the treatment decisions much more complicated [8, 9].

We previously established a patient-derived 
orthotopic xenograft (PDOX) models of a rare case of 
ES with both a FUG-ERG fusion [10, 11] and a loss of 
the CDKN2A. Previously, we reported that a CDK4/6 
inhibitor and insulin-like growth factor-1 receptor (IGF-
1R) inhibitor were effective in the ES PDOX model [12]. 
The PDOX tumor was resistant to doxorubicin (DOX) as 
was the patient [12]. ES recurred in the bone marrow of 
the patient 19 months after primary tumor resection and 
DOX treatment. Based on the PDOX results, an IGF-1R 
inhibitor was used successfully as a second line therapy 
for the bone marrow recurrence in the patient. The 
patient’s physician requested a subsequent PDOX test and 
the results of the present study were used for treatment of 
remaining organ metastasis.

RESULTS AND DISCUSION

The site of implantation of the ES in the nude mice 
is shown in Figure 1. The treatment schema is illustrated 
in Figure 2. The time-course change of the tumor volume 
ratio is shown in Figure 3. The combination of irinotecan 
(IRT) with temozolomide (TEM) was most effective, 
and showed significant tumor regression compared to 
the untreated control group on day 15 (p<0.001). There 
was also a significant difference between the untreated 
control group and the mice treated with the combination 
of gemcitabine (GEM) with docetaxel (DOC) on day 15 
(p=0.001). Pazopanib (PAZ) suppressed the tumor growth 
significantly on day 15 (p=0.001). Yondelis (YON) did 
not significantly suppress tumor growth (p=0.342). Final 
relative tumor volume ratios on day 15 compared to day 
1 were as follows: untreated control group (G1) (3.13 
± 0.5); combination with GEM with DOC (G2) (1.47 
± 0.47); combination with IRT with TEM (G3) (0.41 ± 
0.11); PAZ (G4) (1.87 ± 0.35); YON (G5) (2.64 ± 0.35). 
The 0.41 relative tumor volume of the IRT-TEM group 
indicates tumor regression, which is important for clinical 
translation of the efficacy of IRT-TEM for the patient [13].

There was no significant difference in body weight 
on day 1 and day 15 between the 5 groups (Figure 4) 

Figure 1: Surgical orthotopic implantation of Ewing’s sarcoma (ES) tumor. A space between the pectoral muscle (white 
arrow) and intercostal muscle was made in the right chest wall of nude mice for orthotopic implantation of the ES tumor.
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Figure 2: Treatment protocol for ES PDOX. G1: untreated control; G2: combination treatment with GEM + DOC (GEM: 
intraperitoneal [i.p.], 100 mg/kg, weekly, 2 weeks, DOC: i.p., 20 mg/kg, weekly, 2 weeks); G3: combination treatment with IRT + TEM 
(IRT: i.p., 4 mg/kg, daily, 2 weeks, TEM: oral [p.o.], 25 mg/kg, daily, 2 weeks); G4: PAZ (p.o., 100 mg/kg, daily, 2 weeks); G5: YON 
(intravenous [i.v.], 0.15 mg/kg, weekly, 2 weeks). Each group consisted of n=6 mice. All mice were sacrificed on day 15. GEM=gemcitabine; 
DOC=docetaxel; IRT=irinotecan; TEM=temozolomide.

Figure 3: Time course of tumor volume ratio in treated mice compared to untreated control. Line graphs indicate tumor 
volume ratio (post-treatment volume / pre-treatment volume) on each tumor-measurement day. IRT combined with TEM regressed tumor 
growth significantly compared to the untreated control group on day 7, 11 and 15 (p<0.001). There was also a significant difference between 
the untreated control group and the mice treated with the combination of GEM with DOC group on day 7, 11, and 15 (p=0.004, p=0.002, 
and p=0.001), respectively. PAZ suppressed the tumor growth significantly on day 15 (p=0.001). *P<0.01, **P<0.001 compared to untreated 
group. Error bars: ± 1 SD.
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Figure 4: Body weight of treated versus untreated mice. Bar graphs indicate body weight in each group on day 1 and 15. No 
significant difference was observed between any group. Error bars: ± 1 SD.

Figure 5: Histopathology. (A) Hematoxylin and eosin (H&E) staining of the untreated PDOX tumor. (B) H&E staining of a 
tumor treated with the combination of GEM and DOC. (C) H&E staining of a tumor treated with the combination of IRT and 
TEM. (D) H&E staining of a tumor treated with PAZ. (E) H&E staining a tumor treated with YON. Necrosis was observed 
in all treatment groups other than YON.
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suggesting there was no acute toxicity due to any of the 
treatments.

Hematoxylin and eosin (H&E)-staining of tumor 
tissue sections showed necrosis due to treatment with all 
drugs except YON (Figure 5). The previously-established 
ES PDOX model had similar histological findings 
compared to the original patient’s tumor [12].

Toward the goal of precision personalized oncology, 
our laboratory pioneered the patient-derived orthotopic 
xenograft (PDOX) nude mouse model with the technique 
of surgical orthotopic implantation (SOI), including 
pancreatic [14–18], breast [19], ovarian [20], lung [21], 
cervical [22, 23], colon [24–26], and stomach cancer [27], 
sarcoma [12, 28–37] and melanoma [38–42].

The heterogeneity of ES makes individualized 
therapy particularly pertinent for this disease and the PDOX 
model can play an important role in achieving this goal.

Based on the efficacy of an IGF-1R inhibitor in the 
ES PDOX model [12], a compassionate-use investigational 
new drug (IND) approval was obtained from the U.S. Food 
and Drug Administration (FDA) for second-line treatment 
of the ES patient with an IGF-1R inhibitor, which resulted 
in clearance of the ES from the patient’s bone marrow 
(Eilber, F.C, et al., unpublished results), thereby allowing 
subsequent cytotoxic chemotherapy to be administered for 
third line therapy. We obtained the present results within 
only 2 months from receiving the physician’s request 
using the ES PDOX model, in time for third-line therapy 
guidance. These results thereby demonstrate an important 
clinical use of the PDOX model.

The ES PDOX was also shown to be sensitive 
to experimental therapeutics including recombinant 
methioninase [43] and Salmonella typhimurium A1-R [34].

Previously-developed concepts and strategies of 
highly-selective tumor targeting can take advantage of 
molecular targeting of tumors, including tissue-selective 
therapy which focuses on unique differences between 
normal and tumor tissues [44–49].

CONCLUSIONS

An effective drug combination was identified using 
the PDOX model for recurrent Ewing’s sarcoma within 
a time frame to design a treatment strategy for third line 
therapy of the patient, demonstrating the power of the 
PDOX model for individualized therapy.

MATERIALS AND METHODS

Mice

Athymic nu/nu female nude mice (AntiCancer Inc., 
San Diego, CA, USA), 4–6 weeks old, were used in this 
study. Animals were housed in a barrier facility on a high 
efficiency particulate arrestance (HEPA)-filtered rack 

under standard conditions of 12-hour light/dark cycles. 
The animals were fed an autoclaved laboratory rodent 
diet [12]. All animal studies were conducted with an 
AntiCancer Institutional Animal Care and Use Committee 
(IACUC)-protocol specifically approved for this study and 
in accordance with the principals and procedures outlined 
in the National Institutes of Health Guide for the Care 
and Use of Animals under Assurance Number A3873-1. 
In order to minimize any suffering of the animals the use 
of anesthesia and analgesics were used for all surgical 
experiments. Animals were anesthetized by subcutaneous 
injection of a 0.02 ml solution of 20 mg/kg ketamine, 15.2 
mg/kg xylazine, and 0.48 mg/kg acepromazine maleate. 
The response of animals during surgery was monitored 
to ensure adequate depth of anesthesia. The animals 
were observed on a daily basis and humanely sacrificed 
by CO2 inhalation when they met the following humane 
endpoint criteria: severe tumor burden (more than 20 
mm in diameter), prostration, significant body weight 
loss, difficulty breathing, rotational motion and body 
temperature drop.

Previous establishment of the ES PDOX model

The ES tumor recurred in the right chest wall 
of the patient [12]. The patient received neoadjuvant 
multidrug chemotherapy using doxorubicin, vincristine, 
and cyclophosphamide. Then, curative intent surgery was 
performed in the Department of Surgery, University of 
California, Los Angeles, USA (UCLA) and a portion of the 
tumor was previously used for establishment of a PDOX 
model in the right chest wall of nude mice [12]. Informed 
consent was previously obtained from the patient, and 
this study was approved by the Institutional Review 
Board of UCLA. Fresh tumor was brought to AntiCancer 
Inc. from the UCLA Hospital [12]. The ES PDOX was 
established by implantation between the pectoral muscle 
and intercostal muscle in the right chest wall of nude mice 
[12] (Figure 1).

Treatment protocol for the ES PDOX model

The PDOX mice were randomized into 5 groups 
before tumor volume reached 60 mm3: G1: untreated 
control; G2: gemcitabine (GEM) combined with docetaxel 
(DOC) (GEM: i.p., 100 mg/kg, weekly, 2 weeks, DOC: 
i.p., 20 mg/kg, weekly, 2 weeks); G3: irinotecan (IRT) with 
temozolomide (TEM) (IRT: i.p., 4 mg/kg, daily, 2 weeks, 
TEM: p.o., 25 mg/kg, daily, 2 weeks); G4: pazopanib 
(PAZ) (p.o., 100 mg/kg, daily, 2 weeks); G5: yondelis 
(YON) (i.v., 0.15 mg/kg, weekly, 2 weeks) (Figure 2). 
Drug dosages were determined using previous reports 
(13-16). Tumor size and body weight were measured 2 
times a week. Tumor volume was calculated with the 
following formula: tumor volume (mm3) = length (mm) 
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x width (mm) x width (mm) x ½ [12]. After 2 weeks, all 
mice were sacrificed.

Histological examination

Fresh tumor samples were fixed in 10% formalin 
and embedded in paraffin before sectioning and staining. 
Tissue sections (5 μm) were deparaffinized in xylene and 
rehydrated in an ethanol series. Hematoxylin and eosin 
(H&E) staining was performed according to standard 
protocols. Histological examination was performed with 
a BHS System Microscope (Olympus Corporation,Tokyo, 
Japan). Images were acquired with INFINITY ANALYZE 
software (Lumenera Corporation, Ottawa, Canada) [12].

Statistical analysis

All statistical analyses were performed with the 
Statistical Package for the Social Sciences for Windows 
software version 22.0 (IBM Corp., Armonk, NY, USA). 
Significant differences for continuous variables were 
determined using the Mann-Whitney U test. Line graphs 
show the median and error bars indicate ± standard 
deviation. A probability value of P ≤ 0.05 was defined as 
statistically-significant [12].
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