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Abstract

Background: Prenatal exposure to drinking water with arsenic concentrations >50 μg/L is 

associated with adverse birth outcomes, with inconclusive evidence for concentrations ≤50 

μg/L. In a collaborative effort by public health experts, hydrologists, and geologists, we used 

published machine learning model estimates to characterize arsenic concentrations in private wells

—federally unregulated for drinking water contaminants—and evaluated associations with birth 

outcomes throughout the conterminous U.S.

Methods: Using several machine learning models, including boosted regression trees (BRT) and 

random forest classification (RFC), developed from measured groundwater arsenic concentrations 

of ~20,000 private wells, we characterized the probability that arsenic concentrations occurred 

within specific ranges in groundwater. Probabilistic model estimates and private well usage data 

were linked by county to all live birth certificates from 2016 (n=3.6 million). We evaluated 

associations with gestational age and term birth weight using mixed-effects models, adjusted for 

potential confounders and incorporated random intercepts for spatial clustering.

Results: We generally observed inverse associations with term birth weight. For instance, when 

using BRT estimates, a 10-percentage point increase in the probability that private well arsenic 

concentrations exceeded 5 μg/L was associated with a −1.83 gram (95% CI: −3.30, −0.38) lower 

term birth weight after adjusting for covariates. Similarly, a 10-percentage point increase in the 

probability that private well arsenic concentrations exceeded 10 μg/L was associated with a −2.79 

gram (95% CI: −4.99, −0.58) lower term birth weight. Associations with gestational age were null.

Conclusion: In this largest epidemiologic study of arsenic and birth outcomes to date, we did not 

observe associations of modeled arsenic estimates in private wells with gestational age and found 

modest inverse associations with term birth weight. Study limitations may have obscured true 

associations, including measurement error stemming from a lack of individual-level information 

on primary water sources, water arsenic concentrations, and water consumption patterns.

Keywords

arsenic; private wells; water contamination; birth outcomes; epidemiology

Introduction

Within the United States (U.S.), the Environmental Protection Agency (EPA) and public 

water purveyors work together in adherence to the Safe Drinking Water Act to make 

Bulka et al. Page 2

Environ Int. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



water safe for public consumption (“Safe Drinking Water Act.,” 1974). These efforts 

address levels of toxic chemicals, including arsenic, a metalloid with wide-ranging health 

effects (Agency for Toxic Substances and Disease Registry, 2007). Since 2006, regular 

monitoring and the use of various treatment technologies have demonstrably reduced 

exposure among Americans relying on public drinking water supply (Nigra et al., 2017) 

by maintaining arsenic concentrations below the regulatory standard of 10 μg/L (“National 

Primary Drinking Water Regulations; Arsenic and Clarifications to Compliance and New 

Source Contaminants Monitoring,” 2001). However, exposure to arsenic through drinking 

water has remained unchanged among private well users (Nigra et al., 2017), who comprise 

approximately 14% of the U.S. population (Dieter et al., 2018). Unlike public water systems, 

private wells are not regulated for their arsenic concentrations by the EPA nor by most 

states. Consequently, limited data is available on the extent of arsenic contamination and 

associated health risks in the U.S.

Public health experts, hydrologists, and geologists recently developed machine learning 

models to characterize arsenic levels in private wells throughout the conterminous U.S. 

(Lombard et al. 2020). The primary goal was to develop national-scale estimates of arsenic 

in private well water for linkage with human health data. The machine learning models 

offer an advantage over the traditional multivariable logistic regression model developed 

by Ayotte et al. (2017) by increasing sensitivity and specificity (Joseph D. Ayotte, Laura 

Medalie, Sharon L. Qi, Lorraine C. Backer, & Bernard T. Nolan, 2017). We used the 

new national well-water arsenic estimates to examine associations with gestational age and 

birth weight, further investigating arsenic’s role in adverse birth outcomes (Vahter, 2009). 

Arsenic readily crosses the placental barrier from the maternal to the fetal circulatory 

system (Concha, Vogler, Lezcano, Nermell, & Vahter, 1998), and accumulating evidence 

suggests chronic exposures might reduce fetal growth and shorten the duration of gestation 

(Gilbert-Diamond, Emond, Baker, Korrick, & Karagas, 2016; Howe et al., 2020; Huyck 

et al., 2007; Kile et al., 2016; Milton et al., 2017; Rahman et al., 2009; Xu et al., 2011; 

Yang et al., 2003). However, the existing epidemiologic research has been limited to small 

study populations, many of which were outside the U.S. and potentially subject to different 

exposure levels and sociocultural factors (e.g., access to adequate prenatal care, nutritional 

status). Given the potential public health impact of arsenic in private wells across the U.S., 

large, high-quality epidemiologic studies are necessary to assess the risk for adverse birth 

outcomes.

Methods

Study Population

We used the restricted-use data from the 2016 U.S. Natality File, obtained from the National 

Center for Health Statistics (National Center for Health Statistics 2016). Our population of 

interest was live, singleton births without congenital anomalies born to mothers residing in 

the conterminous U.S. We included births occurring from January 1 through December 31, 

2016. We focused on 2016 data because this was the first year that all states implemented 

the 2003 revision to the U.S. Standard Certificate of Live Birth, which standardized key 

maternal sociodemographic items and included the obstetric estimate as a new measure for 
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gestational age (National Center for Health Statistics, 2003). We restricted our analysis to 

birth records within plausible ranges of birth weight (500–5,500 grams) and gestational 

age (20–44 weeks). Of the 3,751,755 eligible births, we excluded mother-infant pairs with 

missing data on any relevant covariate (n=171,000, <5% of the full sample) to conduct 

a complete-case analysis. Our final analytic sample was 3,580,755 births across 3,105 

counties. To focus more directly on the potential effects of chronic private well arsenic 

exposure on fetal growth not mediated through gestational age, we further restricted birth 

weight analyses to 3,305,090 term births born at 37 weeks or later (Wilcox, 2001).

Participant consent was not required for this study, as data were obtained from vital records 

issued by state governments to record the birth of every child within the U.S. for legal 

purposes. We received special approval from the National Association of Public Health 

Statistics and Information Systems to analyze data collected through birth certificates, 

including maternal residential county, which were provided in a restricted-use birth data 

file. The Institutional Review Board of the University of Illinois at Chicago approved this 

study.

Outcome Ascertainment

Our two study outcomes of interest were gestational age and term birth weight. We 

investigated gestational age according to an obstetric estimate, which has greater validity 

than estimates based on the mother’s last menstrual period (Martin, Osterman, Kirmeyer, 

& Gregory, 2015). Briefly, the obstetric estimate is defined as the birth attendant’s best 

and final estimate of the infant’s gestation in completed weeks (National Center for Health 

Statistics, 2003). We also investigated birth weight, expressed in grams, among term births 

to diminish the contribution of gestational age to fetal growth (Wilcox, 2001).

Arsenic in Private Well Water

We obtained probabilistic estimates of total arsenic concentrations exceeding certain 

thresholds for 1 km2 grids across the conterminous U.S. (Lombard et al., 2021). These 

estimates were produced from four distinct models: 1) a boosted regression tree (BRT) 

for the probability of arsenic concentrations >1 μg/L; 2) a BRT for the probability of 

arsenic >5 μg/L; 3) a BRT for the probability of arsenic >10 μg/L, which is the current 

U.S. EPA regulatory standard for public water systems (“National Primary Drinking Water 

Regulations; Arsenic and Clarifications to Compliance and New Source Contaminants 

Monitoring,” 2001); and 4) a multivariate random forest classification (RFC) for the 

probabilities of arsenic concentrations >5 to ≤ 10 or >10 μg/L. Although the 1 μg/L cutpoint 

is arbitrary, 5 μg/L was selected because it is the current maximum contaminant level for 

public water systems in New Jersey and New Hampshire, while 10 μg/L is the current 

maximum contaminant level nationally (“National Primary Drinking Water Regulations; 

Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring,” 

2001).

The underlying data used to develop these models included total arsenic concentrations 

from a total of 20,450 private wells sampled between 1970 and 2013 (J. D. Ayotte, L. 

Medalie, S. L. Qi, L. C. Backer, & B. T. Nolan, 2017). Of the 20,450 samples, 18,700 were 
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obtained from the United States Geological Survey National Water Information System, 

1,000 were obtained from private wells in Minnesota, and 750 were obtained from private 

wells in Maine (J. D. Ayotte et al., 2017). All samples were collected prior to passing 

through any water treatment systems. The laboratories and methods used to measure total 

arsenic concentrations varied, as did reporting limits. In general, earlier samples were tested 

with atomic absorption spectrophotometry that had reporting limits ranging from 0.9 to 

1.0 μg/L, whereas more recent samples were tested using inductively coupled plasma-mass 

spectrometry with much lower reporting limits (<0.1 μg/L) (Garbarino, 2000). Due to the 

high prevalence of samples with concentrations below the respective reporting limit (9,293 

samples, 45%), the machine learning models were developed to estimate the probability 

of exceeding a concentration threshold or occurring within a concentration range, rather 

than a total arsenic concentration value (Lombard et al., 2021). It should be noted that in 

groundwater, most arsenic is present in inorganic forms, such as trivalent arsenite (As3) and 

pentavalent arsenate (As5), rather than organic forms (Shankar, Shanker, & Shikha, 2014). 

A total of 249 geologic, geochemical, hydrologic, and climatic variables from various data 

sources were considered as candidate independent variables in the model development, as 

previously described (Lombard et al., 2021). Independent variables in the model varied over 

time; however, since a prior analysis of arsenic in repeated private well samples suggested 

low temporal variability (Ayotte et al., 2015), the arsenic probability estimates are assumed 

to be time-stable.

The final models contained between 41 and 65 independent variables, with the most 

influential being average annual precipitation amounts from 1981 to 2010, arsenic, selenium, 

and phosphorus concentrations in the C soil horizon, lateral hydrologic positions for sixth-

order streams, and average annual groundwater recharge rates from 1981 to 2010 (Lombard 

et al., 2021). By incorporating data on these important factors, the machine learning model 

estimates offered a much more spatially complete representation of private well arsenic 

levels than observations from individual wells (Lombard et al., 2021). Model accuracies, 

defined as the ratio of correct model estimates to measured values, were as follows: 77.2% 

for the BRT of arsenic >1 μg/L; 86.2% for the BRT of arsenic >5 μg/L; 91.2% for the BRT 

of arsenic >10 μg/L; and 82.6% for the RFC of arsenic >5–≤ 10 or >10 μg/L (Lombard et 

al., 2021). Additional details on the machine learning model’s performance are provided in 

Supplemental Table 1.

The machine learning model estimates were gridded to a spatial resolution of 1 km2. 

However, due to confidentiality requirements, the smallest geographic subdivision within 

the 2016 U.S. Natality File was maternal residential county. Therefore, the modeled arsenic 

data were aggregated to the county-level to align with the U.S. Natality File (Figure 1). 

To do so, we calculated the average probability of arsenic concentrations exceeding the 

specified thresholds across all gridded cells within the respective county borders. We also 

performed sensitivity analyses to examine the impact of plausible, alternative county-level 

arsenic assignments, as described below (see Sensitivity Analyses section).
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Covariates

Most covariate information was obtained directly from the birth records. We considered 

the following individual-level maternal characteristics as potential confounders: age, race/

ethnicity, marital status, educational attainment, cigarette smoking status during pregnancy, 

and pre-pregnancy body mass index (BMI). Maternal age at the time of delivery and pre-

pregnancy BMI were examined as continuous variables (years and kg/m2, respectively). We 

categorized race/ethnicity as non-Hispanic white, non-Hispanic Black, non-Hispanic other 

(including mixed race), or Hispanic. We categorized education as less than a high school 

diploma, high school diploma or equivalent, some college, or a college degree or greater. 

We dichotomized marital status as married or unmarried and cigarette smoking during 

pregnancy as yes or no.

County-level covariates were also considered as potential confounders. First, we considered 

rurality/urbanicity since private well use is more common in rural areas (Johnson, Belitz, 

& Lombard, 2019) where there are fewer obstetric services and, consequently, higher rates 

of preterm birth (Kozhimannil, Hung, Henning-Smith, Casey, & Prasad, 2018). We used the 

2013 Rural-Urban Continuum Codes, developed by the U.S. Department of Agriculture, 

to classify maternal counties of residence as follows: metropolitan with populations 

of any size; non-metropolitan urbanized with populations <20,000; less urbanized with 

populations >2,500 to 19,999; or rural with populations <2,500 (United States Department 

of Agriculture Economic Research Service 2013). Next, we considered exposure to fine 

particulate matter with diameters ≤2.5 μm (PM2.5) as a possible negative confounder as 

this type of air pollution is more prevalent in urban areas (where private well use is lower) 

and is an established risk factor for preterm birth and low birth weight (Shah, Balkhair, & 

Knowledge Synthesis Group on Determinants of Preterm, 2011). We obtained county-level 

annual average PM2.5 concentrations (expressed in μg/m3) from the Environmental Public 

Health Tracking Network for 2016 (Centers for Disease Control and Prevention, 2016). 

These estimates incorporate monitored values (from the EPA’s Air Quality System) and 

modeled predictions (from the EPA’s Downscaler model). We additionally considered the 

role of topography, because altitude has long been recognized as a strong determinant 

of low birth weight (Bailey, Donnelly, Bol, Moore, & Julian, 2019). We downloaded 

North American elevation data from the GTOPO30 elevation dataset produced by the U.S. 

Geological Survey and calculated the average elevation in meters for each county (U.S. 

Geological Survey, 2020).

Finally, to reduce bias owing to assigning private well arsenic estimates to mothers who may 

have been served by public water systems, we obtained additional county-level data on water 

sources. The last national-scale survey of residential water sources was conducted as part 

of the decadal census in 1990 (U.S. Census Bureau, 1993). However, Johnson et al. (2019) 

developed a novel method to estimate the population served by private wells in more recent 

years, including 2000 and 2010 (Johnson et al., 2019). We aggregated the estimates for data 

linkage purposes for 2010 (the most recent year available) from gridded cells of 1 km2 to 

the county level (Johnson & Belitz, 2019). We then divided the estimated number of private 

well users by the corresponding population count from the 2010 Census to calculate the 

proportion of private well users within each county (U.S. Census Bureau, 2011).
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Statistical Analyses

Regression Models of Gestational Age and Term Birth Weight—We estimated 

associations of modeled private well arsenic probability estimates with gestational age and 

term birth weight using separate multivariable linear regression models. We included nested 

random intercepts and an unstructured covariance matrix for maternal county and state 

of residence to account for residual spatial autocorrelation in birth outcomes for mothers 

residing within the same geographic areas after adjusting for covariates. For example, when 

analyzing gestational age in relation to the county-level estimated probabilities derived from 

the boosted regression tree model for arsenic exceeding 1 μg/L, the model form was as 

follows:

Gestational Ageijk = α + μj + μk + β1 * Probability Arsenic > 1μg
L + εijk

where i refers to the individual mother-infant pair, j refers to the maternal county of 

residence at delivery, k refers to the maternal state of residence at delivery, α refers to the 

fixed global intercept which represents the grand mean of gestational age across all infants, 

μj refers to the random county-specific intercept for infant gestational age, μk refers to the 

random state-specific intercept for the infant gestational age, ß1 refers to the fixed slope for 

the county-level probability that arsenic exceeds 1 μg/L, and Ɛijk refers to any residual error 

not accounted for by model covariates and random effects.

Adjusted models further incorporated maternal age, race/ethnicity, educational attainment, 

marital status, smoking status during pregnancy, and pre-pregnancy BMI in addition to 

county rurality/urbanicity, and average annual PM2.5 concentration as covariates. A second 

adjusted model was constructed, which included the proportion of private well users within 

the county as an additional covariate. For term birth weight, a third adjusted model was 

fit in which county elevation was included as an additional covariate based on the existing 

literature suggesting high altitude reduces fetal growth (Bailey et al., 2019).

To account for the U-shaped relationships of maternal age with prematurity and low birth 

weight, we modeled maternal age using restricted cubic splines (with three equally-spaced 

knots at the 10th, 50th, and 90th percentiles) (Fraser, Brockert, & Ward, 1995; Hoffman et 

al., 2007; Lao & Ho, 1997). Similarly, non-linear associations of maternal pre-pregnancy 

BMI with birth outcomes were also modeled using restricted cubic splines (Kosa et al., 

2011; Lewandowska, 2021). All other covariates were modeled either as continuous or 

categorical variables, as appropriate. We scaled estimated private well arsenic probabilities 

so that adjusted mean differences in gestational age and term birth weight corresponded to 

a 10-percentage point increase. Statistical significance was assessed using an alpha level of 

0.05. We conducted all analyses in R version 4.0 (R Development Core Team) and fitted all 

models using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015).

Stratified Analyses—Due to concerns about residual confounding, we fit multivariable 

linear regression models stratified by geographic region and rates of private well use. In 

primary analyses, geographic regions were categorized according to the U.S. Geological 

Survey Ground Water Atlas, which is based on major aquifers (U.S. Geological Survey, 
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2016); in supplemental analyses, we further stratified models by maternal state of residence. 

For cutoff points, we stratified county-level rates of private well use as follows: 0–25%, 

>25–50%, >50–75%, or >75%, collapsing the latter two categories when necessary due 

to sparse data. In addition, we explored the potential for effect modification by infant 

sex as previous studies of prenatal arsenic exposure and birth outcomes have reported 

sex-specific relationships (Gilbert-Diamond et al., 2016; Shih, Scannell Bryan, & Argos, 

2020). Stratified models included maternal age, race/ethnicity, educational attainment, 

marital status, smoking status during pregnancy, pre-pregnancy BMI, county-level rurality/

urbanicity, and average annual PM2.5 concentration as covariates.

Sensitivity Analyses—We conducted a series of sensitivity analyses. First, we fit 

additional binomial models with preterm birth (<37 weeks gestation), term low birth weight 

(<2,500 grams among infants born ≥37 weeks), small for gestational age (SGA, ≤10th 

percentile given the infant’s sex and gestational age), and large for gestational age (LGA, 

≥90th percentile given the infant’s sex and gestational age) as dichotomous dependent 

variables to examine the clinical significance of private well arsenic exposures. Second, we 

fit adjusted models of gestational age and term birth weight that accounted for prenatal 

care utilization as an additional potential confounder; we classified prenatal care utilization 

as inadequate, intermediate, adequate, or adequate plus using Kotelchuck’s index, which 

considers when prenatal care began as well as the number of prenatal care visits from 

initiation to delivery (Kotelchuck, 1994).

Third, we re-fit the primary regression models of gestational age and term birth weight, 

using the proportion of the county population relying on private well water as a sampling 

weight instead of a model covariate; by doing so, we down-weighted mothers who, 

according to their county of residence, were unlikely to use private well water. However, 

this sensitivity analysis changed our population of interest from all eligible births occurring 

in 2016 to births only among mothers who were likely to be private well users.

Fourth, because we lacked individual-level exposure data, we used a multiple imputation 

approach with several stages to explicitly model uncertainty in the machine learning-derived 

private well arsenic estimates. Accounting for errors in predictor variables is a generally 

appropriate and rigorous approach to epidemiological studies, and such sensitivity analysis 

is particularly relevant for analyses based on spatial assignment of an exposure variable 

encountered at the individual-level but measured in aggregate (Wright & Bateson, 2005). 

In the first stage of this probabilistic sensitivity analysis, we generated a county-level 

probability distribution for a given private well’s arsenic concentration falling within each 

category (<5, 5–10, or > 10 μg/L). These distributions were based on the multinomial 

probability distributions spatially predicted for each 1 km2 grid cell from the RFC models 

(Lombard et al., 2021) and were weighted by the private well user population (Johnson et 

al. 2019). Then ten values (e.g., ten hypothetical wells) were sampled for each county from 

that county-level probability distribution, yielding ten imputed datasets. In the next stage 

of the analysis, we fit regression multivariable mixed-effects linear regression models for 

birth outcomes, fitted to each imputed dataset. Like our primary models, we adjusted for 

covariates and included random intercepts for maternal residential county and state. Finally, 

in the third stage, we used Rubin’s rules to pool model parameters into summary estimates 
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(Rubin, 1987). These summary estimates can be interpreted as adjusted mean differences in 

gestational age and term birth weight when comparing births to mothers who all used private 

wells containing >5 to ≤10 or >10 μg/L of arsenic, relative to mothers who all used private 

wells containing <5 μg/L arsenic, under the assumptions of no residual confounding and no 

exposure misclassification.

Results

Our analyses included records from 3,580,755 live, singleton births during 2016 across 

3,105 U.S. counties, of which 92.3% were term (Table 1). Among term births, the average 

birth weight was 3,383 ± 459 grams. There was an approximately even split between male 

and female infants. Most mothers were between the ages of 25 to 29, married, non-Hispanic 

white, and college-educated. Only 7.3% reported cigarette smoking while pregnant. At the 

time of delivery, the majority of mothers resided in metropolitan counties (86.3%) with low 

rates of private well use (85.0% of mothers lived in counties where private wells were used 

by <25% of the population)

Private Well Arsenic and Gestational Age

Associations of private well arsenic probabilities and gestational age were largely null 

(Table 2). Null results were consistently observed when additionally adjusting for prenatal 

care utilization (data not shown), when focusing on those living in counties with high 

private well use by weighting (Supplemental Table 2), and when simulating private well 

arsenic exposures (Supplemental Table 3). Of note, models stratified by rates of private 

well use suggested a positive association between higher arsenic and gestational age among 

individuals residing in counties in which more than 75% of the population relied on private 

wells (Table 3); however, this level of reliance on private well water was rare, applying 

to only 10,348 births across 76 counties. When additionally stratifying by geographic 

region (Figure 3) or state (Supplemental Figure 1), some significant inverse and positive 

associations were observed, but most estimates were close to the null value.

Private Well Arsenic and Preterm Birth

A total of 275,665 (7.7%) births were classified as preterm. In binomial regression models 

that were adjusted for individual-level and county-level covariates, and included random 

intercepts for maternal county and state, risk differences for private well arsenic probabilities 

were all zero (Supplemental Table 4).

Private Well Arsenic and Term Birth Weight

Among the 3,305,090 term births, increasing probabilities of private well arsenic exceeding 

the various thresholds were generally related to lower birth weights, although some 

confidence intervals included the null value (Table 2); specifically, arsenic probabilities 

derived from boosted regression trees were significantly associated with lower term birth 

weights while associations with probabilities derived from the random forest classification 

model were imprecise. The addition of prenatal care utilization to the models did not 

appreciably change associations (data not shown); whereas, the addition of county-level 

rates of private well use and elevation to the models attenuated associations with term 
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birth weight (see Adjusted Models 2–3, Table 2). Associations between increasing arsenic 

probabilities and term birth weight were most pronounced among male infants as compared 

to females (Figure 2). While weighted models suggested higher probabilities of arsenic 

concentrations exceeding the various thresholds were associated with lower term birth 

weights (Supplemental Table 2), there was no clear pattern with term birth weight in 

models stratified by county-level rates of private well use. In the stratified models, both 

negative and positive associations were observed, albeit with variable statistical significance 

(Table 4). There was also no apparent pattern observed when additionally stratifying 

by geographic region (Figure 4) or state (Supplemental Figure 2). After accounting for 

additional uncertainty in RFC-derived private well arsenic estimates through simulation, we 

again found small inverse associations that were not statistically significant (Supplemental 

Table 3). For instance, compared to mothers expected to have private wells containing <5 

μg/L of arsenic, mothers with private wells containing >10 μg/L of arsenic gave birth to 

babies that weighed 2.31 (95% CI: −9.12, 4.49) grams less.

Private Well Arsenic and Term Low Birth Weight

Of the 3,305,090 term births, 79,757 (2.4%) were classified as low birth weight (i.e., <2500 

grams among infants born at 37 weeks or later). In multivariable mixed-effects binomial 

regression models, differences in the risk of being born at term with a low birth weight 

for private well arsenic probabilities derived from each machine learning model were null 

(Supplemental Table 4).

Private Well Arsenic and Small and Large for Gestational Age

There were 185,078 (5.0%) infants classified as SGA and 166,414 (4.6%) infants classified 

as LGA. Multivariable mixed-effects binomial regression models for each outcome revealed 

null associations with private well arsenic probabilities (Supplemental Table 3).

Discussion

In this large-scale study leveraging data from over 3 million births across the conterminous 

U.S., we evaluated the relationship between modeled arsenic probabilities in private wells 

and two key birth outcomes: gestational age and weight. We found no association between 

increased probability of elevated arsenic concentrations in private well water and gestational 

age at birth. We found a weak inverse relationship with birth weight among infants born 

at term, particularly among male infants. While these associations were consistent across 

different machine learning models for characterizing private well arsenic levels and were 

robust to adjustment for most confounding variables, they were attenuated after accounting 

for elevation and rates of private well use. Additional analyses, including restricting to 

counties with high rates of private well use, stratifying by geographic region or state, and 

imputing private well arsenic levels, revealed inconsistent associations between private well 

arsenic levels and term birth weight. Furthermore, we observed null associations in binomial 

models of term low birth weight, defined as a birth weight of less than 2,500 grams among 

infants born at or after 37 weeks gestation. Although we observed that higher private 

well arsenic levels were associated with lower term birth weights in some models, these 
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associations appear to be only modest. Furthermore, the majority of mothers live in counties 

where private well use is rare.

Our finding of a null association of arsenic with gestational age differs from comparable 

epidemiologic studies conducted within the U.S. (Almberg et al., 2017; Claus Henn et al., 

2016; Shi et al., 2015), but not all (Gilbert-Diamond et al., 2016; Howe et al., 2020). Several 

of the aforementioned studies directly measured individual-level total arsenic exposure 

using biomarkers (Claus Henn et al., 2016; Gilbert-Diamond et al., 2016; Howe et al., 

2020), including concentrations in maternal and infant blood and urine, which integrate 

arsenic from all sources. By capturing arsenic exposures from contaminated drinking water 

and other dietary constituents (e.g., rice) (Nachman et al., 2018), biomarker-based studies 

likely characterize total arsenic exposure with a higher degree of precision. In general, 

studies that have used arsenic exposure biomarkers have observed null associations with 

gestational age (Gilbert-Diamond et al., 2016; Howe et al., 2020). In contrast, Almberg 

et al. (2017) estimated exposures using total arsenic concentrations measured exclusively 

in public water systems and averaged across counties, whereas Shi et al. (2015) estimated 

exposures using a logistic regression model of total arsenic in private well water that was 

aggregated to the town-level. Despite a very similar study design, Shi et al. observed 

positive associations of arsenic levels in private well water with preterm birth in New 

Hampshire. However, some key differences in study design might explain the discrepancy 

in findings. Foremost, we analyzed the entire conterminous U.S., where private wells are 

used by approximately 14% of the population (J. D. Ayotte et al., 2017). In contrast, 

Shi et al. (2015) focused only on the state of New Hampshire, where the rate of private 

well use is 40% (Shi et al., 2015). Yet, even in our stratified models, we did not find 

evidence of an association between elevated levels of arsenic in private wells and reduced 

gestational age within New Hampshire. This may be due to differences in the models used 

to produce probabilistic arsenic estimates. Shi et al. (2015) used estimates from a logistic 

regression model specifically created for the state of New Hampshire that may capture more 

local-scale variability in arsenic concentrations (Ayotte, Cahillane, Hayes, & Robinson, 

2012). In contrast, we used estimates derived from machine learning models operating on 

the national-scale. Alternatively, residual confounding may explain differences; Shi et al. did 

not account for several maternal factors, including race/ethnicity and socioeconomic status, 

that we could control for based on the rich detail provided by birth certificate records.

Our finding of a modest inverse association of arsenic with birth weight in our primary 

analyses is consistent with the existing literature examining drinking water arsenic using 

spatially aggregated data (Almberg et al., 2017; Shi et al., 2015). This relationship was 

most pronounced among male infants, suggesting sex-specific differences in susceptibility 

to the gestational toxicity of arsenic exposures (Bommarito et al., 2017). However, in our 

secondary analyses aimed at reducing bias and accounting for uncertainty, associations of 

private well arsenic and term birth weight were inconsistent. Notably, the majority of births 

occurred to mothers residing in counties where private wells were used by less than 25% of 

the population. Therefore, despite a large sample size, analyses focused on births to mothers 

who were more likely to use private well water may have been underpowered. Future studies 

could incorporate natality files subsequent to 2016 to analyze this sub-group with improved 

statistical power. In addition, the magnitudes of associations with term birth weight were 
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very small (<5 grams per 10-percentage point increase in the probability of exceeding 

respective arsenic thresholds). Arsenic may reduce fetal growth through several biological 

mechanisms, including oxidative stress, inflammation, and placental abnormalities (Ahmed 

et al., 2011). Studies relying on arsenic biomarkers have generally observed associations 

between exposures with lower birth weights (Claus Henn et al., 2016; Gilbert-Diamond et 

al., 2016; Howe et al., 2020). Despite biologic plausibility and some previous epidemiologic 

evidence of associations, we did not find a strong relationship between modeled private well 

arsenic exceedance probabilities and term birth weight.

This study has notable limitations that likely constrained our ability to detect associations 

between county-level private well water arsenic exceedance probabilities with adverse 

birth outcomes. The primary limitation of the data used for this analysis was the lack of 

individual-level information on the residential water source, residential histories, drinking 

water arsenic concentrations, and water consumption amounts and behaviors throughout 

pregnancy, which introduced measurement error and selection bias. We were unable to 

isolate mothers who definitively drank private well water during their pregnancy, and 

therefore, our findings may be distorted by including mothers who relied on community 

water systems instead. Additionally, any inaccuracies in the predicted probabilities of private 

well arsenic occurring in certain concentration ranges could also contribute to bias in the 

observed effect estimates. Among pregnant women, sociodemographic characteristics are 

determinants of water consumption behaviors, including intake amounts and the use of 

water filters (Forssen et al., 2007; Smith, Toledano, Wright, Raynor, & Nieuwenhuijsen, 

2009). We may have partially reduced some exposure misclassification by including several 

sociodemographic variables as confounders in our birth outcome models. Relatedly, studies 

of residential mobility indicate few women move during pregnancy, and of those that do, 

most remain within the same county, suggesting only limited influence in this study (Bell & 

Belanger, 2012; Fell, Dodds, & King, 2004). The machine learning approach for estimating 

arsenic exceedance probabilities had some degree of inaccuracy. For instance, the BRT 

models for concentrations exceeding 5 and 10 μg/L had lower sensitivities than the BRT 

model for concentrations exceeding 1 μg/L, resulting in less robust prediction of areas of 

high arsenic levels in private well water (Lombard et al., 2021). Such errors may have 

been compounded by averaging the 1 km2 estimates across counties and could have biased 

associations with birth outcomes towards the null (Richmond-Bryant & Long, 2020). Yet, 

we still observed an inverse association for arsenic concentrations exceeding 1 μg/L, which 

was derived from a very sensitive BRT model (74.1%). Additional limitations of this study 

include the inability to assess unmeasured confounders such as alcohol consumption, dietary 

intakes, or the use of certain supplements, which could be additional sources of arsenic 

exposure or important for arsenic detoxification (Gamble et al., 2006; Suhl et al., 2020). We 

were also unable to evaluate co-exposures to other contaminants (e.g., manganese, which 

often co-occurs with arsenic in groundwater) that may be associated with birth outcomes 

(Erickson et al., 2021).

There are also several strengths to this analysis. With over 3 million births, this is the largest 

study of arsenic exposure with birth outcomes to date. Although the machine learning model 

estimates of arsenic concentrations were derived using data from private wells, a recent 

publication suggests that arsenic levels in private wells and community water systems are 
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positively correlated across the U.S. (Spaur et al., 2021), which supports the inclusion of 

births to mothers residing in counties with low rates of private well use in our analyses. 

Furthermore, individual-level data from birth certificates were available on birth outcomes 

and several covariates. Previous studies suggest that birth certificates are valid sources of 

information on maternal age, race/ethnicity, educational attainment, marital status, and infant 

gestational age and birth weight (DiGiuseppe, Aron, Ranbom, Harper, & Rosenthal, 2002; 

Northam & Knapp, 2006; Zollinger, Przybylski, & Gamache, 2006) thus limiting concerns 

for residual confounding. Finally, in addition to the large sample size, the study sample 

included the entire conterminous U.S., ensuring geographic representativeness.

In summary, among over 3 million births across more than 3,000 U.S. counties, we found 

mostly null associations between modeled probabilities of arsenic exceedance in private 

wells with adverse birth outcomes. An inability to ascertain exposures at the individual 

level likely contributed to the observed null findings. Epidemiologic and experimental data 

suggest arsenic exposure during pregnancy negatively affects fetal growth and development; 

therefore, additional research is warranted. Future birth cohort studies may be able to link 

to the private well arsenic estimates developed by Lombard et al. (2020) at a more granular 

geographic level to evaluate the impacts of exposure with less measurement error.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Machine Learning Model-Predicted Arsenic Probabilities at 1 km2 and Aggregated to the 

County-Level.

BRT1 refers to the probability that arsenic concentrations exceeded 1 μg/L as predicted by a 

boosted regression tree; BRT5 refers to the probability that arsenic concentrations exceeded 

5 μg/L as predicted by a boosted regression tree; BRT10 refers to the probability that arsenic 

concentrations exceeded 10 μg/L as predicted by a boosted regression tree; RFC2 refers to 

the probability that arsenic concentrations fell between >5 to ≤10 μg/L whereas RFC3 refers 

to the probability that arsenic concentrations exceeded 10 μg/L, with both probabilities 

predicted by a single random forest classification model.
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Figure 2. 
Sex-Stratified Associations Between the Private Well Arsenic Probabilities and Term Birth 

Weight
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Figure 3. 
Region-Specific Associations Between the Probability that Arsenic Concentrations 

Exceeded 5 μg/L and Gestational Age, Stratified by County-Level Rates of Private Well 

Use.

Results have been organized by U.S. Geological Survey Ground Water Atlas Regions as 

follows: B (California, Nevada), C (Arizona, Colorado, New Mexico, Utah), D (Kansas, 

Missouri, Nebraska), E (Oklahoma, Texas), F (Arkansas, Louisiana, Mississippi), G 

(Alabama, Florida, Georgia, South Carolina), H (Idaho, Oregon, Washington), I (Montana, 

North Dakota, South Dakota, Wyoming), J (Iowa, Michigan, Minnesota, Wisconsin), 

K (Illinois, Indiana, Kentucky, Ohio, Tennessee), L (Delaware, Maryland, New Jersey, 

North Carolina, Pennsylvania, Virginia, West Virginia), and M (Connecticut, Maine, 

Massachusetts, New Hampshire, New York, Rhode Island, Vermont). Ground Water Atlas 

Regions typically share hydrogeologic and hydrologic conditions across the major aquifers 

in each regional area (U.S. Geological Survey, 2016). BRT-estimated Pr(As >5 μg/L) refers 

to the probability that private well arsenic concentrations exceeded 5 μg/L as estimated by a 

boosted regression tree.
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Figure 4. 
Region-Specific Associations Between the Probability that Arsenic Concentrations 

Exceeded 5 μg/L and Term Birth Weight, Stratified by County-Level Rates of Private Well 

Use.

Results have been organized by U.S. Geological Survey Ground Water Atlas Regions as 

follows: B (California, Nevada), C (Arizona, Colorado, New Mexico, Utah), D (Kansas, 

Missouri, Nebraska), E (Oklahoma, Texas), F (Arkansas, Louisiana, Mississippi), G 

(Alabama, Florida, Georgia, South Carolina), H (Idaho, Oregon, Washington), I (Montana, 

North Dakota, South Dakota, Wyoming), J (Iowa, Michigan, Minnesota, Wisconsin), 

K (Illinois, Indiana, Kentucky, Ohio, Tennessee), L (Delaware, Maryland, New Jersey, 

North Carolina, Pennsylvania, Virginia, West Virginia), and M (Connecticut, Maine, 

Massachusetts, New Hampshire, New York, Rhode Island, Vermont). Ground Water Atlas 

Regions typically share hydrogeologic and hydrologic conditions across the major aquifers 

in each regional area (U.S. Geological Survey, 2016). BRT-estimated Pr(As >5 μg/L) refers 

to the probability that private well arsenic concentrations exceeded 5 μg/L as estimated by a 

boosted regression tree.
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