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Ambiguity rate of hidden Markov processes

Alexandra M. Jurgens * and James P. Crutchfield †

Complexity Sciences Center, Physics Department University of California at Davis Davis, California 95616, USA

(Received 6 August 2021; revised 17 November 2021; accepted 18 November 2021; published 6 December 2021)

The ε-machine is a stochastic process’s optimal model—maximally predictive and minimal in size. It
often happens that to optimally predict even simply defined processes, probabilistic models—including the
ε-machine—must employ an uncountably infinite set of features. To constructively work with these infinite sets
we map the ε-machine to a place-dependent iterated function system (IFS)—a stochastic dynamical system. We
then introduce the ambiguity rate that, in conjunction with a process’s Shannon entropy rate, determines the rate
at which this set of predictive features must grow to maintain maximal predictive power over increasing horizons.
We demonstrate, as an ancillary technical result that stands on its own, that the ambiguity rate is the (until now
missing) correction to the Lyapunov dimension of an IFS’s attracting invariant set. For a broad class of complex
processes, this then allows calculating their statistical complexity dimension—the information dimension of the
minimal set of predictive features.

DOI: 10.1103/PhysRevE.104.064107

I. INTRODUCTION

The bedrock of scientific inquiry is model building. The act
of modeling a natural system serves many purposes, among
them prediction of future behavior, generating surrogate data,
pattern recognition, and pattern discovery. These goals are not
independent, nonetheless they are sufficiently distinct to merit
substantial and separate attention. This is particularly the case
when confronted with modeling complex systems—those that
create intricate and delicate patterns through their internal
interplay of stochasticity and determinism. These systems
are often identified by the presence of collectively interact-
ing subsystems, long-range correlations, and visually striking
emergent structures. In this regime, where direct observation
is difficult at best and uninformative at worst, the importance
of building models is amplified and we require a robust the-
oretical framework to guide their construction, analysis, and
interpretation.

Computational mechanics [1] introduces a suite of tools
to analyze complex systems in terms of their informational
architecture by integrating Turing’s computation theory [2–4],
Shannon’s information theory [5], and Kolmogorov’s dynam-
ical systems theory [6–10]. Its most basic statistic is the
ε-machine—a system’s maximally predictive, minimal, and
unique model. The ε-machine’s causal states are the minimal
set of maximally predictive features—the unique possible fu-
tures conditioned on the system’s infinite past. Qualitatively,
the information stored in the causal states is a process’s sta-
tistical complexity Cμ, a measure of the memory resources
the system employs to generate its behavior and support its
organization. Due to its uniqueness and minimality, via an
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Occam’s razor argument, we may identify the ε-machine as
a system’s canonical description.

We may choose to view the ε-machine either as distinct
from the system (a predictor of the true system’s behavior) or
as representing the system itself (a generator of data statis-
tically indistinguishable from observations). There is a third
option, though. Consider the ε-machine as a memoryful com-
munication channel, mapping pasts to futures. In this view,
we imagine an adaptive channel interacting with a system
via a time series of discrete observations. At each time, it
updates its internal configuration to represent the current op-
timal prediction of the system. The channel’s set of possible
configurations are the causal states and these require Cμ bits
of memory to operate.

The student of information theory will recall that Shannon,
in his analysis of information transmission through channels,
introduced two mechanisms: equivocation, in which the same
input may lead to distinct outputs, and ambiguity, in which
two different inputs may lead to the same output; see Fig. 1.
When our channel is taken to be the ε-machine, the equiv-
ocation rate of the channel is the entropy rate hμ of the
underlying system—the rate at which the system generates
future information. This is guaranteed by the ε-machine’s
predictive optimality—the only noise in the channel arises
from the system’s intrinsic randomness hμ.

The following proposes a parallel quantity, the ambiguity
rate ha, as an intrinsic complexity measure. The ambiguity
rate tracks the rate at which an optimal predictor of a sys-
tem discards information by introducing uncertainty over the
infinite past. The difference hμ − ha between this rate and
the entropy rate describes the growth rate of the information
stored in a process’s optimally predictive features. When hμ =
ha, this rate vanishes and the associated ε-machine’s internal
causal-state process is stationary. Explicitly, for the ε-machine
to consist of a finite set of predictive features, it must forget
information at the same rate at which the system generates it,
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so as to not grow the size of the model over time. However,
when hμ > ha, any optimal predictor must accumulate new
information over time to sustain accurate predictions.

This introduces a challenge, since hμ = ha is atypical for
a broad class of stochastic processes—as our prior works
demonstrated [11,12]—in particular, those used not only in
the study of complex systems [1], but also in coding theory
[13], stochastic processes [14], stochastic thermodynamics
[15], speech recognition [16], computational biology [17,18],
epidemiology [19], and finance [20]. In point of fact, for many
complex systems, the predictive-feature set is uncountably in-
finite and the structural complexity Cμ diverges, requiring new
tools to characterize these systems’ complexity. The recent
work introduced a suite of tools to address this state of affairs.

The key realization was identifying a process’s ε-machine
as the attractor of a hidden Markov-driven iterated func-
tion system (DIFS) [11]. First, we showed that this gave
efficient and accurate calculation of a process’s Shannon en-
tropy rate hμ. Second, we introduced a measure of structural
complexity—the statistical complexity dimension dμ—that
tracks Cμ’s divergence and gives the information dimension
of the distribution of predictive features [12]. Previously, ac-
curate calculation of dμ was contingent on the DIFS meeting
restrictive technical conditions. Introducing ambiguity rate
ha reframes these constraints information-theoretically, effec-
tively lifting them. The result is a new method to accurately
calculate dμ for a broad class of complex processes.

Introducing ha is not merely a means to an end—allowing
accurate calculation of dμ—but also a first step towards a full
dynamical decomposition of information in physical systems.
Several informational measures, such as “transfer entropy”
[21] and “causation entropy” [22], were introduced to solve
this puzzle. Unfortunately, they met with mixed success and
were criticized for failing to truly capture “information flow”
[4,21,23]. We argue that hμ − ha points instead at an informa-
tion flux that measures the difference in rates of information
flow into and out of a system. This framing is a natural ex-
tension of previously successful information decomposition
methods [24] that identified how information is embedded
in time series. Although the full tool set necessary for the
decomposition is not developed here, we believe that the
new perspective introduced is key to finally developing a
dynamics of information for complex systems and model
inference.

This development introduces and motivates the ambigu-
ity rate ha. Sections II and III review stochastic processes
and information theory, respectively, and may be skipped by
the familiar reader. Section IV introduces hidden Markov-
driven iterated function systems. Section V then discusses
the statistical complexity dimension dμ and the overlap
problem—a long-standing issue in the dimension theory of
iterated function systems. Section VI introduces ha from an
information-theoretic perspective, motivating it as a solution
to and a measure of the overlap problem. Various interpreta-
tions are explored, including an historical note on Shannon’s
original dimension rate from 1948. Finally, to illustrate our
algorithm’s effectiveness and the challenges for very com-
plex processes, Sec. VII works through multiple examples,
including processes generated by stationary and nonstationary
ε-machines.

II. PROCESSES

A stochastic process P is a probability measure over
a bi-infinite chain. . . . Xt−2 Xt−1 Xt Xt+1 Xt+2 . . . of random
variables, each Xt denoted by a capital letter. A particular re-
alization . . . xt−2 xt−1 xt xt+1 xt+2 . . . is denoted via lowercase.
We assume values xt belong to a discrete alphabet A. We work
with blocks Xt :t ′ , where the first index is inclusive and the
second exclusive: Xt :t ′ = Xt . . . Xt ′−1. P’s measure is defined
via the collection of distributions over blocks: {Pr(Xt :t ′ ) : t <

t ′, t, t ′ ∈ Z}.
To simplify, we restrict to stationary, ergodic processes:

those for which Pr(Xt :t+�) = Pr(X0:�) for all t ∈ Z, � ∈ Z+,
and for which individual realizations obey all of those statis-
tics. In such cases, we need to consider only a process’s
length-� word distributions Pr(X0:�).

A Markov process is one for which Pr(Xt |X−∞:t ) =
Pr(Xt |Xt−1). A hidden Markov process is the output of a mem-
oryless channel [25] whose input is a Markov process [14].
Somewhat surprisingly, though well known, the output pro-
cess can have realizations with arbitrarily long correlations.

III. INFORMATION THEORY

Beyond its vast technological applications to communi-
cation systems [25], Shannon’s information theory [5] is a
widely used foundational framework that provides tools to de-
scribe how stochastic processes generate, store, and transmit
information. In particular, we use information theory to study
complex systems as it makes minimal assumptions as to the
nature of correlations between random variables and handles
multiway, nonlinear correlations that are common in complex
processes. Here we now briefly recall several basic concepts
needed in the following.

The most basic quantity within information theory is the
Shannon entropy. Intuitively, it measures the amount of infor-
mation that one learns when observing a sample of a random
variable. (It is, equivalently modulo sign, also the amount
of uncertainty one faces when predicting the sample.) The
entropy H[X ] of the random variable X is

H[X ] = −
∑
x∈A

Pr(X = x) log2 Pr(X = x). (1)

In addition to focusing on individual samples, we can probe
the relationship between two jointly distributed random vari-
ables, say, X and Y . There is the joint entropy H[X,Y ], of
the same functional form but applied to the joint distribu-
tion Pr(X,Y ). And there is conditional entropy that gives
the amount of information learned from observation of one
random variable X given another Y :

H[X |Y ] = H[X,Y ] − H[Y ]. (2)

Conditional entropy can be generalized to describe pro-
cesses in terms of the intrinsic randomness—the amount of
information one learns upon observing the next emitted sym-
bol X0, given complete knowledge of the infinite past. This is
the Shannon entropy rate:

hμ = lim
�→∞

H[X0|X−�:0], (3)
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the irreducible amount of information gained in each time
step.

The fundamental measure of correlation between random
variables is the mutual information. It can be written in terms
of Shannon entropies:

I[X ;Y ] = H[X,Y ] − H[X |Y ] − H[Y |X ]. (4)

As should be clear by inspection, the mutual information
between to variables is symmetric. When X and Y are in-
dependent, the mutual information between them vanishes.
As with entropy, we may condition the mutual information
on another random variable Z , giving the conditional mutual
information:

I[X ;Y |Z] = H[X |Z] + H[Y |Z] − H[X,Y |Z]. (5)

The conditional mutual information is the amount of informa-
tion shared by X and Y , given we know the third Z . Note that
X and Y can share mutual information, but be conditionally
independent. Moreover, conditioning on a third variable Z can
either increase or decrease mutual information [25]. That is,
the two variables can appear more or less dependent, given
additional data.

IV. DRIVEN ITERATED FUNCTION SYSTEM

Our main objects of study are hidden Markov processes.
The following introduces driven iterated function systems as
a class of predictive models for them.

Definition 1. An N-dimensional hidden
Markov-driven iterated function system (DIFS)
(A,V,R, {T (x)}, {p(x)}, { f (x)} : x ∈ A) consists of the
following:

(i) A finite alphabet A of k symbols x ∈ A,
(ii) A set V of N presentation states,
(iii) A set of states R ⊂ �N−1, over N-dimensional

presentation-state distributions η ∈ R,
(iv) A finite set of N by N symbol-labeled substochastic

matrices T (x), x ∈ A,
(v) A set of k symbol-labeled probability functions p(x) =

〈η|T (x)|1〉, and
(vi) A set of k symbol-labeled mapping functions f (x) =

〈η|T (x)

p(x) (η) .

The (N-1)-simplex �N−1 is the set of presentation-state
probability distributions such that

{η ∈ RN : 〈η|1〉 = 1, 〈η|δi〉 � 0, i = 1, . . . , N},

where 〈δi| = (0 0 . . . 1 . . . 0) and |1〉 = 1 1 . . . 1. We use
this notation for components of the presentation-state vector
η to avoid confusion with temporal indexing.

Note that the set of substochastic matrices must sum to
the nonnegative, row-stochastic matrix T = ∑

x∈A T (x)—the
transition matrix for the presentation-state Markov chain. This
ensures that

∑
x∈A p(x)(η) = 1 for all η ∈ �N−1.

The transition probability between states is equivalent
to the probability of seeing the symbol that leads to that

(a) (b)

FIG. 1. (a) Equivocation: Same input sequence to a communica-
tion channel leads to different outputs. (b) Ambiguity: Two different
inputs lead to same output. The strategy underlying Shannon’s proof
of his second coding theorem is to find channel inputs that are least
ambiguous given the channel’s distortion properties.

state

Pr(Xt = x, Rt+1 = ηt+1|Rt = ηt )

=
{

p(x)(ηt ), ηt+1 = f (x)(ηt )

0 ηt+1 	= f (x)(ηt )
. (6)

Each symbol must by definition lead to a unique state, al-
though two symbols may lead to the same state. Fig. 2 shows
how a DIFS generates a hidden Markov process: Given an
initial state η0 ∈ �N−1, the probability distribution {p(x)(η0) :
x = 1, . . . , k} is sampled. According to the realization x0,
apply the mapping function to map η0 to the next state η1 =
f (x0 )(η0). According to the probability distribution defined
by η1, draw x1 and repeat. This action generates our emitted
process P: x0 x1 x2 . . ..

This describes the random dynamical system, the DIFS,
that generates the hidden state sequence η0, η1, η2, . . .. As we
previously showed, the attractor of this dynamical system is

(0, 1, 0)

(0, 0, 1) (1, 0, 0)

η

f�(η)

f�(η)

p�(η)

p�(η)

FIG. 2. How a hidden Markov-DIFS generates a hidden Markov
process: An initial state η—a distribution over three states: (0,0,1),
(0,1,0), and (1,0,0)—in the 2-simplex is associated with a transition
probability distribution over the alphabet A = {�, 
}. If the emitted
symbol selected from this distribution is �, the next state is gener-
ated according to the associated mapping function f (�)(η) and the
probability distribution is updated accordingly. The same steps are
followed if the symbol is 
 using f (
)(η), resulting in an emitted
process P over symbols A.
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(1, 0)
. . .

Pr(�|η0) = 〈η0|T�|1〉

Pr(�|η1) = 〈η1|T �|1〉
Pr(�

|η2)

Pr(�
|η3

)

Pr(�
|η4

)

Pr(
�|η

∞
)

(1, 0)

η0

( 1
2
, 1

2
)

η1

( 1
3
, 2

3
)

η2

( 1
4
, 3

4
)

η3

( 1
5
, 4

5
)

η4

(0, 1)

η∞

FIG. 3. The states and transitions of a hidden Markov-DIFS discussed in Sec. VII A embedded in the 1-simplex. In this case, the set R of
states is countable and each subsequent application of f (
) brings η nearer to η∞ = (0, 1). The latter is reached only after observing infinitely
many 
s. The countable nature of R arises from the fact that one of the mapping functions is a constant: f (�) = (1, 0).

the invariant set R of states and their evolution is ergodic
[11,26]. Additionally, the attractor has a unique, attracting,
invariant measure known as the Blackwell measure μB(R)
[27]. Although R may be countable, as for the DIFS depicted
in Fig. 3, in general, R is uncountably infinite and fractal in
nature, as in the examples in Fig. 4.

DIFS states are predictive in the sense that they are func-
tions of the prior observables. Consider an infinitely long
past that, in the present, has induced some state η. It is not
guaranteed that this infinitely long past induce a unique state,
but it is the case that any state induced by this past must have
the same conditional future distribution Pr(X0:∞|·). Indeed, for
the task of prediction, knowing the previous state is as good as
knowing the infinite past: Pr(X0:�|R0 = η) = Pr(X0:�|X−∞:0 )
for all � ∈ N+.

Therefore, the DIFS is a predictive model of the process P
it generates. (This is in contrast to it being merely a generative
model—whose only requirement is to produce all and only the
set of realizations.) Borrowing from the language of automata
theory, we refer to the set of states R plus its transition
dynamic, Pr(xt |ηt ) and Pr(ηt+1|ηt , xt ), as a state machine or
a machine that optimally predicts P . When each state is asso-
ciated with a unique future distribution, we have a canonical
predictive model that is unique: a process’s ε-machine [1].

Definition 2. An ε-machine is a DIFS with probabilisti-
cally distinct states: For each pair of distinct states η, ζ ∈ R

there exists a finite word w = x0:�−1 such that

Pr(X0:� = w|R0 = η) 	= Pr(X0:� = w|R0 = ζ ).

A process’s ε-machine is its optimally predictive, minimal
model, in the sense that the set R of predictive states is min-
imal compared to all of the process’s other predictive models.
By capturing a process’s structure and not merely being pre-
dictive, an ε-machine’s states are called causal states. Unless
otherwise noted, we assume that all DIFSs discussed here are
ε-machines.

Calculating the Shannon entropy rate for a process gener-
ated by a DIFS was the focus of our first discussion of DIFSs
[11]. Due to the associated process’s ergodicity, hμ may be
written as a time average:

ĥμ

B = − lim
�→∞

1

�

�∑
t=0

∑
x∈A

Pr(x|η�) log2 Pr(x|η�). (7)

This tracks the uncertainty in the next symbol x given our
current causal state ηt , averaged over the Blackwell measure.
It quantifies the intrinsic randomness of the process P .

V. STATISTICAL COMPLEXITY DIMENSION

Images of the self-similar state sets R of DIFS are evoca-
tive (see Fig. 4) and lead naturally to questions about how

FIG. 4. Hidden Markov DIFSs may generate state sets with a wide variety of structures, many fractal in nature. Each subplot displays 105

states of a different DIFS. The DIFSs themselves are specified in Appendix A.
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R’s geometric properties relate to intrinsic properties of the
underlying process P . To begin to answer this, we identify
a process’s memory with the information required to specify
its ε-machine states; i.e., the minimal amount of information
needed to predict P . This may be measured either in terms of
the cardinality |R| of causal states or the amount of historical
Shannon entropy they store—that is, the statistical complexity
Cμ.

Definition 3. A process’s statistical complexity is the
Shannon entropy stored in its ε-machine’s causal states:

Cμ = H[Pr(R)]

= −
∑
η∈R

p(η) log2 p(η). (8)

From the definitions above, a process’s ε-machine is its
smallest predictive model, in the sense that both |R| and Cμ

are minimized by a process’s ε-machine, compared to all other
predictive models. Due to the ε-machine’s unique minimality,
we identify the ε-machine’s Cμ as the process’s memory.

However, when the set R of causal states is infinite, the
statistical complexity may diverge. In this case, Cμ is no
longer an appropriate complexity measure to distinguish pro-
cesses. Despite this, a need remains: It is clear that processes
with infinite state sets differ significantly in internal structure,
as shown in Fig. 4. In this case, we turn to the statistical
complexity dimension, defined as the rate of divergence of
the statistical complexity, to serve as a measure of structural
complexity. This leaves us with an abiding question, though,
What does it mean that a finitely specified process’s state
information (memory) diverges?

A. Dimension and causal state divergence

A set’s dimension, construed most broadly, gives the rate
at which a chosen size-metric diverges with the scale at
which the set is observed [28–32]. Fractional dimensions,
in particular, are useful to probe the “size” of sets when
cardinality alone is not informative. “Fractal dimension,”
said in isolation, is often taken to refer to the box-counting
or Minkowski-Bouligand dimension. The following, though,
determines the information dimension—a dimension that ac-
counts for the scaling of a measure on a fractional dimension
set. In this case, our measure of interest is the Blackwell
measure μB over our causal states R.

Consider the state set R on the (N − 1)-simplex for a DIFS
that generates a process P . Coarse grain the N-simplex with
evenly spaced subsimplex cells of side length ε. Let F (ε) be
the set of cells that encompass at least one state. Now, let each
cell C in F (ε) itself be a (coarse-grained) state and approx-
imate the ε-machine dynamic by grouping all transitions to
and from states encompassed by the same cell. This results in
a finite-state Markov chain that generates an approximation
of the original process P and has a stationary distribution
μ(F (ε)). Then μB(R)’s information dimension is

d1[μB(R)] = lim
ε→0

Hμ[F (ε)]

log
(

1
ε

) , (9)

where Hμ[F (ε)] = −∑
i∈|F (ε)| μ(Ci ) log μ(Ci ) is the Shan-

non entropy over the set F (ε) of cells that cover attractor R
with respect to μ.

Rearranging Eq. (9) shows that the state entropy of the
finite-state approximation scales logarithmically with R’s in-
formation dimension with respect to the Blackwell measure:

Hμ[F] ∼ d1(μB) log
1

ε
. (10)

Applied to a process P’s ε-machine, d1 describes the diver-
gence rate of statistical complexity Cμ:

Cμ(ε) ∼ dμ log
1

ε
. (11)

In this way, we refer to the ε-machine’s information dimen-
sion d1(μB) as P’s statistical complexity dimension dμ.

B. Determining statistical complexity dimension

Directly calculating the statistical complexity dimension
using Eq. (9) is nontrivial, as it often requires estimating
a fractal measure. Fortunately, as our two previous works
discussed and as we now show, the intractability can be cir-
cumvented by leveraging the process’s associated generating
dynamical system—the DIFS—to calculate dμ [11,12].

For a dynamical system, the spectrum of Lyapunov char-
acteristic exponents � = {λ1, . . . , λN : λi � λi+1} [33,34]
measures expansion and contraction as the average local
growth or decay rate, respectively, of orbit perturbations. The
result is a list of rates that indicate long-term orbit instability
(λi > 0) and orbit stability (λi < 0) in complementary direc-
tions.

Consider covering an attractor generated by a dynamical
system f with hypercubes of side length ε. After applying
f to a hypercube k times, the side lengths are approximately
εeλ1k, εeλ2k, . . . , assuming that the hypercube orientation is
chosen appropriately. This property allows combining the el-
ements of the spectrum � into an expression approximating
the growth rate of hypercubes needed to cover the attractor,
as ε → 0. In turn, this implies a natural relationship between
� and dimensional quantities, such as Eq. (9). The Lyapunov
dimension [35] has been conjectured to be equivalent to the
information dimension for “typical systems” f .

Our previous work showed how to calculate � for DIFSs
[12]. However, since DIFSs are random dynamical systems,
additional orbit expansion arises from the stochastic selection
of the maps f (x). Indeed, for DIFSs, all expansion arises from
this stochastic choice, which is measured by the Shannon
entropy rate hμ of the generated process P . That is to say,
for DIFSs, λi < 0 for all i while hμ monitors the expansive
exponent.

With this in mind, we adapt the Lyapunov dimension ex-
pression to DIFSs as follows:

d̃� =

⎧⎪⎨⎪⎩k + 
(k) + hμ

|λk+1| , −
(N ) > hμ

N, −
(N ) � hμ

, (12)

where we introduce the Lyapunov spectrum partial sum

(m) = ∑m

i=1 λi and k = 0, 1, 2, . . . , N − 1 is the largest
index for which −
(k) < hμ. Note 
(m) < 0 for m =

064107-5
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FIG. 5. Overlap problem on the 2-simplex �2: Two distinct
DIFSs (given in Appendix A) are considered, each with three map-
ping functions. Images of the mapping functions over the entire
simplex are depicted as regions in red, blue, and green. (a) Images
of the mapping functions f (
), f (�), and f (◦) do not overlap—every
possible state has a unique preimage. (b) Images of the mapping
functions overlap—there exist η1, η2 ∈ �2 such that f ′(
)(η1) =
f ′(�)(η2) = η3. This case is an overlapping DIFS.

1, 2, . . . , N and we take 
(0) = 0. Readers familiar with the
Lyapunov dimension should take care because we reindexed
from the traditional presentation of d� for readability.

Under specific technical conditions, d� is exactly the in-
formation dimension of the DIFS’s attractor: d� = dμ [36].
Generally, relaxing the conditions, d̃� only upper bounds the
statistical complexity dimension:

d̃� � dμ. (13)

The extent to which the bound is not saturated is in large part
determined by the open set condition, which we now discuss.
We then turn to solve the associated “overlap problem.” This
leads to an exact expression for DIFS attractor information
dimension dμ.

C. The overlap problem

The overlap problem is a long-standing concern for iterated
function systems that arises from the overlap of the ranges
of the symbol-labeled mapping functions f (x). Figure 5 illus-
trates the issue. Specifically, to quantitatively count system
orbits we must properly monitor orbit divergence and con-
vergence. This then requires distinguishing between iterated
function systems that meet the open set condition (OSC) and
those that do not.

Definition 4. An iterated function system with mapping
functions f (x) : � → � satisfies the open set condition (OSC)
if there exists an nonempty open set U ∈ � such that for all
x, x′ ∈ A:

k⋃
x=1

f (x)(U ) ⊂ U,

f (x)(U ) ∩ f (x′ )(U ) = ∅, x 	= x′.

IFSs that meet the OSC are nonoverlapping IFSs.
When the OSC is not met, the inequality in the dμ bound

Eq. (13) becomes strict. This is a consequence of using hμ as
our measure of state space expansion in Eq. (12). The Shan-

non entropy rate tracks the uncertainty in the next symbol x
given our current causal state ηt , averaged over the Blackwell
measure. From a dynamical systems point of view, we identify
this as the typical growth rate of orbits (words) in symbol
space.

When the OSC is met, the Shannon entropy rate also mea-
sures the typical growth rate of orbits in the (N − 1)-simplex.
Observing x, current state ηt transitions to the next state ηt+1

via application of the mapping function ηt+1 = f (x)(ηt ). Since
images of the map do not overlap, this is guaranteed to be a
distinct new state—thus the number of distinct state sequences
grow at the same rate as the number of words. Then, we may
use hμ to measure state-space expansion.

However, when the OSC is not met, it is possible for two
distinct states ηt , ζt ∈ � to map to the same next state on
different symbols, by occupying the “overlapping region,” as
depicted in Fig. 5. In this case, ηt+1 = ζt+1 has no unique
preimage. This introduces ambiguity about the past, given
knowledge of the current state. As a consequence, using the
Shannon entropy rate as a proxy for the state expansion rate
implies a more rapid expansion in state space than is actually
occurring. This indicates the need to adjust the use of hμ in
determining dμ.

VI. AMBIGUITY RATE

We propose that the ambiguity rate properly corrects d̃�

of Eq. (12) from overcounting orbits. Since the problem at
hand is an overestimation in uncertainty in our state space, we
must identify and quantify mechanisms of state uncertainty
reduction when the OSC is not met. Consider that when the
OSC is met, every state ηt has a unique preimage ηt−1 that
can be reached only via a single, specific observed symbol.
When the OSC is not met, for a subset of η ∈ R there is
uncertainty about the previous state, the previous symbol, or
both. Quantifying this ambiguity about the past is the goal in
constructing the ambiguity rate ha.

Intuitively, it would seem that generating uncertainty in
reverse time is equivalent to reduction of uncertainty in for-
ward time. The following shows that this is the case and that
the ambiguity rate is the necessary correction to the DIFS
dimension formula (12).

A. Sources of state uncertainty reduction

For ε-machines represented as DIFSs, there are three dis-
tinct mechanisms that contribute to the ambiguity rate, as
depicted in Fig. 6.

The first is identical mapping functions, depicted in
Fig. 6(a). When for x, x′ ∈ A, f (x)(η) = f (x′ )(η) for all
η ∈ R, we say that x and x′ have identical mapping functions.
In this case, the distinction between x and x′ is not reflected
in state sequences and produces ambiguity in the symbol
sequence. We quantify this as the Shannon entropy in our
current symbol, conditioned on the previous state and the next
state: H[Xt |Rt ,Rt+1].

The second is overlapping mapping functions, which mo-
tivated this investigation and have already been defined. Their
impact on the state machine is shown in Fig. 6(b). In this
case, two distinct symbols x, x′ ∈ A map two distinct states
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�

�
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(a) H[X0|R0,R1]
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R1

�

�

X0

(b) I[X0;R0|R1]

R0

R0

R1

�

�

X0

(c) H[R0|X0,R1]

FIG. 6. Sources of ambiguity rate depicted in state machines:
(a) H [X0|R0,R1] > 0—Previous state R0 is mapped to the next
state R1 by two distinct symbols. This occurs when two symbols
have identical mapping functions. (b) I[X0;R0|R1] > 0—Two dis-
tinct previous states R0 map to the same next state by distinct
symbols, due to overlapping mapping functions. (c) H [R0|X0,R1] >

0—Two distinct previous states R0 map to the same next state by the
same symbol. This occurs when a mapping function is noninvertible.

η, ζ ∈ R to the same next state. Although the previous state
affects the probability distribution over the observed symbol,
the next state “forgets” that distinction. This is quantified by
the mutual information shared by the current symbol and the
previous state, conditioned on the next state: I[Xt ;Rt |Rt+1].

Finally, there is noninvertibility in the mapping functions
themselves. If a single mapping function maps distinct states
η, ζ ∈ R to the same next state, the pasts that led to η and
ζ can no longer be distinguished. Figure 6(c) shows this
in general. However, it may also be observed in f (�) from
Fig. 3, which maps every state to η0 = (1, 0). Numerically,
the reduction via this mechanism is measured by the Shannon
entropy in the previous state, given our next state and current
symbol: H[Rt |Xt ,Rt+1].

Combining these three sources of uncertainty reduction
defines the ambiguity rate:

ha = H[Xt |Rt ,Rt+1] + I[Xt ;Rt |Rt+1]

+ H[Rt |Xt ,Rt+1]

= H[Xt ,Rt |Rt+1]. (14)

This can be rewritten as a integral over R:

ha = −
∫

η∈R
dμB(η)

∑
x∈A,

ζ∈( f (x) )−1(η)

Pr(x, ζ |η) log2 Pr(x, ζ |η). (15)

In this, we must be careful about the preimages of η, due
to the possibility of noninvertible mapping functions. The
probability distribution inside the summation is given by the
relationship:

Pr(X0 = x,R0 = ζ |R1 = η)

= μB(R0 = ζ )

μB(R1 = η)
Pr(X0 = x|R0 = ζ ). (16)

Calculating this distribution requires calculating or estimating
the Blackwell measure, which may be nontrivial. Section VII
discusses this in greater depth.

B. Correcting dμ

The information-theoretic decomposition of ambiguity rate
facilitates combining ha and hμ. Recall that for prediction, the
states of a predictive model are equivalent to knowledge of

the infinite past. Due to this, the Shannon entropy rate may
be written H[Xt |Rt ]. Combining this with the ambiguity rate
gives

hμ − ha = H[Xt |Rt ] − H[Xt ,Rt |Rt+1]

= H[Rt+1|Rt , Xt ] + H[Rt+1] − H[Rt ]

= �H[Rt ].

Moving to the third line called on the fact that the symbol and
state transitions are defined by functions. So the difference
between the Shannon entropy rate and the ambiguity rate
gives the rate of growth of our causal state set R.

Recall that the information dimension, as defined in Eq.
(9), compares the average growth of occupied cells F—taking
into account the measure over those cells—as the cell size ε

shrinks. To adhere to the main development, here we will not
walk through the heuristic for how a dimensional quantity is
determined from the �. (Though, this is briefly discussed in
Sec. V B.) Nonetheless, we will show how the relationship
between d1, hμ − ha, and � is intuitive for DIFSs in one
dimension.

When the DIFS states lie in the 1-simplex, � consists of
only one exponent λ1 < 0, which is the weighted average of
the Lyapunov exponents of each map:

λ1 =
∫ ∑

x

p(x)(η) log

∣∣∣∣df (x)(η)

dη

∣∣∣∣dμ,

where μ is the Blackwell measure.
Now consider a line segment in �1 of length ε. Mapping

this line forward k times by the DIFS produces, averaging
over several iterations of this action, 2(hμ−ha )k lines of length
εeλ1k < ε. (Note that the use of base 2 for Shannon entropy
rather than base e follows convention; retained here for fa-
miliarity. In numerical calculation of dμ, we recommend a
consistent base be chosen for hμ, ha, and the �.) The loga-
rithmic ratio of the growth rate of lines (as averaged over the
Blackwell measure) compared to the shrinking of these lines
is the simple ratio:

dμ = −hμ − ha

λ1
.

This, of course, is exactly the definition of the information
dimension (9) and is, assuming the DIFS is an ε-machine, the
statistical complexity dimension dμ.

For higher-dimensional DIFSs, we conjecture that the am-
biguity rate is the adjustment to the IFS Lyapunov dimension
formula that gives the information dimension:

d̃μ =

⎧⎪⎨⎪⎩k + 
(k) + hμ − ha

|λk+1| , −
(N ) > hμ − ha

N, −
(N ) � hμ − ha

, (17)

where, as in Eq. (12), 
(m) is the Lyapunov spectrum par-
tial sum 
(m) = ∑m

i=1 λi and k = 0, 1, 2, . . . , N − 1 is the
largest index for which −
(k) < hμ − ha.
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C. Interpreting ambiguity rate

Up to this point, we motivated ambiguity rate as correcting
over counting in the DIFS statistical complexity dimension
dμ. It is worth discussing the quantity in more depth.

On the one hand, note that when hμ − ha = 0, the
causal-state process is stationary and Cμ time-independent:
�H[Rt ] = 0. This occurs for finite-state DIFSs, as well as
many with countably infinite states; see Sec. VII A. When
this occurs, applying Eq. (17) returns a vanishing statistical
complexity dimension dμ = 0, as expected.

On the other hand, when ambiguity rate vanishes, Cμ grows
at the Shannon entropy rate: �H[Rt ] = hμ. This occurs when
there are no identical maps, no overlap, and no noninvertibility
in the mapping functions. In short, ha = 0 when the process
is “perfectly self-similar” and every new observed symbol
produces a new, distinct state.

With this in mind, we can use the ambiguity rate, and
specifically hμ − ha, to describe the stationarity of the model’s
internal state process. The state set is time independent. When
ha > 0, however, to optimally predict the process P requires
a nonstationary model (temporally growing state set R), even
though P is itself stationary. This is a consequence of model-
ing “out of class.” That is, predicting a perfectly self-similar
P requires differentiating every possible infinite past. This is
possible only with a DIFS by storing new states at the rate new
pasts are being created. (Moving to a more powerful model
class by, say, imbuing our states with counters or stacks, may
make it possible to model P with a stationary model.)

This perspective naturally leads to another that probes the
efficacy of the causal-state mapping. Considering the space
of all possible infinite pasts

←−
X , the causal-state mapping

fε (
←−
X ) � R is defined such that

fε (
←−
X = ←−x ) = fε (

←−
X = ←−

x′ ) = ηi,

if Pr(X0:�|←−X = ←−x ) = Pr(X0:�|←−X = ←−
x′ ) for all � ∈ N+.

When the process is perfectly self-similar, the causal-state
mapping is one-to-one and ha = 0. In this case, storing the
causal states is no better for prediction than simply tracking
the space of all pasts. (Although the causal-state set R is still
informative in characterizing how we might approximate the
process with a finite state machine [37].) The number of pasts
each state “contains” is stationary and given by 2ha = 1.

In general, for a stationary process P , the average number
of pasts contained by a given causal state grows at the rate
2ha . When the process has a stationary state set, the number
of pasts each state contains must necessarily grow at the rate
new pasts are being generated, and so 2hμ = 2ha .

Finally, let’s close with a short historical perspective. The
development of dμ was partially inspired by Shannon’s defi-
nition in the 1940s of dimension rate [5]:

λ = lim
δ→0

lim
ε→0

lim
T →∞

N (ε, δ, T )

T log ε
,

where N (ε, δ, T ) is the smallest number of elements that may
be chosen such that all elements of a trajectory ensemble
generated over time T , apart from a set of measure δ, are
within the distance ε of at least one chosen trajectory. This
is the minimal “number of dimensions” required to specify a

member of a trajectory (or message) ensemble. Unfortunately,
Shannon devotes barely a paragraph to the concept, leaving it
largely unmotivated and uninterpreted.

Therefore, it appears the first modern discussion of a di-
mensional quantity of this nature for stochastic processes
motivated the development using resource theory [37], noting
that the d1 of the causal-state set Eq. (9) characterizes the dis-
tortion rate when coarse graining an uncountably infinite state
set. Starting from the dimensional quantity, the relationship to
statistical complexity was then forged.

In this light, developing ambiguity rate and calling out its
easy mathematical connection to �H[Rt ] flips this motiva-
tion. The quantity hμ − ha can be defined purely in terms of
P and has an intuitive relationship to the causal-state map-
ping. The dimensional quantity dμ naturally falls out when
we compare this rate of model-state growth to the dynamics
of the causal states in the mixed-state simplex. Therefore,
we may motivate dμ as not only a resource-theoretic tool for
coarse graining infinitely complex state machines, but also as
an intrinsic measure of a process’s structural complexity.

VII. EXAMPLES

We now consider two examples. The first is a parametrized
discrete-time renewal process that has a countably infinite
state space for all parameters. This allows us to explicitly
write down the Blackwell measure and calculate ambiguity
rate exactly using Eq. (15). The second is a parametrized ma-
chine with three maps, which has an uncountably infinite state
space for nearly all parameters. Calculating the ambiguity rate
in this case requires us to approximate the Blackwell measure
using Ulam’s method.

A. Example: Discrete-time renewal process

The DIFS depicted in Fig. 3 has the alphabet A = {
,�}
and the substochastic matrices:

T (
) =
(

1 − q q
0 1 − p

)
and T (�) =

(
0 0
p 0

)
, (18)

where p = q = 1
2 . Recall that the states η will take the form

of length-two vectors such that 〈η|1〉 = 1, so f (x) and p(x) will
depend only on a single variable, which we will take to be the
first component of η. We write this component 〈η|δ1〉 to avoid
confusion with temporal indexing.

For the general case where p, q ∈ (0, 1) are left unspeci-
fied, we have the probability function set

p(
)(η) = 1 − p + 〈η|δ1〉p,

p(�)(η) = p − 〈η|δ1〉p,

and the mapping function set

f (
)(η) =
( 〈η|δ1〉(1 − q)

1 − p + 〈η|δ1〉p
,
〈η|δ1〉(p + q − 1) + 1 − p

1 − p + 〈η|δ1〉p

)
,

f (�)(η) = (1, 0).

Due to the temporal indexing, this may appear compli-
cated, but note that the denominator of f (
) is simply p(
).
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When p = q = 1/2, the functions reduce to

p(
)(η) = 1

2
(1 + 〈η|δ1〉),

p(�)(η) = 1

2
(1 − 〈η|δ1〉),

and

f (
)(η) =
( 〈η|δ1〉

1 + 〈η|δ1〉 ,
1

1 + 〈η|δ1〉
)

,

f (�)(η) = (1, 0).

It is simple to confirm that the mixed state set is countable:

R =
{(

1

n + 1
,

n

n + 1

)
: n = Z0+

}
,

where ηn = ( 1
n+1 , n

n+1 ) is the state induced after observing

’s since the last �. Compare this to Fig. 3. From here, we
could find the transition probabilities p(x)(ηn) and compute the
Blackwell measure, but let us do so in the general case.

When p 	= q, R becomes

ηn =
[

(p − q)(1 − q)n

p(1 − q)n − q(1 − p)n
,

q(1 − q)n − q(1 − p)n

p(1 − q)n − q(1 − p)n

]
.

This simple structure allows us to give the Blackwell measure
explicitly:

μB(n) = p(1 − q)n − q(1 − p)n

p − q

pq

p + q
,

where μB(n) is the asymptotic invariant measure over the state
induced after seeing n 
s since the last �.

With the Blackwell measure in hand, the entropy rate can
be explicitly calculated as the infinite sum:

hμ =
∞∑

n=1

μnH[Xn|Rn = ηn]

= −
∞∑

n=1

μn(p(
)(ηn) log2 p(
)(ηn)

+ p(�)(ηn) log2 p(�)(ηn)).

Figure 7 plots hμ for p, q ∈ (0, 1). In calculating hμ, there is
a contribution from every state except the first, η0, since the
first state transitions to the second with probability one and
there is no branching uncertainty. Every other state transitions
on a coin flip of a determined bias between (
,�), generating
uncertainty with each transition.

In contrast to how hμ averages over all mixed states, ambi-
guity rate accumulates in only one state, η0. From Fig. 3, we
see that H[xn, ηn|ηn+1] = 0 for all n other than n = 0. That is,
each state ηn is accessed only via the prior state ηn−1, except
for η0, which may be accessed from every other state. So
ambiguity in the past can be introduced only by visiting η0.
Since these transitions only occur on a �, we must find the
probability distribution Pr(X0 = �,R0 = ηn|R1 = η0).

Applying Eqs. (15) and (16), we explicitly write the ambi-
guity rate as

ha = −μ0

∞∑
n=1

(
μn

μ0
p(�)(ηn)

)
log2

(
μn

μ0
p(�)(ηn)

)
.
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FIG. 7. The entropy rate hμ, which in this case is equivalent to

the ambiguity rate ha, is plotted for the DIFS depicted in Fig. 3 for
p, q, ∈ (0, 1).

Both hμ and ha are infinite summations, but when calculating
the ambiguity rate, the sum refers to calculating a single Shan-
non entropy over the infinite, discrete distribution representing
the probability distribution over prior states when arriving in
η0.

Since the state space does not grow—�H[Rt ] = 0—the
entropy rate hμ = ha as n → ∞. Therefore, dμ vanishes for all
values of p and q. This will always be the case for finite-state
DIFSs.

B. Example: 1D ambiguity rate

Now let’s turn to the more general case, those DIFSs with
uncountably infinite state spaces. For the moment we restrict
to one-dimensional DIFSs, so that the states lie in the 1-
simplex. Consider a DIFS with the alphabet A = {
,�, ◦}
and the associated substochastic matrices:

T (
) =
(

αy βx
αx βy

)
, T (�) =

(
βy βx
βx βy

)
, and

T (◦) =
(

βy αx
βx αy

)
, (19)

with α = 1 − 2β, α ∈ (0, 1), and x = 1 − y, x ∈ (0, 1).
Figure 8 depicts all of the DIFSs for the slice of the param-

eter space where x = 0.25. The vertical axis is the 1-simplex
and each vertical slice plots the state space R(α) at the appro-
priate value of α, given on the horizontal axis. Additionally,
the images of the functions { f (
)(R), f (�)(R), f (◦)(R)} are
shaded in red, blue, and green, respectively.

At α = 1/3, the mixed state set R contracts to a finite set,
and hμ must equal to ha, making dμ = 0. At this point in
parameter space, R consists of only a single state; R(α =
1/3) = {(1/2, 1/2)}. At every other value of α, ha < hμ.
There is overlap in the images of the maps for, approximately,
α ∈ (0.07, 0.78). In this regime, ha > 0.

064107-9



JURGENS AND CRUTCHFIELD PHYSICAL REVIEW E 104, 064107 (2021)

FIG. 8. One-dimensional attractor for the DIFS given in Eq. (19) with x = 0.25 and horizontally varying α ∈ (0, 1). State set η ∈ R plotted
(red, blue, green) on top of the images of the mapping functions { f (
), f (�), f (◦)} applied to R. For α ∈ (0.07, 0.78), there is overlap in the
images of the maps.

To calculate the ambiguity rate and therefore the statistical
complexity dimension dμ we use a modified Ulam’s method
to approximate the Blackwell measure and then approximate
the integral equation Eq. (15). This method is not the only way
to find the ambiguity rate, but does have several advantages,
including speed and the ability to control the accuracy of our
approximation. Appendix B discusses the method in depth.

The top plot in Fig. 9 gives the entropy rate, ambiguity
rate, and hμ − ha for the DIFSs pictured in Fig. 8. As α is
increased, ha smoothly increases from zero as overlap begins
to occur. It approaches ≈ 0.6 around α = 1/3, but is discon-
tinuously equal to hμ at this point. The reason for this is an
instantaneous equality in the fixed points of the mapping func-
tions, causing the state space to collapse. As α increases to 1,
ha smoothly decreases back to zero. The roughness seen in the
plot is due to numerical precision, as analyzed in Appendix B.

For a large portion of the overlap region, d� saturates
at 1.0 due to its threshold condition on the exponent sum.
Figure 9 (bottom) instead plots hμ/λ1 to show how this
quantity smoothly changes across parameter space, reaching
a maximum at around 1.6. In comparison, dμ = (hμ − ha)/λ1

smoothly departs from the Lyapunov dimension when overlap
begins and instead hugs the underside of the dimension 1
line for much of the overlap. Again, at α = 1/3 there is the
discontinuous drop to dμ = 0, followed by dμ smoothly re-
joining with the Lyapunov dimension as the overlap region
ends.

Unsurprisingly, calculating the ambiguity rate in higher di-
mensions is more challenging. Although, in principle, Ulam’s
method still applies and we may in principle follow the al-
gorithm laid out in Appendix B, higher-dimensional mapping
functions introduce additional error sources in the approxi-

FIG. 9. Entropies and dimensions for the DIFS given in Eq. (19) with α ∈ (0, 1) and x = 0.25: (Top) Entropy rate hμ, ambiguity rate ha,
and hμ − ha. (Bottom) Comparing d� = hμ/λ1 to dμ = (hμ − ha )/λ1. The latter smoothly departs from the former. It is approximately 1 for
much of the overlap region, except where it discontinuously jumps to zero at α = 1/3.
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mation. Developing an algorithm to efficiently and accurately
calculate the ambiguity rate in higher dimensions is of great
interest, but we leave this task to future work.

VIII. CONCLUSION

Stepping back from our development of ambiguity rate and
statistical complexity dimension, let’s position the results in
the context of the prior two works in this series [11,12]. In the
first, motivated by needing a general solution to the Shannon
entropy rate for processes generated by finite-state hidden
Markov chains, we showed how an optimal predictor can be
constructed for any such process, at the cost of a potentially
uncountably infinite state space. To address the resulting chal-
lenge, we introduced hidden Markov-driven iterated function
systems and showed that the attractor of a properly defined
DIFS is equivalent to the ε-machine for the process generated
by its substochastic matrices.

The result gave benefits beyond a finite-dimensional de-
scription of an infinite-state model. The identification allowed
us to adopt several rigorous results on IFSs, including an
ergodic theorem that allows us to sample the DIFS to ac-
curately and efficiently calculate the Shannon entropy rate
of the underlying process. With this, our original goal was
completed.

However, identifying these ε-machines as IFSs allowed us
to show that the dimension of the mixed-state set, a quan-
tity well studied for IFSs, is a structural complexity measure
for stochastic processes. Reference [12] then introduced the
statistical complexity dimension—the DIFS attractor infor-
mation dimension. A long-standing conjecture in dynamical
systems theory states that the Lyapunov dimension, a di-
mensional quantity calculated using a system’s Lyapunov
spectrum, is equivalent to the information dimension. We
showed that for many DIFSs this is indeed the case, con-
necting the information dimension of the ε-machine’s state
space to the ε-machine’s statistical complexity dimension—
the rate of divergence of the statistical complexity. This related
a DIFS’s dynamics to the information-theoretic properties of
the underlying process. Additionally, it gave a meaningful
measure of structural complexity—one that differentiates be-
tween stochastic processes with divergent state spaces.

That was not the end of the story, since calculating dμ is
difficult due to long-standing problems in the field of IFS
dimension theory. In particular, the overlap problem posed
a significant hurdle—restricting the preceding results to only
nonoverlapping IFSs. This restricted us to the class of stochas-
tic processes with a one-to-one past-to-causal state mapping.
In a sense, these processes are the most complex but with
structure that is the least interesting. That is, for DIFSs we
simply store every past to build an optimally predictive model.

This state of affairs led directly to the present develop-
ment and to introducing the ambiguity rate. The latter allows
smoothly varying between ε-machines with countable state
spaces (ha = hμ and �H[R] = 0) and those with perfectly
self-similar state spaces (ha = 0 and �H[R] = hμ), includ-
ing the vast majority lying in between, with hμ > ha > 0 and
�H[R] = hμ − ha. This model class is much more general,
generating an exponentially larger family of stochastic pro-
cesses. As such, we anticipate that this class will be of great

interest and likely to lead to significant further progress in
analyzing the randomness and structure generated by hidden
Markov chains.

To close, we note that the structural tools and the entropy-
rate method introduced by this trilogy were put to practical
application in two other previous works. One diagnosed the
origin of randomness and structural complexity in quantum
measurement [38]. The other exactly determined the thermo-
dynamic functioning of Maxwellian information engines [39],
when there had been no previous method for this kind of
detailed and accurate analysis. The lesson from these appli-
cations of finite-state-generated processes is that the resulting
effectively infinite state processes are very likely generic. That
said, for now we must leave to the future investigating infinite-
state machines and developing the required algorithmic tools.
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APPENDIX A: HIDDEN MARKOV-DRIVEN ITERATED
FUNCTION SYSTEM EXAMPLES

We reproduce here the hidden Markov-driven iterated func-
tion systems (DIFSs) used to create Fig. 4.

First, the “delta” DIFS, from Fig. 4(a), is given by a
three-symbol alphabet and the substochastic symbol-labeled
matrices:

T (�) =
⎛⎝0.112 0.355 3.901 × 10−2

0.434 7.685 × 10−2 2.333 × 10−2

0.215 2.518 × 10−2 0.220

⎞⎠,

T (
) =
⎛⎝1.778 × 10−2 0.113 0.220

6.465 × 10−2 0.272 2.413 × 10−2

0.400 8.697 × 10−3 9.892 × 10−3

⎞⎠,

T (◦) =
⎛⎝8.312 × 10−2 2.867 × 10−2 3.096 × 10−2

4.690 × 10−2 5.625 × 10−2 1.807 × 10−3

0.114 1.095 × 10−3 7.522 × 10−4

⎞⎠.

(A1)

Second, the “Nemo” DIFS, from Fig. 4(a), is given by
a two-symbol alphabet and the substochastic symbol-labeled
matrices:

T (�) =
⎛⎝0.409 0.0 0.091

0.5 0.0 0.0
0.0 0.182 0.0

⎞⎠ and
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T (
) =
⎛⎝0.091 0.0 0.409

0.5 0.0 0.0
0.0 0.818 0.0

⎞⎠. (A2)

Finally, the “gamma” DIFS, from Fig. 4(b), is given by a
three-symbol alphabet and the substochastic symbol-labeled
matrices:

T (�) =

⎛⎜⎝2.479 × 10−2 0.355 1.745 × 10−2

0.410 1.878 × 10−2 2.388 × 10−4

0.204 2.472 × 10−3 0.215

⎞⎟⎠,

T (
) =

⎛⎜⎝1.672 × 10−3 0.133 0.235

3.377 × 10−2 0.272 8.277 × 10−2

0.426 1.498 × 10−2 4.286 × 10−3

⎞⎟⎠,

T (◦) =

⎛⎜⎝8.870 × 10−2 3.059 × 10−2 0.114

6.918 × 10−2 0.112 1.804 × 10−3

0.131 1.165 × 10−3 8.005 × 10−4

⎞⎟⎠.

(A3)

Due to finite numerical accuracy, reproducing the attractors
using these specifications may differ slightly from Fig. 4.

The mapping images shown in Fig. 5 are produced by the
following three-symbol DIFS:

T (�) =

⎛⎜⎝αy βx βx

αx βy βx

αx βx βy

⎞⎟⎠, T (
) =

⎛⎜⎝βy αx βx

βx αy βx

βx αx βy

⎞⎟⎠, and

T (◦) =

⎛⎜⎝βy βx αx

βx βy αx

βx βx αy

⎞⎟⎠, (A4)

with α = 0.63, x = 0.2 for the overlapping example in
Fig. 5(a) and α = 0.6, x = 0.15 for the nonoverlapping ex-
ample in Fig. 5(b).

APPENDIX B: NUMERICAL APPROXIMATION
OF AMBIGUITY RATE

To numerically approximate the ambiguity rate for a DIFS
lying in the 1-simplex, we may use Ulam’s method to approx-
imate the Blackwell measure, then compute Eq. (15). Given a
partition {A1, . . . , Ak} of the simplex, define

P(x)
i j = m[ f (x)(Ai ) ∩ Aj]

m[ f (x)(Ai )]
× p(x)(Ai ),

where m is the Lebesgue measure over � and Ai is the
center of a partition element. Let P = ∑

P(x) and find
the left eigenvalue p = pP. Then, the invariant-measure
approximation is

μn(A) =
∑

i

pi
m(A ∩ Ai )

m(Ai )
.

For this example, let’s walk through estimating the ambi-
guity rate for one DIFS–setting x = 0.25 and α = 0.5. The
partition {A1, . . . , Ak} is created by dividing the 1-simplex
into k boxes of equal length. The approximated Blackwell

measure μ̂B for the DIFS, using k = 400, is shown in the top
plot of Fig. 10. The overlay indicates the region (green) of
the state space that exhibits overlap. Compare the two regions
depicted in Fig. 10 to the overlap shown in Fig. 8, for the
vertical slice at α = 0.5.

Note that the partition may be defined as desired. We
found it helpful to define the partition by calculating the set
of fixed points of the mapping functions {px : f (x)(px ) = px}.
Then, as many times as is desired, find all possible iterates
of each fixed point, constructing a new set { f (w)(px ) : x ∈
A,w ∈ ⋃N

n=0 An}, where N ∈ Z+. Removing duplicates and
ordering the set gives a list of endpoints for a partition of the
1-simplex. Increasing N produces increasingly fine partitions.
This method of defining partitions has advantages when cal-
culating ha across parameter space as we have in Sec. VII B,
since the position of the fixed point iterates in the simplex are
smooth functions of α.

Regardless, once the partition is selected and μ̂B is deter-
mined, we again use the partition. For each cell Ai, we find the
probability distribution over the maps that could have transi-
tioned into Ai by applying Eq. (16) and assuming invertibility
of the mapping functions:

Pr(X0 = x|R ∈ Ai ) = μ̂B[( f (x) )−1(Ai )]

μ̂B(Ai )

× px[( f (x) )−1(Ai )].

For our example DIFS, the probability of the previous
map given current location in the simplex is plotted in the
middle panel of Fig. 10. For parts of the simplex outside
the overlapping regions, only one prior map is possible and
it has probability one. Within the overlapping regions, the
distribution over the possible prior maps may be very com-
plicated. The Shannon entropy over the prior map distribution
H[X0 = x|R ∈ Ai] is shown in the third panel of Fig. 10. Once
these entropies are calculated, the final step is to approximate
the integral equation in Eq. (15) with a summation over cells
in the partition:

ha =
∑

i

μ̂B(Ai)
∑
x∈A

H[X0 = x|R ∈ Ai].

In our example, the ambiguity rate is found to be ha =
0.4499. Since the DIFS entropy rate is hμ = 1.5596,
this gives an adjusted state space expansion rate of
hμ − ha = 1.1098. Calculating the DIFS’s � and applying
Eq. (17) results in a statistical complexity dimension of
dμ = 0.9815.

The advantage of Ulam’s method is its relative ease and
speed. Additionally, it is deterministic given the partition.
We may increase the accuracy of our approximation simply
by tuning our partition, although increasingly fine partitions
increase computation time. Additionally, when the set be-
comes highly rarefied, noisiness will be observed in the
calculation of ha. This can be seen in our example DIFS on
either end of the overlap region, although it is worst when
α ∈ (0.6, 0.78). This may be understood when comparing
Fig. 8 to Fig. 9: from α ∈ (0.6, 0.78) are bands of high den-
sity in the overlapping region that increase in probability as
the overlapping region itself is shrinking. Calculating the ha
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FIG. 10. DIFS for x = 0.25 and α = 0.5: (Top) Blackwell Measure μB approximated by Ulam’s method with k = 400. The two overlap-
ping regions are overlaid and may be compared with Fig. 8. (Middle) Probability of each prior map is plotted. In nonoverlapping regions,
only one prior map is possible. In the overlapping regions, there are complicated, fractal-like distributions over multiple prior maps. (Bottom)
Shannon entropy over the prior map: Nonzero only in the overlapping regions.

accurately in this region requires increasingly fine partition-
ing. An immediate improvement may be made by altering the
method to use adaptive partitioning as it sweeps parameter

space, taking into account the structure of the state set. The
method may be applied to any DIFS in the 1-simplex with
overlaps.
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