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Measuring the built environment with Google Street View and Machine Learning:  

Consequences for Crime on Street Segments 

Abstract 

 

Objectives: Despite theoretical interest in how dimensions of the built environment can help 

explain the location of crime in micro-geographic units, measuring this is difficult.   

Methods: This study adopts a strategy that first scrapes images from Google Street View every 

20 meters in every street segment in the city of Santa Ana, CA, and then uses machine learning 

to detect features of the environment.  We capture eleven different features across four main 

dimensions, and demonstrate that their relative presence across street segments considerably 

increases the explanatory power of models of five different Part 1 crimes.   

Results: The auto-oriented measures—vehicles and pavement—were positively associated with 

crime rates, as was the presence of more persons in the environment. For the defensible space 

measures, the presence of walls has a slowing negative relationship with most crime types, 

whereas fences did not.  And for our two greenspace measures, although terrain was positively 

associated with crime rates, vegetation exhibited an inverted-U relationship with two crime 

types.   

Conclusions:  The results demonstrate the efficacy of this approach for measuring the built 

environment.   

 

Keywords:  Built Environment, Crime, Google Street View, Machine Learning, Semantic 

Segmentation  
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Measuring the built environment with Google Street View and Machine Learning:  

Consequences for Crime on Street Segments 

 

Scholars studying the ecology of crime have long focused on how social and physical 

dimensions of the environment can impact the amount of crime occurring in neighborhoods or 

smaller geographic units.  Whereas measuring the social dimensions of the residents living in an 

area is relatively straightforward given the availability of accurate Census data in many nations, 

measuring the built environment is more challenging.  Given the importance of the built 

environment posited by numerous theories such as crime pattern theory (Brantingham and 

Brantingham 1984), crime prevention through environmental design (CPTED) (Newman 1972), 

or routine activity theory (Felson 2002), this is a key challenge faced by numerous researchers in 

criminology, urban planning and design, and other related fields.  As a consequence, researchers 

have turned to various strategies for measuring the built environment, including surveys of 

residents, field surveys, administrative, cadastral, or proprietary data.  Although these strategies 

provide key insights, they also tend to be limited in various ways, including how large of a study 

area is feasible, or in the types of features of the environment they can measure.   

In recent years, due to the twin development of high quality images of the built 

environment available on the web from sources such as Google Street View along with the 

recent advances in machine learning techniques that can detect characteristics in images, these 

limitations regarding the size of the study area that is feasible in measuring the built environment 

are becoming less daunting.  We demonstrate in this study an approach that combines machine 

learning with collected images from all street segments in a large city of over 300,000 persons to 

explore how features of the built environment can help us understand why some street segments 
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have more crime than others.   We attempt to capture key features of the built environment and 

assess their relationship with crime in street segments of a large city using the semantic 

segmentation methodology of the Deeplabv3+ algorithm (Chen et al. 2018) on Google Street 

View (GSV) images to create measures of the environment.   

In the next section we describe three key theories that posit features of the built 

environment that may be important for understanding the location of crime in micro-geographic 

areas.  We describe four broad categories of features that we focus on, and then discuss existing 

strategies typically used to measure physical features.  Following that, we describe our data, and 

our methodological approach to capturing and classifying GSV images.  We present the results 

of the models using our built environment measures to explain the level of crime in segments of 

this city, including assessing nonlinearity, and conclude with a discussion of the implications.   

 

Literature review 

There are at least three theories that posit certain characteristics of the built environment 

can impact crime.  One theory is crime pattern theory, which posits that the urban backcloth of 

street patterns and features on those streets impact the spatial patterns of potential offenders and 

targets, and therefore can impact the location of crime (Brantingham and Brantingham 2008).  

Research in this tradition has measured how the street network can impact travel patterns and 

therefore the location of crime events (Beavon, Brantingham, and Brantingham 1994; Davies and 

Johnson 2014; Kim and Hipp 2019).  This perspective also posits that certain locations—such as 

retail districts—are nodes that act as crime generators that lead to more crime (Hipp 2010; Hipp 

and Kim 2019; Stucky and Ottensmann 2009), or that certain locations—such as bars or 

nightclubs—can disproportionately attract offenders given the presence of particularly attractive 
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targets and therefore result in more crime (Groff 2011; Ratcliffe 2012; Feng et al. 2018).  This 

perspective dovetails with a second theory—routine activity theory—which argues that it is the 

convergence in time and space of offenders, targets, and a lack of guardians that increases the 

likelihood of a crime event occurring (Felson 2002).  Furthermore, a third theory is crime 

prevention through environmental design (CPTED), in which key features of the built 

environment are expected to enhance or inhibit crime opportunities through various mechanisms, 

including impacting guardianship capability due to limited visibility (Newman 1972).  We utilize 

these theories in focusing on physical features within four broad categories: 1) vibrancy, 2) auto-

oriented, 3) defensible space created by fences and walls, 4) greenspace.  We describe these in 

the next section.   

Key features of the environment 

One important consequence of physical attributes of an area is that they might either 

promote or dampen the vibrancy of an area.  Such vibrancy was posited by Jane Jacobs (Jacobs 

1961) as important for providing the potential guardianship that can make a location safer based 

on routine activity theory.  Thus, prior research has sometimes used administrative measures of 

businesses in a location as a way to measure possible vibrancy.  For example, one study 

measured the presence of businesses in parcels and found a nonlinear relationship between them 

and crime levels, which they concluded as consistent with the ideas of Jacobs that in high density 

business environments there will be more guardians and hence less crime (Browning et al. 2010).  

Other research has used administrative data to create measures of the number of businesses or 

employees in an area and how they are related to the level of crime (Bernasco and Block 2011; 

Hipp, Wo, and Kim 2017; Hipp and Kim 2019).  Another strategy uses detailed land use data on 

the presence of certain types of businesses that crime pattern theory posits are attractive to 
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potential offenders and therefore related to crime (Bowers 2014; Deryol et al. 2016; Stucky and 

Ottensmann 2009).  Studies using administrative data have measured the presence of multiple 

types of businesses that act as crime generators under the presumption that they will create a 

larger ambient population, which can lead to more crime at micro locations (Hipp, Kim, and Wo 

2020; Boessen and Hipp 2015).   

Although administrative data capturing the locations of businesses is certainly useful, it 

lacks the more fine grained information about the actual spatial layout of businesses.  For 

example, there is a distinct difference between a downtown location in which the buildings front 

onto the street, allowing for a walkable environment with many people on the sidewalks, versus 

a mall or strip mall in which parking fronts the street, and patrons are typically only there if they 

have arrived in a vehicle.  Using GSV data allows us to make this distinction.  More specifically, 

we are interested in the degree to which buildings are located in an environment, along with 

humans.  Furthermore, an advantage of GSV is that it can extract the neighborhood environment 

from the pedestrian perspective. Due to this advantage, it is reported that the neighborhood 

environment extracted through GSV is more closely related to individual behaviors than more 

traditional neighborhood environment extraction methods (Li et al., 2015; Lu, 2015; Ye et al., 

2018).  Using GSV, an image of a downtown location with a building fronting the street would 

show a higher proportion of “building” in the image, whereas the proportion of “building” in an 

image of a mall set back from the street would be much smaller.  Buildings in environments, 

particularly if they are high rise buildings, may also indicate work areas in which there is a large 

presence of employees.  Whereas Jacobs (1961) posited that such vibrant locations will have less 

crime given the greater presence of guardians, the routine activity theory implies that another 

possibility is that such locations will provide more targets and offenders, and this confluence will 
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create more crime opportunities and therefore more crime.  This uncertainty has been discussed 

in prior literature (Hipp and Kim 2019).  Nonetheless, we test here which of these might be the 

case, along with whether the direct assessment of more humans in the environment matters.   

Whereas the presence of buildings might imply a more vibrant environment, a second key 

broad category that we focus on is the presence of certain characteristics that might imply an 

auto-oriented environment.  Specifically, we focus on the presence of vehicles or pavement, 

which may indicate the presence of shopping malls or strip malls.  An image of a mall from the 

street will largely capture the impervious surface of the parking area and the presence of 

vehicles, which would contrast with a downtown view in which the building has a larger 

presence in the image.  These locations imply a very different built environment, and may have 

consequences for crime.  In particular, the existence of such impervious surfaces arguably 

creates a less inviting environment for people to linger in, which would imply that there are 

fewer guardians in the location (Jacobs 1961).  If this is the case, we would expect higher crime 

risk in such locations.  Although criminologists have rarely attempted to measure the presence of 

an auto-oriented environment, its potential impact on crime comes directly from the insights of 

crime pattern theory and routine activity theory.   

A third broad category is based on the CPTED literature and the notion of defensible 

space (Newman 1972).  The CPTED literature posits that certain features of the environment can 

enhance or inhibit crime events, and a particularly important feature is the presence of fences and 

walls.  Fences or walls can make it more difficult to access a location, as they require an offender 

to scale the fence to gain entry, as well as possibly when exiting after committing the crime.  

Although fences are presumably quite important for impacting crime events, particularly 

property crimes, the difficulty of measuring them has limited tests of this important CPTED 
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feature.  Furthermore, given that CPTED also focuses on the visibility of the environment, we 

make a distinction between fences and walls.  Specifically, we measure fences as those you can 

see through, such as picket, chain link, or wrought iron fences.  And we measure walls as those 

that you cannot see through.  Thus, whereas both fences and walls make entry more difficult to a 

location, walls also minimize visibility, which in the CPTED literature would imply that they 

might be less effective in reducing crime compared to fences.  This is because once scaling the 

wall, the offender would be out of sight of nearby residents who could otherwise act as 

guardians.  We test this possibility here.   

A fourth broad category of the environment is that the vegetation and terrain of an area 

can provide greenspace that also has important implications for crime.  Urban studies and public 

health scholars are interested in the presence of vegetation in an area (such as trees and 

shrubbery) given that it can make the environment more desirable.  This greater desirability is 

expected to create more attachment to the neighborhood (Lee et al. 2008), higher home values 

(Kestens, Thériault, and Rosiers 2004) and therefore more potential informal social control.  It 

may also encourage residents to walk more which can improve physical health in addition to 

creating more potential social interaction in the neighborhood (Rogers et al. 2010; Sung and Lee 

2015).  On the other hand, the crime prevention through environmental design (CPTED) 

literature posits that more shrubbery near homes may provide more crime opportunities, 

especially for burglaries, if it provides cover for offenders (Patino et al. 2014).   

Likewise, the presence of open green areas—or what we term terrain—can indicate a 

more desirable environment.  This terrain can be an indication of a more suburban type of 

environment, and may be perceived as nicer and more desirable compared to areas with more 

impervious surfaces.  Furthermore, similar to the presence of vegetation, the presence of 
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greenspace may encourage more outdoor activity, which would also lead to more neighborhood 

social interaction and potential for informal social control.  It may also be the case that 

greenspace increases visibility, which may discourage offending as others in the area can serve 

as potential guardians given the ability to observe crime events.   

There is limited research studying how greenspace on street segments can impact the 

location of crime within the street segments of an entire city.  Some research has measured 

greenspace, but in studies with very small geographic scope, given the challenge of manually 

coding for its presence, or using overhead satellite images (Patino et al. 2014).  Instead, some 

studies have assessed how parks are related to crime (Kimpton, Corcoran, and Wickes 2017; 

Groff and McCord 2011).  Parks are different from more general greenspace given that they 

occur only in specific locations; furthermore, the theoretical predictions and evidence about their 

relationship with crime is more uncertain.  On the one hand, it has been suggested that parks may 

act as gathering places that can increase neighborhood cohesion and guardianship capability 

(Hipp et al. 2014; Cohen, Inagami, and Finch 2008).  On the other hand, they can also act as 

gathering spots for potential offenders, or provide a location in which few guardians are present.  

These two competing perspectives imply opposite predictions about the relationship, and indeed 

whereas some studies have detected a positive relationship between parks and crime (Kim and 

Hipp 2017), other studies suggest that this relationship depends on the characteristics of the park 

(Kimpton, Corcoran, and Wickes 2017; Groff and McCord 2011) or the characteristics of the 

surrounding environment (Boessen and Hipp 2018).   

Nonlinear relationships with crime 

For each of these four dimensions we have described there is the possibility of nonlinear 

relationships with crime rates.  That is, each of these dimensions arguably does not imply an 
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expected straightforward linear relationship with crime, but rather they often involve a more 

complicated combination of targets, offenders, and guardians in an environment.  As a 

consequence, we would expect some of these measures to exhibit nonlinear relationships with 

crime.  For example, as an environment becomes more vibrant based on buildings or humans we 

might expect crime to increase due to increased opportunities, but then at some point a critical 

mass is obtained and the potential presence of guardians in the environment indicates that at 

higher levels of vibrancy we would expect crime rates to begin decreasing (Browning et al. 

2010).  Likewise, the presence of more greenspace may indicate more desirability and therefore 

less crime, but there may be a saturation effect where at very high levels crime is not further 

reduced.  Therefore, we test for possible nonlinear effects for all of our measures of these four 

dimensions.    

Measuring these physical features 

A challenge with measuring characteristics of the built environment is that it is typically 

not possible to measure many of these features with administrative data.  Instead, researchers 

often rely on strategies that use surveys of residents or field experts, which are generally costly 

to implement and therefore are limited in the geographic scope that is possible for any one 

research project.  For example, studies using self-reported survey data and field surveys are often 

limited in geographic scale of the study area due to higher survey costs (Edwards et al. 2013; 

Marco et al. 2017; Nesoff et al. 2018), not to mention possible biased perceptions on the part of 

respondents (Gracia and Herrero 2006; Clarke et al. 2010; Rundle et al. 2011). 

Given the challenges of traveling to neighborhoods to physically observe them, some 

recent studies have utilized virtual neighborhood audits using open-source street view imagery 

data.  These studies have used Google Street View (GSV) data instead of conventional field 
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surveys (He, Páez, and Liu 2017; Odgers et al. 2012; Gong et al. 2018; Mooney et al. 2016).  

Studies have frequently used GSV data to measure physical disorder—abandoned cars, graffiti, 

litter, poor conditions of lawns, abandoned houses, or broken windows (Marco et al. 2017; 

Odgers et al. 2012)—and how it might be related to crime (Curtis and Mills 2011; He, Páez, and 

Liu 2017; Kang and Kang 2017; Zhang et al. 2019).  However, these studies typically use 

manual evaluation methods to extract information from the GSV images in which trained 

researchers observe and rate each image, which also necessarily limits the geographic scope of 

the studies.  

Another strategy that moves beyond manual evaluation strategies—and offers the 

possibility of measuring other features of the environment beyond disorder—is exemplified by 

recent studies applying machine learning technologies to analyze GSV data using deep neural 

networks such as AlexNet and Inception-v3 (Kang and Kang 2017; Zhang et al. 2019). For 

instance, Kang and Kang (2017) suggested a feature-level data fusion method with 

environmental context based on a deep neural network (DNN) of AlexNet and showed that the 

DNN model is more accurate in predicting crime occurrence than other prediction models. 

Similarly, Zhang et al. (2019) analyzed crime predictors using open source data of GSV, Twitter, 

and Foursquare and concluded that open-source data could achieve significantly better crime 

prediction accuracy.  This same study also argued that person offenses and theft are most likely 

to be associated with a high concentration of commercial buildings and less green areas.  

Thus, a few recent studies on the relationship between built environments and crime have 

moved from manual evaluation methods to applications of big data and a machine learning 

algorithm. Such an approach allows measuring features of the environment that we have 

described earlier as potentially important for explaining the location of crime.  Furthermore, 
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existing studies typically do not focus on the level of crime in micro-geographic units, another 

advance of the present study.  We next turn to a description of our strategy for exploring these 

questions.   

 

Data and Methods 

Study area 

This study focuses on the city of Santa Ana, which is located in Orange County about 53 

km southeast from downtown Los Angeles (see Figure 1).  The city is fully developed with an 

area of 70.85 km
2
 and a population of 332,727 in 2018 (U.S. Census Bureau), but it contains a 

range of built environment settings providing a valuable opportunity to understand how variation 

in settings can shape the dynamics of crime.  The units of analysis for the study are street 

segments, which are defined as both sides of a street between two street intersections.  We 

combined crime data collected from the local police agency, socio-demographic data from the 

U.S. Census, business data obtained from Reference USA (Infogroup 2015), and  images 

collected from GSV that were analyzed and aggregated to street segments.   

<<<Figure 1 about here>>> 

Dependent variables: counts of crime events 

 Our outcome variables are counts of the number of crime events that occurred on a street 

segment during 2018.  The crime data were obtained from the police agency, and then geocoded 

to a street segment.  The geocoding match rate was 97.6%.  We aggregated the count to each 

street segment for five serious crimes:  aggravated assaults, robberies, burglaries, motor vehicle 

thefts, and larcenies.  This allows us to assess the relationship between built environment 

characteristics and these five different types of crime to gain a nuanced understanding of the 

relationship patterns.   
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Collecting GSV images 

 We acquired GSV images to extract the elements of the cityscape in Santa Ana.  A 

question is how many images to take for each street segment.  In Santa Ana, there are 5,343 road 

segments with an average distance of 135.5 m.  Prior studies have used various intervals to 

collect images, such as 20 m (Lu 2018), 50 m (Ye et al. 2018), or 100 m (Li et al. 2015; Wang et 

al. 2019).  For greater reliability in assessing the features of the segment, we chose to use 20m 

intervals.  About 60.4% of road segments are between 50 and 150 m, and our study had 6.8 GSV 

acquisition points per segment.  We did not include images from points located near 

intersections, given that these capture the environment of more than a single segment.  At each 

point we pulled four images using the GSV API that were oriented based on direction (front, 

rear) or side of the street (right, left).   The Google Street View metadata API provides the date 

of the image, and we determined that 94.5% of the images were taken between 2017 and 2020, 

and therefore we limited our extraction to images from this time period.  The total number of 

images is 108,656 from 27,164 acquisition points on the road segments.  GSV images were not 

available on some roads, perhaps due to limited access to some private properties such as gated 

communities; this was the case for 756 of 5,343 segments.  In addition, there are 30 segments 

with no population within ½ miles so our analyses used 4,518 segments.  On these criteria, there 

are 6.10 acquisition points and 24.4 images per road segment, respectively.  

Machine learning to analyze the images: semantic segmentation 

To analyze the images we used semantic segmentation, a technique that uses deep learning 

from computer vision to classify each pixel as an image component.  One alternative strategy 

uses a color band of an image to extract image elements (Li et al. 2015; Lu 2018).  However, this 

method simply classifies image components based on pixel color (RGB values), which is more 
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susceptible to falsely classifying some image elements: for example, two different components 

with the same color.  For this reason, Lu (2018) proposed employing deep learning to classify the 

image components based not only on pixel color but also on the distribution and shapes of 

components.  Therefore, the present study uses this semantic segmentation approach of deep 

learning to analyze the GSV images collected.  Although several segmentation models exist in 

the literature, including FCN8s (Long, Shelhamer, and Darrell 2015), SegNet (Badrinarayanan, 

Kendall, and Cipolla 2017), and PSPNet (Zhao et al. 2017), we employed the Deeplabv3+ model 

(Chen et al., 2018), as it demonstrated excellent accuracy at the Pascal Visual Object 

Classification challenge as well as on the Cityscapes test dataset, and consistently yielded some 

of the highest accuracy in various comparisons.  For example, Deeplabv3+ exhibited high 

accuracy (82.1% mIoU) among segmentation models for the Cityscapes test dataset
1
, and 89.0% 

accuracy on the “PASCAL VOC 2012 datasets”, and has therefore been used in several studies 

for image processing (e.g., Wang and Vermeulen 2020; Liu et al. 2019; Du, Ning, and Yan 

2020).   

To segment GSV images suitable for the research purpose, the model should be trained 

using a dataset similar to those to be segmented.  We used the Deeplabv3+ model pre-trained 

with the ‘Cityscapes’ dataset for this purpose.
2
 The dataset contains daytime urban scenes 

obtained from 50 cities in Germany, such as Berlin, Hamburg, and Dresden (Cordts et al. 2016)
3
. 

Whereas one might object that German cities have a different built environment than U.S. cities, 

we point out that the features we are measuring here are quite consistent across the two 

                                                 
1
 https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes 

2
 The python code for implementing this algorithm can be obtained here: https://github.com/lexfridman/mit-deep-

learning.  
3
Source: Cityscapes website, https://www.cityscapes-dataset.com/dataset-overview/#labeling-policy (accessed on 

Jan. 28, 2020) 

 

https://github.com/lexfridman/mit-deep-learning
https://github.com/lexfridman/mit-deep-learning
https://www.cityscapes-dataset.com/dataset-overview/#labeling-policy
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environments.  It arguably is more difficult to measure “disorder” across various contexts, as 

noted in prior research (Odgers et al. 2012), but the types of features we are measuring here, such 

as buildings, walls, and greenspace, for example, are relatively consistent across many 

environments.  Indeed, when we performed visual assessments of the algorithm on our study site, 

the classifications appeared quite accurate.  Furthermore, a number of studies have used the 

Cityscapes dataset for training deep learning models and have applied these algorithms to 

various study areas (Yang et al. 2019; Wang et al. 2020; Nagata et al. 2020; Krylov, Kenny, and 

Dahyot 2018; Du, Ning, and Yan 2020).  Thus, we believe it is reasonable to segment the GSV 

images from Santa Ana through the Deeplabv3+ model trained with the ‘Cityscapes’ dataset.  

We used all of the elements extracted by the semantic segmentation algorithm that were 

present in the environment, although some of them we collapsed into a larger category given 

their conceptual similarity and rarity in the environment.
4
  Our models therefore used the 

following eleven elements: buildings, humans, sidewalks, vehicles, pavement, fences, walls, 

terrain (e.g., grassy areas), vegetation (e.g., trees and shrubbery), objects (e.g. pole, traffic sign, 

traffic light), and sky.  We then calculated the percentage of each of these elements in each 

image.  For example, if there are 10,000 pixels classified as vegetation in the image and an image 

size is 640 x 640, the vegetation percentage is 2.44% (10000 / (640 * 640) * 100). In the 

statistical analyses, we exclude the percentage sky in an image from the models, and thus we are 

comparing the effect of the other elements to the percentage sky.  We do not theorize the effect 

of objects, but simply include them in the models to achieve a cleaner reference category (sky).  

Note that objects include poles, traffic signs, and traffic lights; although traffic lights are 

typically at intersections (and we do not select images from intersections), they nonetheless can 

                                                 
4
 Deeplab3+ extracts 19 elements, although there were no trains in our images and therefore we had 18 elements.  

Further, “person” and “rider” are collapsed into the category of humans.  And “car”, “truck”, “bus”, “motorcycle”, 

and “bicycle” are collapsed into vehicles.  And “poles”, “traffic signs”, and “traffic lights” are collapsed into objects.   
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sometimes be seen in the distance in images nearer to intersections.  We also note that bus 

benches are considered by the algorithm to be buildings, and not objects.  This is a limitation of 

the trained algorithm, as one would need to explicitly train the algorithm to capture a specific 

category of bus stops if that was of interest to the study.
5
   

To better understand what these elements are capturing, we present images that had 

relatively high values on a particular element.  For example, Figure 2a shows an image in which 

the proportion vehicles are relatively high, as it captures vehicles parked along a curb.  It also 

captures a fence.  In Figure 2b both the proportion pavement and proportion sky are relatively 

high.  Note that pavement captures impervious surfaces, and thus a large parking area as shown 

in this figure gets captured by this element.  The fact that there is little vegetation is implicitly 

captured in the high proportion of sky.  In contrast, Figure 2c has a high proportion of vegetation, 

which captures the large presence of trees in this environment.  The proportion sky is much 

smaller in this image as a result.  In Figure 2d we show an image with a high proportion of the 

buildings element, which captures high rises in the environment.  The presence of more buildings 

in an image also occurs in the downtown area of Santa Ana, although the building presence in 

downtown images is not as strong as in the case of a high rise, such as this image.  Finally, 

Figure 2e shows a fence (that you can see through) and Figure 2f shows a wall, which does not 

allow visibility through it.  In studying how the algorithm coded our images, it does appear that 

the most important distinguishing feature between fences and walls is that the former allow for 

visibility through them, whereas the latter do not.   

<<<Figures 2a-2f about here>>> 

                                                 
5
 GSV images acquired from wide roads can be distorted when viewing the other side of the street, as the google 

vehicle only travels in one direction.  However, our medium-sized city has major streets that only rarely have three 

lanes in each direction, and thus this is a less salient problem in our case study area.  Furthermore, this distortion 

problem is mitigated to some extent by our strategy of computing the average of images taken in four different 

directions when measuring the features. 



Google Street View and crime 

 15  

We also briefly compare our approach to using data collected from the National Land 

Cover Database (NLCD) based on satellite images for 2016.  A challenge for the NLCD is that it 

is coded for 30 x 30 meter grid cells, and therefore does not conform well to street segments 

(highlighting an advantage of our GSV approach).  Nonetheless, the tree canopy cover from the 

NLCD 2016 was moderately correlated with our vegetation measure (.453), and the level of 

imperviousness was correlated .242 with our roads measure, .205 with the buildings measure, 

and -.544 with the vegetation measure.  These modest correlations are consistent with our 

strategy, though the lower values highlight the limitations of using the NLCD given the limited 

numbers of categories it provides, and the fact that the 30 x 30 meter grid cells conform 

relatively poorly to street segments, which are of primary theoretical interest to criminologists.   

Control variables 

 To minimize the possibility of obtaining spurious results, we also included several other 

measures of the environment that prior research has shown are important in explaining the 

location of crime incidents.  We included several socio-demographic characteristics based on 

data collected from the U.S. Census.  For these measures, we constructed them as an exponential 

decay centered on the focal segment (and including the focal segment).
6
  This allows us to better 

capture the local environment of a segment, given that simply measuring the segment itself for 

demographic characteristics is arguably too small a geographic scale, whereas using pre-defined 

Census units such as tracts are spatially imprecise.  For the variables that are available at the 

block level, it is straightforward for us to create our buffers based on an exponential decay 

around the segment.  For variables that the Census only provides in larger units, such as block 

groups or tracts, we imputed them to blocks before then computing the buffers.  In doing so, we 

                                                 
6
 These measures were constructed based on blocks and the exponential decay of blocks around a focal block.  We 

then average the values for blocks adjacent to a particular segment.  Of course, the buffer values in these adjacent 

blocks are extremely highly correlated, so this strategy does not introduce problems.   
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utilized the ecological inference approach that imputes them based on other characteristics of the 

block, an approach that Boessen and Hipp (2015) showed is typically preferred to a simple areal 

imputation.   

 We constructed measures of the racial/ethnic composition as percent Black, percent 

Asian, and percent Latino (with percent White and other as the remaining category).  We 

constructed a measure of racial/ethnic heterogeneity based on the Herfindahl index combining 

these same five racial/ethnic categories as a sum of squared proportions, subtracted from 1.  We 

measured concentrated disadvantage based on a factor score from a principle factor analysis of 

percent at or below 125% of the poverty level, average household income, percent with at least a 

bachelor’s degree, and percent single parent households.  We also measured residential stability 

as a factor score based on a principle factor analysis of percent owners, percent in same house 5 

years ago, and average length of residence.  Consideration was given to vacant units measured in 

terms of the percent occupied units, while we captured the possible presence of offenders with a 

measure of the percent aged 16 to 29.   

We constructed some opportunity variables at the street segment level.  To capture the 

presence of workers in the environment as one proxy for ambient population, we created a 

measure of total employees (we subtracted the retail/food employees, described next, from this 

measure).  These data come from Reference USA, and provide information on the exact location 

of the business, which we aggregated to the street segment.  We also created a measure of 

retail/food employees given that this can capture both workers and patrons of these 

establishments.  We constructed a measure of logged population in the segment (after adding 1), 

by using Census data in blocks and apportioning it to street segments using the simple average 

(SA) approach described in Kim (2018).  Finally, we constructed spatial lag versions of these 
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three variables with an inverse distance decay capped at ½ mile around the segment (but not 

including the segment).   

Methods 

Given that our outcome variables are counts with an overdispersed distribution, we 

estimated negative binomial regression models.  The model can be written as: 

 𝐸(𝑦) = 𝑒𝑥𝑝(𝛼 + 𝐵1𝑿 + 𝐵2𝑺 + 𝐵3𝑾𝑺 +  ν) (2) 

where 𝑦 is the number of crime events, 𝛼 is an intercept, 𝑿 represents a matrix of our GSV built 

environment variables, 𝑺 is a matrix of the structural characteristic variables, 𝑾𝑺 is a matrix of 

the spatially lagged variables, and ν has a gamma distribution that captures the overdispersion. 

We estimated initial models that included all of our control variables, but did not include our 

measures of the built environment, which allows us to obtain an approximate assessment of how 

much our novel variables help explaining the location of crime incidents based on a comparison 

of the pseudo R-squares.    

Results 

Table 1 presents the descriptive statistics of the variables.  We also present a map of 

robberies on street segments in our study area to give a sense of the clustering of crime events 

(see Figure 3).  Among our measures of vibrancy, buildings constitute 5% of these images, on 

average, 3% is sidewalks, whereas humans are just 0.1%.  For the auto-oriented measures, about 

4% of the image is vehicles and 27% is pavement.  Fences and walls are each at less than 1%, on 

average.  And for the measures of greenspace, 22% is vegetation and 2% is terrain.  Given the 

relative novelty of our measured elements of the built environment, we explored their correlation 

with the other measures in the models and display these in Table 2.  For the measures of 

vibrancy, the presence of more buildings is positively correlated with high job density and 



Google Street View and crime 

 18  

concentrated disadvantage in surrounding areas, and negatively correlated with residential 

stability, whereas the presence of humans is positively correlated with job density in the 

surrounding area.  Pavement in the environment is negatively correlated with residential 

population on the segment and in the surrounding area.  The element of vehicles is positively 

correlated with percent Latino (.26) and concentrated disadvantage (.22), but negatively 

correlated with racial/ethnic heterogeneity (-.28).  In contrast, terrain has the opposite 

correlations with these variables.  Fences are positively correlated with percent Latino and 

concentrated disadvantage, but negatively correlated with percent Black, highlighting a 

distinction between Black and Latino neighborhoods.  Vegetation tends to capture residential 

areas, as it is positively correlated with residential population in the street segment.   

<<<Figure 3 about here>>> 

<<<Table 1 about here>>> 

<<<Table 2 about here>>> 

We next turn to the negative binomial regression results, presented in Table 3.
7
  We 

present McFadden’s pseudo R-square from the models without the built environment variables in 

the row second from the bottom.  The row four from the bottom lists the pseudo R-square for the 

presented models, and the bottom row of this table shows the percentage increase in the pseudo 

R-square when adding these novel built environment measures.  As can be seen, our new 

measures improve the pseudo R-square notably in these models.  For example, there is a 33% 

increase in the pseudo R-square for the model with larceny as the outcome variable.  This is the 

weakest improvement in model fit of the various crime types.  For burglary (46%), motor vehicle 

theft (63%) and aggravated assault (70%) there is an even stronger improvement in model fit 

                                                 
7
 The logged alpha term capturing overdispersion was highly significant in all models, indicating the need to use a 

negative binomial regression rather than a Poisson model.   
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when including these measures of the built environment.  The largest improvement occurs in the 

robbery model (84%), indicating that these measures are particularly useful in understanding the 

location of robberies in the environment.   

<<<Table 3 about here>>> 

 Turning to the coefficient estimates for our measures of elements in the environment, we 

begin with our measures of vibrancy.  In general, the measures of buildings and humans tend to 

exhibit positive relationships with crime, either as linear or slowing positive relationships, as 

does the sidewalks measure.  For example, buildings exhibit weak positive relationships with 

aggravated assaults and a slowing positive relationship with robberies.   

 There are strong slowing positive relationships between the presence of our measure of 

humans and all five crime types.  These nonlinear relationships are plotted in Figure 4, and in all 

figures we plot the built environment characteristic from the 5
th

 to the 95
th

 percentile of values.  

Furthermore, we generally only plot relationships with a crime type that were nonlinear and 

statistically significant. The strongest positive relationships are between the presence of humans 

and larcenies and the violent crimes of robberies and aggravated assaults.  Going from no 

humans to 0.15% in the environment results in about a 80% to 100% increase in these three 

crime types, and going from 0.15% to 0.3% results in a 50 to 70% increase in these three crime 

types.  The pattern is similar, but a bit weaker, for the two other property crimes of burglaries 

and motor vehicle thefts.   

<<<Figure 4 about here>>> 

There are also relatively robust positive relationships between sidewalk presence and 

crime levels.  A one standard deviation increase in the presence of sidewalks in the environment 

is associated with about 20 to 40 % more crime for these crime types.  The presence of sidewalks 
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have a slowing positive relationship with burglaries, indicating a satiation effect in which 

burglaries increase more slowly in environments with a very high sidewalk concentration.  A one 

standard deviation increase in sidewalks above or below the mean results in a 40 to 65% increase 

in burglaries.   

Turning to our auto-oriented measures—vehicles and pavement—we find a positive 

relationship between these measures and crime rates.   A one standard deviation increase in 

vehicles is associated with 30% more robberies, 45% more larcenies, 60% more burglaries, and 

80% more aggravated assaults.  And there is a slowing positive relationship with motor vehicle 

thefts such that a one standard deviation increase in vehicles from the mean is associated with 

70% more motor vehicle thefts.  Regarding pavement, there are linear positive relationships as a 

one standard deviation increase in pavement is associated with 55% and 75% more larcenies and 

robberies, respectively.  And pavement exhibits an increasing positive relationship with the three 

other crime types, as shown in Figure 5.  The largest increases in these crime types occur in 

environments with particularly large concentrations of pavement.   

<<<Figure 5 about here>>> 

Turning to our two defensible space measures, we see different effects for fences and 

walls.  Fences have a more modest relationship with crime, as their presence is only significantly 

associated with two crime types.  The presence of fences exhibits a slowing positive relationship 

with aggravated assaults, and an inverted-U relationship with motor vehicle thefts in which the 

presence of a moderate amount of fencing is the most crime-prevalent setting.  In contrast, the 

presence of walls has a slowing negative relationship with all crime types except robbery, as 

shown in Figure 6.  Whereas walls reduce visibility, it nonetheless is the case that they are 
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associated with reductions in crime, in contrast to fences (which allow visibility). Walls exhibit 

their strongest negative relationship with burglaries.   

<<<Figure 6 about here>>> 

 Finally, we turn to our two greenspace measures.  Although the presence of vegetation 

was expected to have a negative effect on crime given that it would create a more pleasant 

environment and therefore a presumed higher level of collective efficacy, it did not have a 

significant relationship with three of the crime types.  And for the other two—aggravated assault 

and motor vehicle theft—there was an inverted-U relationship between vegetation and these 

crime types.  As shown in Figure 7, the highest amount of aggravated assault and motor vehicle 

thefts occur on street segments with a moderate amount of vegetation—it is only when 

vegetation is particularly prevalent that the level of these crime types returns to the same levels 

as street segments with no vegetation.  Contrasting with vegetation that captures trees and 

bushes, terrain captures the presence of open green space.  There is generally a positive 

relationship between the amount of terrain and crime.  A one standard deviation increase in 

terrain is associated with 20% to 30% more of the property crimes.  And the positive relationship 

between terrain and aggravated assault only slows and begins slightly falling at the highest 

concentrations of terrain.  Although we did not hypothesize an effect between the density of 

objects in the environment and crime, these generally exhibited either inverted-U or slowing 

positive relationships with the crime types (not shown).   

<<<Figure 7 about here>>> 

 We briefly note that we obtained these effects even when controlling for a host of 

measures commonly accounted for in ecology of crime studies.  These control variables 

generally have the expected relationships with crime levels.  Higher levels of concentrated 
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disadvantage in the surrounding area is associated with higher levels of aggravated assault and 

burglary, whereas nearby residential stability is associated with less property crime.  Street 

segments with more total employees and retail/food employees have higher crime levels.   

 

Conclusion  

This study has demonstrated the usefulness of a strategy that combines GSV images with 

a machine learning technique to extract various features of the built environment, and use this 

information assess their relationship with crime in street segments.  Prior research has 

highlighted the importance of measuring crime patterns at the micro-level (Zhang et al. 2019; 

He, Páez, and Liu 2017; Weisburd, Bernasco, and Bruinsma 2009), and we have done so here.  

We demonstrated how GSV images and semantic segmentation can extract characteristics of the 

built environment at a micro level, and these methods are cost-efficient compared to methods 

that extract image components manually. Semantic segmentation also has the advantage of being 

able to identify factors affecting crime because it can extract visible cityscape elements from the 

perspective of a pedestrian, such as greenness, vehicles, fences, buildings, and so on.  It was 

notable that adding these measures to the standard models resulted in a considerable 

improvement in model fit.  We focused on how four dimensions of the environment might 

impact crime at street segments, and we discuss these results here.  

A first key finding was that our measures of the environment that might capture vibrancy 

were not related to lower crime rates.  We used measures of the presence of buildings in the 

environment—typically those that are close to the street—as well as the presence of more people 

in the environment.  The strategy of using GSV is well suited for measuring buildings given that 

these are difficult to obtain using traditional data collection methods.  Thus, it is not just the 
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presence of businesses that this measure was capturing—indeed, we controlled for the presence 

of all businesses as well as retail/food businesses—but rather it captures the presence of 

buildings at the edge of the street, and implies a more walkable environment.  The presence of 

buildings was generally unrelated to crime levels, except for the strong positive relationship with 

robberies.  Note that this is not just a measure of opportunity for commercial robberies, as we 

controlled for the number of businesses—instead there is something about the clustering of these 

buildings in the environment that results in more robberies.  Our measure of people in the 

environment is presumably a more direct measure of vibrancy, and yet it exhibited a consistent 

positive relationship with crime.  Again, this is likely capturing opportunity.  This measure did 

not specifically capture some of the ideas of Jane Jacobs, as it could not distinguish between the 

mere presence of people and the presence of potential guardians.  Thus, similar to studies finding 

that a greater ambient population is related to higher levels of crime at micro locations (Malleson 

and Andresen 2015; Hipp et al. 2019), this measure of the presence of persons in the 

environment was also consistently related to higher levels of crime.   

As we hypothesized, our auto-oriented measures generally were positively related to 

crime locations.  The measures of the presence of vehicles and pavement in the environment both 

often serve to capture sprawling parking lots.  Effectively, all crime types were higher with the 

presence of either of these features.  The presence of more vehicles is contradictory to a walkable 

environment, and it is interesting to note that such environments experienced notably larger 

crime risks.  Arguably the strongest relationship with crime risk occurred with more pavement in 

the environment.  If these are large parking areas, they would limit the walkability of an area and 

the potential for guardians.  Such locations may well provide more attractive targets, along with 

fewer guardians, explaining why they were particularly at risk for all types of crime.   
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Although we hypothesized that fences would reduce crime more than walls, this was not 

the case.  Whereas both fences and walls serve as barriers, and thus to some extent can serve as 

defensible spaces, based on the insights of CPTED we presumed that some of this benefit would 

be attenuated for walls given that they obstruct views.  This view obstruction is expected to 

increase crime opportunities since guardianship capability is reduced, but this was not the case.  

Instead, we found that walls were the one feature of the environment that we measured that 

consistently was associated with reduced crime risk.  In contrast, fences were not beneficial, and 

were actually associated with more motor vehicle thefts.  Why this might be is not clear, and 

calls into question some presumptions of the CPTED perspective.   

Finally, our measures of greenspace—terrain and vegetation—had relatively strong 

relationships with crime.  These are features that are difficult to measure using traditional data 

collection methods.  Thus, the GSV approach using machine learning was particularly important 

for detecting these two features.  Most notably, the vegetation measure had a particularly robust 

inverted U-shaped relationship with aggravated assaults and motor vehicle thefts.  Thus, street 

segments with the lowest risk of these crimes were those with either very little or a very high 

density of vegetation.  Why a moderate amount of vegetation would be particularly crime 

enhancing for aggravated assaults and motor vehicle thefts is not entirely clear.  Nonetheless, this 

highlights the importance of scholars measuring these features of the environment, and future 

work will need to assess if these relationships we detected are observed in other settings.   

We acknowledge some limitations of this study.  To some extent, this was an exploratory 

approach introducing the technique.  In part, this is because it is not precisely clear what each of 

the features is capturing, in terms of posited theoretical mechanisms.  As one example, the robust 

inverted-U shaped relationship between our vegetation feature and crime was unexpected, and 



Google Street View and crime 

 25  

raises the question of what this is capturing.  How this relationship operates is unclear, and will 

need more careful exploration.  Relatedly, we did not measure mechanisms in general, so we 

cannot say why we observe the particular relationships we did, even for the ones we 

hypothesized.  A limitation of GSV is that the researcher cannot control the time of day or the 

season that the images are extracted.  All GSV images are taken in the daytime, which differs 

from crime that often can occur in the evening.
8
  For our measures, this is likely not as important 

since we were measuring features many of which would be similar in the evening.  Nonetheless, 

our more ephemeral measures of humans or vehicles could be more strongly impacted by the 

time of day, as could measures of disorder.  Furthermore, some measures—such as vegetation—

could be impacted by the season of the images: how the season might impact how deciduous 

trees are classified is a needed area of future work.  Also, some of our images were taken in 2019 

and 2020, whereas the crime data is for 2018, which introduces temporal issues.  Given the 

relative stability of the built environment, we do not believe this introduces a serious issue, but it 

should be kept in mind.  It should also be noted that measurement of GSV variables depends on 

how they are extracted. There are numerous ways to extract GSV images in terms of spacing, 

direction, and extension. A comprehensive sensitivity analysis would be helpful in deciding 

between extraction methods. Nonetheless, we believe this approach provides new insights that 

should spawn future research that might measure and test possible mechanisms.   

In conclusion, we have demonstrated that combining GSV images with a machine 

learning technique provides key insights to criminologists about how characteristics of the built 

environment can impact levels of crime in small geographic units such as street segments.  The 

results we found here highlighted the importance of certain features, including greenspace and 

                                                 
8
 For example, in our study site, about 60% of robberies occur after dark, and about 50% of aggravated assaults, 

45% of burglaries and motor vehicle thefts, and 40% of larcenies occur after dark.   
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buildings, for understanding the location of crime.  It is our belief that further studies utilizing 

this general technique will be a fruitful direction for the field and yield additional key insights.  

Generating new techniques for measuring key constructs of interest is an important general 

direction for criminology, and will help to further advance our knowledge.   
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Tables and Figures 

    

Mean S.D.

Dependent variables

Aggravated assaults 0.17 0.58

Robberies 0.10 0.49

Burglaries 0.39 1.19
Motor vehicle thefts 0.34 0.88

Larcenies 0.47 2.04

Street view characteristics

Percent buildings 4.9 3.7

Percent humans 0.1 0.1

Percent sidewalks 3.2 1.6

Percent vehicles 4.3 2.7

Percent pavement 27.3 3.2

Percent fences 0.9 0.96

Percent walls 0.6 0.72

Percent vegetation 22.3 10.3

Percent terrain 2.3 1.7

Percent objects 0.4 0.3

Percent sky 33.8 9.4

Demographic variables: exponential decay

Percent Asian 10.7 12.4

Percent Black 1.0 0.7

Percent Latino 76.6 18.9

Racial/ethnic heterogeneity 0.33 0.20

Concentrated disadvantage 4.08 4.76

Percent vacant units 4.3 2.4

Residential stability 0.00 0.95

Percent aged 16 to 29 25.8 2.3

Segment variables

Population (logged) 4.7 1.6

Number of employees 24.5 117.6

Number of retail/food employees 3.1 20.7

Surrounding 1/2 mile

Population (logged) 9.0 0.7

Number of employees (in 1000s) 9.7 11.8

Number of retail/food employees (in 1000s) 2.0 2.0

N = 4,518 street segments in Santa Ana

Table 1.  Summary statistics of variables used in analyses
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Build-

ings

Hu-

mans

Side-

walks

Vehic-

les

Paveme

nt Fences Walls

Vege-

tation

Terrai

n

Objec

ts Sky

Segment variables

Total employees 0.10 0.01 0.00 -0.04 0.13 -0.05 -0.05 -0.11 -0.01 0.06 0.05

Retail employees 0.00 0.03 0.01 0.00 0.11 -0.04 -0.05 -0.11 -0.03 0.10 0.08

Population (logged) -0.19 -0.10 -0.01 -0.01 -0.20 0.06 0.06 0.20 0.11 -0.14 -0.09

Exponential decay

Percent Asian -0.11 -0.12 0.09 -0.14 0.11 -0.16 0.04 -0.16 0.05 -0.10 0.21

Percent Black 0.06 -0.11 0.05 -0.17 0.14 -0.20 -0.09 -0.05 0.18 -0.08 0.02

Percent Latino 0.08 0.17 -0.09 0.26 -0.17 0.30 0.05 0.05 -0.21 0.14 -0.09

Racial/ethnic heterogeneity -0.06 -0.17 0.10 -0.28 0.18 -0.34 -0.06 -0.04 0.23 -0.15 0.07

Concentrated disadvantage 0.21 0.22 -0.08 0.22 -0.07 0.28 0.03 -0.07 -0.29 0.24 -0.01

Percent vacant units 0.17 -0.01 0.02 -0.04 0.02 -0.07 -0.05 -0.05 0.05 0.02 -0.01

Residential stability -0.38 -0.19 0.04 -0.08 -0.05 -0.07 0.06 0.09 0.19 -0.22 0.06

Percent aged 16 to 29 0.08 0.09 -0.03 0.19 -0.09 0.20 0.07 -0.07 -0.18 0.06 0.04

Surrounding 1/2 mile

Population (logged) 0.09 0.14 0.01 0.14 -0.20 0.22 0.09 0.08 -0.20 0.03 -0.09
Total employees 0.52 0.20 0.04 -0.02 0.10 -0.05 -0.09 -0.13 -0.10 0.21 -0.07

Retail/food employees 0.39 0.17 0.01 0.02 0.13 -0.03 -0.09 -0.13 -0.14 0.18 -0.03

Humans 0.22
Sidewalks 0.10 0.06
Vehicles 0.08 0.07 -0.48
Pavement -0.18 0.01 -0.19 -0.43
Fences 0.02 0.08 0.12 0.07 -0.33
Walls -0.01 -0.03 0.27 -0.08 -0.23 0.16
Vegetation -0.22 -0.08 -0.19 0.03 -0.20 -0.08 -0.07
Terrain -0.12 -0.21 0.06 -0.27 -0.26 -0.20 -0.14 0.22
Objects 0.11 0.25 0.23 -0.14 0.18 0.13 0.10 -0.45 -0.26
Sky -0.11 -0.02 0.15 -0.07 0.19 0.07 0.07 -0.93 -0.18 0.38

Table 2. Correlations of physical characteristics and socio-demographic variables
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Street view characteristics

Buildings 0.0328 † 0.1425 ** 0.0223 † 0.0131  0.0065  

(1.90) (3.22) (1.73) (0.97) (0.48)

Buildings squared -0.0032 *

-(1.98)

Humans 4.476 ** 4.804 ** 3.839 ** 2.601 ** 5.295 **

(3.96) (3.42) (3.98) (3.03) (5.79)

Humans squared -3.927 * -2.856 † -3.909 ** -1.343  -4.190 **

-(2.24) -(1.74) -(2.58) -(1.35) -(3.63)

Sidewalks 0.2204 ** 0.1768 ** 0.4633 ** 0.1537 ** 0.1020 **

(4.56) (2.81) (4.73) (4.17) (2.61)

Sidewalks squared -0.0314 **

-(2.90)

Vehicles 0.2102 ** 0.1015 * 0.1676 ** 0.2955 ** 0.1308 **

(5.44) (1.99) (5.58) (5.76) (4.37)

Vehicles squared -0.0085 *

-(2.32)

Pavement -0.4582 ** 0.1740 ** -0.1989  -0.2021  0.1323 **

-(2.99) (3.88) -(1.47) -(1.50) (5.10)

Pavement squared 0.0119 ** 0.0070 ** 0.0065 **

(4.37) (2.96) (2.73)

Table 3. Models predicting violent and property crime in street segments using GSV measures (using all four images)

Aggravated 

assault Robbery Burglary

Motor 

vehicle 

theft Larceny
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Fences 0.5346 ** 0.0055  0.0821  0.2821 ** 0.0672  

(4.03) (0.07) (1.62) (2.66) (1.35)

Fences squared -0.0738 ** -0.0668 **

-(2.65) -(2.64)

Walls -0.3135 * -0.0165  -0.4636 ** -0.2131 * -0.3318 **

-(2.37) -(0.15) -(4.27) -(2.16) -(3.19)

Walls squared 0.0503 * 0.0483 * 0.0440 ** 0.0536 **

(2.50) (2.46) (2.95) (3.15)

Vegetation 0.0471 * -0.0013  -0.0016  0.0568 ** 0.0073  

(2.18) -(0.14) -(0.31) (3.52) (1.45)

Vegetation squared -0.0009 * -0.0010 **

-(2.09) -(3.14)

Terrain 0.2925 ** 0.0087  0.1486 ** 0.0968 ** 0.1046 **

(2.70) (0.13) (4.11) (2.70) (2.99)

Terrain squared -0.0281 †

-(1.70)

Objects 2.3474 ** 3.8512 ** 1.7726 ** 1.6415 ** 1.7342 **

(3.84) (4.59) (4.25) (3.80) (4.56)

Objects squared -1.5777 ** -2.3259 ** -0.9875 ** -0.9494 ** -0.7485 **

-(3.39) -(3.80) -(3.35) -(2.97) -(2.95)

Demographic variables: exponential decay

Percent Asian -0.0087  0.0215  -0.0203 ** -0.0121  -0.0108  

-(0.78) (1.34) -(2.78) -(1.48) -(1.44)

Percent Black -0.1516  -0.0577  -0.2459 ** -0.1816 * -0.1690 †

-(1.31) -(0.36) -(2.81) -(2.18) -(1.86)

Percent Latino 0.0117  0.0272  0.0001  0.0175  0.0128  

(0.79) (1.26) (0.01) (1.62) (1.28)
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Racial/ethnic heterogeneity 1.4626  -0.1613  2.1543 ** 1.2438  2.1526 **

(1.38) -(0.12) (3.18) (1.59) (3.12)

Concentrated disadvantage 0.0650 ** 0.0061  0.0325 * 0.0254  -0.0186  

(2.68) (0.18) (2.05) (1.52) -(1.11)

Percent vacant units -0.0136  0.0504  0.0288  0.0373 † 0.0475 *

-(0.40) (1.29) (1.52) (1.86) (2.47)

Residential stability 0.0631  -0.1945  -0.2098 ** -0.1232 † -0.2372 **

(0.59) -(1.32) -(2.86) -(1.67) -(3.23)

Percent aged 16 to 29 -0.0052  -0.0343  0.0081  0.0433  -0.0477 †

-(0.13) -(0.60) (0.31) (1.54) -(1.74)

Number of employees 0.0023 ** 0.0013 * 0.0024 ** 0.0014 ** 0.0017 **

(5.46) (2.30) (6.29) (4.36) (4.63)

Number of retail/food employees 0.0060 ** 0.0134 ** 0.0091 ** 0.0053 ** 0.0126 **

(3.12) (4.92) (4.76) (3.63) (6.11)

Population (logged) in segment 0.1961 ** 0.1162 * 0.0027  0.1591 ** 0.1014 **

(5.43) (2.47) (0.11) (5.86) (3.80)

Surrounding 1/2 mile

Number of employees -0.0017  -0.0207 * -0.0013  -0.0094 * 0.0025  

-(0.29) -(2.48) -(0.30) -(1.99) (0.54)

Number of retail/food employees 0.0639 * 0.0105  -0.0142  0.0391 † 0.0415 †

(2.14) (0.25) -(0.66) (1.79) (1.95)

Population (logged) 0.0328  0.1154  -0.2543 ** -0.3043 ** -0.1285  

(0.28) (0.70) -(3.34) -(4.06) -(1.60)
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Intercept -4.96 † -13.54 ** -2.53  -4.73 * -6.60 **

-(1.77) -(4.73) -(1.12) -(2.08) -(4.66)

N 4518 4518 4518 4518 4518

Pseudo R-square 0.092 0.123 0.115 0.067 0.089

BIC 4151.29 2649.54 6286.97 6510.35 7098.301

Pseudo R-square (without GSV variables) 0.054 0.067 0.079 0.041 0.067

Percent increase in pseudo R-square 70.4% 83.6% 45.6% 63.4% 32.8%

** p < .01(two-tail test), * p < .05 (two-tail test), † p < .10 (two-tail test).  T-values in parentheses.  N=4,518 street segments.
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Figures 

 

 

 

 

 

 

  

Figure 1. Case study area of Santa Ana city 
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Figures 2a-2f. Example images of various elements of the environment 

2a)   

 

Top 5 elements 

Sky 39.74 

Vehicles 26.24 

Buildings 11.62 

Vegetation 9.91 

Fences 9.05 

2b)   

 

Top 5 elements 

Sky 49.30  

Pavement 34.33  

Buildings 10.23  

Vehicles 4.76  

Vegetation 0.62  

2c)   

 

Top 5 elements 

Vegetation 41.42  

Terrain 15.78  

Sky 12.46  

Pavement 12.20  

Sidewalks 8.24  
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2d)   

 

Top 5 elements 

Buildings 53.04  

Pavement 26.36  

Vehicles 10.64  

Sky 8.61  

Sidewalks 0.81  

2e)   

 

Top 5 elements 

Sky 48.47 

Pavement 24.11 

Fences 8.38 

Vegetation 5.72 

Buildings 5.46 

2f)   

 

Top 5 elements 

Sky 43.19 

Walls 30.87 

Sidewalks 15.79 

Buildings 5.61 

Vegetation 4.20 
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Figure 3. Locations of robberies on street segments in Santa Ana 
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Figure 4. Effect of humans on crime 

Aggravated assault Robbery Burglary Motor vehicle theft Larceny
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Figure 5. Effect of pavement on crime 

Aggravated assault Burglary Motor vehicle theft
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Figure 6. Effect of walls on crime 
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Figure 7. Effect of vegetation on aggravated 
assault and motor vehicle theft 
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