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REVIEW 

Autocrine and Paracrine Actions of IGF-I Signaling 
in Skeletal Development 

 

 

Yongmei Wang, Daniel D. Bikle, Wenhan Chang* 
 
Endocrine Unit, University of California, San Francisco, Veterans Affairs Medical Center, San Francisco, CA, USA 

Insulin-like growth factor-I (IGF-I) regulates cell growth, survival, and differentiation by acting on the 
IGF-I receptor, (IGF-IR)-a tyrosine kinase receptor, which elicits diverse intracellular signaling responses. All 
skeletal cells express IGF-I and IGF-IR. Recent studies using tissue/cell-specific gene knockout mouse 
models and cell culture techniques have clearly demonstrated that locally produced IGF-I is more critical 
than the systemic IGF-I in supporting embryonic and postnatal skeletal development and bone remodeling. 
Local IGF-I/IGF-IR signaling promotes the growth, survival and differentiation of chondrocytes and osteo- 
blasts, directly and indirectly, by altering other autocrine/paracrine signaling pathways in cartilage and bone, 
and by enhancing interactions among these skeletal cells through hormonal and physical means. Moreover, 
local IGF-I/IGF-IR signaling is critical for the anabolic bone actions of growth hormone and parathyroid 
hormone. Herein, we review evidence supporting the actions of local IGF-I/IGF-IR in the above aspects of 
skeletal development and remodeling. 
Keywords: IGF-I; IGF-IR; signaling; chondrocyte; osteoblast; osteoclast; GH; PTH; CaSR; Calcium-sensing 
receptor; cell-cell communication 
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Introduction 
 

Over 50 years ago, Salmon and Daughaday discovered 
the insulin-like growth factor-I (IGF-I) that has insulin-like 
signaling properties and can mediate various biologic 
activities in response to changes in the growth hormone 
(GH) status (1). Since then, there have been a lot of 
reports on the actions of IGF-I and its receptor (IGF-IR) 
and binding proteins (IGFBPs) in regulating biological 
functions in both physiological and pathological states. 
Originally, IGF-I was considered a key component of the 
somatomedin hypothesis. Based on this hypothesis, GH, 
made by pituitary glands, regulates somatic growth by 
controlling the production of hepatic IGF-I (or somato- 
medin C), which is then distributed through the circula- 
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tion to act on remote target organs/tissues (2). This 
hypothesis was recently challenged by a number of 
important discoveries, including a seminal study examin- 
ing skeletal development in mice with liver-specific 
deletion of the Igf-I gene (LiverIGF-I-/-) (3-4). In the latter 
mice, the circulating IGF-I level was reduced to less than 
25% of normal. Despite that, those KO mice developed 
and grew normally, and their skeletal changes were 
minimal (3), suggesting that local IGF-I production is 
sufficient for supporting general growth and skeletal 
development. In addition, circulating insulin-like growth 
factor-II (IGF-II), (another high-affinity ligand to IGF-IR), 
may also compensate for the loss of systemic IGF-I in 
these animals. However, the impact of IGF-II on skeletal 
development is GH-independent and more restricted to 
embryogenesis in mice (5-6). All skeletal cells, including 
chondrocytes, osteoblasts, osteocytes and osteoclasts, 
express significant levels of IGF-I, IGF-II and IGF-IR (7-10). 
Studies using cell cultures deprived of systemic IGF-I 
effects and tissue-specific gene knockout (KO) mouse 
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models have begun to define the molecular actions of 
IGF-I and IGF-IR in different bone cell populations. 
Collectively, these studies indicate that these molecules 
constitute complex autocrine/paracrine networks to 
regulate cell proliferation, survival, and differentiation, 
controlling the pace of cartilage and bone develop- 
ment and remodeling. This review focuses on recent 
studies, demonstrating the actions of local IGF-I/IGF-IR 
signaling in (a) supporting skeletal development and 
remodeling, (b) cross-talk with other autocrine/para- 
crine pathways in the bone, (c) mediating cell-cell 
interactions between various types of skeletal cells, and 
(d) integration with systemic signals to produce skeletal 
anabolism. 
 
IGF-I, IGF-II, and IGF-IR Signaling Cascades 
  
IGF-I is a single polypeptide chain consisting of 70 amino 
acids, which has a binding affinity to IGF-IR 100-fold 
higher than insulin. IGF-II consists 180 amino acids, which 
also binds to IGF-IR with a comparable binding affinity as 
IGF-I. IGF-II also binds to the IGF-II receptor (also named 
the cation-independent mannose 6-phosphate recep- 
tor), which acts as a signaling antagonist to prevent 
IGF-II responses. IGF-IR consists of two α and two β 
subunits, which are linked by disulfide bonds (11). The α 
and β subunits are cleavage products of a 1367-amino 
acid IGF-IR precursor (12). The extracellular α-subunit 
forms a pocket for IGF-I binding, while the intracellular 
domain (amino acids 956-1256) of the membrane- 
spanning β-subunit contains a kinase domain (13-14). 
Upon activation, the tyrosine kinase activity of the IGF-IR 
entails sequential phosphorylation events at residues 
Y1135, Y1131, and Y1136, which produce conforma- 
tional changes in the β subunits to create docking sites 
for downstream signaling molecules and their phosphory- 
lation (14). Activation of IGF-IR triggers multiple signaling 
cascades in a cell context-dependent manner to re- 
gulate diverse cell functions ranging from proliferation 
and survival to differentiation into specialized cell 
lineages. For example, in bone cells and chondrocytes, 
activated IGF-IRs can recruit members of the insulin 
receptor substrate (IRS) family (IRS 1-4) directly to their 
phosphotyrosine-binding (PTB) and SRC homology 2 (SH2) 
domains, and indirectly to the growth receptor binding 
protein-2 (Grb2) and the p85 subunit of phosphatidyl 
inositol 3 kinase (PI3K) through specific motifs within the 
IRSs (15-17). Both IRS-1 and IRS-2 are required for a full 
action of IGF-I in bone, but they regulate different func- 
tions. Deletion of IRS-1 gene in mice decreases both 
bone formation and resorption (18), whereas IRS-2 KO 
mice have reduced bone formation, but increased 

bone resorption (19), suggesting that different IRSs may 
be used by different types of bone cells. 

Activation of IGF-IR triggers the Ras-Raf-MEK-ERK-MAPK 
signaling cascade by a series of IRS-dependent protein 
phosphorylations and complex formations (17, 20).  
Through the SH2 domain in the receptor, IGF-IR binds to 
the SH2 domain of Grb2, which, in turn, complexes with 
Sos, a guanine nucleotide exchange factor that medi- 
ates GDP/GTP exchange in Ras GTPase, and leads to 
Ras activation. The activated Ras stimulates Raf kinase 
to phosphorylate and activate MAP kinase kinase (MEK), 
which, in turn, activates ERK1/2 (MAPK1/2) via serine/ 
threonine phosphorylations of the latter proteins. Acti- 
vated ERK1/2 enters the nucleus to phosphorylate and 
activate various transcription factors, leading to in- 
creased cyclin D1 expression and reduced p21cip and 
p27kip expression facilitating cell proliferation.  

Activation of IGF-IR/IRS complex also recruits and 
stimulates the PI3K, which converts PIP2 to PIP3 in the 
membrane to recruit Akt and associated proteins PDK 
1/2, leading to Akt phosphorylation and activation. The 
activated Akt phosphorylates and inactivates Bad, a 
pro-apoptotic member of the bcl-2 family, therefore 
promoting cell survival (17). Akt can also activate mTOR 
and p70S6 kinase to stabilize beta-catenin to enhance 
proliferation (21). It has also been shown that hypoxia 
stimulates PI3K/Akt/mTOR pathway to increase VEGF-A 
production and promote vascular invasion in the growth 
plate (22-23), likely in coordination with IGF-I.  
 
The actions of IGF-I and IGF-IR in skeletal deve- 
lopment 
  
Skeletal development is a highly coordinated process, 
which requires initial recruitment and migration of rele- 
vant precursors to future bone sites, commitment of the 
precursors to chondrogenic and osteogenic lineages 
and their terminal differentiation to acquire a complete 
set of cartilage- or bone-forming functions (24-25). Skele- 
tal patterning, which determines bone numbers and 
shapes, is controlled by progenitor recruitment and 
commitment, while bone growth rates mainly depend 
on the proliferation, survival and differentiation of chon- 
drogenic and osteogenic cells (24). Recent studies of 
global and tissue-specific gene KO mice indicate that 
IGF-I signaling is more critical in the latter steps of the 
process, but less in the skeletal patterning.   
 
Studies of global IGF-I and IGF-IR KO mice 
In mouse embryos, the expression of IGF-I and IGF-IR in 
the skeleton first appears at 13.5 dpc (days post coitus), 
peaks at 14.5 dpc for IGF-I or 16.5 dpc for IGF-IR, and 
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then, slightly declines as gestation proceeds (26). Ablat- 
ing IGF-I expression in the global IGF-I KO mice causes 
severe growth retardation, which is evident as early as 
13.5 dpc (27-29). The KO mice develop smaller skeletons 
with a significant delay in mineralization at 14.5 dpc and 
onward. Despite that, all of their skeletal elements are 
present (26), indicating normal skeletal patterning. The 
skeletal defects in the KO mice are caused, at least in 
part, by reduced proliferation, delayed differentiation 
and increased apoptosis in the growth plate (26). Most 
of the IGF-I KO mice die immediately after birth. Studies 
of the few surviving KO mice (less than 5%), however, 
show continually retarded bone growth (27-28), suggest- 
ing that IGF-I signaling is also essential for skeletal 
development during post-natal growth. Ablating IGF-IR 
in the global IGF-IR KO mice produce similar, but more 
severe growth retardation and skeletal defects than the 
IGF-I KO mice. Global IGF-I/IGF-IR double KO mice 
phenocopy the phenotypes of the global IGF-IR KO 
mice (28). These data suggest that IGF-IR likely mediates 
all skeletal responses to IGF-I and perhaps the responses 
to IGF-II during embryonic development.  
 
IGF-I/IGF-IR signaling in chondrogenesis 
Although the above global KO mice confirmed the im- 
portance of IGF-I/IGF-IR signaling in supporting skeletal 
development, they did not specify the action of IGF-I 
signaling in specific cell lineages in the bone or exclude 
the impact of other systemic derangements on the 
skeleton. To define IGF-I/IGF-IR actions in chondrocytes, 
cartilage-specific IGF-IR KO mouse models (cartIGF-IR-/- 
mice) were made by crossing floxed IGF-IR mice that 
carried loxP sequences flanking the exon 3 of the gene 
(30) with mice expressing Cre recombinase transgene, 
under the control of a type II collagen promoter (31). 
The growth phenotype of cartIGF-IR-/- mice is less severe 
than the global IGF-IR KO mice. The body weights of 
newborn cartIGF-IR-/- mice are ≈90% (vs ≈45% for the 
global IGF-1R KO mice) of their wild-type littermates. 
Most of the cartIGF-IR-/- mice also die shortly after birth 
with smaller and less mineralized skeletons. These skeletal 
phenotypes are caused by severe chondrocyte defects 
characterized by reduced proliferation, delayed differ- 
entiation and hypertrophy and increased apoptosis (32). 
These data confirm the role of IGF-I/IGF-IR signaling in 
modulating vital functions of chondrocytes and the 
overall pace of endochondral bone formation in 
embryos. 

The perinatal death of the cart.IGF-IR-/- mice, however, 
precluded studies of IGF-IR actions in the growth plates 
during postnatal growth. To address this issue, tamoxifen 
(Tam)-inducible cartilage-specific IGF-IR KO (TamCarIGF-I 

R-/-) mice were studied (33-34). At 2 weeks of age and 7 
to 8 days after the induction of gene KO by Tam, the 
TamCarIGF-IR-/- mice show significant growth retardation 
with a body weight that was ≈70% of their control litter - 
mates, and demonstrate severely disorganized growth 
plates again, due to reduced cell proliferation and 
delayed differentiation, indicating comparable IGF-IR 
actions in growth plate development during embryonic 
and postnatal development (32).  
 
 Cross-talk between IGF-I/IGF-IR and parathyroid hor- 
mone–related protein (PTHrP) signaling in chondrocytes 
The PTHrP/Indian Hedgehog (Ihh) feedback loop is a 
well-established autocrine/paracrine pathway that con- 
trols the pace of chondrocyte differentiation (35-37) 
(Figure 1). PTHrP is made by perichondrial and reserve 
cells in embryonic skeletons and diffuses into the proli- 
feration zone to activate the type 1 PTH/PTHrP receptor 
(PTH1R) in proliferating chondrocytes to sustain their pro- 
liferation and delay their maturation (38). When prolifer- 
ating chondrocytes mature, they increase the produc- 
tion of Ihh, which acts on its receptor Patched in the 
neighboring cells via unknown mechanisms to increase 
the production of PTHrP (39), thus slowing down cell 
differentiation to prevent early closure of the growth 
plate (Figure 1). During postnatal growth, PTHrP is 
expressed in maturing/prehypertrophic chondrocytes to 
support a local autocrine/paracrine interaction. Interes- 
tingly, global IGF-I KO, CartIGF-IR-/-, and TamCarIGF-IR-/- mice 
all show increased expression of PTHrP protein and RNA, 
but decreased Ihh expression in their growth plates, 
indicating a disrupted PTHrP/Ihh feedback loop (26, 32). 
The increased PTHrP expression could readily contribute 
to the delayed chondrocyte differentiation and minerali- 
zation in these KO mice, as these chondrocyte defects 
are also apparent in transgenic mice overexpressing 
PTHrP (40). However, the latter mice show increased 
chondrocyte proliferation and decreased apoptosis in 
their growth plates. On the other hand, blocking IGF-IR 
signaling in chondrocytes prevents an increase in grow- 
th and survival of chondrocytes, which was otherwise 
expected with increased PTHrP expression. The increased 
PTHrP expression may represent a failed attempt of the 
affected chondrocytes to compensate for the reduced 
proliferation in the IGF-IR KO growth plates. It remains 
unclear how ablation of IGF-IR leads to the increased 
PTHrP expression in chondrocytes. Although, Ihh is a 
critical modulator that promotes PTHrP expression in the 
growth plate, our observations on the decreased Ihh 
expression in the CartIGF-IR-/- and TamCarIGF-IR-/- growth 
plates, however, support an Ihh-independent negative 
regulation of PTHrP expression and, perhaps, a direct 
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Figure 1 A schema illustrating the interplays between IGF-I/IGF-IR, PTHrP/Ihh, and Ca2+/CaSR signaling pathways in modulating chondrocyte 
differentiation in the growth plate. IGF-IR signaling promotes cell proliferation, maturation and terminal differentiation, directly (blue arrows) or 
indirectly, by inhibiting PTHrP expression (red lines). The inhibition of PTHrP could be a direct effect of IGF-I on PTHrP-producing cells, or an 
indirect effect on the ability of Ihh to increase PTHrP expression. The CaSR begins to express in maturing chondrocytes and its expression level 
increases as cell differentiation proceeds. Ca2+/CaSR signaling increases both IGF-I and IGF-IR. This increased gene expression is required for a full 
action of CaSR in promoting chondrocyte differentiation, in addition to other IGF-IR-independent effects (purple arrows). See the main text for 
detailed descriptions of these IGF-I actions. 
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effect on Ihh expression by IGF-IR signaling (41) (Figure 
1).  
 
 Cross-talk between IGF-IR and extracellular Ca2+-sensing 
receptor (CaSR) signaling in chondrocytes 
Ca2+ critically supports terminal differentiation of chon- 
drocytes and normal growth plate development. Ca2+ 
deficiency causes childhood rickets (42) due to delayed 
chondrocyte differentiation and reduced matrix synthe- 
sis and mineralization in the growth plates. These defects 
could be reversed with adequate supplementations of 
dietary Ca2+ (43), indicating the importance of Ca2+ 
availability in normal growth plate development. Studies 
using chondrogenic cell lines or primary growth plate 
chondrocytes further, confirm direct actions of Ca2+ on 
the cells to stimulate G protein-mediated signaling res- 
ponses, and promote terminal differentiation of the cells 
(44-47).  

Studies of cartilage-specific CaSR KO mice and cul- 
tured chondrocytes suggest that the CaSR is the mole- 
cular basis for extracellular Ca2+-sensing in chondrocytes 
(44-47). In the growth plate, the CaSR is first expressed in 
maturing chondrocytes, and its level increases as cells 
hypertrophy (45). This expression pattern supports a role 
for the CaSR in mediating terminal differentiation of the 
cells. In support of this concept, knockdown of CaSR 
expression blocks the ability of high extracellular Ca2+ 
concentrations ([Ca2+]e) to promote cell differentiation 
and matrix mineralization in cultured chondrocytes (46). 
Furthermore, CartCaSR-/- mice with cartilage-specific 
ablation of CaSR gene develop shorter, underminera- 
lized skeletons due to delayed differentiation of hyper- 
trophic chondrocyte (44). Interestingly, the expression of 
IGF-I and IGF-IR is profoundly reduced in the growth 
plates of the CartCaSR-/- mice (44), suggesting that Ca2+/ 
CaSR promotes chondrocyte differentiation, at least in 
part, by enhancing IGF-I signaling (Figure 1). In concor- 
dance with this regulatory scheme, ablating IGF-IR 
genes in cultured chondrocytes inhibits the ability of 
high [Ca2+]e (by ≈50%) to enhance terminal differenti - 
ation and matrix mineralization, supporting a role for 
IGF-I/IGF-IR signaling in mediating CaSR-induced chon- 
drocyte differentiation (Figure 1).  

Does the Ca2+/CaSR signaling pathway also interact 
with the PTHrP/Ihh feedback loop? In cultured chondro- 
cytes, raising [Ca2+]e profoundly inhibits PTHrP and PTH1R 
expression and blocks the ability of PTHrP to delay cell 
differentiation and matrix mineralization [(47) and 
unpublished data]. Furthermore, ablating the IGF-IR 
gene specifically in growth plate chondrocytes in mice 
increases their expression of PTHrP, but not PTH1R (32). 
These observations support a paradigm, in which Ca2+/ 

CaSR signaling counteracts PTHrP/PTH1R signaling by 
suppressing PTH1R expression, independently, of IGF1/ 
IGF1R signaling and by inhibiting PTHrP expression via the 
IGF1/IGF1R pathway to support normal progression of 
chondrocyte differentiation and growth plate develop- 
ment (Figure 1). 
 
IGF-I/IGF-IR actions in bone remodeling 
  
Throughout life, bone is constantly remodeled by co- 
operative actions of bone-resorbing osteoclasts and 
bone-forming osteoblasts (48-49). The osteoclasts are 
derived from hematopoietic stem cells (HSC), while osteo- 
blasts differentiate from bone marrow mesenchymal 
stem cells (MSC, Figure 2). Bone formation and resorp- 
tion are tightly balanced to maintain structural integrity 
of the bone and to mobilize Ca2+ to meet systemic 
demands. Studies of global IGF-I KO mice (50-51), which 
survive to adulthood, show decreased bone formation 
rates, but higher trabecular bone mass (BV/TV), indica- 
ting reduction in both osteogenic and osteoclastogenic 
activities in the bones. These observations support a 
non-redundant role for IGF-I signaling in bone remodel- 
ing. Recent studies of cell-specific IGF-I and IGF-IR KO 
mice and in vitro cell cultures have begun to reveal 
detailed molecular actions of those molecules in each 
population of skeletal cells. 
 
IGF-I signaling in the osteoblastic lineage 
The osteoblastic lineage begins with mesenchymal pro- 
genitors that progress through stages of preosteoblasts 
(Pre-OB), mature osteoblasts (OB) and, finally, osteocytes 
(OCY, Figure 2). At each stage, cells express specific 
markers and unique regulators of cell differentiation. 
Osteoprogenitors and preosteoblasts express RUNX2 
and osterix (OSX), two critical transcriptional factors that 
specify cell fates. Preosteoblasts produce large amounts 
of type I collagen as a major component of their 
surrounding matrix. Mature or fully differentiated osteo- 
blasts, which express osteocalcin (OCN), acquire func- 
tions to mineralize the matrix and produce hardened 
bone. Some mature osteoblasts are, subsequently, em- 
bedded in the matrix as osteocytes, which express the 
dentin matrix protein-1 (DMP-1). Some osteoblasts be- 
come quiescent on bone surface and function as lining 
cells, or otherwise, die by apoptosis (52-53). 

In vitro and in vivo studies support a role for the IGF-I 
signaling in modulating growth, survival, differentiation 
and mineralizing functions of osteoblasts (Figure 2). In 
cultures of primary osteoblasts or osteogenic cell lines, 
IGF-I treatment promotes cell proliferation, differentia- 
tion and matrix production (54), and inhibits their apop- 
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Figure 2 A schema illustrating the actions of IGF-I/IGF-IR signaling in the differentiation of osteoblast and osteoclast in bone. IGF-IR signaling can 
promote the proliferation, survival, and differentiation of osteoblast (OB), osteocyte (OCY) and osteoclast (OCL), directly (blue arrows) or indirectly, 
by enhancing cell-cell interactions/couplings between OBs and OCLs, by increasing the expression of critical components in the c-fms/M-CSF, 
RANK/RANKL and EphrinB2/EphB4 signaling pathways (red boxes and arrows). Red arrows indicate uni- or bi-directional signaling responses 
mediated by these cell-cell interactions. IGF-IR signaling is also required for mechanosensing in osteocytes. See the main text for detailed descriptions 
of these IGF-I actions. HSC: hematopoietic stem cell; MSC: mesenchymal stem cells. 
 
tosis (55-56). Deleting IGF-IR at the stage of osteopro- 
genitor development by Cre-lox recombination using an 
osterix promoter-driven Cre mouse line, results in delayed 
osteoblast maturation, matrix synthesis and minerali- 
zation, without affecting the differentiation or function of 
osteoclasts (57). When IGF-IR is deleted in mature osteo- 
blasts, using OCN promoter-driven Cre line, the KO mice 
produce less trabecular bone, with an increased pro- 
portion of osteoid in the bone, indicating impaired 
mineralizing functions in OCNIGF-IR-/- osteoblasts (58-59).  
In contrast, overexpressing IGF-I in mature osteoblasts 
increases bone formation, with a significant decrease in 
the mineralization lag time (the time for osteoid to be 
mineralized), but without a change in osteoblast number 
(60). These data are consistent with a role for IGF-I 

signaling in promoting osteoblast differentiation in early 
osteoblasts and enhancing mineralizing activities in 
mature osteoblasts (60). 

Osteocytes make up over 90% of the cells in bone (61). 
In addition to their roles in bone development and 
remodeling, osteocytes are also a source of hormonal 
factors, like FGF23, which modulate mineral homeostasis 
by acting on distant organs, such as kidney, muscle, 
parathyroid glands and other tissues (62). DMPIGF-I KO 
mice, in which the IGF-I gene is deleted in osteocytes 
using DMP-1 promoter-driven Cre, do not have altered 
serum IGF-I, calcium, or phophorus levels, but do show 
decreased serum levels of the bone formation maker 
procollagen type I N-terminal propeptide (PINP) and the 
bone resorption marker, c-telopeptide (CTx). These KO 
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mice also have reduced trabecular and cortical bone 
mineral content and decreased osteoclast surface and 
numbers, but have no change in trabecular bone 
volume. Interestingly, these mice also showed growth 
plate defects due to unknown causes (63). Nevertheless, 
these KO mice fail to respond to mechanical loading in 
promoting periosteal and endosteal bone formation, 
and the expression of early mechanoresponsive genes 
(IGF-I, Cox-2, c-fos), osteogenic markers (RUNX2, and 
osteocalcin) and canonical Wnt signaling genes 
(Wnt10b, Lrp5, Dkk1, sFrp2). The lack of osteogenic 
response is not due to a reduced osteocyte density (64), 
suggesting that osteocyte-derived IGF-I not only 
mediates bone osteoblast/osteocyte differentiation, but 
also the mechanosensitivity of the cells (Figure 2).  
 
IGF-I/IGF-IR signaling in osteoclasts 
 Studies of global IGF-I KO mice showed fewer (76% of WT 
control) and smaller osteoclasts with fewer nuclei in the 
bone (65), indicating impaired osteoclastogenesis and 
bone resorption (Figure 2). These osteoclast defects 
could explain, at least in part, the increased bone 
fraction, despite a decreased bone formation rate, in 
the KO mice described earlier. These osteoclast defects 
appear to be cell-autonomous, as they could be 
recapitulated by culturing osteoclast precursors from the 
global IGF-I KO mice, which showed reduced ability to 
differentiate into mature osteoclasts (65). Interestingly, 
co-culturing IGF-I+/+ osteoclast precursors (spleen cells 
from WT mice), with IGF-I−/− osteoblasts (bone marrow 
stromal cells from IGF-I KO mice), produces significantly 
fewer (by ≈90%)  multi-nucleated osteoclasts than co- 
culturing IGF-I+/+ osteoclast precursors with IGF-I+/+ osteo- 
blasts, suggesting that osteoblasts may be a source of 
IGF-I to promote osteoclastogenesis. Similarly, co-cultur- 
ing IGF-I-/- osteoclast precursors, with IGF-I+/+ osteoblast 
precursors, also produces less (by ≈50%) multi-nucleated 
osteoclasts than co-culturing IGF-I+/+ osteoclast precur- 
sors with IGF-I+/+ osteoblasts (65), suggesting that the 
expression of IGF-I in osteoclast precursors is also re- 
quired to support the full-scale osteoclastogenesis. 

To further define the action of IGF-I signaling on osteo- 
clast differentiation, mice (OCLIGF-IR KO) with deletion of 
IGF-IR gene in osteoclast precursors, were studied. These 
KO mice have increased trabecular bone fraction and 
reduced osteoclast number, as seen in the global IGF-I 
KO mice. Similarly, ablation of IGF-IR in cultured osteo- 
clast precursors reduces the number and size of osteo- 
clasts and their expression of RANK, c-fms, and NFATc1  
(unpublished data). Taken together, these in vitro and in 
vivo data, confirm an essential role for the IGF-I/IGF-IR 
signaling in promoting both early- and late-stage osteo- 

clastogenesis (Figure 2).  
 
IGF-I signaling in skeletal cell-cell interactions 
 
In addition to their interactions through hormonal factors, 
like osteoblastic M-CSF, which activates c-fms in osteo- 
clasts, osteoblasts, osteoclasts and chondrocytes, can 
also communicate with each other through physical 
interactions using their cell-surface ligands and recep- 
tors. These exert uni- or bi-directional signals in the corres- 
ponding cells (Figure 2). For example, osteoblasts express 
receptor activator of NF-kB (RANK) ligand (RANKL) to 
activate the RANK on the surface of osteoclast precur- 
sors, and induce the differentiation of the latter cells (66). 
More recent studies have shown that osteoblasts express 
EphB4, a member of the tyrosine kinase receptor Eph 
family, as well as its ligand ephrin B2, supporting intera- 
ctions between osteoblasts. Osteoclasts express ephrin 
B2, but not EphB4, which enable osteoblast-osteoclast 
interactions (67). IGF-I stimulates RANKL, ephrin B2 and 
EphB4 expression in osteoblasts and RANK and EphrinB2 
expression in osteoclasts. Changes in the expression of 
those signaling molecules could be part of the under- 
lying mechanism modulating osteoclastogenesis in res- 
ponse to IGF-I (Figure 2). This concept is supported by 
the reduced ability (by ≈90) of IGF -I-/- osteoblasts to 
induce osteoclastogenesis of spleen cells cultured from 
WT mice (65). Furthermore, our recent studies demons- 
trate that IGF-I treatment enhances the ability of osteo- 
blasts and chondrocytes to induce osteoclast formation 
in the corresponding co-cultures (osteoblasts/osteo- 
clasts or chondrocytes/osteoclasts), and this effect could 
be blocked by a specific peptide that interferes with the 
EphB4-ephrinB2 interactions (manuscript in submission). 
These data support a role for IGF-I signaling in skeletal 
cell-cell interactions by stimulating RANKL/RANK and 
ephrin B2/EphB4 pathways in the cells (Figure 2). 
 
Integration of local IGF-I/IGF-IR signaling with 
systemic hormones 
 
Integration with GH 
Although it is well established that GH stimulates hepatic 
gene expression to make and supply IGF-I to the circula- 
tion, recent studies suggest that changes in circulating 
IGF-I levels may be an indicator of GH status, but may 
not be directly involved in controlling local functions in 
non-hepatic tissues, including bone (68). The fact that 
chondrocytes and osteoblasts also express growth hor- 
mone receptors (GHRs) (69) suggests direct actions of 
GH on these cells. Indeed, GH can exert both IGF-I- 
dependent and IGF-I-independent actions to regulate 
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bone cell and chondrocyte functions. For example, GH 
could stimulate ERK and Akt phosphorylation and inhibit 
apoptosis in cultures of osteoblasts lacking IGF-IR expre- 
ssion, but fail to induce cell proliferation in the same 
cultures (70). Moreover, we (50) showed that GH could 
stimulate bone formation even in the global IGF-I KO 
mice, although not to the extent of IGF-I replacement. 
Studies by Gan and colleagues showed that GH can 
promote the formation of GHR/JAK2/IGF-IR complex to 
facilitate GHR signaling in osteoblasts (71), indicating a 
novel complementation between GHR and IGF-IR signal- 
ing, which could be a basis for some IGF-IR-dependent 
GH actions. The fact that OCNIGF-IR KO mice failed to res- 
pond to GH treatment to increase bone mass suggests 
that IGF-IR-dependent actions of GH are the predomin- 
ant responses to promote skeletal anabolism (70). It, 
however, remains unclear regarding the sources of IGF-I 
that respond to GH and promote osteoblast functions in 
the bone.  

Wu and colleagues generated a compound KO/ 
transgenic mouse model (GHRKO-HIT) to assess the im- 
portance of local IGF-I production for skeletal develop- 
ment (72). In this model, GHR is globally ablated and an 
IGF-I transgene is expressed in liver to restore serum IGF-I 
levels. The skeletal IGF-I gene expression was blunted in 
these mice due to the lack of GHR signaling in the bone. 
Interestingly, IGF-I produced by the liver failed to reach 
bone to compensate for local IGF-I deficiency. As a 
result, GHRKO-HIT mice were growth retarded and had 
reduced bone growth. These data confirm the impor- 
tance of locally produced IGF-I in supporting overall 
skeletal development 
 
Integration with PTH 
PTH is a critical regulator of mineral and skeletal homeo- 
stasis. Its effects on bone are complex. Intermittent 
administration of PTH produces skeletal anabolism (73-74) 
by increasing the growth (75), survival (76) and differen- 
tiation of osteoblasts (77). Continuous infusion of PTH, 
however, is catabolic to bone due to a net increase in 
bone resorption (78-79). Abundant studies support a 
non-redundant role for IGF-I signaling in mediatitng 
anabolic actions of PTH. In osteoblast cultures, PTH 
stimulates IGF-I production.  Neutralizing antibodies for 
IGF-I block the stimulatory effects of PTH on collagen 
synthesis (80) and osteoblast differentiation (81). Inter- 
mittent PTH fails to elicit skeletal anabolism in global IGF-I 
KO mice (51, 82-83), or in mice lacking the expression of 
IRS-1 (84). Similarly, ablation of IGF-IR in mature osteo- 
blasts prevents the anabolic effects of intermittent PTH in 
OCNIGF-IR-/- mice (59). Interestingly, ablating IGF-I in the 
liver does not affect PTH-induced anabolism in bone (85).  

Taken together, these data support the concept that 
intermittent PTH produces skeletal anabolism by en- 
hancing local IGF-I/IGF-IR signaling in bone. 
 
Conclusions 
 
IGF-I signaling is critical for all aspects of skeletal deve- 
lopment and remodeling. The major signaling pathways 
for IGF-I are mediated by IGF-IR, which initiates both the 
MAPK and PI3K pathways that regulate diverse cellular 
functions. During embryonic and postnatal bone deve- 
lopment, IGF-I signaling critically modulates chondro- 
cyte growth, survival and differentiation, at least partly, 
by inhibiting PTHrP production and enhancing CaSR 
signaling. In bone, IGF-I is a critical regulator of growth, 
survival, differentiation and mineralizing functions of 
osteoblasts. IGF-I also regulates the mechanosensitivity 
of osteocytes. IGF-I signaling is required for the skeletal 
cell communications through RANKL/RANK, M-CSF/ 
c-fms and ephrin B2/EphB4 signaling. Moreover, local 
IGF-I production and IGF-IR signaling are essential for the 
anabolic actions of PTH and GH.  
 
Future directions 
 
At least five important questions regarding local IGF-I/ 
IGF-IR signaling warrant future investigation: 1) What are 
the local sources of IGF-I controlling chondorcyte, osteo- 
blast and osteoclast functions? 2) How do systemic GH 
and PTH signals mediate IGF-I expression and IGF-IR 
signaling? 3) How does IGF-I signaling interact with other 
autocrine/paracrine signals, like Wnt, ephrins, BMP, TGFß 
and other bone regulating molecules? 4) How does a 
change in IGF-I signaling contribute to disease states, 
like osteoporosis, osteoarthritis, bone cancer metastasis 
and fracture healing? 5) Finally, and perhaps most 
importantly, how can we translate those basic research 
findings into clinical uses to prevent and treat skeletal 
diseases?  
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