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ABSTRACf 

We outline the characteristics of thick hydrogdenated amorphous silicon layer~ which are 
optimized for the detection of charged particles, x-rays andy-rays. Signal amplitude as a function 
of the linear energy transfer of various particles are given. Noise sources generated by the detector 
material and by the thin film electronics- a-Si:H or polysilicon proposed ~or pixel position 
sensitive detectors readout are described, and' their relative amplitudes are calculated. Temperature 
and neutron radiation effects on leakage currents ancj. the corresponding noise changes are 

. presented. 

I. INTRODUCfiON 

Thin layers of hydrogenated amorphous silicon (a-Si:H) of thickness -1 J..Lm have found 
extensive application in solar cell~ and in thin fllm tr~sistors (T.F.T.). A well known application 
of thick -40 J.I.IIllayers of a-Si:H is to electrophotography devices. In these devices the usual 
configuration is a p-i-n diode with thin p and n doped layers, and the bulk consisting of intrinsic a
Si:H. We have studied the possibility of using a-Si:H reverse biased diode arrays for charged 
particle, x-ray andy-ray detectors. These would fmd use in particle physics research, in 
biological, and in medical imaging applications. 

In particle physics a common requirement is to locate the trajectory of relativistic and slower 
particles by determining their passage through a nurpber of layers of position sensitive detectors. 
These detector layers have consisted in the past of gas filled multiwire proportional chambers, 
scintillation counters and of crysal silicon dicx,le arrays. The potential usefulness of a-Si:H 
detectors lies in the ease of making large area devices by PECVD techniques, defming the shape 
and size of the detector element by lithography, and by being able to couple thin fllm readout 
electronics-a-Si:H orpolysilicon directly tQ the detector "pixels" or "strips" as shown 
schematically in Fig. 1. In the following sections we describe the results of our measurements 
using alpha particles, low energy 1-2 MeV protons, ~MeV minimum ionizing electrons, x-rays 
andy-rays. · 

-om 

.1- 1 IMI 

ODD 
ODD 
ODD 

10-100mm 

I r.o1- .1 IMI J 
I 
I 
I 

I I 
~ 

a-Si:H De~ec~or 
50-70 ~m 

) 
Readou~ 
- 10 ~m 

Rmiliilliiilii-) Elec~ronics 
15 J -10~m 

Sub,~ rete 

L----------' 

Fig. 1 Schematic coupling of a-SirH detector pixe~s or strips to thin film electronics. Each metal 
pad is coupled to an individual charge sensitive amplifier below. 
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IT. DETECI'ION OF CHARGED PARTICLES 

For the detection of charged particles traversing a sensitive layer of a-Si:H suitably doped to 
form a p-i-n diode we have the following requirements: 

a. The sensitive layer has to be thickenough to ensure that the charged particle produces a 
sufficient number of electron-hole pairs that will result in a signal appreciably larger than noise. 
For the detection of minimum ionizing particles, which are of iilterest in high energy particle -; 
physics, we have shown that layers 50-70 ~m thick could be sufficient for this purpose. This 
conclusion stems from our measurement (given below) of the average energy w = 6.0 ± 0.2 eV 
required to produce 1 e-h pair in a-Si:H, which results in a· yield of60 e-h pairs/~m of detector ·• 
layer. _ _ __ , _ _ . · · · 

b. The i layer of the thick p-i-n diodes has to be fully depleted in order to collect the bulk of the 
e-h pairs produced by the transit of a charged particle. This implies that the E field should be ~ 
1o2 V/cm throughout the layer in order to ensure' that a large fraction of both electrons and holes 
are collected. The electric field drops off as a function of distance due to the residual ( +ve) charges 
left in the ionized dangling bond states of the i layer. Figure 2 shows the electric field versus 
distance for various bias voltages for an assumed value of ionized dangling bond states No* = 7 x 
1Q14Jcm3 [1]. Recent measurements;. presented at this meeting [2], show that only a small fraction 
-30-35% of the dangling bonds as measured by E.S.R. are ionized. Hence with the present 
quality of material available to us from Xerox PARC (Palo Alto; CA), Glasstech-Solar 
(Wheatridge CO), .Plasma Physics (Locust Valley, NY) and others, with dangling bond densities 
of 1-2 X 1QlSJcmj we are assured offull depletion for our proposed thick detectors for elementary 
particle physics experiments. · 

We confirm these projections by our measurements on p-i-n diodes 38 ~thick. Figure 3 
shows the signal produced by light pulses of A. = 665 nm, whose mean free path for absorption in 
a-Si:H is- 1~m. and from 880 nm light with an absorption mean free path> 100 ~m. The signal 
collection threshold from the 665 nm light incident on the n surface shows the minimum bias 
needed for the electric field to extend across the layer thickness. This allows us to calculate the 
density of ionized dangling bonds and to confirm the onset of full depletion[3]. The 880 nm light 
simulates the e, h production, by the transit of a minimum ionizing particle. · 
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c. The detector material i!self generates noise, ~rimaJ?.ly due to the fluctua~ions in the capture 
and release of the e,h traversmg the detector matenal. Figure 4 shows the nmse and reverse bias 
current prqduced in a 38 J..lll1 p-i-n layer. As is conventional in particle physics both signal and 
noise are recorded by charge sensitive amplifier~ followed by a shaping network;in this case we 
used 3 ll sec RC-(CR)3 shaping. . 

Noise calculations indicate that the rapid increase of the noise amplitude above some bias level 
as seen in Fig. 4 is not the shot noise from the leakage current but is probably due to some 
incipient breakdown mechanism associated with defects in the s;unple layer. Microscope pictures 
(Fig. 5) taken of the surface of a typical metal coated p-i-n diode-show bubbles and other 
aberrations which could explain this partial breakdown effect. · 
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UI. MEASUREMENTS WITH ALPHA PARTICLES, LOW ENERGY PROTONS AND 
MINIMUM IONIZING ELECfRONS. 

. . . 

We started this research using relatively thin p-i-n diodes and exposed them to 5-6 MeV alpha 
particles from Americium sources. We found, [4] and other groups also confirmed this[5] that the 
alpha panicle signals were quite small relative to what would be expected from such a high energy 
deposition. As shown in Fig. 6 the observed signals were due to collection of 20,000-30,000 
electrons. This effect is probably due to the large recombination rate of e, h in the highly dense 
ionization channel produced by the alpha tracks. Such charge recombination is also seen in xtal Si 
detectors when exposed to very highly ionizing particles such as fission fragments. The signals 
produced by .1 and 2 MeV protons with linear energy (LET) transfers of 46 and 28 Ke V /micron 
respectively show less signal loss due to recombination effects. than the alpha particle. Minimum 
ionizing(- 1 MeV electrons produce signal levels (Fig. 6) consistent with W = 6 eV. The signals 
produced by -1 MeV electrons in 12, 29 and 38 Jlm thick detectors are shown in Fig. 7. The fact 
that the signal amplitude is proportional to the detector thickness and is consistent' with our 
measured value of w indicates that there is little or no charge recombination. These measurements 
were done by summing signals and noise over a. number of pulses [6] in order to overcome the 
large noise threshold of the charge sensitive amplifiers that we used. 
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Fig. 5 Photograph of 
38 Jlm p-i-n diode 
surface showing 
bubbles or dust 
imperfections. 

Fig. 6 Signal levels 
·~produced by alpha 

particles, 1, 2, MeV 
protons and by 
minimum ionizing 1 
MeV electrons. 
Expected signal 
calculated from W = 6 
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alphas and low energy 
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IV. DETECfiON OF X-RAYS IN a-"Si:H 

The signals produced by x-ray pulses were detected in the set up shown in Fig. 8. One to three 
)lsec long pulses of x-rays produced in a 20 kv molybdenum anode x-ray tube were incident on 5 
and 10 )lm n-i-p a-Si:H diodes, as well as on 180 .)lm thick xtal silicon detectors. By comparin a 

the signal amplitudes and energy deposited in the a-Si:H and xtal silicon and using the known .:o 

value of w(xtal Si) = 3.62 eV, we obtain the res\llt w(a-Si:H) = 6.0 ± 0.2 eV pairs.[7] The value 
of w depends on the width of the band gap of the semiconductor diode and is consistent with the 
interpolated value obtained from measurements on various semiconductors [8]. . 

We, and others [9] have also detected signals produced by 130 KeY y-rays on the thicker a
Si:H detectors where the y-rays eject electrons of afew tens of Ke V energy by the Compton effect. 
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A more sensi~~e met~~ f~r detecting x-ray tlu~nces, sin~le ~igh energy (Ev 109 KeY) y-rays 
and individual rmmmum wmzmg charged part1 :s ts shown m Ftg. 9. A C5I (Thallmm or Sodium 
doped] scintillation layer, deposited on top of the a-Si:H p-i-n layer converts the energy of the 
incident radiation into light in the visible range which in turn produces e-h pairs in the a-Si:H with 
effective detection efficiency >70% for 350 nrn <A< 750 nm. [10] The light emission efficiencv 
of doped C5I ranges from 30,000- 50,000 visible light photons per MeV of deposited energy [1 l]. 
with decay times between 0.6 - 1.1 J.lsec. For high spatial resolution detection with pixel sizes~ 
50 J.lm, the sideways spread of the light can be prevented by suitable heat treatment of the 
evaporated Csl layers which produces columnar structures in the phosphor.[l2] For alpha partiCle 
detection, layers 15-20 J.lm are sufficient. For x-rays, y-rays and minimum ionizing particles, 
layers 300-400 11m thick would be adequate for the detection of single particles. 

V. NOISE DEPENDENCE ON ENVIRONMENT: TEMPERATURE AND RADIATION 
EFFECfS 

For single particle detection it is desirable to maintain a signal/noise ratio~ 10. Since the signal 
is fixed by the detector thickness it is necessary to keep the noise at a sufficiently low level. In a 
physics detector the ambient temperature could rise due to power dissipation in the readout . 
electronics for the pixel arrays. Figure 10 shows the reverse current and noise increase as a 
function of temperature. Since the overall noise is the sum in quadrature of the Nyquist, shot and 
flicker noise,the shot noise produced by the thermal increase in reverse current becomes a major 
contribution at higher temperatures. The appropriate threshold in noise increase around 60° C is 
satisfactory for most applications, and can be increased by shortening the shaping time and or 
decreasing the reverse current by enhancing the p layer barrier which can be done by adding carbon 
[ 13]. 

Fig. 9 Projected pixel device using Csl evaporated layer as detector. The Csl layer converts the 
incident radiation to visible light which is detected by thin a-Si:H diodes with interdigitated 
electrodes to reduce capacitance. 
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In Fig. 11 we show the increase in leakage current and in shotnoise produced by radiation 
damage induced by- 1 MeV neutrons.[?] The noise and leakage current increases were minimal 
up to the largest fluxes- 5 x 1Q14 neutrons/cm2, that we used. These increases are almost 
completely annealable by heating the samples at - 200° C for 2 hours. Data using proton 
exposures up to 1Q15 protons/cm2 show similar results (14]. · 

The relative insensitivity of a-Si:H detectors to these environmental effects as compared to xtal 
Si detectors enhances their usefulness for large area pixel arrays in particle physics research. 
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VI. TIIIN FILM TRANSISTOR READOUT ELECfRONICS 

The capability of making thin fllm distributed electronics amplifiers and of coupling them to the 
pixel detector arrays as shown in Fig. 1 provides very attractive prospects for this technology. At 
present we are engaged in making various measurements of a-Si:H and polysilicon T.F.T. in order 
to assess their usefulness for the detector field.[15] In Table I below we show estimates of the 
characteristics of various T.F.T. technologies. A major unknown has been the noise level that a
Si:H or polysilicon input amplifier stage would contribute to the noise of a pixel detector. Our 
preliminary measurements, shown here, indicate that this noise-- while larger than that of xtal 
silicon MOSFETS is low enough to be acceptable. 

· Table I 

Type of l!:lectton Frequency Nol.3e • gm Radialion 

T.P.T. 
Mobility W/L Limit(3db) ( 1 J.uec) 

(cm2 /V,ec) (JJ.AJV) (MHz) (electtons) Re,i31!13nce 

e.-Si:H 

!O)lm Tech. 
0.3-0.6 2-20 2 - 4 1-3 . ..r 350 Excellent 

'· 
e.-Si:H 

4 )lmTech. 
0.3-0.6 2-50 2 - 5 3-10 -./' 350 Excellent 

. . 
a.-Si:H 100-

0.3- 0.6 30-300 5-10 0!: 1000 Unkno'Wn 
VertiCal 1000 

.. 
Poly:silicon 

10-20 2-20 3-30 10-20 0!: 500 Unkno'Wn 
400"Annee.l (oxpociod) 

Poly:silicon -./' 300 
so-lao 2-20 15-150 50-100 (PMOS) Unkno'Wn 

900°Annee.l ...... 460 
(NMOS) 

c-Si on 1000- 1000-
Insula1Dr 2-20 ) 100 

Same u 
Excellent 

(SOI) 1500 2000 c-Si PET 

• Noise valu.es ·are given . for a typical size of each TFf with I 
jlsec CR-RC shaping amplifiers. However these measurements are 

· preliminary because we have not measured enough samples. 
"""' 

The noise ofaMOSFET in the frequency domain is given by the following formula[16]. 

1_ 1__1_ 5_ 
V 1 - 4 KT .3 gm + CJ 

The flrst term is the Nyquist noise and the second is the 1/f (flicker) noise. In the equations below, 
, th~ detecto~ noise sources, Nyquist, shot, 1/f are combined together with the input stage amplifier 

nmse and glVen as number of electrons N detected in a RC-CR shaping interval 'tO as given below 
[ 17]. 

Cn, Ci, are the detector and FET input capacities in pF, 'to- shaping time constant in IJ.sec and 
gm =transconductance of the·FET in !J.A/V. 

The shot noise of the reverse bias current assumes the form 

2 7 
N • = 1 .15 x 10 I · -r o where I is in IJ.A 
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The 1/f noise is given as 

The~ and 1/f noise expressions show the need to keep the combined detector and FET input 
capacity low. Figure 12 shows measurements of the frequency dependence of noise from a-Si:H 
and from a 900°C anneal polysilicon TFT. In Table II below we give the expected noise numbers 
for a detector [300 x 300 11m x 50 11m thick] TFT combination. 

The 1/f noise from various types of TF'f's is the largest noise component and indicates that 
continuing research to decrease this would be a useful avenue for continued development. 
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Table II 

======================================================== 
Noise (e) a-Si:H TFT Poly-NMOS Poly-PMOS 

N~==(~e~~=~~~=;£;z)=======~i========i;========~~====== 
Nso (Shot noise of detector) 72 72 12 
NFD (1/f noise of detector) 7 7 7 
NLT (Thermal noise of Ro) 24 5 5 
Nrr (Thermal noise ofTFT) 107 27 33 
NfT (1/f noise of TFT) 340 480 280 
s:~;;----(S:i~~-~~~-d~~~;~;) __________ 3()CX)" ___________ 3()0() ____________ 3()0() _________ _ 
N'IUI' (Total noise) 370 490 300 
SIN 8.1 6.1 10. 
======~========~======================================== 

aci15 

a-Si:H TFT 
W/L • 350/50 (llm) 
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Fig. 12 Flicker (1/t) arid Nyquist noise in a-Si:H and poly silicon T.F.T. 
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