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ARTICLE OPEN

Rhesus infant nervous temperament predicts peri-adolescent
central amygdala metabolism & behavioral inhibition measured
by a machine-learning approach
D. Holley1,2,4, L. J. Campos 1,2,4, C. M. Drzewiecki2, Y. Zhang3, J. P. Capitanio 1,2 and A. S. Fox 1,2✉

© The Author(s) 2024

Anxiety disorders affect millions of people worldwide and impair health, happiness, and productivity on a massive scale.
Developmental research points to a connection between early-life behavioral inhibition and the eventual development of these
disorders. Our group has previously shown that measures of behavioral inhibition in young rhesus monkeys (Macaca mulatta)
predict anxiety-like behavior later in life. In recent years, clinical and basic researchers have implicated the central extended
amygdala (EAc)—a neuroanatomical concept that includes the central nucleus of the amygdala (Ce) and the bed nucleus of the
stria terminalis (BST)—as a key neural substrate for the expression of anxious and inhibited behavior. An improved understanding
of how early-life behavioral inhibition relates to an increased lifetime risk of anxiety disorders—and how this relationship is
mediated by alterations in the EAc—could lead to improved treatments and preventive strategies. In this study, we explored the
relationships between infant behavioral inhibition and peri-adolescent defensive behavior and brain metabolism in 18 female
rhesus monkeys. We coupled a mildly threatening behavioral assay with concurrent multimodal neuroimaging, and related those
findings to various measures of infant temperament. To score the behavioral assay, we developed and validated UC-Freeze, a semi-
automated machine-learning (ML) tool that uses unsupervised clustering to quantify freezing. Consistent with previous work, we
found that heightened Ce metabolism predicted elevated defensive behavior (i.e., more freezing) in the presence of an unfamiliar
human intruder. Although we found no link between infant-inhibited temperament and peri-adolescent EAc metabolism or
defensive behavior, we did identify infant nervous temperament as a significant predictor of peri-adolescent defensive behavior.
Our findings suggest a connection between infant nervous temperament and the eventual development of anxiety and depressive
disorders. Moreover, our approach highlights the potential for ML tools to augment existing behavioral neuroscience methods.

Translational Psychiatry          (2024) 14:148 ; https://doi.org/10.1038/s41398-024-02858-3

INTRODUCTION
Anxiety disorders are among the most prevalent psychiatric
conditions, affecting an estimated one in four people during their
lifetime [1–3]. These disorders are frequently comorbid with a
wide range of other psychopathologies, including depression, as
well as alcohol- and substance-abuse disorders [4–7], and are
considerably more prevalent in women than in men [8]. Although
a complete understanding of the etiology of these disorders
remains elusive, researchers have begun to characterize the risk
factors that predict their onset. Identifying and investigating these
risk factors promises to yield an improved understanding of
anxiety disorders and will likely contribute to their treatment and
prevention.
An extremely inhibited or anxious temperament during

childhood increases the risk of developing an anxiety disorder
later in life [9–13]. Developmental researchers often evaluate
inhibited or anxious temperaments by measuring a child’s
behavioral inhibition (BI)—that is, their reactivity to novel
stimuli, unfamiliar situations, and strangers [10, 14–16]. Some
aspects of BI emerge early in life and are trait-like and stable; for

instance, a 4-month-old infant’s aversion to unfamiliar stimuli
predicts composite BI measured years later [17, 18]. Although
high BI often predicts the eventual development of anxiety
disorders [9, 19], researchers do not fully understand how infant
temperament relates to childhood or adolescent BI, or its
associated brain function. Because nonhuman primates (NHP)
have a protracted development period, they are well-suited to
build this understanding.
Thanks to our relatively recent evolutionary divergence, NHPs

and humans share a variety of socioemotional, anatomical, and
genetic similarities that facilitate high-impact translational
research, notably including an elaborated prefrontal cortex
[20–23] Because of this, NHPs are excellent models for studying
the mechanisms of early-life risk inherent to a range of disorders
[24–30]. To support such studies, researchers at the California
National Primate Research Center (CNPRC) have, over the past 2
decades, evaluated over 5000 infant (i.e., 3- to 4-month-old) NHPs
as part of its BioBehavioral Assessment program (BBA)—a 25-hour
battery that catalogs each animal’s physiological reactivity,
emotionality, and temperament [31]. One of the temperament

Received: 27 October 2022 Revised: 21 February 2024 Accepted: 1 March 2024

1University of California, Department of Psychology, Davis, CA, USA. 2California National Primate Research Center, Davis, CA, USA. 3Columbia University, Department of Statistics,
New York, NY, USA. 4These authors contributed equally: D. Holley, L. J. Campos. ✉email: dfox@ucdavis.edu

www.nature.com/tpTranslational Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02858-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02858-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02858-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41398-024-02858-3&domain=pdf
http://orcid.org/0000-0003-0839-0288
http://orcid.org/0000-0003-0839-0288
http://orcid.org/0000-0003-0839-0288
http://orcid.org/0000-0003-0839-0288
http://orcid.org/0000-0003-0839-0288
http://orcid.org/0000-0002-3680-1323
http://orcid.org/0000-0002-3680-1323
http://orcid.org/0000-0002-3680-1323
http://orcid.org/0000-0002-3680-1323
http://orcid.org/0000-0002-3680-1323
http://orcid.org/0000-0003-0695-3323
http://orcid.org/0000-0003-0695-3323
http://orcid.org/0000-0003-0695-3323
http://orcid.org/0000-0003-0695-3323
http://orcid.org/0000-0003-0695-3323
https://doi.org/10.1038/s41398-024-02858-3
mailto:dfox@ucdavis.edu
www.nature.com/tp


measures is based on behavior; four others are based on human
handlers’ ratings of trait-like qualities [32, 33] and are similar to
evaluations of BI in children [15, 16, 34]. These infant measure-
ments complement measures of BI and anxious temperament in
adult and adolescent rhesus monkeys (Macaca mulatta) and are
thought to reflect a trait-like inhibited temperament defined by an
enduring tendency to avoid novel and potentially threatening
stimuli and situations [13, 35–40].
Investigations into the neural substrates of anxiety disorders

and BI in humans [11, 41–46], as well as inhibited temperament
and BI in NHPs [35, 38, 47–52], have implicated a distributed
network of brain regions. Notably, this network includes the
central extended amygdala (EAc): a neuroanatomical concept that
encompasses the central nucleus of the amygdala (Ce) and the
bed nucleus of the stria terminalis (BST). The EAc is central to
threat processing [53–57] and is well-positioned to orchestrate
adaptive defensive physiology and behavior [45, 48, 52, 53, 58, 59].
A range of sensory, evaluative, and contextual inputs converge on
the EAc, which projects downstream effector regions to initiate
these defensive responses [13, 53, 59, 60]. The EAc plays a role in
the integration of emotion-relevant signals and produces scaled
behavioral responses to a variety of stimuli—including uncertain
threat stimuli, which reliably elicit adaptive defensive responses
like freezing [61, 62]. Neuroimaging studies highlight the EAc’s
role in threat responding: A study of 592 peri-adolescent rhesus
monkeys from the Wisconsin National Primate Research Center
(WNPRC) and the Harlow Center for Biological Psychology, for
example, linked individual differences in anxious temperament to
variation in glucose metabolism in both the Ce and BST during
exposure to an uncertain threat assay, such that more anxiety-like
behaviors predicted increased metabolism in those regions [37].
Additionally, this study found metabolism within different
components of the EAc to be differentially sensitive to heritable
and non-heritable influences. Metabolism in the BST was co-
inherited with individual differences in freezing in response to a
potential uncertain threat, whereas metabolism in the Ce was not
[37, 63]. This raises the intriguing possibility that Ce metabolism
may be especially plastic and represent the environmental
contributions to the risk of developing anxiety disorders. Notably,
WNPRC animals are raised in small, indoor groups. By comparison,
CNPRC animals are raised in large, outdoor, naturalistic colonies,
and thus can experience a broader range of socioemotional
contexts. To maximally advance our understanding of inhibited
temperament, its neural substrates, and its relation to the
progression of BI across different early-life environments, it is
critical to standardize the methods for cross-facility replication.
The current gold standard used to measure defensive behaviors in
NHPs is hand scoring, during which trained researchers watch
video recordings of animals placed in mildly threatening contexts
and denote the time, type, and duration of behaviors of interest,
such as freezing episodes. Although hand scoring has been
instrumental to our understanding of NHP behavior, it presents
challenges to replicability and can demand large time commit-
ments from expert-trained behavioral coders. The rise of comput-
ing speed, power, and availability presents an opportunity to
develop tools that scale easily and improve study replicability. To
aid in the replicable assessment of inhibited temperament in
NHPs, we developed and validated UC-Freeze, a semi-automated
machine-learning (ML) approach that scores freezing behavior via
unsupervised clustering (code available upon request).
Here, we assessed brain metabolism and used UC-Freeze to

objectively score freezing in 18 peri-adolescent female rhesus
monkeys during exposure to an uncertain threat (i.e., a human
intruder). We analyzed the relationship between infant measures
of BI (and, in exploratory analyses, temperament), and concurrent
measures of peri-adolescent BI (i.e., freezing) and brain metabo-
lism (Fig. 1a). We hypothesized that alterations in the EAc would
be associated with infant and peri-adolescent BI.

METHODS
Animals and selection procedure
Twenty peri-adolescent female rhesus monkeys (M. mulatta, M [SD]= 2.71
years [.44]) that previously underwent BBA testing during infancy (3–4
months) were selected from a pool of ninety-eight potential animals using
a stratified sampling procedure, in which one animal was selected from
each of 20 uniformly distributed bins based on BBA inhibited tempera-
ment scores (Fig. 1b). The stratified selection procedure yielded a subject
pool that captured the full spectrum of variation in 3–4-month-old
inhibited temperament. Because females are at increased risk of
developing anxiety and depressive disorders as they transition to
adolescence [8, 64, 65], in this study, we focused specifically on females.
We subjected each animal to the NEC-FDG paradigm (described in detail
below) and scored their behavior with UC-Freeze. Two subjects were
excluded from our analyses due to problems with video capture that
rendered their videos unusable, making the final number of subjects
n= 18. A power analysis revealed that, in our n= 18 subjects, we had
~80% power to identify a correlation that accounted for ~36% variance
(R Studio version 1.0.153’s pwr package). All housing and experimental
procedures were conducted per guidelines set by the UC Davis
Institutional Animal Care and Use Committee.

Infant BioBehavioral Assessment
The BBA is a 25-hour battery of emotional, cognitive, and biological
assessments that evaluate qualities like resilience to mild challenges,
willingness to interact with novel objects, memory, hypothalamic-pituitary-
adrenal system regulation, and hematology [33, 66]. CNPRC animals
undergo BBA testing during infancy (i.e., between 3 and 4 months of age),
and most live the majority of their lives in large, outdoor colonies of
roughly 100 conspecifics. This approach has been described in detail
elsewhere [33] and has enabled CNPRC researchers to investigate
relationships between various infant measures and the eventual emer-
gence of disorder-relevant phenotypes in naturalistic socio-environmental
settings [30, 67–69].
Relevant to this study, the BBA yields an inhibited temperament (IT)

score for each animal (described in [31, 33, 47]) based on four factors:
Activity in the first 15 minutes of day 1 and a period during day 2, and
Emotionality during those same time points. These factors were previously
identified through the factor analysis of roughly 2000 animals [70]. Activity
includes time locomoting; time NOT hanging from the top or side of the
cage; rate of environmental exploration; and whether the animal drank
water*, ate food*, or was observed crouching in the cage* (*= dichot-
omized due to rarity). Emotionality includes the animal’s rates of cooing
and barking, as well as whether the animal lipsmacked*, displayed threats*,
or scratched* (*= dichotomized due to rarity). Each animal’s early-life
inhibition score was calculated as the mean of its z scored day 1 and day 2
Activity and Emotionality.
At the end of BBA testing, before each animal was returned to its

mother, the technician who administered testing rated each animal on
four composite measures of trait-like infant temperament: vigilance,
nervousness, confidence, and gentleness (see [33], for a full description of
the BBA’s temperament ratings). These measures are intended to
accumulate across the full 25-hour testing period, and reflect an expert
primatologist’s cumulative assessment of the animal, akin to teacher or
experimenter ratings in studies of children.

NEC-FDG paradigm: measuring peri-adolescent behavior &
brain metabolism
To evaluate the relationship between infant measures and peri-adolescent
defensive behaviors, we used the well-validated no-eye-contact condition
(NEC) of the human intruder paradigm [37, 71]. In the NEC context, a
human intruder enters the room and presents their profile to the animal
while making no-eye contact. Integrated brain metabolism during the NEC
was measured using [18F]fludeoxyglucose (FDG) positron emission
tomography (PET). Specifically, each animal was injected with FDG
immediately prior to behavioral testing and then placed in a test-cage
for exposure to the 30-minute NEC context. Immediately after exposure,
animals were anesthetized for PET scanning (Fig. 1a). Because of the
timecourse of FDG uptake, this paradigm is ideal for identifying integrated
brain metabolic differences between individuals during threat processing.

FDG-PET and MRI acquisition. Animals received an intravenous injection
(IV) of [18F]fludeoxyglucose (M= 7.449mCi, sd= 1.512mCi) immediately
before their 30-minute exposure to the NEC context, during which FDG
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uptake occurred. After behavioral testing, animals were anesthetized,
intubated, and transported to undergo a PET scan. Anesthesia was
maintained using 1–2% isoflurane gas. FDG and attenuation scans were
acquired using a piPET scanner (Brain Biosciences) located within the
Multimodal Imaging Core at the CNPRC. Approximately 1 week after
exposure to the NEC-FDG paradigm, anatomical 3D T1-weighted scans
were obtained using a 3 T Siemens Skyra scanner, a dedicated rhesus
8-channel surface coil, with inversion-recovery, fast gradient echo
prescription (TI/TR/TE/Flip/FOV/Matrix/Bandwidth:1100ms/2500.0ms/
3.65ms/7°/154mm/512 × 512/240 Hz/Px) with whole brain coverage
(480 slice encodes over 144mm) reconstructed to 0.3 × 0.3 × 0.3 mm on
the scanner).

FDG-PET and T1-MRI processing. All T1-weighted images were manually
masked to exclude non-brain tissue by LJC. A study-specific T1 anatomical
template was created using an iterative procedure with Advanced
Normalization Tools [72, 73] (ANTS) in order to standardize our study-
specific template for cross-facility replication, we first aligned each
subject’s T1 anatomical image to the National Institute of Mental Health
Macaque Template (NMT) using a rigid body registration. The NMT
template provides a common platform for the characterization of
neuroimaging results across studies [74]. A non-linear registration was
then performed using a symmetric diffeomorphic image registration and a
.25 gradient step size; a pure cross-correlation with cost-function with a
window radius 2 and weight 1; the similarity matrix was smoothed with
sigma= 2; and the process was repeated at four increasingly fine levels of
resolution with 30, 20, 20, and 5 iterations at each level, respectively. The
average of all 20 individual subjects’ T1 images in NMT space was
computed and taken to be the study-mean. Similarly, the non-linear
deformation field was also averaged and taken to be the deformation
mean. The deformation mean was then inverted, and 15% of the
deformation was applied to the study mean, to obtain the first iteration

of the study-specific template. This process of averaging was repeated four
times to obtain a final study-specific T1-weighted MRI template that
matched the NMT template, and optimally reflected the brain morpho-
metry of subjects of this study.
To get each subject’s FDG-PET scan into this template space, each

animal’s FDG-PET image was aligned to its respective T1 anatomical image
using a rigid body mutual information warp, and the transformation
matrices from T1 to the study-specific NMT template space was then
applied to the FDG-PET image to obtain PET images in NMT
template space.
Once in standard space, the FDG-PET images were grand mean scaled to

the average metabolism across the brain. To facilitate cross-animal
comparisons, images were spatially smoothed using a 4-mm FWHM
Gaussian kernel.
A priori regions of interest (ROI) were drawn for the motor cortex, as well

as the two major components of the EAc, the Ce and the BST. All ROIs were
manually drawn on the study-specific T1 template according to the
Paxinos atlas [75] and verified by members of the team (LJC, DH, ASF).

UC-Freeze: an unsupervised-clustering approach to measuring
freezing
To accurately and reproducibly assess freezing behavior during the NEC,
we developed UC-Freeze: a semi-automated ML approach that uses
unsupervised clustering to score freezing behavior. We targeted the
definition of freezing used in previous NEC NHP studies [35, 37, 63]; that is,
any period of 3 or more seconds during which the animal displayed a
tense body posture and no movement, other than slow movements of
the head.
UC-Freeze assesses freezing by first de-composing 30-fps full-motion

video collected from each subject into individual frames. It then converts
the frames to grayscale and vectorizes them such that a two-dimensional
array of numeric values corresponding to various shades of gray represents

Fig. 1 Study design and selection procedure. a Study design: At 3–4 months old, all candidate animals were evaluated for a range of infant
measures during the BBA. Relevant to our study, the BBA yields objective inhibition scores and other temperament ratings for each animal. At
2–3 years old, animals selected for our study were removed from their home colonies, injected with the radiotracer [18F]fludeoxyglucose
(FDG), and behaviorally assessed via a 30-minute no-eye-contact (NEC) condition of the human intruder paradigm, after which PET scans were
administered to evaluate glucose metabolism during the NEC. b Selection procedure: The selection procedure for our study: 20 of 98
candidate peri-adolescent animals were initially selected based on a stratified sampling of 1 animal from each of 20 bins defined by z scored
inhibited temperament scores, assessed during infancy as part of the BBA.
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each frame’s pixels. UC-Freeze next computes the coefficient of
determination (r2) between each pair of consecutive frames in order to
quantify the degree of change between frames. We henceforth refer
to these r2 values as similarity scores. Lower similarity scores correspond to
larger differences between frames, which suggest the animal is in motion
(Fig. 2a). To ensure robustness against dropped video frames and video
aliasing that can occur as a function of lighting, UC-Freeze then denoises
the signal by substituting outlier similarity scores (thresholded as any score
at or below an r2 of .93) with the modal similarity score before passing the
corrected vector through an adjustable median filter. (A 3-frame kernel was
used in our analyses and is recommended as a default setting.) This
process maintains sensitivity to the behavior of interest while buffering
against frame-to-frame variation. These filtered similarity scores comprise
the dataset that is passed into UC-Freeze’s unsupervised clustering
algorithm (Fig. 2b), which leverages one-dimensional Gaussian mixture
modeling (GMM).
GMM is a form of unsupervised machine learning that assumes non-

normal datasets are a mixture of standard normal distributions [76]. An
advantage of GMM is its ability to cluster effectively by estimating
probability densities of one-dimensional data, such as our subjects’
similarity scores, before making probabilistic assignments to clusters
based on probability-density estimates. GMM uses expectation max-
imization (EM) to estimate the underlying Gaussian distributions that
comprise a dataset. UC-Freeze adds similarity scores to the model one at
a time. Before each new similarity score is added, EM’s expectation step
estimates the model’s probability distributions. After a new similarity

score has been added, EM’s maximization step refines the model’s
distributions based on the inclusion of the new data. These processes are
repeated until the model is stable; that is, until the expectation step
correctly predicts the maximization step. UC-Freeze iterates over each
subject’s similarity scores 300 times, each time randomizing the order of
its input, to converge on a highly stable model unique to each subject
(Fig. 2c, d). Here, we have calibrated UC-Freeze to cluster each animal’s
similarity scores into three Gaussian distributions: the lowest of which is
assumed to reflect freezing; the highest of which is assumed to represent
motion; and, between them, a third distribution captures similarity
scores that are too ambiguous to confidently classify as either freezing or
motion, which makes UC-Freeze more robust against spurious classifica-
tions (Fig. 2e). If the animal does not display a range of movement
(i.e. both freezing and activity), the GMM approach can yield incorrect
estimates for the distribution of each class of behavior. To address this,
we use a semi-automated approach, where a human confirms the
accurate classification of freezing/activity by watching video clips, and
manually setting the point estimates for the 3 distributions, if necessary.
Critically, the manual setting of point estimates does not need to be
exact because it is only required in edge cases, when the animal does
not freeze/locomote, and only requires that all frames be classified as
freezing/locomotion. Thus, this approach is semi-automated, and
ensures reliable data from all videos. This represents a significant
improvement over previous approaches in mice, which require manually
setting thresholds for all videos (e.g. ezTrack [77], VideoFreeze [78], and
FreezeFrame (https://actimetrics.com/products/freezeframe/).

Fig. 2 UC-Freeze: an unsupervised-clustering approach to semi-automated behavioral scoring. a UC-Freeze decomposes 30-fps video into
individual frames, converts each frame to grayscale, and computes the coefficient of determination value (i.e., r2, or similarity score) for pairs of
consecutive frames. b UC-Freeze next filters the similarity scores and arrays them along the timecourse of the video, so that the full timecourse
is described as a series of similarity scores. The similarity scores are then passed into our unsupervised-clustering algorithm, which first
c arranges them as a histogram before d computing a probability density function for the similarity scores by iterating over a randomly
seeded one-dimensional GMM 300 times. In edge cases, the output of UC-Freeze can be manually overridden (see Methods). e Example
output: UC-Freeze generates a unique model for each subject. Our program then queries each subject’s similarity scores against the model’s
putative freezing distribution and recapitulates the timecourse of the video as a series of posterior probabilities indicating each similarity
score’s likelihood of belonging to that distribution. Finally, UC-Freeze uses a combination of anomaly-detection and thresholding operations
to find 90-frame sequences during which the posterior probability of every score’s membership in the freezing distribution’s rightmost 25%
density is 95% or greater, and classifies those events as freezing.
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Once a model has been created for a subject, UC-Freeze recursively
queries the model to determine the posterior probability of every similarity
score’s membership in its putative freezing and motion distributions. The
posterior probabilities of every score’s membership in the motion
distribution are summed to compute an objective measure of an animal’s
motor activity. To objectively measure freezing, UC-Freeze then combines
Tukey’s anomaly-detection [79] with a thresholding operation to identify
similarity scores that have a 95%-or-greater chance of belonging to the
rightmost 25% of the freezing distribution’s probability density. If 90 or
more consecutive frames (i.e., 3 or more seconds) meet this criterion, UC-
Freeze automatically classifies that segment as freezing (Fig. 2f). Lack of
movement for <3-seconds is not classified as freezing. Freezing bouts are
coded as uninterrupted freezing for more than 3 seconds. If an animal
freezes for 4 seconds, moves, and then freezes for another 10 seconds, this
would be classified as two freezing bouts (i.e., freezing bouts of 4 seconds
and 10 seconds, respectively). Importantly, because this approach can fail if
an animal very rarely or almost always freezes, this approach is not fully
automated. Each video was reviewed, and the thresholding operation was
manually adjusted in two cases to ensure edge cases did not disrupt the
data (DH). In these cases, neither animal moved sufficiently for UC-Freeze
to create a GMM with meaningfully dissimilar distributions.

Freezing established by human raters
To verify UC-Freeze, human raters coded a series of 80 video clips as
freezing based on established criteria: any period of 3 or more seconds
during which the animal displayed a tense body posture and no
movement, other than slow movements of the head. Because UC-Freeze
cannot distinguish between “tense” body posture, human raters also
coded a series of 80 videos clips and classified animals as having “tense
body posture” or not. As in previously published work, human raters
watched videos at regular speed.

Statistical analyses
Pearson correlation coefficient (r) values describing the relationships
between infant measures, and peri-adolescent measures were performed
in Python v3.8.3 using the statsmodels module [80]. Freezing data were
log-transformed to ensure data were normally distributed. Results of all
relationships tested have been reported in the text and/or in Figs. 3–5.
Analyses of interrater reliability (IRR) used to validate UC-Freeze were
performed in Python v3.8.3 using the sklearn.metrics module [81]. An
independent-samples t test to check for significant differences in animals’
freezing behavior between the first and second halves of the NEC context
was performed in Python v3.8.3 using the scipy.stats module [82].
Relationships between brain metabolism and other phenotypic mea-

sures were performed based on a priori ROIs in the motor cortex, Ce, and

BST. FDG-PET values were extracted from each ROI (bilaterally), and the
mean metabolism within each region was computed. To ensure our results
were robust to a voxelwise approach, exploratory voxelwise analyses were
also performed using FSL’s nonparametric permutation inference tool
randomize [83]. Voxelwise analyses were thresholded at p < 0.05,
uncorrected.

RESULTS
Validation: comparing UC-Freeze to human raters
To validate UC-Freeze’s ability to accurately and reliably score
freezing behavior, we compared its semi-automated classifica-
tions to the manual classifications of three raters who had
observed rhesus behaving in experimental and naturalistic
conditions, and who were instructed on how to identify freezing
in rhesus using criteria from previous publications [35, 37, 63].
We intentionally chose raters with a diversity of hand-scoring
experience in order to model the challenges labs are likely to
face as they seek to implement, or scale, studies that require
hand scoring (i.e., the situations in which UC-Freeze would be
most valuable). We randomly selected four animals for our
analysis. From each animal’s NEC video, we randomly generated
20 3-second video segments, 10 of which were classified by
UC-Freeze as freezing, to yield a total of 40 freezing segments
and 40 non-freezing segments. The raters were not given any
information about the proportion of freezing vs non-freezing
segments, and worked in isolation to score every segment as
either freezing or non-freezing. We evaluated IRR by calculating
Cohen’s kappa values for UC-Freeze and each rater. In all three
cases, UC-Freeze demonstrated “moderate to substantial”
agreement with the rater, well above chance levels, and
approximated human-level IRR (Fig. 3c). Next, we estimated
UC-Freeze’s sensitivity and specificity—that is, its ability to detect
true positives (freezing) and negatives (non-freezing), respec-
tively. Because there was variation between raters’ scoring, we
used consensus among raters for each video segment,
calculated as the mode of scores, as a proxy for “true outcomes”
(e.g., if Rater 1 scored freezing in a given video but Raters 2 and
3 did not, the “true outcome” was coded as non-freezing). Using
this approach, UC-Freeze exhibited 84% sensitivity and 89%
specificity. Finally, to evaluate pairwise internal reliability we
calculated the mean Cohen’s kappa derived from pairs of raters

Fig. 3 Validating UC-Freeze. a Subjects’motor activity, as coded by UC-Freeze, significantly predicted integrated motor cortex metabolism in
a brain region of interest defined a priori by the coordinates x=−0.448, y=−2.785, and z= 19.091 (inset). b A posteriori voxelwise analyses
revealed subjects’motor activity as a significant predictor of integrated metabolism in regions of motor cortex (blue arrows). Together, these
findings validate UC-Freeze’s ability to recapitulate well-established brain-behavior relationships. c Measures of interrater reliability (IRR),
Cohen’s kappa [84], computed in the scoring of 80 3-second video segments for freezing, showed that UC-Freeze had “moderate to
substantial” interrater agreement with each of three human raters; performed best when compared to human raters’ consensus (magenta;
kappa= 0.73, p < 0.001); and approximated mean human-vs-human IRR (gray; kappa= 0.77, p <0.001), calculated by round-robin comparison.
Together, these findings validate UC-Freeze as a reliable tool for scoring freezing in rhesus.
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(kappa= 0.77, p < 0.001), and between UC-Freeze and the raters’
consensus (i.e., modal) classifications (kappa= 0.73, p < 0.001),
confirming the substantial, above-chance agreement [84]
between each pair of raters, and between the average rater
and UC-Freeze (Fig. 3c). Finally, although the freezing definition
has required the animal to maintain a “tense body posture”, UC-
Freeze does not account for posture. We hypothesized that this
may not be problematic, as UC-Freeze was consistent with
human ratings of freezing and humans can be inconsistent
when coding “tense body posture”. To further test this
hypothesis, we had five humans classify “tense body posture”
across 80 3-second video clips of UC-Freeze freezing bouts that
were selected by an expert to contain “tense body posture”
(50%) or not (50%). Results demonstrated very little consistency
across human raters, with the average between-rater agreement
of kappa= 0.215 (average R2= 0.08), with only 6/80 videos
achieving unanimous agreement of all five raters. Taken
together, these analyses validate UC-Freeze as a reliable,
sensitive, and specific tool for classifying freezing behavior in
rhesus, at a standard comparable to that of human raters.

Validation: UC-Freeze detects established brain-behavior
relationships
To further validate UC-Freeze, we first examined the relationship
between behavior and well-established metabolic correlates.
Specifically, we looked for a relationship between subjects’
movement about their enclosures during the NEC, automatically

coded by UC-Freeze as motor activity, and variation in glucose
metabolism in subjects’ motor cortices using an a priori ROI. These
results demonstrated a significant positive association between
motor activity and motor cortex metabolism, as expected
(r= 0.55, p < 0.05; Fig. 3a). These results were corroborated by
voxelwise analysis showing a significant relationship between
motor activity and metabolism in motor cortex regions (p < 0.05,
uncorrected; Fig. 3b). These proof-of-principle findings confirm
that UC-Freeze can recapitulate a well-established brain-behavior
relationship.

Exploring UC-Freeze automated measures
To derive behavioral measures for subsequent correlational
analyses, we used UC-Freeze to compute total freezing duration,
number of freezing episodes, and mean freezing episode during
the NEC context for each animal (Fig. 4a). We observed substantial
variability between animals: UC-Freeze identified freezing epi-
sodes in all 18 subjects, ranging from 3 episodes in our most
infrequent freezer, to 90 in our most prolific freezer. UC-Freeze
detected 853 episodes (~3 hours 15 minutes) of total freezing
across all animals, which accounted for 10.9% of their total
behavior during the NEC. Although we hypothesized that animals
would eventually habituate to the presence of the human intruder
during the 30-minute NEC context, an analysis of the mean total
duration our animals spent freezing during the first and second
halves of the NEC suggested that the animals did not habituate
(independent-samples t test: t(34)= 0.27, p= 0.79; Fig. 4b).

Fig. 4 Infant nervous temperament predicts peri-adolescent defensive behavior. a Heatmap of associations between infant BBA measures
and peri-adolescent NEC measures (*p < 0.05). b We found no association between BBA inhibition and total NEC freezing duration (r= 0.37,
p= 0.127). c Experimenter-rated BBA nervousness, however, was a significant predictor of total NEC freezing duration (r= 0.50, p < 0.05).
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UC-Freeze detected large individual differences in animals’
split-halves freezing behavior: Some animals froze less during
the second half of the NEC, others froze considerably more
during the second half, and still others exhibited no notable
difference in freezing between the two halves (Fig. 4b).
To capitalize on the ability of UC-Freeze to analyze large

datasets, we next examined freezing trends on a per-minute basis
by calculating the grand mean average of the animals’ probability
of freezing during each of the NEC context’s 30 1-minute bins. Like
our split-halves analysis, individual animal’s behavior varied
widely, but no overall linear trend in minute-by-minute freezing
was observed (r=−0.25, p= 0.18). These findings are consistent
with the view that, on average, our animals’ defensive posture did
not substantially change during the NEC context.

Infant measures predict peri-adolescent defensive behavior
To test whether infant measures predict variation in defensive
behavior in adolescence, we next compared our animals’ infant
measures to their peri-adolescent freezing and motor activity
measured during the NEC (Fig. 5a). We observed no significant
relationship between infant-inhibited temperament scores and
peri-adolescent total number of freezing episodes (r= 0.37,
p= 0.127), total freezing duration (r= 0.24, p= 0.328; Fig. 5b), or

mean freezing-episode duration (r=−0.14, p= 0.580) during the
NEC context. We further tested the relationships between freezing
and BBA experimenter ratings for trait-like vigilance, nervousness,
confidence, and gentleness. Although the overall measure of
inhibited temperament did not significantly predict a greater
tendency to freeze during the NEC context, infant nervousness
significantly predicted total freezing duration (r= 0.50, p < 0.05;
Fig. 5c) and mean freezing-episode duration (r= 0.52, p < 0.05).
These findings point toward infant nervous temperament as a
potential target of future studies aimed at identifying extremely
early-life risk factors for the eventual development of anxiety
disorders.

Freezing and concurrent FDG
To test whether infant measures predict variation in regional brain
metabolism during adolescence, we examined the relationship
between EAc metabolism and subjects’ defensive behavior as
classified by UC-Freeze. Results revealed a significant relationship
between animals’ integrated Ce metabolism and total time spent
freezing, as well as the number of freezing episodes (Fig. 5a).
There was no significant relationship between BST metabolism
and total freezing duration (r= 0.32, p= 0.20), nor other UC-
Freeze measures of defensive behavior.

Fig. 5 Peri-adolescent Ce metabolism predicts infant BBA measures and concurrent defensive behavior. a Heatmap of associations
between PET-obtained, ROI-defined regional metabolism (y axis) and infant BBA measures (x axis, left) as well as concurrent NEC behaviors as
automatically scored by UC Freeze (x axis, right; *p < 0.05). b The association between Ce ROI metabolism and BBA inhibition was not
statistically significant (r= 0.32, p= 0.196). c The association between Ce ROI metabolism and total freezing duration during the NEC, however,
was significant (r= 0.48, p < 0.05). d The location of the Ce (shown on the Paxinos et al. atlas, left) corresponds to a voxelwise analysis (middle
and right) that revealed a significant correlation between NEC freezing behavior and integrated metabolism in a region of the dorsal
amygdala encompassing the Ce (p < 0.05, uncorrected). No significant relationships were identified between BST metabolism and infant BBA
measures or concurrent defensive behavior (not shown).
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ROI-based analyses supported by voxelwise analyses of subjects
FDG-PET scans, obtained immediately after exposure to the NEC
context (Fig. 1a), revealed a significant relationship between
metabolism within an area of the dorsal amygdala encompassing
the Ce and subjects’ total freezing duration (r= 0.48, p < 0.05), as
well as their total number of freezing episodes (r= 0.48, p < 0.05).
These findings are consistent with previous human [42, 85] and
NHP studies [35–37] documenting elevated Ce activation and
metabolism, respectively, during threat processing.

DISCUSSION
We developed, validated, and field-tested UC-Freeze, an ML tool
for analyzing anxiety-like behavior in rhesus through the semi-
automated classification of freezing. Consistent with well-
established brain-behavior relationships, UC-Freeze uncovered a
significant positive correlation between freezing behavior and
increased metabolism in a dorsal amygdala region encompassing
the Ce. Because of the increased risk of anxious psychopathology
among adolescent females [8], we focused exclusively on a peri-
adolescent female cohort. By comparing subjects’ infant BI and
temperament to their freezing behavior assessed via UC-Freeze,
we were able to link infant differences in experimenter-rated BBA
nervous temperament to peri-adolescent differences in defensive
behavior: Higher nervous temperament ratings by CNPRC staff
during infancy predicted more freezing during peri-adolescent
exposure to the NEC context.
Large-scale FDG-PET studies of young rhesus at the WNPRC and

Harlow Labs have revealed a robust relationship between Ce
metabolism and NEC-induced freezing [37, 63]. We replicated this
finding at the CNPRC—in animals that have had dramatically
different upbringings—by identifying an area of the dorsal
amygdala, encompassing the Ce, in which metabolic activity was
a significant predictor of NEC-induced freezing. Further, we
extended previous work by identifying infant temperament
measures that predict peri-adolescent behavior and brain
function.
Intriguingly, the Wisconsin researchers have also shown that Ce

metabolism is largely attributable to non-heritable influences
[37, 63], and can be altered by the overexpression of the plasticity-
inducing gene, NTF3 (neurotrophic factor-3) [86]. In CNPRC
animals, we found that Ce regional metabolism was associated
with concurrent peri-adolescent freezing, but not significantly
correlated with infant-inhibited temperament. Other predicted
relationships between infant-inhibited temperament and peri-
adolescent freezing, as well as BST metabolism, were not
statistically significant. While we interpret these findings cau-
tiously in light of our study’s limited statistical power, these
outcomes hint at the Ce’s potential plasticity in response to
environmental perturbations. In their large, outdoor, multi-
generational social groups, the CNPRC’s animals learn from other
conspecifics, each with their own idiosyncratic temperament, and
experience the formative complexities of social bonds and
hierarchies. Raised in this rich social setting, these animals are
likely to develop nuanced ways of interacting with others in a
variety of contexts, just as humans do. Because of that, the
CNPRC’s naturalistic conditions provide a unique opportunity to
investigate how complex social environments can influence
individual differences in BI over time—possibly through Ce
plasticity (among other mechanisms).
Together, these observations point to the possibility that Ce

metabolism may be particularly relevant to understanding how
early-life experience and environment affect the risk of developing
anxiety disorders. Future work will be necessary to test this
hypothesis and build support for our reported non-significant
relationships. Nevertheless, our findings continue to implicate the
EAc—and specifically the Ce—as prominently involved in the
development of anxious pathology and the expression of

defensive behavior. These findings should be considered along-
side evidence implicating the EAc in a range of appetitive,
consummatory, and addictive behaviors [58, 87–94], as we work
toward a more refined understanding that can guide the
development of novel interventions [48, 95].
An improved understanding of extremely early-life risk factors

for anxiety disorders could lead to premorbid interventions that
prevent their onset. In both humans and rhesus, it is challenging
to measure behavioral risk factors due to a general lack of motor
coordination and the immaturity of threat-response repertoires
[56]. Overcoming this challenge could lead to early interventions
aimed at blunting organizing effects that contribute to increased
risk. Our finding that experimenter-rated nervous temperament in
infants predicts peri-adolescent BI in rhesus is consistent with
human studies. Such studies have shown that human infants’
aversive reactions to negatively valenced stimuli predict BI in
childhood [13, 18] and foreshadow the development of anxiety
disorders [9, 12, 14, 19]. Our study contributes to an improved
understanding of the development of anxiety by directly
examining the relationship between infant temperament and
peri-adolescent brain function during threat processing. These
findings could provide targets for future studies evaluating the
longitudinal effects of infant interventions on disordered brain-
behavior relationships.
UC-Freeze lowers the bar for other groups to replicate or extend

these findings in animals with a diversity of early experiences.
More generally, UC-Freeze demonstrates the potential for ML tools
to augment existing behavioral neuroscience approaches. A
reliance on hand scoring can make behavioral paradigms
challenging to scale, since the time required to score each video
may be several times greater than the duration of the video itself.
Scoring behavior during a 30-minute paradigm administered to
hundreds of animals—such as in Fox et al. (n= 592) [37]—can
impose a significant burden. Nevertheless, the benefit of increased
statistical power provided by scale often justifies these efforts.
One goal of our study was to provide a proof-of-principle solution
to the hand-scoring bottleneck that can arise when behavioral
studies are scaled to large cohorts. When video-capture conditions
such as lighting and camera position are held constant, UC-Freeze
only needs to be manually adjusted in edge cases; for instance, to
accurately score an animal that always, or never, freezes. Apart
from these edge cases, UC-Freeze operates automatically,
trivializing the time commitment required to score behavior,
and freeing researchers to engage in other tasks. In addition, UC-
Freeze can integrate with modern neuroscientific techniques that
enable millisecond-by-millisecond temporal recording and manip-
ulation [96–101]. It is worth noting that UC-Freeze diverges from
the classical definition of freezing, by not assessing “tense body
posture”. Validation analyses confirmed that humans can be
inconsistent in applying this definition, and that UC-Freeze was
sufficient to identify predicted brain-behavior relationships. That
said, it is unclear how this definition will extend to other contexts,
beyond NEC, and the importance of classifying posture along with
freezing remains an open question for the field. Ultimately, other
ML-based approaches that use deep-learning posture estimation
and behavioral classification are likely to outperform UC-Freeze,
providing fully automated and more accurate identification of
freezing bouts, as well as enabling a more complete assessment of
behavior. Unfortunately, these tools do not yet provide “out of the
box” functionality, often requiring significant time investments
and technological expertize. Until these tools become validated
and widely available, UC-Freeze’s semi-automated approach can
function as a stopgap to dramatically decrease the amount of
effort required to assess freezing.
Although our study was reasonably well-powered by NHP

neuroimaging standards, it was unlikely to detect anything less
than a large effect as a significant predictor of brain-behavior
relationships. Contrary to our predictions, our study did not reveal
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a significant correlation between infant-inhibited temperament
and peri-adolescent defensive behavior (though the non-
significant relationship was in the predicted direction; Fig. 5b).
However, we refrain from further interpreting this result given the
limited statistical power of our study. Previous work has
demonstrated infant inhibited temperament to significantly
predict lasting inhibited tendencies (i.e., reticence to reach for a
food reward) [47], and freezing during NEC has been shown to be
moderately stable over time, with the correlation between
assessments ~6 months apart being correlated at ~r= 0.6 [35].
A power analysis revealed that, in our n= 18 subjects, we had
~80% power to identify a correlation that accounted for ~36%
variance (R Studio version 1.0.153’s pwr package). Nevertheless,
the 95% confidence interval for the correlation between infant-
inhibited temperament on freezing ranged from −0.26 to 0.64,
which is consistent with the possibility that there is a modest
relationship between infant-inhibited temperament and adoles-
cent freezing. It will be important to increase statistical power to
appropriately assess this relationship. A lack of significant
correlation could be important for understanding the instability
of BI, differences in the developmental expression of BI, and/or
differences between the methodologies for infant and adolescent
assessments. We remain interested in the potential relationship
between inhibited temperament and peri-adolescent defensive
behavior, and are engaged in well-powered studies that explore it
thoroughly.
Our findings underscore the importance of examining the

developmental timecourse of BI. Peri-adolescent BI reflects both
inborn temperament and a multitude of environmental influences
that accumulate during maturation. Moving forward, it will be
important to scale-up these efforts, investigate sex differences,
and integrate these findings with mechanistic studies.

DATA AVAILABILITY
MRI data has been shared with the PRIMatE Data Exchange (PRIME-DE; https://
fcon_1000.projects.nitrc.org/indi/indiPRIME.html) Statistical maps have been shared
with Neurovault.org (https://identifiers.org/neurovault.collection:16616). All data are
available upon request.

CODE AVAILABILITY
UC-Freeze python code is available on github (https://github.com/foxlab-/uc-freeze).
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