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Using polarized optical and magneto-optical spectroscopy, we
have demonstrated universal aspects of electrodynamics asso-
ciated with Dirac nodal lines that are found in several classes
of unconventional intermetallic compounds. We investigated an-
isotropic electrodynamics of NbAs2 where the spin-orbit coupling
(SOC) triggers energy gaps along the nodal lines. These gaps man-
ifest as sharp steps in the optical conductivity spectra σ1(ω). This
behavior is followed by the linear power-law scaling of σ1(ω)
at higher frequencies, consistent with our theoretical analysis
for dispersive Dirac nodal lines. Magneto-optics data affirm the
dominant role of nodal lines in the electrodynamics of NbAs2.

nodal-line semimetal | optical conductivity | magneto-optics |
Dirac fermions

Nodal-line semimetals (NLSMs) are newly discovered quan-
tum materials with linear bands and symmetry-protected

band degeneracies. Compared with 3D Dirac/Weyl semimetals
(Fig. 1A), the band touching in NLSMs (Fig. 1 B and C) is not
constrained to discrete points but extends along lines in the Bril-
louin zone (BZ) (1–4). This unconventional band structure has
been predicted to give rise to topologically nontrivial electronic
phases (3). For example, the first Weyl semimetal phase discov-
ered in the NbAs family (5–7) is ultimately rooted in nodal lines
(8, 9). Despite intense theoretical interest (10–13) and numer-
ous material predictions (3, 4), experimental results for NLSMs
are sparse, with ZrSiS (14, 15) and PbTaSe2 (16) being the only
examples. The dominant tool in the search for topological nodal
systems is angle-resolved photoemission spectroscopy (ARPES).
In addition to ARPES, nontrivial topologies in quantum mate-
rials are often revealed via nontrivial response functions (4).
Optical and magneto-optical probes are particularly well suited
for investigating nontrivial bulk response functions (17, 18), sub-
tle surface states (19), and Berry curvature effects [through
nonlinear optics (4, 20)]. The nontrivial response functions in
general NLSMs registered through power-law analysis are the
subject of this study.

Power-law behavior of the real part of the optical conductivity
(σ(ω)=σ1(ω) + iσ2(ω)) over extended frequency [i.e., σ1(ω)∼
ωd−2 (21–23)] is a hallmark of Dirac-like nodal points in solids.
Linear (σ1(ω)∼ω) and constant optical conductivity has been
confirmed in 3D [e.g., pyrochlore iridates (24), Dirac semimetal
Cd3As2 (25), and ZrTe5 (26)] and 2D [e.g., graphene (27)],
respectively. Note that the linear power-law conductivity may
not extrapolate to zero (25) due to, for exampe, overlapping
intraband contributions (28). Nevertheless, the constant (posi-
tive) slope of conductivity (dσ1/dω= const .) is still anticipated.
Here, we show experimentally and theoretically that energy-
dispersive Dirac nodal lines can also give rise to linear optical
conductivity. Similar to other Dirac materials (25, 27), the power
law of σ1(ω) may be terminated at the lowest frequencies by
the opening of the low-lying gap 2∆ in Dirac band dispersion.
However, at ω> 2∆, the linear dispersion persists and inevitably

gives rise to the attendant power law of σ1(ω). In this regard,
we refer to gapped nodal lines simply as nodal lines, and the
node is understood as the “Dirac point” of the massive Dirac
band (17, 29).

We explore the electrodynamics of nodal lines using NbAs2 as
a case study. The observed power-law behaviors in σ1(ω) spectra
are corroborated by density functional theory (DFT) calcula-
tions. Furthermore, the Dirac linear dispersion perpendicular
to the lines has been identified via the square-root scaling of
Landau levels (LLs) in magneto-optics, a fingerprint of systems
with nodal points in the electronic structure (30–32). The notion
of nodal lines established here through unusual response func-
tions might also explain the exotic magnetoresistance properties
of NbAs2 (33–35).

Characteristic infrared responses of nodal intermetallic sys-
tems and their relationship to the electronic structure of
Dirac/Weyl semimetals are displayed in Fig. 1. While the opti-
cal responses of the Weyl semimetal (Fig. 1A) and flat NLSM
(Fig. 1B) have been studied extensively (17, 23–26, 28, 36), the
response of the dispersive nodal line (Fig. 1C) remains underex-
plored (18). The optical conductivity spectrum of the dispersive
nodal line (Fig. 1C) resembles that of Weyl cones at low energy,
where σ1(ω)∼ω or equivalently dσ1/dω= const . Above cer-
tain photon energy when the entire dispersive region is being
interrogated by infrared photons, the conductivity power law
approaches that of the flat nodal line. This characteristic behav-
ior of σ1(ω) outlines a straightforward approach in the search
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Fig. 1. Band structure schematic (Left) and corresponding optical conduc-
tivity (Right) for 3D Weyl cones (A), flat nodal line (B), and dispersive nodal
line (C). Red color in the band structure schematic indicates filled electronic
states. Gray lines and dashed red lines in the optical conductivity repre-
sent gapless and gapped responses, respectively. In A and B, the optical gap
comes from finite doping (EF 6= 0), while the electronic structure is gapless.
Note that the conductivity spectra in A apply to Dirac nodes as well. For
C, the gap originates from SOC, and the bands are dispersive along the line
direction kline. The orange line in C is the nodal line projected in momentum
space.

and investigation of the NLSM physics. We stress that in realis-
tic materials, the energy dispersion of the nodal structure, finite
offsets of the Fermi energy (EF 6= 0), and/or energy gaps derived
from spin-orbit coupling (SOC) lead to deviations from previous
predictions that ignored these factors (36, 37).

A dispersive nodal line is described by the Dirac-like Hamilto-
nian (SI Appendix, section 2) with the band dispersion

ε±=±
√

∆2 + v2
1 k

2
1 + v2

2 k
2
2 + v‖k‖, [1]

where k‖ is the momentum along the nodal line, while k1 and
k2 are those perpendicular to the nodal line. As schematically
shown in Fig. 1C, there is a gradual energy shift along the kline
with slope quantified by the “velocity” v‖. Perpendicular to the
nodal line, the dispersion is Dirac-like with the asymptotic veloc-
ities v1 and v2. SOC induces a finite mass ∆. We have derived an
analytical form for the real part of the optical conductivity of a
generic nodal-line conductor with or without SOC (SI Appendix,
section 2):

σi
NL(ω) =

N

16

e2

h
k0(ω)

v2
i

v1v2

(
1 +

4∆2

ω2

)
Θ(ω− 2∆op), [2]

where vi is the asymptotic velocity along the electric field direc-
tion. Note that along the nodal-line direction, v3 = 0 and the

corresponding σ3
NL vanishes. N is the degeneracy of nodal lines,

e is electron charge, h is Planck’s constant, k0(ω) is the effec-
tive nodal-line length in k-space where optical transition actually
takes place, Θ is the step function, 2∆ is the gap introduced by
SOC, and 2∆op is the optical gap (2∆ + 2EF ). If the nodal-line
length is independent of frequency [k0(ω) = k0], the simple flat
optical conductivity σNL(ω)∼ e2

h
k0 occurs above the gap. How-

ever, once frequency-dependent nodal-line length is considered,
the optical conductivity attains the same frequency dependence
as k0(ω). Therefore, σNL(ω) provides direct access to the com-
plex geometry of a nodal line in k-space via its length k0(ω). For
linearly dispersive nodal lines as described by Eq. 1, we find that
k0(ω) = ω/v‖ and the interband optical conductivity scales as
σ1(ω)∼(v2

i /v1v2)ω. We remark that since v3 = 0 along the nodal
line, this σ1(ω) resembles the optical conductivity of strongly
anisotropic 3D Dirac points (see SI Appendix, section 2C for
more discussion).

We display in Fig. 2 the results of the ab initio calcula-
tions of the nodal lines (orange) in NbAs2 obtained by using
DFT. Notably, the nodal lines in NbAs2 are open-ended and
extend indefinitely through multiple BZs. The directionality of
the open nodal lines implies huge optical anisotropy since the
dissipative part of the conductivity σ1(ω) is predicted (18, 36,
37) to vanish along the nodal-line direction (Fig. 1 B and C).
We remark that nodal lines are usually not fixed along high
symmetry lines and therefore can elude only a cursory band
structure inquiry. To avoid this potential shortcoming, we have
performed 3D band structure calculations for NbAs2 near Y -
X1 and I1-Z (see Fig. 2B and see Fig. 4 C and D) in our
search for the nodal-line dispersion in this compound (see
also SI Appendix, Movies S1 and S2). The blue shaded area
indicates the dispersive nodal-line region that dominates the

A

B

Fig. 2. (A) Ab initio calculations of the nodal lines (orange) in momentum
space of NbAs2. Red symbols are the high symmetry points in the BZ near the
nodal lines. Blue arrows label the crystallographic axes in the (001) plane. (B)
Band structure for NbAs2 calculated along high symmetry points in A, with
(solid lines) and without (dotted lines) SOC. Gray arrows indicate possible
optical transitions.
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low-energy (<0.3 eV) electrodynamics of NbAs2 that we will
analyze next.

The polarized reflectance spectra obtained for the (001)
surface of NbAs2 at 10 K are displayed in Fig. 3A. The a-
axis reflectance (Ra) shows a pronounced plasma minimum
(∼125 meV) near the screened plasma frequency. In the b-axis
data (Rb), the plasma edge appears broadened, and a sharp dip
develops ∼110 meV. Fig. 3A also reveals strong anisotropy in
midinfrared energy arrange >50 meV.

In Fig. 3 B, Left, we display the 10 K optical conductivity
for both polarizations of incident light. The Drude conductiv-
ity in both σa

1 and σb
1 feature multiple free-carrier components

(SI Appendix, section 2D), consistent with multiple Fermi pock-
ets revealed by quantum oscillation measurements (33–35). The
most striking feature is the sharp double step in σb

1 (green
arrows), followed by σ1(ω)∼ω relation over an extended fre-
quency range. A somewhat weaker step structure and linear
conductivity are also evident in σa

1 . Interestingly, the double-
step structure followed by a linear conductivity at higher fre-
quencies resembles the response predicted for Weyl semimetals
with inversion symmetry breaking (23). In this toy model with
energy-shifted Weyl cones (23), Pauli blocking (forbidden optical
transitions when the final states are filled) happens at different
energies; hence, the predicted double step appears. Although
no Weyl points exist in NbAs2, the nodal lines give rise to
linearly growing σ1(ω) above the gaps, which we will focus
on next.

Optical conductivities calculated using DFT are shown in
Fig. 3 B, Right. The DFT spectra capture the gross features of
the data, including the steps, the linear dependence, and the
slope change at Emax∼0.3 eV in both σa

1 and σb
1 . The anisotropy

between σa
1 and σb

1 is also evident in the calculations. Impor-
tantly, while the linear slope extrapolates close to 0 at zero
energy for σa

1 , both the experiment and the calculations show
a large, nonzero intercept for σb

1 . This large intercept at zero
energy is inconsistent with the optical conductivity model for
3D Dirac/Weyl fermions mentioned above (Fig. 1A). Instead, we
show that the linear conductivity and the intercept result from
the nodal line in NbAs2. SOC triggers energy gaps along the
nodal line (Fig. 4E), and the gap size changes from ∼100 meV
(2∆2) near the high-symmetry line X1-Y to∼80 meV (2∆1) near
I1-Z. Both the X1-Y direction and I1-Z direction are parallel to
the kb direction (Fig. 4 and SI Appendix, Fig. S2). We demon-
strate below that, while a flat nodal line (near X1-Y) gives rise
to constant σ1(ω) (Fig. 1B), the dispersive nodal line near I1-Z
leads to linear conductivity (Fig. 1C) in NbAs2. The combination

of dispersive and flat nodal lines causes the linear optical conduc-
tivity with a large intercept observed both in experiment and in
DFT calculation.

In Fig. 4A, we show σb
1(ω) data at three different tempera-

tures. A notable feature of these data is the broadening of the
step-like structure at higher temperatures. The blue dotted line
is the fit to σb

1 (10 K) using Eq. 2 and band structure param-
eters (SI Appendix, section 2D), showing excellent agreement
with experiment. Gray dashed and solid lines display the contri-
butions to the fit associated with interband transitions from the
dispersive and flat nodal line, respectively. The fitting parameters
are listed in SI Appendix, Table S1. With additional parameters
(the angle between the nodal line and the a axis) from the band
structure, we obtain fitted σa

1 curves that are in excellent agree-
ment with the experiment as well (SI Appendix, section 2D and
Fig. S3). In Fig. 4 B–D, we plot the calculated band structure
near I1-Z and near X1-Y for momentum directions kline and
kb (kline ⊥ kb). The gray planes indicate constant Fermi energy
(EF ). The side panels of Fig. 4D show the projected band struc-
ture along each direction, highlighting the extreme anisotropy
of nodal lines. Fig. 4 C and D show two different segments of
the same nodal line featuring near-linearly dispersing (near I1-Z)
and flat (near X1-Y) regions. Note in Fig. 4C that there is a small
tilt of the Dirac bands (38) that is not included in our nodal-line
model, Eq. 1.

An intuitive picture for the linear law of the optical con-
ductivity from extended Pauli blocking is presented in Fig. 4E.
Orange and blue dotted lines in Fig. 4E indicate the calcu-
lated gap energies at different line lengths k0 (from I1-Z to
X1-Y). Schematics of the Dirac cones are overlaid on the cal-
culation to illustrate the band-filling level change along the line.
Green vertical arrows indicate the onset of interband transi-
tion controlled by Pauli blocking. With increasing photon energy
(ω2>ω1), longer segments of the nodal line (k0(ω2)>k0(ω1)) are
being activated as Pauli blocking expands over growing phase
space. The resulting σ1(ω) grows linearly until the entire dis-
persive nodal line (kmax ) is activated (Emax∼kmaxv‖). For a
gapless nodal line, the linear power law of σ1(ω) extrapolates
to zero at ω→ 0 (Fig. 1C). This simple picture of the disper-
sive nodal line captures the gross features of the conductivity
data.

While the step in σ1 is pinned to 2∆1 for the dispersive nodal-
line crossing EF (Figs. 1C and 4C), the step associated with
the energy-flat nodal line occurs at 2∆2 + 2EF2 (Figs. 1B and
4D). The constant optical conductivity causing the finite inter-
cept is prominent in σb

1 data and is nearly absent in σa
1 . The

A B

Fig. 3. (A) Anisotropic reflectance for the NbAs2 (001) surface. A, Inset is a schematic of a unit cell of NbAs2. (B) Optical conductivity from experiment (Left)
and DFT calculations (Right). Blue shaded regions highlight the low-energy part where the response is dominated by the massive Dirac bands. Green arrows
indicate positions of steps in σ1(ω). Solid and dashed lines indicate the b-axis and a-axis response, respectively.
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Fig. 4. (A) Optical conductivity for E || b. Blue dotted lines are fitted σb
1

curves with nodal-line structure parameters. Gray dashed and solid lines
denote contributions from the nodal lines near I1-Z (C) and near X1-Y
(D), respectively. The linear increase of σb

1 (ω) saturates at Emax∼0.3 eV. A,
Inset shows the ratio σb

1 /σa
1 above the gap region. B displays the results of

band structure calculations along high-symmetry points near the nodal-line
regions. The 3D version of the band structure calculation is shown in C and
D. Green arrows illustrate onsets of interband transitions for dispersive (C)
and energy-flat (D) segments of the nodal line. (E) The energy dispersion of
the gapped nodal line displayed as a function of the line length k0, calcu-
lated by using DFT. Dirac-cone schematics indicate different fillings of the
Dirac bands along the line. The gray dotted line is the Fermi energy EF . Ver-
tical arrows show different onsets of interband transition, and horizontal
arrows are the effective line length.

latter behavior is not surprising since the nodal line is nearly par-
allel to the a axis (SI Appendix, section 2D). According to Eq.
2, the anisotropy of the conductivity should also be frequency-
independent above the gap energy [σb

1 /σa
1∼(vb/va)2], in agree-

ment with the experiment (Fig. 4 A, Inset). The anisotropy of
optical conductivities is therefore consistent not only with the
existence of both flat and dispersive nodal lines in NbAs2, but
also with the suppression of conductivity along the nodal line. We
emphasize that the large optical anisotropy is directly associated
with open-ended nodal lines in NbAs2, and the flat σb

1 /σa
1 spec-

tral response (Fig. 4 A, Inset) is distinct from other anisotropic
systems (39, 40).

Having established the zero-field signatures of nodal-line
fermions, we set out to explore the properties of these
anisotropic Dirac quasiparticles through magneto-optics. The
electromagnetic signature of massive Dirac systems is the LLs

dispersing from the gap energy 2∆ (26), which go through a
linear to

√
B cross-over with increasing B -field. In contrast,

parabolic bands yield a scaling of LLs that is linear in B (31).
These two distinct trends allow one to identify the Dirac dis-
persion perpendicular to the nodal lines. Unpolarized light was
used for magneto-reflectance measurement up to 17.5 T at the
National High Magnetic Field Laboratory (Fig. 5A). A series
of peaks (labeled 0–3) hardened with increasing B field, and a
weaker feature was evident at lower energy (∼85 meV).

Noticing a remarkable similarity of the higher step energy in
Fig. 4A (∼120 meV) and peak energies in Fig. 5A (>120 meV at
3 T), we attributed the peaks in R(B)/R(0 T) to the interband LL
transitions across the gapped Dirac bands. We also performed
polarized magneto-reflectance measurements using an in-house
8-T apparatus (Fig. 5 B and C), enabling better signal-to-noise
at low magnetic fields (41) (SI Appendix, Fig. S7). In Fig. 5B, we
plot the derivative contour dR/dB, which emphasizes the peaks
in R(B)/R(0 T) as a zero derivative (white) region bounded by
positive (red) and negative (blue) derivative. The derivative plot
is extremely sensitive to weak features in R(B)/R(0 T) and has
been successfully used to investigate the subtle but important
features in topological insulator surface states (19).

We obtained dR/dB contours for both E || b and E || a polari-
zations, and they showed similar features associated with peaks
above the gap 2∆2. The features related to the smaller gap 2∆1

were only present for E || b, but were completely suppressed for
E || a . Interestingly, while σa

1 was smaller than σb
1 (Fig. 3B), the

amplitude of the R(B)/R(0 T) was larger for E || a than for E || b
(SI Appendix, Fig. S7). Furthermore, the dR/dB plot for E || b
polarization (Fig. 5B) shows prominent structure (gray dashed
lines) intercepting the frequency axis at ∼95 meV, in between
the two gap energies (2∆1 and 2∆2). This finite intercept at B→
0 T is anomalous, and the exact nature of these resonances is
a subject of future studies. An intriguing possibility pertains to
the predicted topological surface states (42–44), with anisotropic
behavior from DFT calculation (SI Appendix, Fig. S8).

Besides uncovering subtle magneto-optics features, the deriva-
tive plot dR/dB directly visualizes the

√
B scaling of LL transi-

tions in NbAs2. For massive Dirac nodal lines, we have derived
the following LL spectrum (SI Appendix, section 3):

E±n =±
√

2e~|n|Bv1v2 cos(φ) + ∆2, [3]

where n is the LL index and φ is the angle between local nodal-
line direction and magnetic field. ∆ is the half-gap that charac-
terizes the mass of the Dirac fermions (26) mD

x ,y,z = ∆/v2
x ,y,z ,

and the ± selects the conduction/valence band LLs. The dipole
selection rules (26, 30, 31) for interband LL transitions are
δ|n|= |n|

′
− |n|=±1. The transition energy is therefore:

ET =
√

2e~|n|Bv2 + ∆2 +
√

2e~(|n|+ 1)Bv2 + ∆2, [4]

where the effective velocity v =
√

v1v2 cos(φ).
In Fig. 5 B and C, green dashed lines are fitted interband

LL transitions using Eq. 4 with v=2.53 eV·Å and a gap 2∆2 =
114 meV. The effective velocity is very close to the theoretical
estimate (2.3 eV·Å) obtained from the same asymptotic veloc-
ities v1, v2 we used to model σ1(ω) (SI Appendix, sections 2D
and 3). Green dots are peak energies extracted from Fig. 5A,
showing excellent agreement for

√
B -spaced interband LL tran-

sition across 2∆2 in both unpolarized and polarized data. The
nonlinearly spaced LLs can be easily identified at fixed B , as
higher-order LLs are closer-spaced in energy, in stark con-
trast to the behavior of systems with parabolic bands. The
Dirac mass (26) mD

ab = ∆2/vavb = 0.068me is ∼4 times smaller
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A B C

Fig. 5. (A) Magneto-reflectance spectra normalized by zero-field reflectance, showing a series of LL transitions systematically changing with increasing B.
We also observe only a weakly field-dependent mode at ∼85 meV. (B) Derivative contour (dR/dB) for E || b. The energies of peaks extracted from A are
displayed as green dots. Gray dashed lines indicate the subtle in-gap states. (C) dR/dB for E || a and peak energies extracted from A. Green dashed lines in B
and C are fits using Eq. 4 with v∼ 2.53 eV · Å and 2∆2 = 114 meV. C, Inset shows gapped Dirac bands and the LL dispersion with magnetic field B. Arrows
indicate allowed interband LL transitions across the gap.

compared with parabolic carriers (0.24–0.29 me) (33, 34). This
much smaller mass implies that the high mobility carriers in
NbAs2 are likely to originate from massive Dirac fermions in the
nodal lines.

The extracted gap energy (2∆2∼114 meV) from fitting the LL
dispersion is very close to the higher step energy in the zero-field
data (2∆2+2EF2∼120 meV), indicating that the gapped cones
are only weakly doped (EF < 5 meV). This low doping level in
the massive nodal lines (near X1-Y) most certainly gives rise to
a huge magneto-infrared response (SI Appendix, Fig. S7), since
it can be easily driven into the extreme quantum limit when only
the 0th LL is occupied. In contrast, the heavy trivial bands with
large carrier density remain in the classical regime at the highest
attainable field (17.5 T) (33, 34).

We now discuss the implication of massive Dirac nodal lines
for the unusual magneto-resistance (MR) properties of NbAs2.
Giant MR {[ρ(B)− ρ(0)]/ρ(0)> 105 %} in nonmagnetic NbAs2
has been observed (33–35, 45) and explained as a cooperation
of perfect electron-hole compensation and high-mobility carri-
ers. These two effects are expected to produce a ∼B2 increase
of MR. However, high-field MR measurements clearly deviate
from the B2 dependence starting at ∼10 T and linearly increase
with B without saturation (34). Such a large (> 105 %), nonsatu-
rating behavior displaying a cross-over from (nearly) quadratic to
linear scaling calls for interpretations beyond electron-hole com-
pensation. We believe that the lightly doped Dirac nodal lines
established here are crucial to understand the unusual MR in
NbAs2, as we will elucidate below.

The quantum linear MR (46, 47) reads as ρxx=NiB/πn
2e ,

where Ni is the scattering center concentration and n is the
carrier density. Both the minority massive Dirac fermions in
the quantum limit and the majority carriers in the classical
two-band model can give rise to large MR. However, a slight
deviation from perfect electron-hole compensation, which exists
in NbAs2, will cause the ∼B2 rise of MR to saturate at a field-
independent value (48), contrary to experiment (34). The exis-
tence of massive Dirac fermions may account for these dis-
crepancies. At high field where the classical MR saturates, the
quantum linear MR from Dirac fermions overwhelms other con-
tributions, and hence the scaling law changes from quadratic to
linear (47).

In summary, we discovered dispersive Dirac nodal lines in
NbAs2 and derived expressions for anisotropic response func-
tions for a general case of dispersive nodal lines. Our results
not only shed light on the interpretation of the exotic MR
in this family of materials, but also pave the way for identi-
fying new NLSMs using optical/magneto-optical spectroscopy.
NbAs2 therefore constitutes a concrete platform to explore var-
ious predictions for nodal-line fermions, including large spin
Hall effect (49) and Floquet Weyl points (50–52). We remark
that the energy-dispersive nodal line is a common aspect of
the electronic structure in many solid-state systems, includ-
ing: transition metal dipnictides (NbAs2), ZrSiS (17), and even
intermetallic superconductor MgB2 (Tc = 39 K) (53, 54). The
nodal-line band structure therefore governs rich physical phe-
nomena registered through the analysis of the optical conduc-
tivity, LL transitions, MR along with nontrivial superconducting
properties. Therefore, our experimental inquiry into the dis-
persive nodal lines has implications for a wide range of phe-
nomena that are in the vanguard of current quantum materials
research.

Materials and Methods
Millimeter-sized single crystals of NbAs2 were grown using a chemical vapor
transport method. The as-grown NbAs2 single crystals have a prismatic
rod shape along the b-direction with shiny and well-defined facets. The
single crystal X-ray diffraction on these crystals is shown in SI Appendix,
Fig. S1. Temperature-dependent infrared reflectance measurements were
done using a Fourier-transform infrared spectrometer with standard gold-
overfilling technique. High-field (17.5 T) magneto-optical measurements
were done in the National High Magnetic Field Laboratory. Polarized low-
field magneto-optical measurements were performed using an in-house
apparatus (8 T) enabling higher signal-to-noise. Band structure and opti-
cal conductivity calculations were carried out based on DFT with the Vienna
Abinitio Simulation Package; see SI Appendix, section 5 for details.
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22. Bácsi Á, Virosztek A (2013) Low-frequency optical conductivity in graphene and in

other scale-invariant two-band systems. Phys Rev B 87:125425.
23. Tabert CJ, Carbotte JP, Nicol EJ (2016) Optical and transport properties in

three-dimensional Dirac and Weyl semimetals. Phys Rev B 93:085426.
24. Sushkov AB, et al. (2015) Optical evidence for a Weyl semimetal state in pyrochlore

Eu2Ir2O7. Phys Rev B 92:241108.
25. Neubauer D, et al. (2016) Interband optical conductivity of the [001]-oriented Dirac

semimetal Cd3As2. Phys Rev B 93:121202.
26. Chen ZG, et al. (2017) Spectroscopic evidence for bulk-band inversion and three-

dimensional massive Dirac fermions in ZrTe5. Proc Natl Acad Sci USA 114:816–821.
27. Li ZQ, et al. (2008) Dirac charge dynamics in graphene by infrared spectroscopy. Nat

Phys 4:532–535.
28. Chen RY, et al. (2015) Optical spectroscopy study of the three-dimensional Dirac

semimetal ZrTe5. Phys Rev B 92:075107.

29. Patri AS, Hwang K, Lee HW, Kim YB (2018) Theory of large intrinsic spin Hall effect in
iridate semimetals. Sci Rep 8:8052.

30. Orlita M, et al. (2011) Carrier scattering from dynamical magnetoconductivity in
quasineutral epitaxial graphene. Phys Rev Lett 107:216603.

31. Shao Y, et al. (2017) Faraday rotation due to surface states in the topological insulator
(Bi1–xSbx)2Te3. Nano Lett 17:980–984.

32. Shuvaev AM, et al. (2017) Band structure of a two-dimensional Dirac semimetal from
cyclotron resonance. Phys Rev B 96:155434.

33. Shen B, Deng X, Kotliar G, Ni N (2016) Fermi surface topology and negative
longitudinal magnetoresistance observed in the semimetal NbAs2. Phys Rev B
93:195119.

34. Yuan Z, Lu H, Liu Y, Wang J, Jia S (2016) Large magnetoresistance in compensated
semimetals TaAs2 and NbAs2. Phys Rev B 93:184405.

35. Li Y, et al. (2016) Negative magnetoresistance in topological semimetals of transition-
metal dipnictides with nontrivial Z2 indices. arXiv:1603.04056.

36. Mukherjee SP, Carbotte JP (2017) Transport and optics at the node in a nodal loop
semimetal. Phys Rev B 95:214203.

37. Carbotte JP (2017) Optical response of a line node semimetal. J Phys Condens Matter
29:045301.

38. Wang R, Go A, Millis A (2017) Weyl rings and enhanced susceptibilities in pyrochlore
iridates: k · p analysis of cluster dynamical mean-field theory results. Phys Rev B
96:195158.

39. Nakajima M, et al. (2011) Unprecedented anisotropic metallic state in undoped
iron arsenide BaFe2As2 revealed by optical spectroscopy. Proc Natl Acad Sci USA
108:12238–12242.

40. Frenzel AJ, et al. (2017) Anisotropic electrodynamics of type-II Weyl semimetal
candidate WTe2. Phys Rev B 95:245140.

41. LaForge AD, et al. (2010) Optical characterization of Bi2Se3 in a magnetic field:
Infrared evidence for magnetoelectric coupling in a topological insulator material.
Phys Rev B 81:125120.

42. Xu C, et al. (2016) Electronic structures of transition metal dipnictides XPn2 (X = Ta,
Nb; Pn = P, As, Sb). Phys Rev B 93:195106.

43. Gresch D, Wu Q, Winkler GW, Soluyanov AA (2017) Hidden Weyl points in
centrosymmetric paramagnetic metals. New J Phys 19:035001.

44. Luo Y, et al. (2016) Anomalous electronic structure and magnetoresistance in TaAs2.
Sci Rep 6:27294.

45. Wang YY, Yu QH, Guo PJ, Liu K, Xia TL (2016) Resistivity plateau and extremely large
magnetoresistance in NbAs2 and TaAs2. Phys Rev B 94:041103.

46. Abrikosov AA (1998) Quantum magnetoresistance. Phys Rev B 58:2788–2794.
47. Huynh KK, Tanabe Y, Tanigaki K (2011) Both electron and hole Dirac cone states in

BaFeAs2 confirmed by magnetoresistance. Phys Rev Lett 106:217004.
48. Ali MN, et al. (2014) Large, non-saturating magnetoresistance in WTe2. Nature

514:205–208.
49. Sun Y, Zhang Y, Liu CX, Felser C, Yan B (2017) Dirac nodal lines and induced spin Hall

effect in metallic rutile oxides. Phys Rev B 95:235104.
50. Yan Z, Wang Z (2016) Tunable Weyl points in periodically driven nodal line

semimetals. Phys Rev Lett 117:087402.
51. Narayan A (2016) Tunable point nodes from line-node semimetals via application of

light. Phys Rev B 94:041409.
52. Chan CK, Oh YT, Han JH, Lee PA (2016) Type-II Weyl cone transitions in driven

semimetals. Phys Rev B 94:121106.
53. Jin KH, et al. (2017) Topological Dirac-nodal-line semimetal phase in high-

temperature superconductor MgB2. arXiv: 1710.06996.
54. Zhou X, et al. (2018) Observation of topological surface state in high temperature

superconductor MgB2. arXiv: 1805.09240.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1809631115 Shao et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1809631115


Supporting information for “Optical Signatures of
Dirac Nodal-lines in NbAs2”
Y. Shao et al. 10.1073/pnas.1809631115

1. Sample Preparation and characterization

The chemical vapor transport (CVT) method was used to synthesize and grow single crystals of NbAs2. At first, a stoichiometric amount
of 5N purity precursors in Nb:As=1:2 molar ratio was sealed in an evacuated quartz ampoule of length ∼20-30 cm and diameter of
ID/OD=1.8/2.00 cm. The vacuum-sealed quartz ampoule containing binary mixture was treated at 950 ◦C for two days and then
furnace-cooled to room temperature, which yielded polycrystalline NbAs2 samples. All preparation procedures before the evacuated flame
sealing of quartz tubing were carried out in an Argon gas filled glove box of oxygen and the water level was kept below ∼1 ppm. The
powder NbAs2 was mixed with the transport agent I2 in weight ratio of 100:1, vacuum-sealed in a quartz ampoule of length ∼30 cm, and
loaded into a tube furnace for the CVT growth. The two-zone tube furnace was maintained with a thermal gradient of 1000-900 ◦C over
a region of ∼30 cm, and the crystals were grown at the colder end of the sealed quartz ampoule. The as-grown NbAs2 single crystals have
prismatic rod shape along the b-direction with several shiny and well-defined facets following the monoclinic C2/m symmetry (β=119.4◦).

We identified the (001) and (201) surfaces of NbAs2 through single crystal x-ray diffraction (Fig. S1), and the b-axis was determined by
the shared edge between (001) and (201) surfaces (1).

10
2

10
0

00
2 00

3

00
4

00
5

Sample 2

10
2

10
1

10
0

No
rm

al
ize

dI
nt

en
sit

y

00
2

00
3

00
4

Sample 1

10 20 30 40 50 60 70 80
2 (degrees)

10
2

10
1

10
0

20
1 40
2

Sample 1
side surface

Fig. S1. Single crystal X-ray diffraction of NbAs2. Black lines are for the top surface (001) and red line is for the side surface (201).

2. Theory: Optical conductivity of energy dispersive Nodal-Line

A. Flat nodal-line. The low energy bands found near X1-Y in NbAs2 are close to the energy-flat nodal-lines which are described by the
Dirac equation perpendicular to the lines. Adding spin-orbit-coupling (SOC) simply adds a mass ∆ to the Dirac equation. A simple model
for a straight nodal-line along z direction is

H =ħ(vx kx σ̂x + vy ky σ̂y )+∆τ̂z σ̂z [S1]

which leads to the energy dispersion

εs (p) = s
√
∆2 + v2

x p2
x + v2

y p2
y [S2]

where s =± means conduction and valence bands, each doubly degenerate. The Pauli matrices σ̂ and τ̂ represent orbital and spin degrees
of freedom. The length of the nodal-line k0 is an additional parameter of this Hamiltonian. The Kubo formula for optical conductivity
reads

Re[σi i (ω)] =
v2

i

ω

∑
k,s1,s2

| 〈k, s1|σ̂i |k, s2〉 |2πδ(εk,s1
−εk,s2

−ω)
(

f (εk,s1
)− f (εk,s2

)
)

= 1

(2π)3

v2
i

ω

∫
dk3 ∑

s1,s2

| 〈k, s1|σ̂i |k, s2〉 |2πδ(εk,s1
−εk,s2

−ω)
(

f (εk,s1
)− f (εk,s2

)
) [S3]
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where i = x, y , f (ε) is the Fermi-Dirac distribution and ħ has been set to 1. Performing the change of coordinate k ′
x = kx vx /vF ,k ′

y =
ky vy /vF , the integral becomes

Re[σi i (ω)] = π

(2π)3

1

ω

v2
i

vx vy

∫
dk ′

x dk ′
y dkz g (k′, s1, s2) =

v2
i

vx vy
Re[σ(ω)] . [S4]

Its integrand g (k′, s1, s2) is exactly the same as the isotropic case with asymptotic velocity vF . Therefore, to get the anisotropic optical
conductivity, one just takes the isotropic one Re[σ(ω)] and rescales it by the factor v2

i /(vx vy ) in each direction. The nodal-line is quasi
two-dimensional (2D) and leads to an optical conductivity that has the same frequency dependence as the 2D gapped Dirac cone (2):

Re[σi i (ω)] = N

16

e2

ħ
(

k0

2π

) v2
i

vx vy

(
1+ 4∆2

ω2

)
Θ(ω−2∆op ) . [S5]

where N = 2 is the number of degeneracy and ∆op =∆+EF . Note that the Fermi energy EF is defined relative to the band minimum. In
the first Brillouin zone of NbAs2, there are two nodal lines related by mirror symmetry with respect to a mirror plane perpendicular to the
b direction (Fig. 1B of the main text), leading to a total degeneracy of 4.

From now on, we will use σi i (ω) for the real part of the optical conductivity (Re[σi i (ω)]) for simplicity. One can check that without

SOC (∆= 0) the flat optical conductivity σi i (ω) ∼ k0
2π

v2
i

vx vy
is recovered.

B. A general nodal-line. In realistic materials, the nodal-line is generally not a straight line in momentum space but curved. Moreover,
at each point k along the nodal-line, the overall energy ε0(k) (the energy of the Dirac node), the gap ∆(k) and the local orthogonal
directions for the asymptotic velocities v1(k), v2(k) are all k dependent. Thus it is convenient to define a local orthogonal frame (e1,e2,e3)
where (e1,e2) are unit vectors along the local asymptotic velocities v1(k), v2(k) which form a plane perpendicular to the local direction of
nodal-line e3. Similarly, we define the momentums (k1,k2,k∥) relative to the local Dirac node in the local frame. If the gap is weakly
dependent on k and the curvature is small, i.e., ∂k∥∆¿ v1, v2 and v1r, v2r À∆ where r is the local radius of curvature of the nodal-line
in momentum space, then the low energy physics is just the sum of each segment of the nodal-line. Thus the optical conductivity is

σi i (ω) = N

16

e2

ħ
∫ (

dk∥
2π

)
vi (k∥)2

v1(k∥)v2(k∥)

(
1+ 4∆(k∥)2

ω2

)
Θ

(
ω−max

(
2|µ−ε0(k∥)|,2∆(k∥)

))
. [S6]

The conductivity tensor σi j due to any local segment of nodal line is diagonal in its local principle frame (e1,e2,e3). For a general direction
of the electric field E = Ee, v2

i = v2
1e2

1 + v2
2e2

2 .

C. Energy dispersive nodal-line. A simple case is where only the overall energy ε0(k∥) depends on k∥. To leading order, the dependence
is linear ε0 =ħv∥k∥ like Fig. 1C of the main text. The Hamiltonian is

H =ħ(v1k1σ̂x + v2k2σ̂y )+∆τ̂z σ̂z +ħv∥k∥ [S7]

which leads to the dispersion Eq. (1) of the main text. If the gap ∆ is zero, evaluation of Eq. (S6) results in an optical conductivity that
increases linearly with frequency

σi i (ω) = N

16

e2

ħ
vi

2

v1v2

(
ω/v∥

2π

)
. [S8]

This linear frequency dependence results from the combination of an overall energy shift and Pauli blocking, and could explain the
experiment qualitatively. Adding a small constant gap results in

σi i (ω) = N

16

e2

ħ
vi

2

v1v2

(
ω/v∥

2π

)(
1+ 4∆2

ω2

)
Θ (ω−2∆) . [S9]

The parallel velocity v∥ describes how fast the overall energy shifts along the nodal-line. Total length of the nodal-line in NbAs2 is about
1.4 Å−1. Table S1 summarizes the parameters at several points on the nodal-line.

Note the difference between a shifted nodal line and a 3D anisotropic Dirac node with the dispersion ε(p) =±
√
∆2 + v2

1 p2
1 + v2

2 p2
2 + v2

3 p2
3 .

Indeed, the former can be viewed as taking v3 → 0 and add a tilting term v∥k∥ to the latter. However, the Dirac node leads to the optical
conductivity

σi i (ω) = N

12π

e2

ħ
v2

i

vx vy vz

√(ω
2

)2 −∆2

(
1+ 2∆2

ω2

)
Θ(ω−2∆op ) . [S10]

which is distinct from Eq. (S9) in several aspects. First, σ is zero if measured along the shifted nodal line while 3D Dirac node has no such
direction for vanishing σ. Second, the almost linear frequency dependence of σ comes from extended pauli blocking in shifted nodal line
while it is simply due to energy scaling of electron density of state in a 3D Dirac cone. Last, the frequency dependence just above the
optical gap is slightly different between them.
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D. Optical Conductivity of NbAs2. In principle, to obtain the optical conductivity σ(ω) of a curved nodal-line, the integral in Eq. (S6)
should be carried out exactly. Let us look at its frequency dependence qualitatively. Since the overall energy shifts along the nodal-line,
as shown in Fig. 4E of the main text, the effective line length ke f f (ω) of optical transitions increases with frequency, and finally stops
increasing as it reaches the total length of the line kmax . This is the reason why σ increases with frequency and then stops increasing. The
theoretical plots in Fig. 4A of the main text is from a simplified model that approximates the integral in Eq. (S6) by σbb =σbb,X1Y +σbb,r est .
Near the X1-Y segment of the nodal-line, the overall energy ε0(k0) is nearly flat, and the other parameters are also nearly constant. The
local principle axis v1 is along b direction as shown in Fig. S2. Therefore, its contribution to σ is the same as that of a nodal-line with
fixed length k0 = 0.2Å−1

σbb,X1Y (ω) = N

16

e2

ħ
(

k0

2π

) v2
b

v⊥vb

(
1+

4∆2
X1Y

ω2

)
Θ(ω−2∆op,X1Y ) [S11]

where bb means the conductivity in b direction and v⊥ = v2. For the rest part of the nodal-line, the overall energy shifts, and a first
approximation to it is a nodal-line with constant parallel velocity and whose energy crosses the Fermi energy, as shown in Fig. 1C of the
main text. Following Eq. (S9), the contribution from the rest part of the nodal-line is collected into the approximated formula

σbb,r est (ω) = N

16

e2

ħ
(

k0(ω)

2π

) v2
b

v⊥vb

(
1+ 4∆2

ω2

)
Θ (ω−2∆) . [S12]

where

k0(ω) =


0 ω< 2∆
(kmax−k0)

Emax
ω 2∆≤ω≤ Emax

(kmax −k0) ω> Emax

[S13]

is the effective length of optical transitions from the rest of the nodal-line.
Although this is only a rough model, it explains the experimental result quite well (Fig. S3) given fitting parameters (blue) shown in

Table S1.

A B

Fig. S2. The nodal-lines in the 3D momentum space (A) and their projection in (001) surface (B). The directions of real space unit vectors a (along x), b (along y) are also
labeled at two positions on the nodal-line: the X1-Y extrema and the Fermi level crossing points (blue dots). The local principle axes at these two points are also shown as black
arrows. v1 and v2 are the asymptotic velocities along the principle axes perpendicular to the local nodal-line. I1, Z , X1 and Y are the high symmetry points in the Brillouin zone.

Position on line/Parameters Gap (meV) v⊥ (eV ·Å) vb (eV ·Å) v∥ (eV ·Å) Local direction
X1-Y ∆2 = 47 4.0(3.76) 3.4(3.6) 0 (1,0,− tan(23◦))

Fermi level crossing ∆1 = 38(42.5) 3.6(3.76) 2.7 0.72 (1,− tan(10.7◦), tan(4.4◦))

I1-Z 33 4.0 2.4 0 (1,0, tan(9◦))

Table S1. Nodal-line parameters from DFT calculation. Fitting parameters different from calculation are colored in blue.

The conductivity in the a direction, σaa , is much smaller than that of the b direction because the nodal-line is almost parallel to the
a-axis, see Fig. S2. Note that only the electric field perpendicular to the nodal-line couples to the optical transitions. Therefore, σaa is
smaller than σbb through the relation

σaa (ω) =
v2
⊥ sin2γ

v2
b

σbb,X1Y (ω)+
v2
⊥ sin2β(ω)

v2
b

σbb,r est (ω) . [S14]

Y. Shao et al. 10.1073/pnas.1809631115 3 of 9



γ = 23◦ is the angle between a and the nodal-line direction at X1-Y point. β(ω) is the same angle but averaged along k0(ω), and is
therefore frequency dependent:

β(ω) =


βi ω< 2∆

(β f −βi )
Emax−2∆ (ω−2∆)+βi 2∆≤ω≤ Emax

β f ω> Emax

. [S15]

The initial (βi ) and final (β f ) values of 9◦ and 23◦ are used for the fitting for σaa , respectively.
The Drude parts of the conductivities are due to complicated electron and hole pockets and are fitted using the multi-Drude form

σaa = Da1

π

γa1

ω2 +γ2
a1

+ Da2

π

γa2

ω2 +γ2
a2

, σbb = Db1

π

γb1

ω2 +γ2
b1

+ Db2

π

γb2

ω2 +γ2
b2

[S16]

with (Da1,Da2,Db1,Db2) = (4210,1754,1754,5262)THz2 and (γa1,γa2,γb1,γb2) = (12,137,32,97)cm−1. Note that the Drude weight in
3D has the dimension of frequency squared, and 1THz = 2π×1012 s−1. The optical conductivity anisotropy calculated above based on
nodal-line direction matches reasonably well with experimental data (inset of Fig. 4A in the main text). To the best of our knowledge, this
is the first experimental demonstration of suppressed optical conductivity parallel to the nodal-line direction.

A B

Fig. S3. (Left) Real part of the optical conductivity experiment (solid lines) and model calculation (dashed lines) for both E ||b and E ||a using the same parameters as in Fig. 4A.
The peaks below 50 meV are infrared-active phonons; (Right) Zoom-in of the step region. The derivative dσa

1 /dω is shown below the σa
1 to better visualize its step positions.

3. Theory: Landau levels of gapped anisotropic nodal-line

For any local segment of the nodal-line, the magnetic field B can be decomposed into one component along the line direction B∥ and one
perpendicular to the line B⊥. The transverse component B⊥ does not affect the equation of motion of the quasi-particles, and therefore
has no effect on the spectrum except for a tiny Zeeman splitting. Quantum mechanically, the vector potential due to B⊥ could be chosen
to be along the nodal-line, and therefore does not enter the Hamiltonian since the momentum along the line does not (the term v∥k∥
leading to the overall energy shift is neglected due to the relative smallness of v∥). Therefore, the Landau levels are all due to B∥:

E±n =±
√

2|n|v1v2eB∥/c +∆2 =±
√

2|n|v2
e f f eB/c +∆2 [S17]

where the effective velocity ve f f for Landau-level dispersion is defined as

ve f f =√
v1v2 cosφ. [S18]

φ is the local angle between the nodal-line and the magnetic field which is along z direction in Fig. S2. For the X1-Y segment, φ= 67◦,
yielding ve f f =√

vb v⊥ cosφ= 2.31eV ·Å. This corresponds to the Landau levels diverging from the larger gap (2∆2). For the segment
crossing the Fermi energy, φ= 85◦, yielding ve f f =√

vb v⊥ cosφ= 0.92eV ·Å. This corresponds to the Landau levels diverging from the
small gap (2∆1).

4. Experimental Details and Additional data

Temperature dependent anisotropic reflectance R(ω) (Fig. S5) are measured using an in-situ gold-overfilling technique (5) in a Fourier
transform spectrometer (Bruker 66 v/S). The optical conductivity is obtained by fitting the reflectance data using a variable dielectric
function (6). Magneto-reflectance measurements up to 8 T are measured in a Fourier transform spectrometer coupled to a split-coil
magnet via light-pipes. High-field measurements up to 17.5 T are performed in a superconducting magnet in National High Magnetic Field
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Fig. S4. Comparison of experimental (left) and DFT calculations (right) of optical conductivities (σ1 and σ2) in NbAs2. The dashed lines on the left show that the steps in σ1
are accompanied by dips in σ2, consistent with theory. At low frequency, σ2 is dominated by the Drude contribution (1/ω). Together with the step in σ1 and logarithmic dip at the
same energy in σ2, the system is remarkably similar to the step and dip structure in graphene (3, 4).

Laboratory. The focus of the IR light on the sample is ∼0.5 - 1 mm, which is smaller than sample size. All magneto-optical measurements
were performed at T = 5 K in the Faraday geometry: E vector in the (001) plane and magnetic field B parallel to the surface normal.

Magneto-reflectance data on sample #2 are shown in Fig. S6 and Fig. S7. In Fig. S6A, the high-field magneto-reflectance is measured
up to 17.5 T on sample #2. The fitted gap energy (2∆2) and average velocity (v̄) are very close to sample #1. In Fig. S7C, blue and black
lines are 8 T data for E ||a and E ||b polarizations, respectively. Compared to experiment, the two-component magnetoplasma model (teal)
shows negligible effect with cyclotron frequency ωc (8 T) = 30 cm−1, using effective mass 0.25 me . Manually increasing ωc to 90 cm−1

yields some modulation, but the shape of the classical model cannot account for the series of strong peaks in the experiment.

Notably, the higher energy dispersing features in the magneto-reflectance spectra (Fig. S6 and Fig. 5 in main text) start close to the
plasma minimum ∼125 meV for R a (10 K) (Fig. S5 and Fig. 3A in main text). Nevertheless, we posit that these features are unrelated to
the conventional magneto-plasma effect that leads to plasma edge splitting for the following reasons. First, the series of peaks can be
accurately described by adjacent dipole-active interband LL transitions for gapped Dirac bands, as shown in the main text and also in Fig.
S6. Second, the cyclotron resonance frequency associated with different pockets in NbAs2 are very small due to the heavy mass (0.24-0.29
me ) (1), unable to account for the large modulation in R(B)/R(0 T) we observed (Fig. S7C). Finally, the polarized magneto-reflectance
spectra (Fig. 5 in main text) show almost identical features at high energy region (>100 meV) for both E ||b and E ||a, whereas the zero-field
plasma edge is drastically different for the two polarizations. The series of dispersive features are therefore beyond the scope of classical
magnetoplasma effects and Landau level descriptions are needed, as described in the main text.

Additional data for the imaginary part of the optical conductivity (σ2(ω)) is also shown in Fig. S4, together with corresponding DFT
calculations. The most striking feature is that the step positions in σ1 corresponds to logarithmic dip feature in σ2 (vertical dashed lines),
in remarkable similarity to graphene (3, 4). The combination of σ1 and σ2 allow us to accurately determine the step positions with an
error bar less than 2 meV. For σa

2 the dip features are weaker so we calculate the derivative dσa
1 /dω to better determine the step position

in σa
1 , show in Fig. S3 right panel. The peak in dσa

1 /dω corresponds to the steepest step in σa
1 and the error bar for a-axis step position

is about 4 meV.

5. DFT calculations

Electronic structure calculations are carried out based on density functional theory (DFT) with Vienna Abinitio Simulation Package (VASP)
(7). We use plane-wave basis up to 400 eV and a 15 × 15 × 6 Γ-centred K-mesh. Throughout the calculation, the PBE parameterization of
generalized gradient approximation to the exchange correlation functional was used (8). The crystal structure was fully optimized until the
force on each atom less than 1 meV/Å and internal stress less than 0.1 kbar. With Nb-5d and Ta-5p orbitals the DFT results are then fitted
to a tight-binding (TB) model Hamiltonian with maximally localized Wannier function (MLWF) method (9). The bulk band structure with
and without spin-orbit-coupling is shown in Fig. 2B in the main text.
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Dashed lines are Landau-level transition fits using Eq. (4) in the main text.

A. Search for Nodal-lines in the Entire Momentum Space. Two anticrossing points (X1-Y and I1-Z) present within 0.1 eV range of the
Fermi level. We have explicitly calculated these anticrossing points in the full BZ by interpolating Wannier Hamiltonian (without SOC)
using adaptive K-mesh method and convergence criterion of 0.1 meV. Our calculation show these anticrossing points (X1-Y and I1-Z) form
open nodal lines (Fig. S2 and Fig. 2A in main text) which extended through multiple BZs. Once SOC effect is included, all these nodal
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lines are gapped (Fig. 4E). Around these two anticrossing points, we plot the band dispersion in kl i ne -kb plane for kz = 0 and kz = 0.5
(Figs. 4C,4D in main text).

The (001) surface state (Fig. S8) was calculated with the TB model using surface green function of the semi-infinite system. The
non-trivial topological surface states exists in certain direction of BZs, indicating the weak topological property of this system, corresponding
to (0; 1 1 1) classification (10).

B. Optical conductivity calculation and band-to-band interband contribution. The optical conductivity is calculated with the Kubo
formula using uniform 200 x 200 x 200 Γ-centred K-mesh in the Brillouin zone, which we find to be accurate enough to resolve the fine
details in the optical conductivity spectrum. In Fig. 3B (main text), we plot the real part of optical conductivity Re[σαβ] for both E||b and
E||a. The double-step structure and the linear conductivity behavior can be identified from 50 meV to 300 meV in our calculation and is
in good agreement with the experiment. Since the highest conduction band and lowest valence band in NbAs2 are well separated from all
other bands (Fig. 2B in main text and Fig. S9A), the main contribution to the optical conductivity is mainly from these two bands. To
conform this, we calculate the interband transitions from different bands near the Fermi level. In Fig. S9C we plot the interband transitions
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(marked with different color) between four bands near the Fermi Level. Our calculations show over a large frequency range (from 0 to
0.4 eV), the dominated contribution to the optical conductivity is indeed from non-trivial to trivial interband transitions marked with
red arrow in Fig. S9B whereas the interband transition between two highest valence bands (10→11) is negligible mostly due to the Pauli
blocking. The remaining interband transitions only contribute to high frequency part of the optical conductivity, which are irrelevant to the
double-step structure and linear conductivity behavior in the optical conductivity spectrum.

A

B

C
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13

10→11 10 →11

10 →12
10 →12

11 →13
11 →13

Fig. S9. (A) DFT calculations of the band structure for NbAs2 along the same high symmetry points as Fig. 2 in the main text. The four bands closest to the Fermi level are
labeled 10 (light blue), 11 (blue), 12 (orange) and 13 (pink). (B) Colored arrows for allowed interband optical transitions between different initial states and final states. (C)
Optical conductivity spectra calculated for different combinations of initial and final states. The main contribution to low-energy (blue shaded) optical conductivity come from 11
to 12 (red line). Other interband transitions have onset at around 0.4 eV.

6. Relation to Magneto-resistance (MR) measurements

The quantum linear MR proposed by Abrikosov (11) requires that only the lowest Landau level (LL) is occupied and that the thermal
fluctuations at finite temperature are small compared to the energy difference between zeroth and first LL. The change from MR∼ B2 at
low fields to MR∼ B at high fields has been recently observed in Ba(FeAs)2 (12). A similar situation happens in transition metal dipnictides
in that at low B fields the MR can be explained by semiclassical two-band model [main text Ref. 33-35], but strongly deviates from
MR∼ B2 at high fields [Ref. 34]. To the best of our knowledge, the high field MR measurements have only been reported for NbAs2 and
TaAs2 [Ref. 34]. Given the similarities in the band structure of NbAs2 and TaAs2, we suspect that massive Dirac nodal-lines may be
responsible for the MR dependence change in TaAs2 as well. For TaSb2 and NbSb2 future high field MR measurements in combination
with optical/magneto optical studies are needed to understand the origin of this behaviour. Indeed the anisotropy should show up in
magnetoresistance measurements along a- and b-axis, but unfortunately the majority of the transport studies on NbAs2 has focused on
b-axis response. It would be interesting to compare with future magneto-transport studies with currents applied along a-axis. From the
temperature dependence of the quantum oscillations one can obtain the cyclotron frequency and cyclotron mass (mc yc ) of charge carriers.
In magneto-optics, a direct comparison would be cyclotron resonance (intraband Landau-level transition) which also gives the cyclotron
frequency via ωc=eB/mc yc . However, the signal is very small in the far-infrared region and we did not detect cyclotron resonance in our
data up to 17.5 T (see Fig. S6). The fact that we saw strong inter-Landau-level transitions across the gap attesting to the fact that the
carrier mobilities are indeed very high, consistent with previous transport measurements.

Notably, one MR measurement (13) reported an interesting plateau in resistivity at low temperature below 8 T and attributed this
to potential surface states in NbAs2. This is in agreement with the “in-gap” state we saw in b-axis derivative magneto-reflectance data
(Fig. 5B) between 2T and 8 T. Our DFT calculation also indicate the existence of strong surface state (SS) density of states along certain
directions in (001) surface (Fig. S8).
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Movie S1.
Animated version of Fig. 4C in the main text. Band structure calculations of the dispersive part of the nodal-lines in NbAs2 near I1-Z.

Movie S2.
Animated version of Fig. 4D in the main text. Band structure calculations of the flat part of the nodal-lines in NbAs2 near X1-Y.
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