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WAVE MAPS ON (1+42)-DIMENSIONAL CURVED SPACETIMES
CRISTIAN GAVRUS, CASEY JAO, AND DANIEL TATARU

ABSTRACT. In this article we initiate the study of 1+ 2 dimensional wave maps on a curved
space time in the low regularity setting. Our main result asserts that in this context the
wave maps equation is locally well-posed at almost critical regularity.

As a key part of the proof of this result, we generalize the classical optimal bilinear L?
estimates for the wave equation to variable coeflicients, by means of wave packet decom-
positions and characteristic energy estimates. This allows us to iterate in a curved X

space.
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1. INTRODUCTION

Let the (1 + 2)-dimensional spacetime R; x R? be endowed with a Lorentzian metric
9 = gap(t, x)dz®dz”,

so that the time slices t = const are space-like. Here 2° = t and we adopt the standard con-
vention of referring to spacetime coordinates by Greek indices and purely spatial coordinates
by Roman indices.

Given a smooth Riemannian manifold (M, h) with uniformly bounded geometry, a wave
map u : (R™2 g) — (M, h) is formally a critical point of the Lagrangian

1

E(u) == 5 /]Rl+2 <du, du>T*(RXR2)®u*TM dVOlg,
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where w*T'M = |, {z} x Tyy)M is the pullback of T'M by u and u*h is the pullback metric.
In local coordinates on M this becomes

£u) = 5 [ %Gl un ()0 (2) [ =

One may think of wave maps as the hyperbolic counterpart of harmonic maps. The Euler-
Lagrange equations take the following form, and we refer to [I3, Chapter 8] for related
computations:

1

Vil

Here D denotes the pullback covariant derivative on w*T'M given by DxV =V, xV where
V is the Levi-Civita connection on 7M.

D, ( IglgaﬂaﬁU) =0 (1.1)

In coordinates, wave maps solve a coupled system of nonlinear wave equations. We review
two useful settings for this problem:

Intrinsic formulation. Suppose the image of u is supported in the domain of a local
coordinate patch of M. Then the wave maps equation (|I.1)) is written as
Ogu’ = =T (u) g™ 0a? Ou”* (1.2)
where [, is the Laplace-Beltrami wave operator
~ _1 P
Ogu = g[* 0a< 912 g 56@) (1.3)
denoted this way in order to distinguish it from its principal part [, defined by
Oyu = g* 0,05,
and T are the Christoffel symbols on (M, h).
Extrinsic formulation. When the manifold M is isometrically embedded into an euclidean

space R™ wave maps can be equivalently defined extrinsically; see for instance [28]. If M is
compact, such an embedding exists for m large enough by Nash’s theorem. The Lagrangian

becomes .
L(u) = E/go‘ﬁ@au, Jdgu)+/|g| dz

Formal critical points satisfy Egu 1 T,,M and our equation takes the form
Oyu' = —S;k(u)go‘ﬂaauj(?ﬁuk, (1.4)

where S stands for the second fundamental form on M.

Initial data for the Cauchy problem are chosen such that
u(0,2) € M, 0u(0,x) € Ty M.

The initial data space can be viewed as an infinite dimensional manifold, in which the wave
map evolution takes place.



The formulations above exhibit the presence of the null form
Q,(u,v) = g*’0,udpv.

Its structure is so that it eliminates quadratic resonant interactions in the wave map evolu-
tion, and has played a key role in the low regularity well-posedness of wave maps in the flat
case ([15], [19], [20], [39], [34]) as well as in other problems, especially in low dimensions. A
simple way to see this cancellation is via the formula

2Q,(u,v) = 2970, udgv = O, (wv) — ud,w — v, u. (1.5)

However in Section |§] we will obtain estimates for Q,(u, v) directly.

In both the intrinsic and the extrinsic formulations one can use the coordinates to de-
fine Sobolev spaces for the initial data sets. To understand the relevant range of Sobolev
indices we recall that in the Minkovski space the wave maps system is invariant under the
dimensionless rescaling

u — u(At, \x), g — g(At, \x)

which identifies the critical (scale-invariant) initial data space as H' x L?(R?). In addition,
one may consider initial data spaces for more regular data, of the form

H = {(u()?ul) : ]R2 — TM7 vuOuul € HS_I(R2)}7 s> 1.

It is this latter case which is considered in the present paper.

Several remarks are in order here. First of all, the constant functions are always acceptable
states in the context of manifold valued maps ug; this is why we include them all in our state
space H*® above. Secondly, one may ask whether the definition of the above spaces is context
dependent. We separately discuss the two formulations above.

The simplest set-up is in the case of the extrinsic formulation with (M,h) a compact
manifold. There one can directly use the H*!'(R?) spaces for derivatives of R™ valued
functions. For simplicity, this is the set-up we adopt here.

For the intrinsic formulation matters are not as straightforward. The fact that s > 1
heuristically insures that functions ug with Vug € H5~! are Hélder continuous. Thus locally
such functions are in the domain of a single chart, and the H*~! norms can be defined using
local coordinates. Further, by Moser estimates the local spaces are algebraically independent
of the choice of the local chart. Finally, the global spaces are obtained from the local ones
by using a suitable collection of local charts. Of course, some care is required here in order
to avoid a circular argument. Most generally such a construction would apply for manifolds
(M, g) with uniformly bounded geometry.

Finally we remark that in the setting of low-regularity discontinuous solutions as in [43],
defining the critical Sobolev spaces Hz1 (R? — M) is a delicate matter due to the need of
having an appropriate topology on these spaces that is independent of the choice of isometric
embeddings.

Throughout the paper we assume that

e The metric coefficients g,5 and g*? are uniformly bounded.
e The surfaces t = const are uniformly space-like,

gijvivj > \v|2.
3



These conditions in turn imply the bound from below
_g(]O z 1.

Now we are ready to formulate our main result, which establishes well-posedness in the
energy-subcritical regime s > 1, as a stepping stone toward the energy-critical problem on a
curved background.

Theorem 1.1. Let M C R™ be an embedded manifold. Assume that 07,9 € L7LY. Then
the Cauchy problem for the wave maps equation (1.4)) is locally well-posed in H® for1 < s < 2.

Our result includes existence, uniqueness, locally Lipschitz dependence on the initial data
and persistence of regularity as explained in Section [1.2

While our main result above applies to the large data problem, the bulk of the paper is
devoted to the small data problem, to which the large data case reduces after a suitable
localization. To state the small data result, we replace the qualitative property of the metric
VZg € L?L> with a quantitative version which applies in the unit time interval ¢ € [0, 1]:

100297 oo o + 10729 |22 < *. (1.6)

Here n < 1 is a fixed small parameter.

For the next result below, we work in a local patch in the intrinsic setting. We assume
that 0 belongs to the range of local coordinates associated to this patch, and work with data
(up, u1) which is small in HS x H5™'. Then uy is continuous and uniformly small. As long as
this property persists, the solution will remain within the domain of the local patch. Hence
its regularity can be measured in those coordinates. Our small data result is as follows:

Theorem 1.2. Let 1 < s < 2 and assume g satisfies (1.6|) in the time interval [0,1]. There
exists € > 0 such that for any initial data set (ug,uy) satisfying

[ (w0, wr) [ mrexcrrs— < € (1.7)

there exists a unique solution u to the wave maps problem (1.2)) with this data in the space
C([0,1]; H*) n C([0,1]; H*1), satisfying

HsxHs—1. (18)

The solution has a Lipschitz continuous dependence on the initial data.

(s D) || oe rro o=y < | (w0, wa)|

Here the uniqueness is interpreted in the classical sense if s = 2. For 1 < s < 2, the
H® x H*7! can be defined as the unique limits of H? x H'! solutions. Alternatively, one may
prove the uniqueness property in the X*? spaces, see the discussion below.

The higher Sobolev regularity is limited to H? given the regularity of the metric g. How-
ever, adding higher regularity to g correspondingly adds regularity to the class of regular
solutions.

The objective of Section [1.2] will be to reduce our main result in Theorem to the small
data result in Theorem by a standard scaling and finite speed of propagation argument.

A key role in our analysis is played by the spaces X*? associated to the wave operator
[y. Indeed, our main well-posedness argument is phrased as a fixed point argument in X s
where

1 1
1<s<2, §<0§min{1,s—§}.
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In particular one can rephrase the uniqueness property in our main theorems as an uncondi-
tional uniqueness in X%, and the Lipschitz dependence as a Lipschitz dependence in X*?.
These spaces are defined in Section [2] and the study of their linear and bilinear properties
occupies much of the paper.

1.1. Previous works. Here we provide a brief survey of previous results on Wave Maps
well-posedness, with an emphasis on variable coefficients.

The Cauchy problem on a flat background (R'™™, —dt* + dx?) is by now well understood.
In view of the scaling symmetry u(t,z) — u(\t, \x), the critical Sobolev space is H? x
H3~Y(R"). Local wellposedness in H® x H*~" was established for all subcritical regularities
s > 5 by Klainerman-Machedon for n > 3 and Klainerman-Selberg when n = 2 [15], [19].
The much more delicate critical problem s = § was solved for small data in dimension n = 2
by Tataru [39], [43], Tao [34] and Krieger [21], with further contributions in higher dimension
by Klainerman-Rodnianski [I7], and Shatah-Struwe [28], Nahmod-Stefanov-Uhlenbeck [27].
Further, when n = 2, the energy-critical problem in H* x L? admits a global theory for large
data as developed by Sterbenz-Tataru [32], [33], Krieger-Schlag [22] and Tao [36].

For wave maps with variable coefficients, Geba [9] established local wellposedness in
the subcritical regime s > & when 3 < n < 5, building on previous work of Geba and
Tataru [11]. More recently, Lawrie constructed global-in-time solutions on perturbations of
R4 Minkowski space for small data in the critical space H? x H'(R*), and Lawrie-Oh-
Shahshashani obtained analogous small-data results on R x H", n > 4 [24]. See also the
recent work of Li-Ma-Zhao on the stability of harmonic maps H? — H? under the wave map
flow [25].

A key component in the study of wave maps in the Minkowski case at critical regularity is
Tao’s renormalization idea, first introduced in [34]. The subcritical problem considered in this
article avoids the renormalization argument, which simplifies matters considerably. On the
other hand, Strichartz estimates do not suffice to treat the full subcritical range s > 7 in low
dimensions, in particular when n = 2, 3. Indeed the null structure Q,(u, v) distinguishes the
wave maps system from equations with a generic quadratic derivative nonlinearity (Vu)?;
as observed by Lindblad [26], the latter can be illposed in H® x H*'(R3) for s = 2 >
3. The previous works [I5, [19] rely on X*" spaces to exploit the null structure in lower
dimensions. We pursue an analogous strategy using the variable-coefficient X **-type spaces
first introduced by Tataru [37] and further developed by by Geba and Tataru [44]. However,

the two-dimensional case involves additional subtleties as we shall discuss shortly.

1.2. Reduction of Theorem [1.1] to Theorem [1.2. Let
(i, @) : R2 — M x Ty M C R™ x R™

be an initial data such that
|(Vag, @) || s < R.

We have a solution @ on a small time interval [0, 7] if the rescaled function
u(t,z) =a(Tt, Tx)

is a solution on [0, 1] using the rescaled metric g(Tt, T'z). This now obeys (1.6)), provided

that T is small enough.
5



The data for the rescaled solution will satisfy the scale invariant bound
”(u(hul)”j‘l(le2 <R
as well as the homogeneous bound

froxpror < BT

[ (uo, ur)|
We will choose T" small enough so that
RT* ' < e

To obtain smallness of the full H* x H*~! norms we truncate the initial data, then we apply
Theorem and we glue those solutions using finite speed of propagation.

Let ¢ be the largest speed of propagation and let (y;); be the centers of a family of balls
such that the truncated cones

K;={(t,z) |ct+|zv—y| <c+1, t][0,1]}

are finitely overlapping and cover [0, 1] x R2.
Let x; be a smooth function which equals 1 on the ball B; = B, (c+ 1) and is supported

on B; = B, y; (c+2). We denote by B} = By, (c+1—ct), B = B, (c+2 ct) the corresponding
balls at time t.

For every y; we choose a local chart of M such that uy(y;) corresponds to the origin.
We localize around y; V1eW1ng (by slight abuse of notation) ug, uy as having their image
in the chart and defining u} = x;uo, ul = Xju1. Since, uo(yj) 0, by homogeneous
Sobolev embedding and Morrey’s inequality we deduce that smallness is retained locally by
the inhomogeneous Sobolev norms:

1y ) | st < €. (1.9)

One uses Moser estimates to pass from the extrinsic Sobolev spaces to the Sobolev norms
defined using the patch coordinates.

By Theorem we obtain a solution %’ to (1.2)) which remains in the image of the chart
on [0,1] by (1.8) and Sobolev embedding. Now viewing v/ as taking values in M C R™, it
solves and we restrict it to the truncated cone K.

To obtain a solution u on [0, 1] x R? defined by each u/ restricted to K; we argue that any
two of them must coincide on their common domain. For H? solutions this follows from the
finite speed of propagation, which is then proved in a standard fashion. For rough solutions
we use the well-posedness result from Theorem to approximate them by H? solutions,
and then we pass to the limit.

Now we show that V,; u(t) € H*~'(R?). First we note that, by we have

Y ladle = Y Ixguollags,) + 1V O
J J

o1 S

S Z ||u0||i2(gj) + ”vaOHWs L2(B;) ~ Z Ve UOHWe 12( (1.10)
J

since by Morrey’s inequality and Sobolev embedding we have

HUOHLQ(éj) S HVxU0HL2+(1§j) S Hvxuonws—w(éj)-
6



Moreover, by (1.26]) and ((1.24) we have

RHS ([I0) S 3 [Vatiola g, + [Vatioldres s,y S luoll + [Vatiolms S B
J

2
Hsfl ~

Similarly we obtain ) |ui||?,.-. < R2. For the solution at time ¢, using (L.27) we get

IVeeul)lE S IVeat() [y S D Wt S Ny e e S R
j j '

J
This proves that u(t) € H* for ¢t € [0,T] and

|1 Loores(po,m1x2) < Crrll(To, )

with a constant C'r depending on R.
Now we address the locally Lipschitz dependence on the initial data. Let (vg,0;) : R2 —
M x Th M C R™ x R™ be another initial data set such that

H.s

(@0 — Do, @1 — 01) || (grsrnnee)y s

is small enough and let © be the solution on [0, 7] with this data. Then using the argument
above together with the Lipschitz dependence given by Theorem of the local solutions
we obtain

@ — 0| peopgs fo,rxr2y S Crl| (o — o, Uy — 01))|

Finally, we remark that assuming higher regularity for the metric g (such as 9%g € L2L>

and g € L¥H*! for k > 3, see the discussion below in the proof of Theorem [1.2)) we have

that (H" N H') x H" ! regularity of the initial data is maintained by the solution on [0, T]
for n < k.

HS .

Remark 1.3. If we assume the initial data (@i, @) to be only in H* x H*~!, then we can still
construct a solution, but it will be only locally in H® x H*~! at future times.

1.3. Proof of Theorem [1.2] Here we set up the fixed point argument which yields The-
orem [[.2] and show that the proof reduces to four estimates described below.

As a preliminary step, we replace the metric g** by §*# = (¢°°)~1¢*” in order to insure that
" = 1; this is not crucial in the analysis, but yields some minor technical simplifications.

The price to pay for this substitution is that we get another term in the equations,
-~ ) ) 5
Chu = T ()5 000 + 50" (log )50 (1.11)

The extra term on the right will easily be perturbative in our setting. Hence we will simply
neglect it, drop the § notation and simply assume that ¢% = —1.

We now consider an initial data satisfying and proceed to obtain the solution to ((1.2))
on [0,1] by a fixed point argument, as u = ®(u) for the functional

O (u) =y, + O (= Tl (w)Qy (v, b)) (1.12)
where uy;,, is the solution of the linear equation with F' =0
Oyu = F, ul0] = (uo, uq) (1.13)

while EQ_IF is defined as the solution of (|1.13)) with «[0] = (0,0).

7



This argument relies on the choice of two Banach spaces X (for the components of our
solutions) and N (for the perturbative nonlinearity) such that ® is a contraction on a small
ball of X. Specifically,

X = XS,G N = Xs—l,@—l

which are defined in Section [2 with 6 € (1/2,1), 6 < s —1/2.

The linear mapping property in Lemma m states that for solutions of (1.13]) we have
Hsx Hs—1 + ||F||N (114)

lullx <l (uo, ur)]

Having (1.14)) we also need to know that the mapping written schematically as I'(u)Q, (u, u) :
X — N holds, as well as
IT (1) Qg (u,u) — T(v)Qqy(v,v)||n < €llu —v|x

for u, v in a ball of radius C'e in X. These two properties are now easily reduced to the esti-
mates — below; we obtain the ¢ smallness for the difference since the nonlinearity
is at least quadratic. We add that this contraction argument gives Lipschitz dependence on
Uyin, therefore on the initial data by .

The building blocks for the iteration are the following nonlinear estimates:

Algebra property: lu-v|lx S Jullx|lvlx (1.15)
Product estimate: |lu- Fllv S llull x| Fllv (1.16)
Null form estimate: |Qq(w, v)|In S |lullx vl x (1.17)
Moser estimate: 1T ()|l x < el (14 ||ul|%). (1.18)

The proof of the Algebra property (1.15)) occupies the main part of this paper, being the
object of Section [f] which is based on the results of Sections[3{J . All the other properties

rely fundamentally on (|1.15)):

The Product estimate (|1.16) follows easily in Section @ as a corollary of the estimates
WE)

established in the proof of , using a duality argument.

We obtain the Null form estimate (1.17) as a consequence of the identity (|1.5)) together
with (1.15)), (1.16]) and the linear bound ||Dyully S ||u||x from Lemma

The nonlinear Moser estimate (1.18) is proved in Section @ For the purpose of the
fixed point iteration argument based on (1.17)) we may subtract a constant and assume that
['(0) = 0. Using the Algebra property may subtract a polynomial from ' and assume
that 9°T'(0) = 0 for |a| < C. Modifying I' outside a neighborhood of the origin, it suffices
to prove (|1.18) under the assumption that I' and its derivatives are uniformly bounded.
Moreover, using the fundamental theorem of calculus, when ||u||x,||v|x are bounded we
obtain as a consequence

() =L@l 5 vl (1.19)



Persistence of regularity. Assuming we control £ > 2 derivatives of the metric, and thus
for the rescaled metric on [0,1] we assume [|0%g|| 21~ < 1 and g € L®H* we show that
H? x H°~! regularity of the initial data is maintained in time for any o € [s,k|. Let M > 1
and

Ol pres < M, JJul0] oo <
We obtain our solution as a fixed point for ® from ((1.12)), which is a contraction on a small
ball of the space Z = X N X*? endowed with the norm
€
M

provided e is sufficiently small, independently of M. By Remark [2.15 the mapping property

(1.14) holds also for H” x H°~', X% and X?~19~1. The nonlinear estimates (I.15)-({1.18))
are replaced by

lullz = Zllullxeo + [lullxs0

(0] o0
[vllxo + [lullxeo [0l xs0
FHXS—I,O—I

[u-vllxeo S lullxeollol xso + [[ullxee
1Qg (w; v) || xo-r0-1 S [l xe0
[ Fllxo-10-1 S |lullxsol[Fllxo-10-1 + [[uf| xo0]
IT(W)||xe0 S lJullxao
We refer to , and Remark for a discussion of these properties. We conclude
that the unique solution obtained earlier in X = X*? is also in X°? and ||u|| xyoo < M.

In both fixed point arguments we have continuous dependence on the initial data, therefore
the obtained solution is the unique strong limit of smooth solutions.

1.4. Main ideas. We now provide an outline of the main ideas of the paper which are the
ingredients used to establish the building blocks (|1.15))-(1.18)) of our results.

Curved X*° spaces. The classical X" spaces are multiplier weighted L2-spaces on the
Minkowski space-time adapted to the symbol of the wave operator [ similarly to how Sobolev
spaces are associated to the Laplacian A, see [16] and the references therein. These are used
to prove local well-posedness for constant coefficients wave maps above scaling: [15] (d > 3)
and [19] (d = 2). For the history of classical X*® spaces and applications we refer to the
survey article [20].

A variable coefficient version of the X*® spaces, defined in physical space, was first intro-
duced]in [37], and then further developed in [I1] in order to study semilinear wave equations
on curved backgrounds with a generic quadratic derivative nonlinearity. These spaces were
later utilized by Geba [9] in his treatment of energy-subcritical wave maps in dimensions
3 < d < 5. We borrow this notion of curved X*° spaces in the present paper and review the
relevant definitions and lemmata in Section [2

In two space dimensions, new techniques are required to establish X*® estimates, in par-
ticular the crucial algebra property . Using Strichartz estimates as for the case d > 3
would incur an unacceptable loss of derivatives when d = 2. Instead we adapt some ideas of
Tataru from energy-critical wave maps in Minkowski space; see in particular [39, Theorem 3].

10ther variable-coefficient X*? constructions have been proposed, for instance via spectral theory on a
smooth compact manifold [3].
9



Our analysis involves bilinear angular decompositions, wave packets, and energy estimates
along certain null hypersurfaces.

Bilinear estimates in X*° require optimal control of |ju, - Vull £2([0,1]xR2) With bounds de-
pending on the angular frequency localization of uy and v,,. Decomposing the lower frequency
function v, into wave packets concentrated on certain "tubes” T, by orthogonality it will
suffice to obtain bounds for ||uy||r2(r). In effect, this strategy is a variable-coefficient variant
of the traveling wave decomposition employed in [39]. Foliating a tube T" into null surfaces
A (see Section we reduce to controlling

/ luy|? do.
A

We call these characteristic energy estimates. While they can be proved by Fourier analysis
in the Minkowski case [39], the present context requires a physical space proof which is
considerably more delicate, as integration by parts based on the energy-momentum tensor
only controls tangential derivatives such as [, |Luy|* do.

The problem of ”inverting the L” in a manner consistent with the angular separation is
addressed using microlocal analysis in Section [4

Wave packets analysis. A key technical device in this article consists in approximating
solutions to the linear wave equations by square-summable superpositions of wave packets,
which are localized in both space and frequency on the scale of the uncertainty principle,
and propagate in spacetime along null hypersurfaces. Such representations of the wave group
originate in the work of Cordoba-Fefferman [5]. For wave equations with C! coefficients,
the first wave packet parametrix was given by Smith [29]. An alternate construction, based
on the use of phase space (FBI) transforms was provided by Tataru [38| 40, [41] for metrics
satisfying 0%g € L'L>. Analogous constructions have since been employed for even rougher
coefficients, as in the the study of quasilinear wave equations in Smith-Tataru [30].

In this article we use Smith’s parametrix, which easily extends to rougher metrics satisfying
d?g € L'L>. There are two reasons for that: (i) causality (the parametrix in [38] 40, 41] is
developed in a microlocal space-time foliation, without reference to a time foliation) and (ii)
localization scales ( in slabs [29] vs. tubes [38, 40} 41]). Neither of these reasons is critical but
taken together they do make a difference from a technical standpoint. Section[]isolates the
essential properties of Smith’s parametrix that we shall need, while specific implementation
details are reviewed in Appendiz [A]

Another contribution of this paper is a wave packet characterization of functions in X*°
with low modulation, see Proposition [{.7 and Corollary[{.§

Null structures arise in equations from mathematical physics where they manifest through
the vanishing of parallel interactions. The cancellations are realized in our setting expressing
the null form Q,(u,v) in a suitable null frame {L, L, E'}:

QQg(u,v) =Lu-Lv+ Lu-Lv—2Fu- Ev.

If L, E are tangent to the null hypersurfaces along which v propagates, then Lv and Ev are
better than the tranverse derivative Lv. Hence there is a gain in Q,(u,v) over a generic

quadratic term Vu - Vv if v and v propagate along nearby directions.
10



Estimates for null forms have played a key role in the low regularity well-posedness of
wave maps in the flat case ([15], [19], [20], [39], [34]) and in other problems, especially in low
dimensions. Several null form estimates for variable coefficients have been obtained before
by Sogge [31], Smith-Sogge [7] and Tataru [42], under various assumptions on the metric.

The strategy outlined above of obtaining L? estimates using wave packets and character-
istic energy estimates applies as well for bounding ||@Qg4(ug,ve)| r2(0,1]xr2) Where the terms
ug, Vg have an angular separation of ~ «. A Whitney-type decomposition is used to reduce
to this assumption.

The Moser estimate (1.18), required for non-analytic target manifolds, is proved in Sec-
tion [§ following the method of iterated multilinear paradifferential expansions introduced
in [43].

1.5. Notations and preliminaries.

e We denote by 7 and £ the time, respectively the spatial Fourier variables. For 0 # &,
write E:: ¢/\€| for its projection to the (Euclidean) unit sphere.

e We denote the Cauchy data at time s by v[s] = (v(s), dyv(s)) for any time s.

e Mixed Lebesgue norms shall be denoted by |ul[zrps = H||u(t)||Lg 195 to unclutter

the notation we often omit the subscripts. Also, when p = ¢ we write L? := LV LP.
e In the context of wave packet sums we will denote by 2 the following norm

2
lerllz = D lerl

TeT)

e To define Littlewood-Paley decompositions we fix a partition of unity of the positive

real line
L= ) s(r) (1.20)

A>1 dyadic

where s, is supported on the interval r € [A/2,2A] for A > 2 and in r < 2 for
A = 1. Setting P\(§) = sa(|€]) and Py(7,&) := sa(|(7,€)]), we define Littlewood-
Paley frequency decompositions on space and spacetime:

lz2 =Y PA(Dy), lpepe = Y Pa(Di, D).
A A

Projections P.y, P.) are defined in the usual manner, and we also set Py, \,) =
> Nl P,. In this article, summation indices representing frequency or modulation
are always understood to be dyadic. More generally, when the index set is not written
explicitly it will always be clear from the context.

If s, is a compactly supported multiplier, s, represents slightly wider version of s,
so that s, = 5,5.,.

In this article, Littlewood-Paley decompositions are defined respect to the x vari-
able with one main exception: the (dual) metric ¢ shall always be mollified in space-
time, and for a frequency p we write g, := P-,(Dy, D,)g.

e Pseudo-differential operators in this paper are defined using Kohn-Nirenberg quan-
tization. When there is no danger of confusion, we sometimes denote both a symbol

¢(z,€) and its corresponding operator ¢(X, D) by the abbreviation ¢.
11



e The global Sobolev spaces H® and H® are defined for s € R using the Fourier trans-
form by

el s = 1€ @l 2, lullz = [1(L+ [€]*)**all 2 (1.21)

e We define the local Sobolev spaces W* 12(B), for a ball B of radius ~ 1 or for
B =R? When s—1 € {0, 1} we use the classical definition, while when s—1 € (0, 1)
we have the norm

2
HUH%WM(B) = HUH%Q(B) + |U‘Ws—172(3) (1.22)

where [-[yj.-1.2(p) denotes the Gagliardo seminorm

v[% L2(p) = / / o) = vly)| da;dy. (1.23)
va - y|
e When B = R? one has

|U|WS—1»2(R2) ~ ||U| s—1) ||U||WS*172(]R2) ~ ||U| Hs—1. (1.24)

When ¢ € C O’l(B ) is supported in a slightly smaller ball one has
[Poll s S 1vllwsr2m) S 0llwer2e5)- (1.25)

We refer to [6] for these properties. Clearly, when the balls (B;); are finitely
overlapping one has

2 2
Z ’U’Ws—w(Bj) S ‘U‘WS—L?(]RQ) (1.26)
J

Conversely, assuming in addition that (B;); cover R? by splitting the R? x R?
integral in into regions where there exists j such that both z,y € B; and
regions where |x — y| > § (where we bound |v(z) — v(y)| < |v(z)| + |v(y)| and use
the L?(B;) norms), we obtain

2
S N (1| o (1.27)
J

Bounds on the metric. Observe that we have for any A the pointwise estimate
0791 < M(9%9) < M(]|0gllrs),
0" P gar] S NM (0P|,
where M is the Hardy-Littlewood maximal function, and by Bernstein
[0" P geallze S NA2[0gllpens < A2 IO g e (1.28)
Similarly, from the bound
gal = [PAD™?D?g] S A M([|0%9 ] 1)

we have
Hg/\HLngo S )\_QHaQQHLngo' (1.29)
As a consequence of the above bounds on ¢, we recall the commutator estimate
10 5 Palvllzz S Mlvllzz + 10wl 2 (1.30)

12



which follows from

Do s Pl = [90vm PAlO1a0e, llgcym Palllzzsze S AT Vgl
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2. CURVED X*? SPACES

In this section we present and expand on the theory of X*? spaces associated to wave
operators with variable coefficients from [11] (see also [37]). An alternative definition of X*¢
spaces in the context of time-independent coefficients on compact manifolds was proposed
in [3] using spectral theory.

2.1. Definitions. We begin with our main building blocks, which are norms associated to a
single frequency A and modulation d. The reader is reminded that sums over such parameters
are always understood as dyadic summations.

Definition 2.1. Let s € R, 6 € (0,1) and let  be a time interval.
(1) For dyadic A > d > 1, the norm of Xf\:fl[l] is defined by

[l = )‘QSd%HU“%?(Ian) + )\25_2d20_2||Dg<ﬁu|’%2(IXR”)'

2
X300
When I = [0, 1] we drop the I and denote simply Xf\:fl.

(2) The norms of Xi:ggh, X;S\:ih,oo are defined by

h h
2 . 2
o = inf { E Ungll%eo ; u= E u,\d}
X)S\,Sh || ) |X;,d Y ) Y
d=1 d=1

[l

[l

is,g = inf { sup ||u 4
A, <h,00 1<d<h

h
is,e ;o U= Z UN,d }7
A,d =1
for dyadic h < A. When h = A we simply write X3’ for Xi’i ,- We also use a similar
definition for Xi’fdl da] for a restricted range of dyadic modulations d; < d < ds.

(3) For § > 0 such that D = ¢! is a dyadic integer and |I| ~ 4§, we analogously
define X/f:egh[f], X;zihm[l], Xi:?dl’dﬂ [I] for D < h < A, with summation, respectively
supremum, taken over D < d < Aor d; < d < dy. When D is bounded by a universal

constant, we may equivalently take the summation over 1 < d < A.

13



Remark 2.2. There is some flexibility in how to mollify the coefficients of [];. The threshold
VA is motivated by the hypothesis on 92g which gives || gi/jf/\HLngo < A7 making O, vxPa
effectively a first-order operator. Allowing higher frequencies would yield equivalent norms,
and indeed a paradifferential-type cutoff < A would be more natural when considering merely
Lipschitz coefficients.

The full iteration spaces are defined as follows.

Definition 2.3. Let s € R and 0 € (0, 1).
(1) A function u € L?([0, 1], H*(R")) is said to be in X*? if it has finite norm defined by

0o A A
o =it {30 uall 0 u=303 Pana )
A,d

A=1 d=1 A=1 d=1

[l

(2) A function f € L2([0,1], H*t*=2(R")) is said to be in X*~19~1 if it has finite norm
defined by

0o A 0o A
Yoo = inf{ follZzmer +D > ||fA,d||§(§,Z§ f=1Jo+ ZZDg<ﬁP>\f/\,d}

A=1 d=1 A=1 d=1

/]

Remark 2.4. To motivate these definitions, note that the X*? norm is obtained essentially by
interpolation between ||u|| 2= and ||ul|p2gs + || Ogul 2551, see (2.12)). Since in the variable-
coefficient context modulation cannot be precisely interpreted in terms of localization in
Fourier space, the advantage of this concrete definition is that we get access to the notion of
modulation in a more robust way.

For negative modulation regularity, i.e. X*~19~1 this particular definition makes it easy
to invert O, from X 10=1 to X0 (see and (2.20)) while at the same time obtaining
the duality relation that one expects by analogy from the classical flat spaces, see .

Remark 2.5. Roughly speaking, Xi:g will hold the portion of u at frequency A and “modula-
tion” d. If g is the Minkowski metric and we modify the above definition of X*? by replacing
L*([-1,1] x R™) with L*(R x R™), then for uy 4 localized to frequency |£] ~ A and modulation
||7] = |¢]| = d with d < X we have

[uxall yzo = N dJurgl 2 ~ |uadl
On the other hand, if d > A,

|24l

5,0 .
XX

X0 = )‘S+072HDUA,dHL2 ~ [|Ouxal | p2grsto-2.

Remark 2.6. By [11,, Corollary 2.5], in the definition of the X*¢ and X*~1~! spaces one can
replace the Xi1§ norm by the norm of )‘(jﬁ defined by

||u|\§_(;73 = N2V qul 72 + N2dP 720, zull 72
This is based on the estimate in [11, Lemma 2.4]:
NV o Paul| g2 + A5_1d9_1]|Dg<ﬁP,\uHLz S
14
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This bound shows that on frequency localized functions, the X3’ Nd b and Xy d norms are com-
parable and also that in Deﬁnltlo one can assume that wuy 4 and f,\d are localized at
&1

frequency A. Moreover, based on we have the straightforward embedding
Xs—lﬁ—l C L2H8+6_2. (22)

2.2. Basic properties. Here we show how some properties known for the classical X*°
spaces generalize to variable coefficients. We begin with some properties for our frequency
localized building blocks:

Proposition 2.7. Let u be a A-frequency-localized function on [0,1] x R™. Then:
(1) (Energy estimates) For d > |I|™" and any v one has:

N |V gl oo S o (2.3)

/\d[I

, 1
[ollersncrms— S vllxeo of 0> B% (2.4)

(2) (Time localization) Let 1 < dy < dy < X and let x4,(t) be a bump function in time
localized on the dy* scale. Then

= 1,1 1,4 .
Y SXG = X e el g S el g (25)
X)\,dg X)\,dl

(3) (Global extension) There ezists a frequency localized extension of u from [0,1] to @
supported in (d=1, 1+ d=t) such that

dQHVtyxﬂHLz(Ran) + d971HD9<\F’UHL2 RXRn < HUHXI 0.

(4) (Time orthogonality) Let 1 < d < d < d" < \. For smooth partitions of unity with
respect to time intervals of length d=': 1 = Zj x;(t), one has

2 j 2
i = oo
= 2.7
‘ / // Z HXd d/ d//] ( )
(5) (Scaling) Set u’(t,x) = u(dt,dx) defined on [0,1] where 5d > 1. Then:
s n+1
| |X§f’5d ~ 5O ||y X390,3 (2.8)

where X;/’\%d is defined using the metric ¢°(t,x) = g(dt, o).
Proof. By energy estimates for the wave equation we obtain

—1
IVeaull e o S HIT I VeatllZoy + I Vewull 2l O sullz

9evx

which implies (2.3) by (2.1). From this, for > 1 and I = [0, 1] we sum over d and use the
definition of X*? to obtain the L>°H* x L*H*"! bound in (2.4)).
Now we prove that the map

€[0,1] — H* x H*' 5 0[t]
15



is continuous when v € X*?. By the Fundamental theorem of calculus and Cauchy-Schwarz
in ¢, by summing modulations we have

1
[ox(t + ) = a(B)l[rs < Cx[B]2 [[oall x50
for any t,t+ h € [0,1]. Let € > 0 and define A such that

Z [oAl|Zoe e < €.

A> e
Then
lo(t +h) = v(®)Fe S D llvalt + h) — va®) |3 + € < (2.9)
A<Ae
<|hJ2 Celloll oo + € S €2 (2.10)

for h small enough. The same argument applies for 0;v.

By Holder’s inequality and ([2.3) we have

1 1
Ady ([ xaull 2 S Ads [Xaall iz lull ooz S flull ooy -
Adq

For the term U, _ 5(x4,u) we consider

_1
2

_1
dy *[[xa;Uyeyzulliz S dy * [Dyeyzulliz S llull 1

A,dq

_1 _1
dy * |07 xapullre S dy * 107 X |2 ull oo e S Null oy
A,dq

_1 _1
dy *[|10:xay Oratel| 2 S da * 0eXaa |23 10wt oo 2 S Hlull 1y

Adq

(3)| First we extend u by solving U,_ u = 0 outside [0, 1] and then we define @ = xPyu

where x(t) is smooth time cutoff supported in (—=d~!,1 + d!') equal to 1 on [0,1]. For
tel,1+d™

IVeau®)llrz S [ Veault —d ez + 10 sullprzq-a-tipa-1xen
S IVegu(t = d ™)z +d7 V2|0,

\f,\uHLQ'

Therefore
IViztllzqaratzny S 1 Veaull 2o + d7HOg_ w2,

We repeat this analysis on the interval [—d~!,0]. For the term Oy_ .t outside of [0,1] we
write 3 3 } 3 .

Dg<\f>\XP)\ - X”(t)P)\ + 2X/(t)8t,zp>\ + X[Dg<ﬁ7 P)\] + XP)\Dg<ﬁ‘
Then we use the already established L? bounds together with (1.30]).
(4)| See [11, (53)], which is an easy commutation argument (see also Remark [2.6).
(5)| The equivalence follows from a change of variables. The only issue is that the scaling
does not commute with taking the P_ 5 localization for g. Instead we have (g <\//\57,1)5 =
(9°) -5y It remains to estimate

/\*1d*1|\ng’m]uHLz S )\726171”329[\5,\?5—1}HL2L°°H32UHL°°L2 S Hungig[om'
16



O

We next drop the frequency localization. Then one may ask whether we could also discard
the frequency localization in the coefficients. This is indeed the case for a restricted range

of Sobolev indices. Precisely, we have

Proposition 2.8. Let0 < s <2 and0 < 0 < 1. Thenu € X*% iff it admits a decomposition

u:Eud

d>1
so that
ZdeVudH%Qqu + d2072HDgU/d||%2Hsfl < 0
d
with an equivalent norm given by

fulfes = in S [V alFegos + 02|yl ]
d

We note that the counterpart of this result for X5/~ is also valid.
Proof. a) In one direction, given uy 4 we define

Uq = E UN,d

A>d
and prove the appropriate bounds for u,;. Then by orthogonality

IVualFzmes S IVsdllfape s
A>d

I0gtallFzes S Y10, sunallizmes + 1Y Og sunallizme-r,

A>d A>d
and the rightmost term on the second line is controlled by the estimates
1Y PO, unallrzmer S X079l o [ Vunall ez

A>d

A

2— _
||PNDQZﬁuA7dHL2HS*1 S (;) s)\s 1||829||L2Loo||vu)\7d||LooL2, 1% > )\,

and the X*? energy bound.
b) In the opposite direction, we define

UNd = P,\ud, d< A
and
U\ = Z Pyug
d>\

and again prove the appropriate bounds.

(2.11)

O

Continuing our global description of the X*? spaces, for s € [0, 2] we define the endpoints

X% and X*! with norms
lullXso = IVullZ2ge
respectively

lullker = IVullZ2 s + 10gul Lo
17



Then we can also describe the full family of X*¢ spaces as follows:

Proposition 2.9. For 0 < s <2 and 0 <0 <1 we have:
(1) (Interpolation) The space X*Y can be described by interpolation as

X0 = [X*0 X1, (2.12)
2) (Duality) For 1 < 6 < 1 we have
( y 5
Xs—l,@—l — (Xl—s,l—e + LQHQ_S_G)/. (213)

We remark that the first part of the proposition in particular shows that the spaces X*?
defined in [37] and in [44] coincide.

Proof. Examining the equivalent definition of the X*? spaces in Proposition , one
immediately sees that it is nothing but the real (6,2) interpolation space between X*? and
X*! constructed using the J-method. Since these are Hilbert spaces, the outcome coincides
with the one provided by complex interpolation.

This is proved in [11, Lemma 2.13]. O

It will be technically convenient at some junctures to view functions in X*?[I] as restric-
tions of globally defined functions. For this purpose we assume that the metric g is extended
to a global Lorentzian metric in R, This can be taken constant outside a compact time
interval.

Corollary 2.10. In the definition of Xf\’e, we may assume in the decomposition uy = Y uy 4
that suppuy g C (—d™ 1,1+ d™ 1) x R" and take all spacetime norms over R*™™. The same
holds for other intervals.

We also have

Lemma 2.11. Let I = [0,6] and D = 6. If v[0] = (0,0), then

||P,\v||X§%[I] SAT D720, Pl e (2.14)
Proof. Since v[0] = (0,0), the estimate follows from energy estimates. O

2.3. Linear mapping properties. Consider the linear problem
Ogv = f, v[0] = (vg, v1). (2.15)

Lemma 2.12. Let 0 < s < 3 and 0 < 0 < 1. Then the linear equation (2.15)) is well-posed
in H® x H*"! and

HU| Xs,0 5 H(U07U1)HHS><HS*1 + HfHL?HS*l- (216)

Proof. This is proved in [II, Lemma 2.11]. For the sake of completeness we recall the
argument. We write

U:iPAP)\U
A=1

18



and apply Definitions (2.3) and (2.1)):

o0
ol S D 1Pl
A=1 '

S lollZeps + D A8, P — POgul7e + |1 f1-
A=1

For the first term we use energy estimates, while for the second write

O, Py — POy =0, B]— B0,

I<vx I<vx?

For the commutator use (|1.30]), while for the last term use the fixed-time bound

Ay (2.17)

> NI (gs i) 72 S M(10°g] <)’ lul

A=1
which follows from Littlewood-Paley arguments (see [I1, Lemma 2.9]). O
Next, we recall the following mapping and its proof from [9, Proposition 3.1]:
Lemma 2.13. For 0 <s <3 and 0 <0 <1, the operator O, maps
O, : X5 — x°-16-1,
Proof. Let u € X*Y. Using a decomposition from Definition (2.3)) we write
o A 0o
Ogu=>_Y O, Pana+ Y g.y5xPr0%us
A=1 d=1 A=1

Using the definition of X*~1¢~1 the first term is clearly bounded and we place the second
term in L2H*~'. We do this using the following fixed-time bound

1D govsPrfillis S )N Al (2.18)
A=1 A=1
which is dual to (2.17) (see [1I, Lemma 2.9]), together with ({2.4). O

Finally, we want to extend and refine the linear bound ([2.16]) to apply to the Laplace-
Beltrami operator [J,, given by (1.3)) and to source terms in X*~10=1,

Lemma 2.14. Let 1 < s <2 and % < 0 < 1. The solution of the linear equation
Oyu = F, ul0] = (uo, uq) (2.19)

satisfies

oo < oy wn) || ezt + | F || oo (2.20)

[l
Proof. (1) We first recall from [I1, Lemma 2.12] that

Oyt Xs b0t — xof (2.21)
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where (0, f is the solution w of the inhomogeneous equation ([2.15) with w[0] = (0,0). To
prove this, assume f € X*~19=1 which gives a representation

f=Jfo+ Z Z HocvxPrfra = fo+ Z Uy va S

A=1 d=1

The term

A
Z Py fra

1 d=1

Mg

>
Il

is in X*? by definition. Thus it remains to write 0, f = u+v and show that v € X*? using
(2.16]). The function v solves

Oyv = fo — Zg>\f/\PA82f,\, v[0] = —u[0].

A=1

The contribution of the initial data —u[0] is controlled by (2.16), (2.4), while fo € L*H*"".
For the rest of the inhomogenity one uses and .
(2) Now we return to the proof of We write

ig — 0, = h"0,
where
17| p2poe + Veh® || p2pe < 1 (2.22)

and we will treat h®0,u as a perturbation. A function u solves (2.19)) if u = ®(u) where
®(v) = S(ug,u1) + O (F — h*9yv). Here S(vg,v1) denotes the solution of (2.15) with
f = 0. To show that ® : X*¢ — X% and that ® is a contraction on X*?, considering (2.21]),
(2.16)) and (2.4)) it remains to check that

1B 0| 2ot < (| Veav || oot < [0 xe. (2.23)

Using (2.22) we obtain this bound first for s = 1 and s = 2 and by interpolation also for
1<s<2. O

Remark 2.15 (Higher regularity). Let & > 3. Assuming control of k derivatives of the metric
g, we obtain the previous properties for a wider range of s. Thus, [I1][Lemma 2.9] will hold
for —k + 2 < s < k4 1, which implies that , and Lemma extend to this
range of s.

Assuming ||0%g|| 121~ < 1 (since g is a rescaled metric) we extend (2.20) to s € [1,k]. We
also refer to [29][Theorem 4.7] for the fact that the parametrix representation with H*x H*~!
bounds extends to s € [1, k] under the assumption g € L>°H*1.
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2.4. X% spaces. In the proof of the Moser estimate (1.18) it will be useful to have the
following modification of the Xf\’g norms.

Definition 2.16. Let s € R, § € (0,1) and dyadic A > 1.

(1) The norm of Xii is defined for A-frequency localized functions u by

_1
Hquii - >‘s+9||vt,xu||L2 + AT ”Vt,xUHLooL?-

s,0 -
For 1 <d< )\Nthe norm of Xy, is defined by ||ul x50 = || x50
(2) The norm of Xj’e is defined for A-frequency localized functions u by

A2 A2

2 : § : 2 § :
>5,0 :mf { UN.d =50 ] u = u/\d—f-U)\)\ }
X}\ || ) | X)\,/\ ’ — y ) ’

d=1
(3) A function u € L*([0,1], H*) is said to be in X*? if it has finite norm defined by

oo o0
A=1 § =1

where the u) can be assumed wlog to be A-frequency localized.

Ju 2o+ Il

[l

Clearly X5 ¢ X The only difference between the two spaces occurs at high modu-
lations, where we discarded the terms )\5+9*2||Dg<ﬁuA’A||L2, making the norm X*? smaller.

This will be useful in the proof of the Moser estimate ((1.18)), see Remark . We can recover
the X*? bound if we control high modulations through OJ,:

Lemma 2.17. If f € X% and O,f € L*H**=2 then f € X*Y and
HfHXS’e S Hf”f(s,e + HDngLQHSJrG—2.
The proof is straightforward using definitions [2.1], [2.3] and is omitted.

2.5. Half-waves norms. For microlocal analysis purposes, we would like an equivalent
definition of the Xi:g norms in terms of halt-waves. We factor the symbol of U _ s as

- 2g0<j\57'§j — gibﬁgafb =(r+a")(t+a),

where

0t = —g% & F (0 56 + 0% s = —0'hE Fa

Write
+ 0j
A* = —g<]ﬁ(t,x)Dj Fal(t,z, D).
Note that the frequency subscripts are omitted from a and A because a is not exactly
localized at frequencies < v/A. However one does have

Psx(Dy, Dy)a € AN S! for any N,
where S is the classical symbol class, which is more than enough decay for our purposes.

Lemma 2.18. In the definition ofo\:Z, 18,_ ;s Prullze may be replaced by ||(Dy+ A7) (Dy +

A+)P)\UHL2 or H(Dt + A+>(Dt + A_)P)\UHLQ.
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Proof. We have
(D + A7) (Dy + AT)Py — (Dy + A7) Poyjs(Dy + AT)Psy s Py
== (Dt + A7>P<)\/8(Dt + A+)P)\ — (Dt + Ai)P<)\/8A+P)\
= Poyjs(DiAT)Py + PoysATP\Dy + A” Py s AT Py,
In view of the off-diagonal estimates
|(Pexss + Pssa) APy 212 = || (Perss + Posa) AsajsPalln2sr2 = O(A),
where Ay /s = (Psy/s(Dz)a)(t, z, D), and the pseudo-differential calculus on R, we have
O,y — (Dy + A7)(Dy + AT)) Paul| 2
SO, ez — (Dy+ A7) Poyjs(Dy + A7) Poyyjs) Prull 2 + ON) |V 2 12
S I Vegul| 2.

l

Just as in Minkowski space, for bilinear X*? estimates it is helpful to split each factor
into half-waves, approximately localized to positive or negative temporal frequencies (see the
discussion in Step 1 of the proof of Prop. . An alternative construction of half-waves
decompositions can be obtained using the +-wave packets from Section[d] For any frequency
A and modulation d € [1, ], let

X;’,Z’i = >\871d0(||v1§7$ui”L2 + )\dilH(Dt + Ai)ui||L2 + d71|“:|g<\f)\u:t”L2).

ul

Proposition 2.19. For any u : RxR" — R satisfying u = P\(D,)u, there is a decomposition
w=ut 4+ u" such that u* are also localized to spatial frequencies ~ X and

+ <
Proof. Write
u = Psyjga(Dy)ux + Poyjea(Dy)uy := ub +u7;

note that we truncate smoothly D; on the same scale as in D, in order to make use of
standard pseudo-differential calculus. The estimates will then follow from the ellipticity of
D, + AT on the microsupport of u*.

We supply the details for u*. Write P*(D,;) = P~_y/64(D;) and P~ (Dy) = P<_x/64(Dy).
Introduce the slightly enlarged multiplier

Ty = Poxpias(De) PA(D,).
Then
(1= T3)(Dy + A¥)P* (D) PA(D,) o1 = (1 — T) AT

>)\/64

P+(Dt)P)\(DI)HL2—>L2 — O(}\*OO)’

where A7 is mollified in (¢, ). Now on the support of Ty, the symbol 7+ a~ is elliptic and

belongs to S} 5(R'™™), hence there is a parametrix Q € OPS_ ;(R™™") such that Q(D; +
4 4

A7) + R =T, with R € S~ (R*").
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Write
(Dy+ AN ut = Q(Dy + A7)T\(Dy + AN u™ + RT\(Dy + AN )u™ + (1 — Th) (D + AT )u™
= QT\(D; + A7)T\(Dy + AN)u*
+Q(1 = Th)(Dy + A)TN(D; + AN ut + RT\(D; + AN )u™
+ (1= T)(Dy + A)ut
Therefore

1Dy + AT Yut |2 S ATHI(Dy + A)TA(Dy + AWt |12 + A [(Dy + AYTA(Ds + AT Y|z
+ ANV e
The main term is
(D + AT)IN(D; + AN u™ =T\ (Dy + A7) (Dy + AT Txu
+ [Dy + A7, TNTN(Dy + AN u+ [Dy + A~ TN [(Dy + AT), Z(F;]u |
2.24

where T} = P>,A/64(Dt)15,\(Dx)u. The second and third terms are bounded by ||V, ul/12 in
view of the commutator estimate

ATy : L* = L? A= A%

which can be verified by decomposing the input and output frequencies and exploiting or-
thogonality; we leave the details to the reader.
For the first term on the right side of (2.24)), we use the proof of the the previous lemma
and similar commutator estimates as above to obtain
I(De+ A7)(Ds + AN Tull
<0, vaTxullce + 0,05 — (De+ A7) (Dy + A7) Tul| 2
07 a
S0, yzullz + g 5 TR0l 2 + (192, 5, T 0udbul 22 + (Ve ol 22
S IVeaulle + (10, xul 2.

This last estimate also yields the desired bound for ||, su™||z2, and altogether we obtain
[(De+ A%y o2 S AVl + A0, gl eo
U

If u is compactly supported in time, we may smoothly truncate the half-waves in time to
obtain:

Corollary 2.20. Suppose u € P\(D,)u has Fourier transform supported in [\/2,2)\] and is
supported in [—c,c] x R™. Then there exists a decomposition

u=u"+u"

+

where u™ are supported in [—2¢, 2¢| xR™, and satisfy the estimates of the previous proposition.
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3. NULL FRAMES

3.1. Null foliations. In this section we construct the null “hyperplanes” along which wave
packets propagate. Factor the principal symbol of O, as (T+a™)(7+a~). For each direction
6 € S* and sign £, we construct optical functions <I>9jE as solutions to the eikonal equation

0,97 + a*(t,7,0,97) =0, @F(0,2) = (z,0).

By the standard theory of Hamilton-Jacobi equations, for small 1 these admit classical
solutions on the spacetime slab [—10, 10] x R
Recall that ® is constructed via the Hamilton flow for a* defined by

T = agi(t,x,f), £= —at(t, ). (3.1)

Solutions to this systems are called bicharacteristics. Write ¢ +— (xf[,f’ti) for the solution
initialized at (z¢,&). The map (zq, &) — (2, &) is 1-homogeneous in the second variable.
Moreover, a routine linearization argument reveals that

Lemma 3.1.

d(o, o)
where the matriz B(t) has norm O(t).

Oz, &) ( I+0() B )
O(m) I+0M) )’

Proof. The linearized system is
Y = Ay + ageC,
C = —QgzYy — ame'
The half-wave symbols a inherit the derivative bounds on the metric:
10120 alt, 2, &) luss, + 1107.0"ae(t, 2, )2z S for bounded ¢,
hence Gronwall yields the preliminary estimate |(y(t),(t))| < [(y(0),¢(0))].
Consider initial data y(0) = I, ((0) = 0. Then
t
G001 S NoRaliane v+ [ fo(s)lds,
0

so |¢(t)| < mv/t. Substituting this into the equation for y, we obtain
ly() =1 5 0.
Now consider initial data y(0) = 0,7(0) = I. Then |y(¢)| < ¢, and

) —1 < / el ds + / lae(5)C ()] dE < 1.
]

Hence we may parametrize the graph of the & flow map at time ¢ by (zif, &) — (20, &),
via the diffeomorphisms

(z77,&0) = (0, &) = (217, &7) = (20, &)
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A short computation then yields

0o, &) _ Ao, &) Ot &) lwo &) ( 1+0(m) B ) 5.
Oz, &) (w1, &")  O(xo,&) Oy, &) O(m) I+0@m) )’ '
We define & (t, ) by the relation
& (ta7) = & (20, &), (3.3)
and recall that the method of characteristics construction gives
0,95 (t,z) = & (t, x). (3.4)

As g*P0,®F 9305 = 0, we obtain a foliation A} of [—10,10] x R? for each 6 by the null
“hyperplanes”
Ay, == {®5 = h}. (3.5)
The regularity of these null surfaces is easy to compute:

Lemma 3.2. The functions ®; have reqularity 8371@;; =0(n).

Proof. To simplify notation, we fix 8 and focus on the + case for the remainder of this
section. We redenote a = a™, ® = ®}. In our new notation, ® solves

0® +a(t,z,0,P) =0, &(0,2) = (x,0),

Differentiating the identity ([3.4) gives 92® = 09,& = O(n). The estimates involving time
derivatives now follow by differentiating the equation:

0,0,® + a, + ag02® =0, 9,0,9(0,z) = 0= 3,0,® = O(n),
O} + ay + ag0,0,9 =0, 97P(0,7) = 0= 9P = O(n).
0

Lemma 3.3 (Separation between null planes). dist(Ap, g, Any9) ~ |h1 — ha|. More precisely,
there exists constants cy,co > 0 such that for each (t,x) € Ay, , we have

c1lhy = ho| < d((t, x), An,) < colhy = ha,
where d denotes Fuclidean distance measured in the time slice {t} x RZ.

Proof. Without loss of generality assume hy > h;. By the bounds on 9*°®, we have that

|0,®| =1+ O(n). The Euclidean gradient flow 4 = |§£\ satisfies

B(t,7(s)) — B(t,1(0)) = / VL8t A(r)] dr € [Crs, Cas]

for absolute constants C1,Cy. Thus the Euclidean distance of Ay, is at most |hy — hs|/Ch.
If n is any other unit speed curve with 7(0) = (¢, z), then

@, n(s)) — @(t,7(0))] < /O [Va®(L,0(7))| dr < Cis,

so the distance is at least |h; — ho|/Cs. O

The next two lemmas compare the bicharacteristics and null foliations for mollified and

unmollified metrics.
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Lemma 3.4. [44, Prop. 4.3] If R" x S"' 5 (x,€) v (24,&), (42, &0) are the + bicharac-
teristics for the metrics g and g_. 5 with the same initial data, then

[wep — 2] SATHE JGa — & S AT

Lemma 3.5. (Foliations for frequency truncated metrics) Let Ay be the foliation defined as
before but replacing g with 9_\y- Then dist(Ape, Aﬁﬁ) <AL

Proof. The optical function ®* for A* satisfies the corresponding eikonal equation

0,0* + a_ (t,r,0,9) =0, ®N0,2) = (x,0),

1
A2

where a_yy = a® | is the + half-wave symbol for the mollified metric (but is not itself

2 <2
exactly localized, due to the square root). The difference ) := ® — ®* solves the transport
equation

Oh + (v(t, ), 0,0) = a_yiy2(t, x,0,9) — a(t,z,0,9*) = O(\™Y), ¥(0,2) =0,
1
v = / ag(t, z, 0, + 50,(® — %)) ds,
0

which may be integrated along characteristics to yield [¢(t, z)| < [tATY]. O

Certain estimates will be expressed in spacetime coordinates adapted to the foliation Ay.
The following construction is modeled on [30].
Let & = &y be the optical function for Ay. We rotate the coordinates in x by setting

zg = (z,0), )= (x,0"),
where 0+ is clockwise rotation of by angle /2. Then in the coordinates (, zj, zg), we have
02, ®(0,-) =1 and §?® = O(n). Hence 9,,® = 1+ O(n) for all (¢,z) € [-10,10] x R2.
Provided 7 is sufficiently small, the global implicit function theorem lets us write
Ah,& = {(tu xleu wO(t7 Il@? h)}
for some C? function 1. Then (¢, ), h) also define coordinates on [—10,10] x R? via

Straightforward computations show that

d(xp, xo)

o, ) O .
0% (xp, xg) '
e

The variable h parametrizes the leaves of the foliation and is constant along geodesics.

3.2. The null frame. The future-pointing geodesic generator of Ay is L = —V®. We
complete this to a null frame by the following standard construction. Let E = (e(t,x), 0,)
be a vector field tangent to the fixed-time slices of Ay, defined concretely in terms of the
rotated coordinates (xj,xy) as

E= E(t, 2, 10) = O, 4 (0 0) Ouy-

Sl

<E7 >1/2’
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Then (L, F) = —d; ,®(E) = 0; in fact one also has
0= dxq)(E) = <E7€9(ta {L')> = <6(t7x)7€0(ta fL‘)>, (37)

where &y(t,z) is the Fourier variable defined by (3.3). Finally, let L be a null vector field
transversal to Ay and satisfying (L, E) = 0, (L, L) = —1. The vector fields {L, L, E'} form a
null frame adapted to the foliation Ag.

Lemma 3.6. We have L(t,z) = o(t, z)[0; + (ae(t, z, Eo(t,x)),0,)] for some bounded function
.

Proof. The multiplicative factor reflects the difference between the null bicharacteristics of
the half wave symbol and full wave symbol. Write z = (¢,z), ¢ = (7,§), and let p =
9*PCCs =pTp™ = (1+a")(T+a"). Let v(s) = (2(s),{(s)) be a null bicharacteristic for p*.
Along this curve one has

t=pl=0")"p, (=-pF=-0)"p..

Therefore
ap = 2(p7) g™ Cugap = 2(p7) s = 2(p7) 0P (2(s)),
SO

_2(p7)71[’ = Q(pf)ilvq) =z= at + <a57 8x>

Finally, observe that p~ = p™ 4+ p~ — p™ = —2,/(g%¢;)? + g*&,& is bounded above and
below along 7. O

4. WAVE PACKETS ANALYSIS

In this section we collect and generalize the salient features of Smith’s wave packet
parametrix [29]. More specific implementation details are recalled in the appendix.

4.1. Packets, tubes, and null surfaces. We begin by clarifying our “wave packet” termi-
nology. For w € S"7 1, let 72 (t) = (2% (t),£%(t)) be a bicharacteristic for half wave symbol
7+ a* with £€5(0) = w. Let w(t) := £(¢)/|£(t)] be the projection of £ on the unit sphere.

Definition 4.1. A smooth function u at frequency A is a normalized wave packet for the
bicharacteristic 7= if:

e u is localized in phase space along 7*: there exist constants C)y such that
[ut, 2)| < CNAT(A|(@ — 25 (1), wE(@O)] + A2 |(@ — 22(@) AwE @D Y, (41)

and similar estimates hold for (Mw*(t),d,))" and [A/?(w*(t) A 8,)]" applied to uZ.
e Lu satisfies the same estimates with constant Cy (), where |Cxn(t)| Sy [|0%9(t)|| 1,
and L is the null generator for the null foliation AZ defined in Section [3.1]

For each frequency A > 1, let w vary over a maximal collection €2, 1,2 of unit vectors
separated by at least A~2. To each such w we associate a lattice =Y in the physical space R”
on the dual scale, i.e. spaced A™! in the w direction and spaced A~ in directions in wt. Let

T={(r,w) :we Qe xve=}
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To each bicharacteristic v= = (z*(¢),£5(t)) with (2%(0),£5(0)) € Ty, we associate a
spacetime “A-tube”

T o= {(t,x) : Mo — 2= (t), w™(8))| + A'2|(2 — 25(1)) Aw™()])] < 10}, (4.2)

on which packets for ¥ concentrate. Each tube, say with initial data (zg,w), is a A7!/2
neighborhood of a ray, intersected with a A~! neighborhood of the null surface A, containing
the ray.

It is suggestive to identify 7' with 4+ and denote normalized packets by ur. Let 7j\i denote
A-tubes associated to the bicharacteristics 4= for the metric g, initialized in the lattice 7y.

By Lemmas and , using the mollified metric g_ 5 instead of g would yield an
essentially equivalent family of tubes in the sense that each tube from one family intersects
boundedly many tubes from the other family, which are in turn contained in the dilate of
the first tube by a fixed factor.

The tubes 7;\iw associated to a given initial direction w are finitely overlapping and admit
a natural notion of distance which is convenient for expressing the decay of wave packets.
Following Smith [29, Section 2], if 77,75, € 7;\+w are tubes with initial data (z;,w), j = 1,2,
we define

ATy, Ts) = A1 — 29, w)| + A2 |(21 — 22) Awl.

Let (t, ,(t), h1) and (¢, 25 ,(t), ha) denote the corresponding rays in the foliation-adapted
coordinates. It follows from (3.6) that each tube takes the form

Ty = {|al, — 2/ ()] SN2, [h—hy| SA'Y,

~

and that |2 ,(t) — 25 ()] + [h1 — ha| ~ |27 ,(0) — 25,,(0)] + |h1 — hy|. Hence for A > 1 we
can also write

A(Ty, Ty) ~ Mhy — hy| + A2 |21, () — Zau (1))

If up is a packet with initial direction w and T” is any other tube with initial direction w,
at time 0 the decay condition (4.1]) translates to

[ur(0)] 7 S AT (d(T, ")™Y

For t # 0, a similar bound holds but requires justification since the condition (4.1)) is
expressed in an orthogonal coordinate system whereas the null surfaces are curved.

Lemma 4.2. Let u = ur be a frequency X wave packet for the + bicharacteristic (z;, &)
initialized at (0,w). Let A} be the + null foliation with direction w for 9.5, and denote by
{L,L, E} the associated null frame. Then if T" € TJA is any other tube, one has for all N

\UT|T/ ,SN )\% d(T> T/)>7N

ur|r SN it ) .
E <y AT (T, 7))~V
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FIGURE 1. Tubes corresponding to the same direction w are finitely overlapping.

More precisely, if (t,2,(t), z,(t)) represents x} in the rotated coordinates and u(t, ., h) =

y YW

up(t, @, o(t, 2, ), Bult,z.,, h) = (Bur)(t,z,,¢(t, 2., h)) represent u and Eu in the foli-

)W Y w? I w? )W Y w?

ation adapted coordinates, then
| <y Ni(A2|z!, — 2, (6)] + |AR|) "N for all N.
|Eu| <y AiT2(\2 |2, — 2, ()] + [AR) Y for all N.
Proof. Modulo multiplicative factors of size 1 + O(n), we have
w(t) = =0y, Y(2'(t),0)0u;, + s,
E(t,x),, x,(t, ), h)) = O + O (L, 2., h)0y,, .

By a slight abuse of notation we also write £ = E(t, 2/, h).

YW

We express the wave packet decay condition in terms of the coordinates (x/,h). Let
Yo = (= 2, (1), ¥ (t, ) — Dt 2,(1), 0)), w(t)),
Yo = ((l, = 2, (1), (8, 2,) — o (t, 24, (), 0)), E(D)).
Then
Yo =l — 2, (8) + [ 2, h) = (t, 2, 0) + (¢, 2, 0) — h(t, 2, (1), 0)]0utb (2, 2, (1), 0),
2

Yo = 77/)(15,]}/“), h) - ¢(t71’;70) + ¢(ta$;70) - ¢(ta$;(t)70) - (l‘ - xi;(t))aﬂ%ﬂ/}(t’ w(t)70)
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So

w w

1
!yLIZ|$L—-$L@N-—COﬁJﬂmL—-xL@N<—0nﬂlEi§kﬂ — z,(t)]

w

nt

Clag, — 2, (1)

whenever > h. Similarly,

1
Y| > (L + O(n)h — ent|x), — ()] > 5ch

if [af, — af, ()] < SF. Thus

MOR, o7, — L 8) < 2,
(e, ol 1] S § AT, = al (O] + AN, < fa, - el ()] < G,
MO, —al (1)), o — o) >

but one may of course insert Az|z/, — /()] and Ak in the first and third regimes respectively.
To verify the bound on Fu, write

E(t,z.,, h)u = E(t,2/,(t),0)u + [E(t, ., h) — E(t,z,(t),0)]u.

yFwr »w?r

For the first term we use the hypothesis that A=/2(w () A9, )u satisfies the packet bounds (4.1]).
The second term can be written as

which is O(A|z, — z.,(t)| + A|h|) times a normalized packet. O

Corollary 4.3. Let u be a frequency X\ wave packet for the bicharacteristic (x},&") of 9_\4
initialized at (0,w). Let A, be the corresponding null foliation for the untruncated metric g.
Then the previous estimates hold with A replaced by the corresponding foliation A, for the

untruncated metric g.

Proof. The above lemmas imply that the foliations for g and g_ 5 are interchangeable as
far as the bound with respect to h is concerned. Similarly, as shown in [44, Prop. 4.3] the
bicharacteristics for g and g__ /5 differ by O(\1/2). OJ

To express the decay of packets more compactly, we introduce the weight
mat,x) = (14 M@ — (1), w=(O))] + A2 (@ — a=(1)) A w=(2)]),
write
lurllwey = IA~4mur -, (4.3)
and write || - ||wp to denote a generic W P~ norm with the understanding that the constants

in bounds depend on N.
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4.2. Superpositions of wave packets. The following statement summarizes how the dif-
ferent wave packets fit together in Smith’s parametrix. Note that in the rest of the paper
we shall only use the properties below, and not the specifics of Smith’s construction.

Parametrix property 4.1. Let I = [0,6]. For large enough dyadic A\ > 1, the following
properties hold:

(1) For any initial data (uy,us) € L* x H™' localized at frequency ~ X, there exists a
A-wave packet superposition which depends linearly on (uy, us):

u=ut4u", ut = Z crur (4.4)
TeTE
such that (u(0), Oyu(0)) = (u1,u2) and
Y lerl = l(uryug)llFey (4.5)
+,TeT

For any such decomposition one has

10, <vxu®lirz S Mg llrellerlle Vel (4.6)
(2) Let D = 6=1. For any solution of the homogeneous problem
Oy v =0, v[0] = (v1,v2). (4.7)
there exists u as above satisfying
1P =) oy SN (01, 02) [ rcre (4.8)
X)‘,D[I]
lerlle, < A H [ (vr, va) e (4.9)

(8) Let T,T" € 7;\iw be two tubes associated to the same direction w. For v > A, let the
vector fields L, L, E associated to £g 5 and to w form a null frame as in section .
Then one has:

i < WT)\W (410
| Lup|| 2pee(ry S ﬁ (4.11)
| Burl| Lo (1) f)\éﬁ (4.12)
Loty < A wa (413

Moreover, the same inequalities hold with ur replaced by Pyur.
(4) For any t € I and sign +, for (cp)r € (% one has

1Y erur@®lizs S Y lerl®s | D erup®liz SA Y lerf (4.14)

+ + + +
TeTy TeTy TeTy TeT,
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We note that property (2) follows from property (1) together (1.30), (4.6) and Lemma
2.11] In Section [A] we discuss these properties in the context of Hart Smith’s wave packet
parametrix from [29].

Remark 4.4. The decay properties (4.10]) through (4.13)) reduce certain L? bilinear estimates
to the characteristic energy estimates in section [5} Here is a typical computation. Suppose
v = ZTeT; arvr is a superposition of frequency \ wave packets for a given initial direction

w. Then by Schur’s test we deduce

Huv”%z S Z HUUH%Z(T) = Z Z aTla_TQ<uvT17uvT2>L2(T)
T

T Th,T

3 _ _
SO M ullfad(T, )N (T, To) N |aryaz,|

T TvT»
3
N (SgPHUH%%T)) A2 Z laz|?,
T

and the sup term is essentially an estimate for w over the null surfaces associated to the
direction w.

4.3. Preliminaries to the general decomposition. The next goal is to obtain a more
general wave packet decomposition similar to for functions in X*Y which are close
to being solutions of in the sense of having low modulation. To allow for the extra
flexibility of having inhomogeneities U, _ /< V> the resulting decomposition (Prop. and Cor.
will have coefficients ¢r(-) that depend on time, which arise from Duhamel’s formula

v =1+ /1,25115 ds
We first express the functions v, in the followilng way:
Lemma 4.5. For s € [ =|0,4], let vs be the solution of the equation
{Dg<ﬁvs:O on I x R?
vs[s] = (fs, 9s)-

where fs, gs are assumed to be localized at frequency ~ X. Then, there exists a wave packet
superposition (initialized at t =0)
Us = Z Cr suT

£ TeTE

and a function w, such that
P/\Us = P)\<U/S + ws)

where
ws[s] = (0,0) (4.15)
: . < .
HP)\wSHXS:g[I] S Ol(fss 9s)ll2xm (4.16)
||CT78||€% 5 ||<fsags)||L2><H*1- (417)
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Proof. Denote M = ||(fs, gs)||L2x -1 and for brevity we will denote || - || . by || -|lx. Note
)\D

that [|vs[0]]| 1wz < AM. We apply the Parametrix property [I.1] with (v, vs) = v,[0] and we
obtain a representation Pyvy = Pyu' + Pyw' where u' is a wave packet superposition. For

s = 0 this is sufficient. For s # 0, even though w![s] # (0,0), we have |[Pyw'||x < 6M.
Now we iterate this construction. For ¢ > 1 we write

P,\wl = P)\(P)\’LUZ — UlJrl) + P)\UlJrl
where v"*! solves the homogeneous equation

Oyevxt’™™ =0, v ts] = ]%wi[s].

Assuming |[Pywi|x $ 0'M we have ||| pec(minzzy S A'M.  As before we use the

~Y

Parametrix property |4.1] to write Pyvit! = Py(uit! + w't?) with ||Pyw'™! || x < 67F1M.
From the above we obtain Pyv, = Py(us + ws) by defining

= E u', Wy = E Pt — vttt
i>1 i>1

Note that wg[s] = (0,0). Both series converge geometrically due to the powers of 4. O

Corollary 4.6. Let v € Xg%[]] for I =10,0] and let w be defined by
w = wy + /1t23w8 ds
I

where wo, ws are obtained from Lemma applied with ( fo, go) = P\v[0], respectively ( fs, gs) =
(0,04_ s Pav(s)). Then,

P
1Bl o, S 01PN o

Proof. To ease notation we denote F:’,\ by P. The inequality for wq follows immediately due
to (2.3). Denoting by w the integral term, we have w[0] = (0,0) and, since w[t] = (0,0), we
have

Oy o(t) = /IltZSDg sWsds. (4.18)
Note that by , and Holder’s inequality we have
Pl S0Pl oy (4.19)
We write
Uy Pw= P,  w+ [Dg<ﬂ,P]u~J

and apply ([2.14)):

1Pyl oy S A DHIP, @l o + WD s P 1210)
)\D
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The second term is estimated by ((1.30) and (4.19)). For the first term on the RHS we apply
Minkowski’s inequality to (4.18))

)\1D2‘|P/1t23|:|g wadSHLz <)\ 1D/HP|:| wS”LZI] ds

SAD7 [ 18, Pl + PO, sl ds [ 1Pl gy ds
Xy 2
S8 [ A0, Pro(s) i ds S 3Pl .
I D[I}
where we have used ((1.30)), (4.16) and Holder’s inequality in s. O

4.4. A wave packet characterization of the X*? spaces. With the previous prelimi-
naries we are now ready to state our general decomposition (see also [42], Sec. 4]).

1
Proposition 4.7. Let I =[0,0], u > D =0"" and let v € XE:B[I] be localized at frequency

We denote M = Pv <
= 1Bl S Wy

(1) Then, there exists a wave packet decomposition
t)y=P, > ar(tyur(t) (4.20)
+,TeT;F

where the time-dependent coefficients satisfy, for allt € I,

lar|lere S M (4.21)
laz (e, S w10 Buv(®)]l2
lay ()| 22, S DM (4.22)
> dn(tur(t) =0. (4.23)

+,TeT;E

(2) Conversely, if (4.21)), (4.22)), (4.23) hold for some M and
w= > ar(tyur(t),

+,TeT,E

then ||w|| o1 < M.
Xu,[%[[}

Proof. For brevity we will denote || - by || - |lx and P,, P,, ]—z’u by P, P, P.

ot
(1) Note that it suffices to prove that there exists a decomposition

Po(t) = Pw(t)+ P > ar(tyur(t)
+,TeTE
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for some function w with bound ||Pw||x < & HPUH x and (ar)r satisfying the requirements
above, since then the proposition follows by an iterative argument.
By Duhamel’s formula we represent

Pv = v + /1t251}s ds
I

where vy and each v, are solutions to the problems

{Dgw%:o {ng <=0
v0[0] = Pvl0] vsls] = (0,0, Pu(s)).
We apply Lemma and obtain:
Pvg = Pug + Pwy, Pv, = Puy + Pw,
Ug = Z crur, Us = Z Crsur
+,TeT;E +,TeTE

with the bounds
lezlle, S I1Po[O)lz2xn—1 S M, lersll, S 1M 1B, Po(s)llrz (4.24)
and u,(s) = v,(s) = 0. We write Pv = PPv = Pu + Pw where

u = ug + /1t25u3 ds, w = wy + /ngsws ds
I I

By Corollarywe have | Pwl||x < 8||Pv| x.
We obtain the representation

u(t)= Y ar(tyur(t)

+,TeTE

where, for any sign + and any T € 7;1:

ar(t) =cpr+ /hzsCT,s ds |ar| e S ler] —|—/]cT7S| ds
I I

and a’.(t) = ¢, for all ¢ € I. We have
ol S lerl +1 [ leral dsllg. S M+ [ lerullg ds <
1

g<va||L2 <M

S+ [ W0, o)z ds S M+ 570
I
This verifies (4.21]). The next condition holds due to (4.24):
lar )l = llerelle S pHI0 mPo(s)liz

which also gives (4.22)) by integration.

Since ug(s) = vs(s) = 0 we have > a/(s)ur(s) = 0 for any s € I, obtaining (4.23)), which
completes the proof of the first part.
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(2) By Holder’s inequality in time and (4.14)) we have
D% |wl p2(rxez) < ZH > ar(tur)| ez S ZHGTHLwe? <Z||GT||€2L°°
TeTE

Now we consider the term [, W which we write as

Opepv = 3 |ar()0,_ zur(t) + dr(6)ghaur () + O(a(t)ur(t))|

+,TeT;E

For the last term we use (4.23)). For the first term we use (4.6)):

D72 > " ar(t)0,. L ur(t)|2axr2y S AD M09l 21 Z lar| e < AM,

while for the second term we use and ( -

1
| Z CL/T(t)at,qu(t)||L2(l><R2) S wllar®)llze S pD2 M,

which completes the proof.

O

The previous proposition provides the main part of the wave packet decomposition. How-
ever, it does not provide control of the second derivatives (in time) of the coefficients. To

remedy this we have the following corollary.

Corollary 4.8. Under the assumptions and notations of Prop. [{.77:

(1) There exists a decomposition

Puvzv++v_+vR

where

=P, ) er(tur(t)

TeTE
such that
< M, v <M,
[ R U Y NP

lvrllL2m S ptDIM

and

||CT||52TL;>° SM
1
ler ()|l zzee. S D2 M
1
ler ()22, S pD2 M.

(2) Let T,T' € T, be two tubes associated to the same direction w. Then

ILP, (crur) ||y S 1
36
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(4.25)

(4.26)

(4.27)

(4.28)
(4.29)
(4.30)

(4.31)



Corollary 4.9. Moreover, for any function uy localized at frequency >~ X\ > u we have:

lux vl oy S ol oy M (432)

)\,,u,[ ] )\D[H

while for A ~ u 2 n we have

A
P, (uy M 4.33
1P el g, S rllonl o (4.33)
Proof of Corollary[4.8. (1) The previous proposition provides a decomposition into + and —
components and only condition (4.30)) is missing on the coefficients. To gain it, we regularize
the coefficients ar(t) in time on the p~! scale at the expense of introducing the remainder
vp which obeys the favorable L? estimate (4.27). We write and define

ar(t) = az"(t) + a7"(t),  er(t) = az"(t)

The conditions (4.28]), (4.29) are maintained from (4.21)), (4.22)), while (4.30) follows from

(14.29).
The v* are defined by (4.25). We prove that ||vi|| b < M and as a consequence

;LD
we also obtain [jvg|| e < M. We have to place v* and O
,uD

D [v*| g S M and

g<ﬁvi in L2. The fact that

1 _
H 1“ Z CT(t)Dg<\/ﬁuT<t>HL2(I><]R2) SM

D=3t Y2 n(D0ur (8| armey < M
follow like in the proof of part (2) of Prop. .7 What remains is

D72 Y (tur(t) | 2wy S D72 ()2 S M

For vp we have
vg = P, Z az! (t)urp(t
+,TeT,t

Since
1
pllaz”Olleze. < llag™' ()l 2. S DEM
we obtain (4.27)).

(2) To prove (4.31)), for any ¢t € I we write
LP,(cr(t)ur(t)) = er(t)LPur(t) + cp(t) Paur(t)
For the first term we use (4.13]), while for the second we use (4.10) together with

|C£F|Lt°° S |CT‘L§° (4.34)
which holds due to the time regularization done in Step (1). O
Proof of Corollary[{.9. Note that by Bernstein’s inequality and (4.27), (4.26)), (2.3) we have
1 1
lorllzzre S D2M, |10, gvrlliere S W?D2M,  |logllz, S p.
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For the L? part of (4.32) we have

3
pillus - vz S sl rellvallone S p(D/p)2 uall oy I]M

uD[

and recall that D < p. For O, (ux - vg) we consider
1. - llie S 10 sl lomlle € ADRllnl g
uD
lux - Oy zvrllee S lluallpoer2 [0y, gorllzre < p DzHuAH 04
HD

lux - Oy s = O yvallze S luallzellp™ Pogllie < p* D> HUAH o4

|0 - Bvrllze S IOunllzwrz|Ovpllize S Dl )M
w,D

These estimates combine to complete the proof of (4.32)) and we turn to (4.33). Here we use
Bernstein’s inequality in the form P, : L*L' — nL?. We have

1 1 1
0| Py (- vr)llee S ninllux - vellzze S nnllualle e lvsll 22
which clearly suffices using (4.27)). For O,_ \/ﬁ(u A - Ur) we similarly consider

1@y, 5 — Oge o) Poluin - vr)llzz S 0llux - vallzep <

S 0 luallzellvallzeore < w¥lluall o
MD[I}

nllows - vgllens S nlldualliszllovllz S mAD fuall o
?

Xl

MICs. - vrllie S 0D sl lonlzess S IADH fual oy M
w,D

=1

i
O

and similarly for uy - U,_  vg. Each of the term above times 71 is < A/ni.

Finally, we have the following time-dependent wave packets sums analogue of (4.10))-(4.13)).

Lemma 4.10. For a fired w and a dyadic frequency n let

)= D er(bur(t), tel
TeT; wr=w
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For v >, let the vector fields L, L, E associated to £g 5 and to w form a null frame as in
section[d Then one has:

1
2l Sni( Y lerlie)? (4.35)
T wr=w
5 1
IEPw e Si( Y erlix)? (4.36)
T, wr=w
3 1
I LPv* || p2re S 774( Z |CT‘i?o + | i? ) 2 (4.37)
Twr=w
7 1
ILPyv e S3 (> lerlie ). (4.38)
T,wr=w

Proof. These follow easily from (4.10)-(4.13). In the case of (4.37) and (4.38]) we have to

consider the case in which the 0, derivative from L or L falls on the coefficients cr(t). We

write
LPp®)(t) = Y er(t)LPur(t) + Y &p(t)Pur(t)
T wr=w T wr=w
For the first sum we use (4.11]), while for the second we use (4.10]). The bound (4.38)) follows
from (4.31)). U

5. MICROLOCALIZED CHARACTERISTIC ENERGY ESTIMATES

The proof of the algebra property X . X*? c X*? relies on estimates for directionally
localized half-waves along certain characteristic surfaces.

5.1. Microlocalization. For each dyadic number a < 1, let 7 + afa_l be the half-wave

symbols for the operator Elg@fl (note that aﬁa,l is not quite frequency-localized due to the

square root) and let ®%F(z, &) = (2%, €F) denote their Hamiltonian flows.
On one hand, a routine linearization argument as in the proof of Lemma |[3.2| shows that
the flow map satisfies

Ot (a %, 64)

O(z, §)*
On the other hand, in view of homogeneity the flow map is smoother in some directions than
others. To capture this directional information, we consider a class of phase space metrics
adapted to the wave equation developed in [10} II]. For each 0 < o < 1, define g := g, by

O lyneP  [m &P InngP
Go () (Y> 1) = |<oi{1|€T2|’ * |i2ml + |<T‘]§|4>| + |Zz|5|J1 :

= 0o, |k > 1. (5.1)

(5.2)

We recall
Lemma 5.1 ([I1, Lemma 4.2]). The flows ®*= are bi-Lipschitz and go-smooth.

These metrics shall define the symbol classes S(m, ¢g) in which we work. At a point (z,§),
the unit ball with respect to g(,¢) consists of a a? x ()" ! rectangle in the spatial variable
with long side orthogonal to &, and a |£| x («|£])" ™! rectangle in the frequency variable with

long side parallel to . One easily verifies that perturbing the basepoint (z,&) within this
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unit ball yields comparable metrics. Appendix [B| collects the relevant facts and notation
concerning pseudo-differential calculus at this generality.

Throughout this article, for any frequency p > 1 we write

Q= ,u_l/ 2,
The parameter p will eventually be the smaller of the two frequencies in products of the
form uyv, € Xf\’e - X fL’G, and in this context, a, represents the smallest angular scale in the
bilinear decomposition of the product.

If a € [, 1], write Q, for the collection of half-open dyadic intervals on S* = R/Z of
width a.

For 6 € Q,, let s§(§) be a 0-homogeneous function supported in the sector defined by
€ = ¢/|¢| € €O, where C denotes the dilate of the interval # about its center by some
(fixed) factor C' > 1, and define time-dependent symbols (ﬁg"i by transporting sy along the
fl

ay,,t
ows ¢,

OE(t 3, €) 1= 55 0 DM (5.3)
By the previous Lemma, we observe
Lemma 5.2. The symbols ¢y satisfy 0, 05" € S((al€])™", ga,.)-
The notation S(m, g) refers to the symbol classes in Definition [B.1]

Remark 5.3. A very similar construction was proposed by Geba-Tataru [I1, Section 4].
However, here the time dependent symbols are defined using the same flows @?“’i for all
angular widths o > «y,, whereas in that article the initial symbols s are transported along
the flows "=, Consequently their symbols satisfy the better bounds 8¢g"i € S(a)él™, ga)-

For each A > p, define the symbols at frequency A by

G (8,2, €) = Peyys(Dy) 5 (t, 2, €)1 (£), (5.4)

where s,(&) is a smooth cutoff supported in the annulus |£| € [A/4,4A] and equal to 1 for
€] € [A/2,2].

Lemma 5.4. The symbols (;537’;[ satisfy 8(}53}’} € S((aN)™, ga,), and also
+.«
{r+ ai:a;h ox t €51, a,)

Proof. The fact that ¢37’/\i € S(1, oy,) is straightforward. Since ¢3’i is transported along the

Hamilton flow for a <a;1(t, x, &), the Poisson bracket takes the form

—(Da_ 1 03N () D5 (12, €) + sx()[H,yx , Paxs(Da)lgg ™ (1,2, €),
<a#
where 3, is a fattened version of sy and H, = (a,, 0,) — (a¢, J¢) denotes the Hamiltonian
vector field for a symbol a. The first term belongs to S(A™, ga,). Now for any ki, ks, one
has
kl k2 . .
8’;10?2 [8€aj<ta;1’ P<,\/8]8x¢gévi — Z Z[aila?aéaia;l, P<,\/8]8§1—318§2—J2 (ax¢gé,i)
J1=0j2=0
40



As &,ﬁgaia;l is ga,-smooth, for any yi, ..., Yy, M, .., Mk, With g(y;,0) = g(0,n;) =1,

1w, o) - (W3, 0a) (11, D) - (1 0) OeaZ 1, PerjallLoosrr S AT
Consequently

k1 ko
‘ H H <yj1 ) a’L‘><77j27 a§>[a§aia;17 P<>\/8]ax¢g7i<ta xz, 5) 5 )‘71(05’5‘)71

J1=1j2=1
therefore

9eat, 1, Parys)(0u05™) € S((@NE) ™", ga, ).
Similarly, as Bernstein implies that &%aioﬁl c S(a;% €], gau)7 we have

0:0% 1 Peays) (0605 € S((0) 72 (@) ™ g, ).
0

For each z, the symbol gzﬁg"i(t,x,g) is supported in a sector |€ — @(t,x)] < ca, where
£ :=¢/l¢] and ) a
(x,0) — ((xa“(t,x),e) = (x,&," (t, 7))

parametrizes the graph of the canonical transformation @?‘“i (the dependence on =+ is sup-
pressed in the notation &,*(¢,x)). The mollified symbol gbg‘f is no longer sharply localized

to the sector |€ — £5*(t, x)| < ca, but we can write
o (6,2,6) = G55 X<aeaIE — 7 (2, >D+@f, (5.5)

where the first symbol has the same regularity as 9259 \ and g’ /\ = O(\™>).
For each 6, let

ma(t,2,€) = {0~ (€~ " (t,2)))

In the notation of Section Bl one has

057, g € Sh(MET, ga,,)-

For future reference, we also record a technical lemma regarding the time-regularity of
symbols.

Lemma 5.5. There is a decomposition
005" = Y1+,
where Y1 € S(1, ga,) and 1)y satisfies the estimates
1| Sy a™tm)) for all N,
Or € 0 a7 IS(ME, gu,) + 05 S(F g, ),
Db € a0, [E)TIS(ME®, g, )
in particular 8t¢g’i € ozflS(l,g%). Also,

Oé,:l: -1 — o0
at{T + aziQ;l) ¢97A } 6 S(Oé‘u, 2 <Oéi)\) 1m9 ,gau).
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Proof. The definition of the symbol implies that
é%¢gj:::«Q76&> gi__ «%né%> ?i'
The first term evidently belongs to S(1, ga, ). The second term is pointwise bounded by o~
and satisfies
_1
Oy ({ag, O¢) ;‘Ea) = (Qgaz, Of) g:i 4 (az,ﬁg)amg«i € ay 2a715(m§°,gau) + a}zls(mgo,g%),
Oc((az, 0e) 0y ™) = (aea, O) 5™ + (a0, O¢) Oy ™ € o, (al€]) 'S (MY, g, ),
where Bernstein is used for pointwise bounds a,, and further derivatives as in ((1.28)). These
estimates are preserved by the mollifier P.y/s(Dy).

The second claim is proved by inspecting the Poisson bracket estimates in the previous
lemma:

0T+ 0%, 1,673} = —(0:0h0 105N — (D21 DeiN(€) D035 (8 2,€)
+ SA(f)[Hatai ) P<)\/8(Doc)]¢g7i + Sk(f)[Hai i P<A/8(Dx)]at¢gé,i

W <oy

1

€ S(au (@A), gay)s

_1
where we have used the Bernstein type estimates axagataiagl € S(au*, ga,), respectively

_3
aiatai -1 € S(aﬂ2|£|>go¢ ) O
<oy H
Proposition 5.6. Suppose a > «,. If u is a function at frequency A > a2, then
+,«

> Mgt X, Dyullx, ~ llullx,

0€Qa
where

lullX, = llullZ; + 1(De + A%)ullZ,
and a* are the half wave symbols for the mollified wave operator
p=1" =297 (76 — g2 sl

More precisely, we have

> U5 (8 X, Dyull2a ~ ul?,
0

S IDs 4+ AF)GEL (X, DYull3e ~ [[(De + A2 + O(ull32).
0

In practice we shall usually need only the “<” direction. The following terminology will
be convenient for describing the size of various operators.

Definition 5.7. We say a collection of operators yg : L2 — L2 is square-summable with

respect to 6 if 35, [xoull7s < llull7.; that is, if 37, x5xe is bounded on L.

~Y

If the operators xy depend on t, it will be clear from the context whether the implicit
constants are uniform or merely square-integrable with respect to t; for the latter case we
use the term “L7 -square-summable”.
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From the pseudo-differential calculus in Section [B] and the Cotlar-Stein almost orthogo-
nality criterion, one immediately deduces

Lemma 5.8. If symbols g € S(mg°, ga,,) are supported in |E] ~ X > a;, then the operators
P\(D)py(X, D) are square-summable with respect to 6.

Proof of Proposition. Consider first the L? component. The previous lemma already shows
that

Z 165 (¢, X, D)ull72 < [lull7-.
For the other direction, we note first that if u is localized at frequency A, then

lullzz ~ || o35 X, Dyu|
0eQn

As gb;t’/\a € S(1,9a,) and localized to frequency A in both input and output, the direc-
tion “Z” follows directly from Lemma [B.5 For the opposite direction, use the first order
calculus (B.1)) to write

w=P\(D (Z ¢2 A) (t, X, D) qu“ (t, X, D)u + Py\(D)r(t, X, D)u,
where 7 € S((a\)7?, ga, ), and apply Lemma to obtain
Jullz2 S HZ%WH + (o) u] -

(Of course there is nothing to prove if ), 9’ = 1 but recall that according to our con-
struction of the symbols, for a fixed angular scale o the sum is in general merely bounded
above and below.)

Hence we may write

||U||%2 5 Z(Xeuv XG’U>;
0.6’
The pseudo-differential calculus yields the estimates
IXoxorllr2srz S (da(0.0))7N,  da(6,0) :=]a™'(0 — 0')].
Splitting
Z<X9u7 Xoru) = Z (Xou, xoru) + Z (Xou, xoru),
0,0’ da(0,60))<M da(0,0")>M

for M large enough the second sum may be absorbed into the left side, while the remaining
terms are handled by Cauchy-Schwarz.

Next consider the half-wave component. Without loss of generality we consider just the
“+7 case and set ¢f  := @y, a 1= at, A:= AT, Writing

(Dy + A)dyg \ = dor(Di + A)g 5 + [Di + A, 05,
it suffices by the first part and energy estimates to show that

YD+ A o5 ullze S Jullfere.
0
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Consider the first the low-frequency portion A,, where A is the corresponding half-wave
operator for the low-frequency metric g . By the second-order symbol expansion (B.1)),
the commutator [D; + A, ¢§ ] has symbol

1 o 1 1
AT+ au b5 — 5 / rsds,
1 ) 2 0
where
ro(t,2,€) = e PP (9,8, alw, )0y, 0,05 ,(4,€)
J,k
= O, 00,03\, 1), 0y, 0(5, )] 1.

The Poisson bracket belongs to S(mg°, ga,). Hence Py\(D){T + a,, 5 \}(t, X, D) is square-
summable by the pseudo-differential calculus. The other frequency outputs result from
{Poxi6(De)ay, 955} (t, X, D) € A NOPS(mge, ga,), and are therefore square-summable by
a brute force bound using Lemma and the triangle inequality.
To evaluate the remainder, note that as

85201 E S(|€|717ga,u)7 aigbg,A E a;2s(mgo7ga,u)7

07a € L*S([¢], ga,)s 025 x € (aN) (M) T S(mE°, g ),
by Lemma one has

_ 0 _1 _1 o

rs € (Oéi/\) 1S<m9 7.9&“) + (042/\) 2 (Oéi)\) 2L2S(m0 7ga)'

So 7,(t, X, D) are L} -square-summable by considering the operators Py(D)ry(t, X, D) and

(1 — P\(D))rs(t, X, D) separately as before.
It remains to show that

DA = A ggalulze S Jlullze.
0

From the computations
Oe(a—ay,) € S(ai,ga#), 020\ € S(1, gay),
a&?(a - a’u) < S(Oéi|£|, gau)v a§¢3’)\ S S((Oé/\)_la ga#)

the formula

[ n

1 [t
aob=abt; [ 00 a(e. ). 0,000 )y .
0 -

and Lemma , it follows that the symbol of [A — A, ¢§,] belongs to S(aza™, ga,). As
before this implies that [A — A, ¢§,\] = aia‘l Xg for some square-summable yq. O

5.2. Characteristic energy estimates. The purpose of this section is to prove energy
estimates for directionally localized half-waves along certain null surfaces.

We begin by recalling the usual characteristic energy estimate for a general function v.
For further details, see for instance Alinhac’s book [I]. Suppose 2 is a spacetime domain
whose boundary 992 = AU X_ U X, decomposes into a null hypersurface A and the time
slices Xy = {t = t4} N Q, where t_ < t;. Let L be a geodesic generator for A which is

extended to a null frame {L, L, E} on €, so that L, F' are tangent to A.
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By contracting the stress energy tensor
1
T=dv®dv— ég_l(dv, dv)g

with 0, and applying the divergence theorem, one controls on A the derivatives of v tangential
to A:

/|LU\2+|EU|2dU§/ |Vmu\2da:+/ |\Oul|8yu| dedt 4 (T, 79))| dadt
A it Q (5.6)

S (U4 [t =t DIVeovllze 2 + 1007112

where 79 (X,Y) = (VxZ,Y) + (VyZ, X) is the deformation tensor of a vector field Z.
Suppose further that v is microlocalized such that Lv and Ev are smaller than a generic
derivative Vv. Then by contracting the stress energy tensor instead with L, one deduces

/\Lvy2da§/ \Lv(ti,a:)\z—i—|E(ti,x)|2dm+/|Dv|]LU\—|—\(T,7r(L)>\dxdt. (5.7)
A pINE Q

This yields a tighter estimate for Lv along A since the worst component T5F = Ty = |Lv|?
is paired with W(LLL) = 0.

Now factor the symbol
o 290;;575]- - g%{a&) =(r+a")(t+a).

In the sequel we redenote a := at and let A = a(t, X, D) denote the corresponding half-wave
operator.

For each direction 6, introduce the associated + null foliation Ay = A}, defined by the
Hamiltonian flow for the half-wave symbol 7 4 a, and let {L, L, E} denote the associated
null frame. As before, we parametrize the graph of the flow (z9,&) — (z4,&) by the
variables (4, &), and write &, (¢, z¢) := &(z0,&). Combining with @ = v/\ and the
computation , one deduces

ak(x(]?gt) _ ”C‘;l
Mangk O

The operators L, E therefore belong to OPSl1 s when restricted to input frequencies > A.
4

), |k >1.

To obtain estimates for 9,&, we use the equation
Ao = —(ag(t, @, &), 0:8p) — au(t, 7, &), (5.8)
obtained by differentiating the definition with respect to t, to deduce
080,60 S A2+ AT NS, k> 1. (5.9)

where we used the Bernstein-type estimate ([1.28)) to bound a,, and higher order x derivatives

(one could alternatively replace the A1 by M(||02g(t)]| r)).
The main result of this section is

Proposition 5.9. Let u = P\(D,)u be supported in |t| < 2 and satisfy

IViezullz + [0y _ sullz2 < oo,
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and let w = ut + u~ be the half~wave decomposition from Corollary 2.20  Suppose Py 1S
a pseudo-differential localization operator of the form (5.4), defined via the + flow of the
metric g gz with p < . Assume that a > oy, = =2, and set §:= |6 — ¢'|.

(1) If L = L}, is the null generator for the foliation Ay, then

sup / Légut P do < (o + B but e

Ay, o1

(2) If B > Ca for sufficiently large C > 0, then for any e > 0 one has

sup / 163 2 ddt < (e + (aA) 282 St s,

h
h,0!

where Aj, 5 denotes an e-neighborhood of Ay e, and Xé are operators such that

Yo Ihgutllie S AUTV(IValge + 18, ullze)- (5.10)
00

These are variable-coefficient analogues of the estimates on null hyperplanes proved in [39,
Section 3], and shall play an essential role in the proof of the algebra property. The small
angle case § ~ « arises when studying low-modulation outputs, while the transversal case
B ~ 1 is used for high-modulation outputs.

In view of the relation a™ (¢, z, —&) = —a™ (¢, z,), the null foliations and generators are
related by A", = Ag, L=, = —L;. Indeed the optical functions satisfy ®—, = —<I>;.
Consequently one has

Corollary 5.10. Assume the setup of the previous proposition.
(1) If L = L”,, is the null generator for the — foliation A”,,, then

sup [ Lt o S (o + )bt [

h,—6'
(2) If B > Ca for sufficiently large C > 0, then for any e > 0 one has

sup /( 168 vt P dadt < (= + (aX) )82 xS |2,

h,fﬂl)s

Later we shall consider bilinear estimates of the form [|(¢§ \u)vr|[z2 and [|Q(pou, vr)]| L2,
where vy is a frequency p wave packet concentrating in some tube T € 77;9,. As each T is
contained in a union U| h—ho|<p—1 Ai 1o of null surfaces, we deduce

Corollary 5.11. Assume the setup of the previous corollary, and let T € Tﬁ?’,u be a
frequency-p “tube” with initial direction +6'.

(1) If L* = Lig, is the null generator for the foliation Aie,, then

_1
L= 3u™ 2y S pm % (e + B)lIxgu™ || e
(2) If B > Ca for sufficiently large C > 0, then

1,
165 3u" lz2rs) S 2B Ixgu™ Il e
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Proof of Proposition part (1). We begin by recording the symbol estimates that under-
pin the gain or loss in the angular separation. By a harmless abuse of notation we ignore
the prefactor o in L (see Lemma |3.6)) and redenote

L = D, + dcalt,z, & (t, ) - Dy = Dy + A.
The difference between L and the half-wave operator D; + A is
(D;+A)—L=(A-A4),

whose symbol is

a—a=alt,z,€) — (ag(t,r, 6 (1, 7)), €) ~ || 4(€, &) (5.11)

Indeed, put w := &y (t,z), and let f(§) := a(t, x,§), which is 1-homogeneous and fee(§) is

positive-definite in the orthogonal complement of £. When Z(§, —w) > c¢minj, =1 f(w) for a
small constant ¢ > 0, one computes

~ ~

(&) = fe(w) - & = |§[(fe(§) — fe(w), &)
- / Elfeelw + 5E — ) (€ — ). & — w — 5(E — w)) ds

-~

_ ra/o (1= ) {feelwr + 5(E — ) (€ — ), € — w) ds
~ E12(E w)?

In the remaining region, where fA and w are nearly antipodal,
f(&) = fe(w) - & = f(=€) = fe(w) - (=€) = 2fe(w) - €
= 2/¢(f(w) — O(£(§, —w)))

43t
Further, in view of the identity (3.7)), the symbol of E is 1-homogeneous and satisfies
€(t7 z, 5) = |£|<€(t, l‘), €> = |£|<€(t’ l‘), g - 59'>' (512>

Recall that the symbol gbZ‘:j is essentially supported in the sector {§ : Z(&, &) (¢, x)) S a},
where £ is defined by the metric g , mollified at frequency p. Precisely, we can decompose

a,+ o«
o — X@ +7"97

where x§ is essentially ¢35 (¢, z,&)s\(€) before mollification in the x variable-see (5.4)-and
has the required support, while ||rg||zz_r2 = O(A™>).
Thus since [&(t, 7) — &y (¢, z)| ~ |0 — 0] and |& — &) < p /% < a, one has
(@ —a)dfal S (a+10—0D*A, Jedg,l S (a+10 — 0. (5.13)
On the other hand, if |§ — §'| > C'a for some large C' such that Caw dominates the angular
width of the cutoff g, the symbol a — a is then microelliptic:
E-glSa=la—a)|~(+0—0D |el S (a+|0—@A (5.14)

Without loss of generality we prove the estimate on the surface Agg. In the sequel we
write [J := Dg<ﬁ.
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We apply the estimate (5.7 to the spacetime region
Q= U Apg NA{Jt] <5},
h<0
whose boundary is
0Q = (Ao N{|t] <5}) U{t ==£5}.

In terms of the null frame, we have
/ |Lv|? do < Z/ |Lu(£5, 2)|? + | Ev(+5, z)|? dx +/ (Ov Lo| dzdt +/ (T, )| dadt,
Ag.gr n Q Q

where 7(X,Y) = (VxL,Y) + (Vy L, X) is the deformation tensor for L.
Put v = ¢, ,u™. The boundary terms vanish since the half-wave u* is assumed to be

supported in |t| < 3.
For the other terms, write

<T, 7T> = T@WLL + TLLW@ + 2TLL7TLL + QTLEWLE + 2TLE7TLE + TEEWEE

The components of the deformation tensor are
L =2(VyL, L)y =0,
g = (ViL,E) + (VgL,L) =0,
L =(ViL, L)+ (VL ,L) =0,

e = O(1),
mr = O(1),
TEE — O(l),

the last three are a consequence of the derivative estimates (3.2)) for the optical function.
Thus

(T, m)| S |[LvLv| + |LvEv| + |EvEwv|.
Altogether we obtain

/A |Logau™ P do S ||O¢5 xu™ || 2| Log \ut | e + (| Lagau™ (172 + | Egg yu™ |72
6,0

The claim now follows from the next lemma. U
Lemma 5.12. If {L, L, E} is the null frame for the foliation Ag, then

Loy, = (Dy+ A)gg 5 + (a + |0 — ') Axe,

Edg = (o410 — ') Axo,

where xg are L2-square-summable with constants uniform in time. Also

> IB65auT 17 S IVewullZe + [1BulZe.
0€Qq
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Proof. The second term on the right side of L¢j , is

(A - A)gg = Py(A— A)ppr + (@sa/16 — asx/16)(t, X, D)y .

Since the first term is localized in output frequency, the symbol estimates (5.13)) and
pseudo-differential calculus (Lemmas and [B.5)) imply that the first term is a?Xyy for
some square-summable operator xp. On the other hand, a,a € S}, /4 In the region €] > A,

one has a>x/16; C~L>>\/16 S ﬂN /\_N511,3/47 S0
|(@>x/16 — asxj16)(t, X, D)PA(D)|| 2502 S A~ for any N.

The estimate for E¢f , is similar, writing £¢f , = P\(D)E¢§ \ + R¢g 5, where || R|| 122 =
O(A™N) for any N, and using (5.13)) for the main term.
As ¢ , are square-summable in 6, it suffices to prove that

DB dgaullze S IVeaulge + 1BOull..
0

To this end we note first of all that
D IO = (D + A YD+ AN g ut 17 D IViadgu 7 S [ Viaull?e,
0 0

and write
(D + A7)(Dy + A7), d55] = (De + A7) [Dr + AT, 65, + [De + A7, 5, (Dr + AT).

For the first term we split At = A, + At — A,,, where A, is the corresponding + operator
for the low-frequency metric g 5. Recall from the proof of Proposition that

1
[Dt + Au>¢3,)\] = ;{T + auv¢g7/\}<t7X7 D) + T(t>X7 D)?

where {7 + a,, 9§} € S(M°, ga,), 7 € (2N L*S(Mm§°, 9o, ), Porss(De)r € XNL2S(mge)
for any N, and 0;r € uS(mg, ga, ). The last claim uses the modified computations
0z0ha € SUEIT 9o 0701055 € 0, S(mF, g, ),
agata € S(M%|£|agau)a agatqsg,)\ € oz_l(au/\)_23(mg°,g%).
Then
(Dt + A_){T + Ay, ¢3,A}<t’ Xv D) = (Dt{T + s qﬁa)\})(t, X7 D) + {T + Qps ¢3,A}(t’ X7 D)Dt
+ AT{7T +a,, 95,1 (t, X, D).

By Lemma the first term belongs to a 'OPS(mg®, ga, ). Modulo a negligible remainder
we may restrict each term to output frequency A, and write

(D + AT+ au, 95,1 (t, X, D) = XTy + T3 D,

where T} and T} are square-summable.

(D, + A)r(t, X, D) = (Dyr)(t, X, D) + r(t, X, D)D, + Ar(t, X, D)
= uTy + f(t)T; Dy + T,
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where f(t) = M(||0%g||z~) € L? and T] are square-summable. This is acceptable in view of
the energy estimate ||Vul|pere < ||Vul|r2 + ||Oul| 2.

For the term (D; + A7)[A — A, #5 ], we simply recall from the proof of Proposition
that the commutator belongs to aiailOPS (mg°, ga,) and outputs essentially at frequency
A, so that A7[A — A, ¢ ,] € Axp for some square-summable xy, and

Dt[A - A/M ¢3,A] = [atA - afAu’ ¢3,A] + [A - A/u Dt¢3,A] + [A - AH? ng,A]Dta

is acceptable as well. This shows that

DD+ AT Dy + AT, g5, Jut Iz S IIVut |72 + 1But| 2.
[4

Next we write
[Di + A7, 95, = (Digg ) (8, X, D) + [A7, 95 ,\] = a”xo

for some square summable Yy, so that

DD+ A7, 65,0(Dr + AT |[F2 S @72 (De+ A )ut |72 S IVet |72 + (1072,
0

Finally, recall from Proposition that [|[Vu™|z2 + [|Ou™ |22 < || Vullre + ||Dul| zz. O
For future reference, we collect the key estimates for ¢g ,u in the following

Corollary 5.13. If{L, L, E} is the null frame for the + foliation Ay, and |0 —0'| ~ o > «,,
then:

(D lgaulfore)® S lullx. (5.15)
0

(D18, sdiauliere)® S IVulle + 18, culle (5.16)
0

1

(D IESGullz)® S Aalullx, (5.17)

0
1

(D ILggaullzre)® S AaP[lullx, (5.18)
0

(D IVeadfaullioge)® S Allullx, (5.19)
0

Remark 5.14. For split metrics ¢% = 0, the same estimates hold with the replacements
ANy > A, Xo > X Janda~ 1[040

Proof. follows from the energy estimate on bounded time intervals ||v|| pocr2 < [|v]| g2 +
I(De + AZ)v]l 2.

For the next estimate (5.19) we simply note that by Lemma , the commutator
Vi, A5 = A H(Via0f,) is square-summable, and apply (5.15).

Finally, (5.16)), (5.17)), (5.18) were proved in the preceding lemma. O

We turn to the L? estimate in Proposition which is slightly more involved. Roughly

speaking, the angular separation allows one to microlocally invert the vector field L for the
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foliation Ay on the support of the cutoff ¢f,. A similar ellipticity argument was employed
previously in [II, Lemma 5.2].

Proof of Prop. part (2). Recall from (5.11)), (5.14)), that the difference Dy + A — L =
A — A satisfies

g:=a—a~ B\ (5.20)

on a neighborhood of the support of x§. We construct a microlocal inverse for A — A. Let
Xg be a slightly wider version of x§ supported where (5.20]) holds. Define

[(t,2,€) = ¢ X5,
and define
L := P\(D)I(t, =, D).
Lemma 5.15. On the support of X§, one has
|(BAD)™ (&, 0)™ al + [(Bx0a) (B0 (BAO)™(E, 0e)™ al S (BN),  ax 1= A2,
(€1 0:) (BADE)™ (€, 06)™ Dral S B (B).
In conjunction with yj € Sé(mgo, g%), this quickly leads to
Corollary 5.16. The symbol [ satisfies
L B0, aNdl € (5°2)7S(mi, ga),
where as before my(t,z,€) = (a1 (| — & (t.2))) .
Remark 5.17. The worse regularity of [ with respect to & is due to the factor Xg -

Proof of Lemma. For simplicity of notation we suppress the ¢,z variables in the arguments
to a. We have

0rq(6) = Oka(€) — (Diag(Co), &) — Y (08 7 aee(&0)(9i0), € — |€IEw)
j>1
=) [0k 02ac(&) Ba(0ulr) + -+ - + 05 Dlae(Eor) B (0:801)],
Jj=1
where B;(0,&p) denotes a j-linear quantity in 0,y and its higher = derivatives such that
the total order of the derivatives equals 5. This yields

|0:q] S 52X+ BA,
and when k£ > 2

k—j

j—2
2

k—2
08l S NZFOBA + D NTET F(E)(NT A+ A0
j=1

F AT BA 4 Amax(F0) )\

where f := M(||0%g||1) € L?. Since the metric is localized to frequencies < v/A, we may

replace f(t) by the uniform bound A as in (1.28)), so that the dominant term when A > a2
is ay BN = al FBTH(B2N).
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The estimates for the & derivatives follow easily from the explicit form of ¢, and similar
considerations handle

0rq = (&) — (awe(§o), &) — (ace(§o)0ior, §).

Some basic properties of the parametrix L are recorded in
Lemma 5.18. The operator L satisfies
1Ellee S (B20)
IPA(D) D + A, L PA(D) 1202 S (820
(A— AL — 5t (t, X, D) = (af)) ' ®y,
where the operators Py(D)®y : L* — L* are square-summable in 6.

Proof. The first follows directly from the estimates for the symbol [ and Lemma
For the third estimate, use the first-order symbol expansion and Lemmas |5.15) E -
to see that

(A—A)L =x5"(t, X, D) +7(t, X, D), 1€ (@BN)'S(MF, ga,),

and apply Lemma to the remainder.
For the commutator estimate we essentially follow the proof of [T, Lemma 5.2]. From the
second order symbol expansion (B.1]), the symbol of the commutator is

1 1
—.{T+a,l}—§/ rs(t,x, &) ds
0
rs(t,x,§) = Zezs Dy>Dn) [0, 8 a(x777>8yjaykl<y7€)_8ﬂjaﬂkl<x7n)ayjayka'(yﬁg)]'giz‘ (5.21)

We claim that
re € L2S((B°N) (@A) ™ gay) + S((fN) " + (822)72)(B°N) ™, ),
and is therefore acceptable. This would follow from Lemma and the symbol estimates
0ol € S((a,* + ' 87BN gay)s  O2a € S(IE]7, gay)
O e S((@N) BN ) gay),  O2a € L2S(IE]. gay)-
The bounds for a follow directly from the hypotheses on the metric, so we consider next
02 = XG0 +20,%50.47" + X502~
From Lemma one sees that on the support of x§g,
0:(q") € BTIS((B*N) ! 9ay), 0z(a7") = B ay ' S((B*A) 7, gay),

(5.22)

thus
02l € S((c,” + a3 ' B7H(BPN) 7 Gay)
Similarly
Ol = NG q " +20eX50cq™ + X502~ " € S((aN) ™ (a N)TH(BA) T, gay)

as claimed.
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It remains to estimate the Poisson bracket. Letting a, denote the half-wave symbol cor-
responding to the low-frequency metric gz, we write

{r+al} =x5q{r+a.q} +a {7 +au x5} +a {a—a, X5} (5.23)
The symbol ¢ vanishes to second order on the submanifold
{(t,z,&(t, )} C R, x (T*R2\ 0),

which is invariant under the Hamiltonian flow. Hence its derivative along the flow {7+ a, ¢}
vanishes to second order as well, and is smooth and 1-homogeneous £. Therefore we see that

{r+a,q} € S(B*lE]). gar)-

The argument of Lemma [5.4] shows that {7 + a,, X@} € S(1, ga,)-
Finally, by a direct computation {a—a,, x5} € S((a2A)(aX)™, g%). Altogether we obtain

{r+a.0} € S(B°N)7", gay)-
]

Later it will be useful to have a more computational proof of the Poisson bracket bound
{T+a,q} € S(a®), ga, ). Using the equation (5.8) for 9;&y, we compute

{T+a,q} = g+ {ag,0,q) — (ax, 0eq)
= ar(€) — (are(€0), €) + ((ag(€), (an(€) — (aue(€0),€)))
+ € age (€0) (€ — &), (ae(Ep) — ag(€), Du)En)

+ 1€ {ac(€) — ae(6o), az(Ee) — au(E))
— |€l{age(ag(€) — ag(€p) — age(€0) (€ — &),

and an inductive argument similar to the proof of Lemma [5.15| yields the estimates on the
support of x§

(82 (BAD)™ (€, )™ {7 + a, g} S B,
[(@x82) (BAD)™ (€, 0e)™ O + a, ¢} S ;' (B°N).
Using the expansion and Lemma . one deduces that
T +a,l} € 04/\15((62)\) L Gay)- (5.25)
We continue the proof of the proposition. Write
dgut = Py(D)(Ds + A — L)Lagu* + PA(D)[Xg — (A — A)L]gg,u* + PA(D)(1 — 55) g
= P\(D)(D; + A — L)L¢§ \u™ + Ryu™ + Rou™.

By the previous lemma and the pseudo-differential calculus, the second and third terms both
take the form (A™1/2 + (a?)\)~1)yy where Yy is square-summable. Consequently, we estimate

I(Rjub)2ag ) S (@BN) " Ixou™ |z

(5.24)

Also,

Py(Dy + A)Lo§ su™ = L(Dy + A)¢y \ut + PA(D)[Dy + A, L)y \u™
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By the previous lemma, this is bounded in L? by

(BN (D + A)g yut [z + (B2X) 1 9g yu™ 22
S (BN g au e + [[(De + A)dfautlL2).

which is sufficient.
The remaining term is

PA(D)LL§ sut = LLog \u™ + [Py, L] Log \u™.
As the commutator [Py, L] = [Py, A] is bounded on L? at frequency A,
I[Py, Z1LG u ) llze S Lot [lze S (@®X) M 0fau™ |12,

which is acceptable.
The remaining term is

ILfa ng,0 S [ IEa" g, b

|h|<e

For each null surface Ay o, we have
/ LEgg P do < / OL6gut|| LG ut| dudt + / (T, )] dvdt.
Ay o

For the second term, write
(Tym) =Tppmrn + Topmon + 27 7o + 2T emre + 210 pmLe + TeeTER
S |LLgg u™ LLGG \u™| + |LLgG \uT ELGG \u™t | + | ELoG \ut ELgg yu'],
SO
Lt yor e
S (IOt | LL G s + 1Lt + | ELoG a0 [ )
< (822 (100 e 1L e + 1Lt 3 + 1272
+ €<|| O, Llgg a2 (820 ML aut |12 + L, LG yu™ | 2)
+ (BP0 B¢ |2 + 10, Llggau™ o) 1L, L vu ]2
+[I[L, Lggyu™ |72 + | [E, L]¢0Au+|||L2)7
and appeal to Lemmas and
Lemma 5.19. If {L, L, E} is the null frame for the foliation Ay, then
B, L[l 2 spe S @71 (B20) 7

IZ, Ll z2msze S (8207

IO, Lullzz-z2 £ (B20) 7 (IVeatllzz + A(De + Aullr2) if uw = Py(Da)u.
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Proof. The estimate for [E, L] is simplest, using the first order symbol expansion (B.1)), the
computations

Oze € S(I€], ga,,), Oce € S(1, ga,,),
0zl € S(BBN) ", ) Ol € S((@N) (B A) ", ga,),

and Lemmas and (again considering the outputs at frequency A and # X separately).

Next, write [L, L] = [D 4+ A, L] 4+ [A — A, L]. The first term was studied in the previous
lemma, while the second again follows from first order calculus.

The commutator estimate for [ is proven similarly as the lemma in the previous section,
differing mainly in the symbol estimates involved.

It remains to consider [, L]. As usual we first replace O with (D, + A™)(D, + A*) at the
cost of an acceptable error, and write

(D + A7) D+ A, L) = (D, + A7)[D, + AY L)+ [D, + A=, L)(D, + A").  (5.26)

We proceed similarly as in the proof of Lemma [5.18| but first gather symbol bounds
for 9,l. This is a routine computation using Lemmas and |5.15) which leads to 0,0 €

S(@ (BN, gay);
0,04l € S((Oz;2 +a oy DB Gay ) 6§8tl~ € S((a;4 +aa; ) (BN Gay ),

- - 5.27

00l € (00N (BN 0n,). 0201 € S((aN) QN N Lgn)s
the factors of a arise from derivatives that land on the xg factor. Also note that

dp0a € f()S(IE] gay),  O20ha € ay* F(1)S(IE], gay ), (5.28)

debra € S(1,ga,), o € S(IE7", gay),

where as usual f(t) = M([|0%g(t)| 1s)-
The second term on the right side of ((5.26]) is handled by the first order estimates

IPA(D)@D)(t X, D)llzemsze S a7 (BN A7, Lllzasse S @7 (B20) 7
Also recall from the proof of Lemma that the symbol of [Dy 4+ A, L] is

1 y
—{r+a,l} +r,
i

where
r € FOSI(AN 02N gay) + S((@2N) 7+ (B20) ) (B20) 7, g, )-
Combining the estimates (5.22)), (5.27)), (5.28)) with the explicit form (5.21)) of the second
order commutator expansion and Lemma [B.3] one obtains 9;r = 1 + ro + r3 + 14, where
r1 € a” f(1)S((auen )T (B2A) 7, gay ), ra € o~ f(O)S((agA) (BN gan),

€ SN+ (PN HEN L), € SN +a ) (EN )
) ) ) ) (5.29)
These correspond to the pairings {0¢1, d;0,a}, {0701, D2a}, {021, DZ0wa}, and {0701, Dia}.
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For the first term on the right side of of ([5.26)), we have

L (Ddr + 0. 1)t X, D) + (Dyr)(t, X, D)

l

2[4 {7+ a1} X, D) + [A7,7(t, X, D).

(D, + A7), [Dy+ AT, i]}

The bounds ((5.29) imply that
1(Der)(t, X, D)ull 2 S a™H(B2N) " ull g2 + p(B2A) 7 |lul| 2

which is acceptable in view of the energy estimate |[ul|p~r2 < [[ullze + [[(D; + AT )ul| 2.
By first order estimates, recalling that {7+ a™, 1} € S((8%)\) 7}, ga, ) the last two terms of
the commutator satisfy

H[A_7 {T + CL+, i}(tv X, l))]HLQHL2 ri B_Q
I[A7, 7(t, X, D)l 22 S B2F () (@A) ™+ B72((apA) ™+ (B°A)~

which is also acceptable by the energy estimate.
Finally, the Poisson bracket estimate (5.25)) shows that

|(Di{r + a®, B)(, X, D) 122 S B7(5°N) 2.
This completes the proof of the lemma. O

N[

),

6. THE ALGEBRA PROPERTY ([1.15])
In this section we prove the estimate ([1.15]).

Proposition 6.1. Assume that 0 > % and s > 0 + % Then the space X*? is an algebra.
Moreover, for o > s we have

[0l x70 (6.1)

[ vl xao S llullxaollvllxes + fJullxso

The proof of this algebra property will be based on the estimates in the following two
propositions. The next Proposition is the crux of our result and is the variable coefficients
analogue of Theorem 3 from [39] since, due to the low modulations, we may think of uy 1, v,
as being approximately free waves.

Proposition 6.2. Let uy1,v,,1, vy be functions localized at frequency ~ X, ~ p, resp. ~ X
and let dy = min(u, %) Then

(1) In the high-low case p < \ we have:

. < i
lens il oy S plhonall g ol (6.2

(2) In the high-high to low case p < A~ X we have

>

P . <
H #(u)\,l UA/J)|’X;:éio,u],m+(xi:ém%)(;: )~
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Here, due to the selection of modulation 1 inputs, the index % on the right is superfluous.
We have kept it in order to make it easier to compare the above result with the next result.

One can easily go from modulation 1 to any larger modulations by a rescaling and time
orthogonality argument. This is accomplished in the next proposition.

Proposition 6.3. Let uyq4,,Vudy, U, be functions localized at frequency ~ X\, ~ p,
respectively ~ X where dy,dy > 1 and denote dp.x = max(dy,ds).

(1) (Low modulations) For 1 < dy,dy < p < A~ N, denoting dy = min (A L )

H’dmax
<
mwlwmuimmwwmwﬁﬂwmg% (6.4)
P,(u Y% 1 1 —||U 1 ||V 1 6.5
|| N( A, dq X7d2)||Xi:[2dmaxdo,H]+(Xu3” X;lt#) N || )\d1||X>1\d || )szHXi/dQ ( )

(2) (High modulations) For 1 <ds < p <dy <X~ )\ we have

UN,d, * Up,d 1 < UN,d ,d 6.6
[uxa, - v 2||Xi’31NII 1||XM1|| pa | 1 (6.6)

For 1 < p < dpax < A~ X we have
| P dy 'UX’d2)H%X;’éﬂ)~(;’1 S || Ad1||Xi 4 (A x,dQ (6.7)

6.1. Proof of Proposition [6.1I The proof consists of a simple summation argument based
on Proposition . Let ul,u? € X* and write

=) P, e == 3 1 W

A>1 A>1

By Remark we may assume that the u} are localized in frequency. By the standard
Littlewood-Paley decomposition we write

1 2 § 1 2
u -u = P)\B(PAIU)\l P)\Qu)\g)

A1,A2,A32>1

By splitting the sum into three terms corresponding to the three cases: A\ < Ao >~ A3,
Ao K A~ A3, A3 S A ~ A\ we obtain u' - u? € X*? from the following estimates, stated
for any frequency localized functions wy,v,: Let s =60 + % +efore>0. For uy < A\, N~ \
we have

1
1Pt Bz S —lluallgo ol o (6.5)

For p < A, X ~ X\ we have

s—1

59<

1Pu(Prux - Prow)llxgo S oz lunllxge

ol (6.9)

Here it is essential that we are in the subcritical case s > 1 which allows us to have the
the power = in . We write

A
UA:ZUA,d |U/\||Xse —Z““Ad”){”
d=1
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and the similar decompositions for v,,,vy. Then, using (6.4)), we have

3 + Z [ PAxux > Putpas |l

||P>\U)\ P Uﬂ| 59 N ||P,\u,\d1 P Uud2| 5,0
>
dl,d2<p, [dmax 1] d2</L ZH
_ _1
SN2 Y g X 1pdal g+ AT 1HUAHX10 Z [ [
d1,d2<p Fd Xivida M da<u o
g—L
w2 1 1
S (1 [[uxl x50 |V, x5? + FHUA| x50 |V, x50 S E||u>\| x50 |Vl x50

16 : .
In this argument we have used the factors d? = to get square sums in d; < p while the
modulation square summability of Xf\}0>u is inherited from ||uy||41e  due to (6.6). The
= A [, A]

proof of is similar, using (6.5 ﬂ

[ Pu(Pyux - Pyvx) xso S s Z | Pu(Patixa, - Pyvy d2)|| 13
,u,

dy,d2
ST vl g loxvall g
di,ds Adl Xy Jdo
9_, s—1
o 1%
S o1 \o—1 [ x50 o | x5 S WHUH x50 |Ux||X;;@-

Finally, (6.1)) also follows from (6.8 , . by readjusting the weights.

6.2. Proof of Proposition To be able to use the wave packet decomposition from
Proposition |4.7 and Corollary 4.8 we need to be on a small interval such as [0, (k+1)d]. We
fix  and without loss of generality we prove on I =[0,0]. We sum these bounds

by brute force treating 1/§ = D as a unlversal constant and then anH N 1[I]
D

Let n € {u, \'} and we refer to n = p, (6.2) as Case 1, and to n = X, (6.3]) as Case 2. For
the remainder of this proof, we normalize the norms of the inputs as follows:

-1 ¢ 1
il oy = Nl oy, =1 ne {mX) (6.10)

ool g3,

We first give an overview of the estimates needed to establish (6.2)), (6.3]).

Step 1. (Bilinear angular decomposition)

We may apply appropriate multipliers such that Pyxuxi1 = ux1, Pyvg1 = vy1, n € {i, N'}.
The terms where p ~ 1 of Case 1 and A ~ N ~ pu ~ 1 of Case 2 are easily treated by
Holder’s inequality and the chain rule. Thus we may assume p, A’ > 1 are large enough and
Corollary is applicable, providing a decomposition

vp1 =0 + 07 + vg, n € {m N}
The terms w1 - vg are estimated by (4.32) and (4.33) in Corollary We collect
= Z vE, vE =P, Z er(t)ur(t). (6.11)

wENay, T€7;,i W =W
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Next, by Proposition [2.19| and its corollary we decompose
uxg =ut +u”

Recalling [39, Theorem 3|, if u and v are free waves on a Minkowski background, the
modulation of the product wv depends on their relative positions on the null cone 72 =
|€2. Accordingly, we perform a bilinear angular decomposition of the products u*'v*? with
angular separation ~ «. The bilinear decomposition is nonstandard since the two factors are
localized differently: the high-frequency input will be split pseudo-differentially, while for
the low-frequency input we use a wave packet decomposition to leverage the characteristic
energy estimates from the previous section.

Let €2, be a partition of the unit circle into angle « arcs and let o, = n_%. At time t = 0,

for any w € Q,, we invoke the partition of unity from the Appendix - Proposition

1=3"0p ), t=0,  kw) e {1,2,3,4}.
J

For each interval w € €, and (6, k) € Q, x [1, 4], define the relation w ~, (6, k) if the triple
(c, 0, k) appears in the above partition of unity. Then w ~, (0, k) only if | — w| ~ « or
|6 —w| S o), and for each scale a there are at most O(1) intervals 6 € €2, related to w.

Let ben’i denote the Hamiltonian flows for the half-wave symbols 7 + aia,l in the factor-

ization ng/ﬁgagﬁ = (1 + aia#)(T + a;oc,_l)' Pulling back both sides by this flow as in (/5.3))

and mollifying in the x variable as in (5.4]), we obtain a time-dependent partition of unity
for functions localized at frequency A

Py(§) = Z(PQ/s(D Yoo ) (t 2, ) Pa(E)
—Za;;‘;,f’“ (t,2,€) (6.12)

— qu%“ (t,z, ), (6.13)

where ¢y(t, z,&) = ¢g(t, x, —€) (recall that the multipliers s, are assumed radial). Note that

in general ¢9 # o,
For any signs 41, &5 let £ = +145. One has

u:hvﬂ:z _ E uzl:1vw,:|:2 _ E E aj,il,k (w ),Uw,:l:g

wGQan
- Y T Y e
a€loy,1] 0€Q0 k=1 wr~(a,£0,k)

— a:tl,k :|:1 Oé:tz,

a€loy,1] 0€Q0 k=1
59



Thus for o % ay), v ieiz’ contains packets up corresponding to T' = (zr,wr) € 7?2 which
have angular separation of « relative to £6: Z(wp, £6) ~ a:

vk (1) = P, > cr(t)ur(t). (6.14)

TETE2 wrn(a,+0,k)

. _1 1o
Since the wr’s are separated by ~ n~2, 2 = an? directions w
-2

which obey this condition.
The index k is a technical artifact of our construction and can be safely ignored. Hence

we shall hereafter simply write
= Z Z gzﬁg‘j“uil v (6.15)

a€lay,1] 0€Qq

A typical term (qbg‘,’;“ u)vj‘:’ei intuitively involves waves propagating at relative angle a.
For studying nonresonant interactions of the form P, (P,\uiP,\vi), we need a modified
decomposition using instead the partition (6.13]):

D DD B e [ (6.16)

a€lay,1] 0€Qa

Note that both terms of the form ( g‘; wyv®, and (@) ;r u)v, " only involve interactions
between pairs of frequencies (&1, &) with Z£(&, —&) ~ a.

Finally, we sometimes write v, ’;EQ to clarify the frequency of the packets constituting vy 2,
Step 2. (Small angles interactions)

We first consider the minimal angle case consisting of the a ~ o, = n_% terms in (6.15)) ,
which will mostly follow from Hoélder’s inequality.

Proposition 6.4. Let A 2 n € {u, N'}. Under normalization (6.10), on I, one has:

L ST R PP (6.17)
0€Qa,
an,t an,t 3
D 1Qe s (D3 ™ - 0g™ ) 2 S A (6.18)
0€Qa,,
an,t an,t
D 1@y s (o w0y ) |2 S A (6.19)
0€Qua,
For any o > ay, under (6.10)), one has:
o « 1
D I8, e g e 0GR Oy vg P llie S Az (6.20)
0
D 0 bt wt v o+ [l gg R u*t - O g ™2 e S A (6.21)
0

As a consequence we will obtain the following estimates in low modulation spaces, which

take care of the terms in (6.15) with o >~ av,,.
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Corollary 6.5. In Case 1, resp. Case 2, under normalization (6.10)), one has:

Oé,uyitl Ocu,:l:z 3
> llgps et I o WA S S (6.22)
0€Qa,,
ay,t ay,t A
D A G S G G | NP e (6.23)
0€Qa,, #do[ I s

Step 3. (Non-resonant interactions)
We continue with the non-resonant parts of Case 2 (n = X'), which include u™ - v™, u= - v~
and the terms of u* - v¥ in (6.15) where a@ > max (4, ay). Here we have the following

1
estimates, which are responsible for the 2 m loss in the high modulation bound X, i[ﬁ in 1)

Proposition 6.6. Let D < 1 < X\ ~ X and let & be a sign. Suppose u™ = Pyu™, v = Pyv*

Then:
+ % < -3, E +
IR ) g S 1 (6.24)
More precisely,
1 _1 M
Al VeaPu(u® - v 12 S p 4XHuiHX;1; HviHXi%,
1 _1
M0 e Pt - o) e S i ey o]y
X
Al AL
For a > max(%, ) one has:
o7 (5 g 4107
S ) g S ()1 7 (6.25)

0y

1 ~ 1
The bounds (6.24), are used for the X;E part of (6.3). To prove the X;ZE part
we also need L®L? estimates, but these follow easily by Bernstein P,L>*L' — pL>*L? and
Holder L®°L? x L>®L? — L®L!.
The proof of this proposition uses several technical lemmas, whose proofs are deferred to
a later section. We begin with a pseudo-differential calculus estimate.

Lemma 6.7. Let u*t = Pyu®, vF = Pyw*, where v = vt = ZMGQM v is a superposition
of frequency \ packets. Consider the bilinear decompositions

a,:l: , Ta,+ o+
T = ZZ< o WU uE = Z Z( o 1)V
a [ a 0
as in (6.15), (6.16). If p < aX and a > )\’%, then there is a rapidly converging expansion
I
Pul@fauns,) = D 3 (0N Bl u”g ) + Pul(dfaur®y)

=12

2The loss of % in (6.3) caused by (6.24]) is essentially due to our choice of spaces. Assuming constant
coefficients, a ++ high-high to low (A, \) — u interaction would have output modulation A, while we force
our modulation weights to be at most equal to the frequency (u). To compensate for this, we introduced the

1
X i[ﬁ norms which retain the expected & factor.
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where é’%, wjgk € (KY"NS5(1,ga,) are square-summable in 6, P i are Fourier multipliers

supported in || S p with L* — L* norm O((k)™™) and r%y = 37, —p<o dopcrrr s a

superposition of packets rr with ||rr|wp = O((a®*X)~>°) uniformly in T. Here W P denotes
any weighted norm W PY as defined in ([4.3)).

The next lemma gives a variable-coefficient version of some L? null form estimates con-
sidered by Foschi and Klainerman [§]. Observe that ,u% on the right side is consistent with
scaling.

Lemma 6.8. For u < X and any pair of signs +1,+9 € {£},

|PuQq_ 5w, 0™2) 12 S g2 ™ =g (6.26)
)\1 Al

1Pa (w1 0*2) 12 S p7lu® | oleiQ”Xo,%: (6.27)
)\1 Al

0P 0™2) |12 S 2 NJu™ | Y [l [P (6.28)
)\1 )\1

Finally, the last part of Proposition utilizes

Lemma 6.9. For o > max(§, )\’%) in the bilinear decomposition,

1+4 ; -1 2y =N ()2
S n IR )l Sor 0N+ (%) 1(5) el el

s A2
Z"“ HIP.Q (g w, v e Sn la2p™= + (O‘2>‘)_N](?)_H“H Lol

?
Xy XAl

Now we show how these claims imply Proposition [6.6] Consider (6.24). The preceding
lemmas imply the L? bound in (6.24). The O part of the norm is bounded by

TP, o) ez + 1P, B ) (u{od)llze + 10y iz — By 5) Pu(ufvd)llz2).-
For the last term we use the estimate ([1.29)), Bernstein, and the energy estimate to infer

1By — Oy o) Pului v ee S 1 Pul(u ) o2 + pll Puuy vy) || oo 2

S 1l Vil oo 2 ||0]| oo 2 + pal|tl| oo 2 || Vi 00| oo 2
—HUAH i?” )\Hxill

Writing the commutator as

[P;n U P/u g<u]P<8u + Z Iz gz/] I/) (83 + axat)7

velu, VAl

Q<ﬁ] = ([

one deduces as above that

14
1P Oy (o) lzz < 5 llul 1va HX 3
Al
For the first term, write
120, s (uxvi)llze S 1Pu(Oy_ sui o)z + [1Pu(uy Oy sv0) | e
+1P.Q s (uy, v3) |2
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By Bernstein, Holder, and energy estimates, the first two terms are bounded by

w0,y oflliens + plluf Oy ofllaen S 2k l: ||v L WEE

[

The main null form term is estimated using Lemma [6.8] Collecting all the estimates we

obtain the U,_  part of (6.24)).
The estimate (6.25]) is proved similarly. For the L? part we appeal to Lemma , while
for the U,_ - part we argue as above to first bound

1
IO P = B ) o les S 78+ Al g

and estimate [|P,0,__(d§,,uv®y,)[|r2 as before. Modulo the preceding lemmas, the proof
of Proposition [6.6] is complete.

Step 4. (Almost resonant interactions)

We have arrived at the key part of the argument, involving for any signs 4, 4
in Case 1, respectively the signs 1+, = — in Case 2, with the sum restricted to a, =
AT <a< &. Thus, in Case 2 we may assume VA < p1. The remaining parts of Case 2 are
non-resonant and were treated in Step 3.

To show that u®! - v*2 lies in X AZ4<MOO[I |, respectively X [ o u] 00 1] 1t suffices to use the
decomposition and for eiach a to define an approprlate modulation d such that the

a-term is in Xg}i[[ |, resp. XEE [1], which proceeds as follows:

Case 1. (n = p). Deﬁnﬂ d = pa?. When « ranges from «a, to 1, d ranges from D to u
and it suffices to prove, under (6.10)):

D ek Taa o S pi (6.29)

I
= XU L

Case 2. (n =N >~ \). Deﬁneﬁ d = u . When « ranges from ay to £, d ranges from
dy = ﬁ to p and it suffices to prove, under (|6.10)):

A
+ +
Z ||P ¢z,\ ut Ug,\/2>|‘xo,7{( 0 S+
0€Q0 Pty H4

(6.30)

Both cases are based on the following proposition, which incorporates the characteristic
energy estimate from Section and the uniform bounds on wave packets.

3 The choice of d is motivated by the Fourier analysis of the constant coefficients case, see [39]
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Proposition 6.10. Let o > «,,. In decomposition (6.15)), under (6.10) we haveﬁ

%
D R i [ B (6.31)
0€Qq Q2
ne
D Q. (63w vy 2) 2 < (Ane )T (6.32)

0eQy

The L? part of both (6.29) and (6.30)) follows immediately from (6.31)), by discarding the
multiplier P, if needed. For the [J;_ _ part of (6.30) we write

Dka P, D (Dg<\/ﬁ — Dg<ﬂ)PH + [Dg<ﬁ, P,]. (6.33)
For the first term, we discard P, and write
Oy s (05370 - 0g™2) = 2 Qg (53w - 05 )+ (6.34)
g<f¢gflui1 aiQ +¢ail ., <l aiZ

In both (6.29)) and (6.30]), the bound for the Qg 5 term follows from (|6.32)), while the bounds
for the other terms follow from (/6.20)).
For the other two terms in ([6.33)), we note first of all that as

1_
p A (O = O ) Pawllee S p7 ' di Y| Via Paw|l ez S d 72| Py wl o4

g
VA Ul
Ho AT

9< i

the second term may be absorbed in the left side of (6.30]) so long as ;1 < A, which guarantees
that d > 1.

Also, since x> v/\ we may estimate

10y 5 Pulwllze S pll Pluyzomwllz + 10: P2 2wl 2, (6.35)
and again use (2.1)) to obtain
PR I e | [ (6.36)
X 2,2 [I]
0€Qn MATQ
< T+ > T 0Py (S5 w  vg ) 12
00

>\ a,t2

STt Z d- HP[#/22#]<¢0>\ u* Vg v )|H o

e 0 . A2H2

The summation on the right side is handled by another perturbative argument. For fixed
a > A"2 and a small constant ¢ > 0, let M be the best constant in (6.30) which is uniform
in 1 < cA. Invoking Propos1t10n - and for p < aX and p > c), respectively, we have
M<1+ dc)\lM where d, := A\?a?/p, and the right term may be absorbed into the left side
if ¢ is sufficiently small.

4 The estimate (6.32) shows that the effect of the null form Qg_ 518 Ana? which is a familiar factor from

the constant coefficients case, given the angular localization.
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In what follows we complete the proof of Proposition by establishing Proposition [6.4)
Corollary [6.5, Proposition [6.10} Lemma and Lemmas [6.8] [6.9]

6.2.1. Proof of Proposition We successively consider the two estimates in the propo-
sition.

(1) Using (5.10) and (4.28]) the estimate (6.31]) reduces to proving

1

7 7 77§ 1
lggn w0yl S g™l (D lerlzx)? (6.37)
Q= T wr~(a,+0)

for any 0 € €),. Recall

vt = Y e (6.38)
w,wr~ (o, +0)

where v*'*2 is given by ([6.11]). Since there are ~ om% directions w in the ([6.38) sum, (6.37))
follows from summing the following with Cauchy-Schwarz in w:

1
771 1
H¢3,’f1uil-v“’i2HLzSgllxguh\lm( > erlix)? (6.39)

T wr=w
Since for any w we have
IxR*= |J T
T,or€2¥
and the T’s are finitely overlapping, we obtain (6.39) if we have

1
. PnCTUTHLQ(T/) S W

1

’]’}4
o3 u ~lPu I fer] (6.40)

for any T, T" with wr = wy» = w. This follows from (4.10) and Corollary |5.11}

(2) The proof of (6.32)) proceeds similarly by reducing to

1
£ w nt 2 2 \3
1Qy_ 5 (d63 w™ - v ) 12 S (Ana®)-=[Ixgu ™ II( > lerlie +1erliz)? (6.41)
T,wT:w
for every w, based on (4.28)), (4.29), (5.10) with j = 1. Associated to g and to w we
consider vector fields L, L, E' which form a null frame as in section 3.2l Then we can express
the null form as

2Qg<ﬁ(u,v) =Lu-Lv+ Lu-Lv—2Fu- Ev.

For the term Loy u*' - Lv*®2 we proceed as before, reducing to

ILégs u*t - LPyerur|| ey S |1 Logy v | 2o || LP, (erur ) || oo e

5 1 -
S Ve g e lerl
which holds due to (4.31]) and Corollary [5.11}
The terms
L¢§i’f1ui1 . Lyw 2 and E(bgi’;quil . FpeE2
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are easier, as here we obtain the correspondlng part of (| - 6.41]) by Holder using -

- and using the fact that a > n~ 2,

6.2.2. Proof of Proposition [6.4, For (6.17) - (6.19) we may assume without loss of gen-
erality that vg‘"’h = Witz

(1) For (6.17) we use Holder’s inequality

o5 w™t - 02| S [lop3™ w202 | e
Square summing this with (4.35)) and Prop. we obtain (6.17]).

(2) By square summing and Cauchy-Schwarz we reduce (6.18]) to

+ 1
1Qu s (6557w - 0 %2) 12 S Mg uw® a2 (Y lerfim + 173 )2

T wr=w

for some square-summable x;". Associated to g /x and to w we consider vector fields L, L, B
which form a null frame as in section [3.2 Then we express the null form as

2Q9<ﬁ(u,v) =Lu-Lv+ Lu-Lv—2Fu-FEv

We use Holder’s inequality: L2L* x L*°L>* — L2*L? and (5.18), (4.38) for LuLv; L>®L? x
L?L>® — L2L* with (5.19), (4.37) for the second term; and L?*L? x L*L>* — L*L? with

(5.17)), (4.36)) for the third term.

(3) For ([6.19) we use Holder L>°L? x L2L? — L?L' together with the null frame L, L, E
associated to g, 5 and to 6, using (5.17), (5.19)), (5.18) and

2
||va’i2”%ooL2[1]§ Z 77|CT|L§°

Twr=w
w 2 2
Lo *2 |72 S Z lerlre + |7l
T wr=w
w 2
| Lv ’i2||%ooL2[1] S Z Un |CT|L§O-
T, wr=w
(4) The first part of (6.20) follows from L? x L — L? with Prop. (4.28)) and
o,* 1 2 1
||U 2||L°° 77@2( Z |CT|L?0)2' (642)
Twrp~(a,10)

The second part of (6.20) follows from L*L? x L2L*° — L?L? based on ([5.15]) and

o 3o ood
( Z 18, <l jE2||L2L<><>> Sntaz. (6.43)

0€Qq
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This estimate is obtained by decomposing as in ([6.38]), using Cauchy-Schwarz in w, using

[29-(L30) and

7 _ 1
||Dg<ﬁvw’i2||L2L°° < 774( Z |CT|L°° + |CT|L2 +n7? |CT L? ) ’

Twr=w

(5) Finally, the proof of (6.21)) is similar to the proof of (6.20]) in (4), except that we use
L?L? x L*°L? — L?L! for the first part and L*L? x L?>L? — L?L! for the second part. Here
(6.42) is replaced by

1
log les S D0 lerlix )
while (6.43) is replaced by
1
2
< Z HDg<f 2||L2L2) N2

0€Qy

6.2.3. Proof of Corollary 6.5 The estimate ([6.22) follows immediately from (6.17)), (6.34),
(6.18) and (6.20) for o = «v,. For (6.23)) we consider two cases:

(1) Az < pand do = 2

(2) p < A2 and dy =
The L? part of also follows from (6.17)) in both cases (in Case (2) we use puz < A1).
For the Oy P, part of Case (1), since A2 <y we may freely replace Uy P, by O,_ P,
We estimate the P,0;_ - by (6-34), and for o = ayr. Then we treat [P, D 9eus A]
by the argument used to prove , (6.36)).

For the U,_ P, part of Case (2) we denote w = ¢, Ly Uy 2 and write
Dg<ﬁpuw = PMD9<\5U’ - Z B, (gV : 6x8tawP§maX(V,u)w) + [Dg<¢rn Plw
velVa,VA]

We will use Bernstein’s inequality P, : L?L' — pL?L?. For the first term we invoke the
L?L*' estimates (6.19) and (6.21)) for a = ay.
For the second term we discard the P, and write

1
gy - aoc&mcpsmax(u,u)w||L2L1 S 2 max (v, M)||329u||L2L°° X

~

<”8tx¢ow it HLOOLQHUgi,/iQHLOOLQ + oy’ = jEl||L°°L2\|3t:c""gé§/i2HL°"L2>'

which is more than enough. The third term is estimated similarly since it is of the form

~ uilVgaxat@-

6.2.4. Proof of Lemma We remark first of all that by standard pseudo-differential
calculus arguments (see for example [12]), if A(x, &) € S(1,go) With a > ay := A7Y/2 and vy
is a frequency A packet, then so is A(X, D)vr.
From this one infers
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Lemma 6.11. Let vr be a frequency A packet with initial direction w. Suppose 0—w| < a/d
and ¢g(t, x, &) = X(W)P)\(f) where x is smooth and supported in [—1,1]. Then

I(1 = ¢9(t, X, D))vrllwp = O((a*A) 7).

Proof. Put ¢ = 1—¢. Without loss of generality assume vy is centered at z = 0. Let x(x) be a
bump function supported in ball |z| < «/16. Then x1 only admits input frequencies outside
the sector Z(&,w) < a, so ||xw(t, X, D)vr|lwp = O((a?X)~>°). On the other hand, the spatial
decay of vy by our initial remark implies that ||(1 — x)¢(t, X, D)vr|lwp = O((a?\)™>) as
well. O

Using Lemma we may write
« o o
V2 = P2puy \ + 1y,

where ¢*, = X(W)sk(g) for smooth cutoff function x, and where 7§ = Y, arrp is a
sum of packets with ||rr|wp = O((a?X)™).
It remains to decompose the psuedo-differential term P, (¢g \u - ;0% ). We write v :=

v%  and omit the dependence on «, A, and ¢ in the other notations. For any w € L?,
(Pu(pourh_gv), w) = / MBI Gy (2, €)pg (2, 1) 5, (Q)U(E)D(0) W (C) dEdnd(dx

=3 / €i<$’£+n+c> <aza F(ga 7, C)>¢9(ZL‘, 5)770—9(1‘7 n)SM(C)
x u(&)v(n)w(¢) d¢dndCdz,

where F' = \55:77:@%2‘ As u < a), the denominator of F is bounded below [£ + 71 + (| = a)
on the support of the integrand. o .
Introducing slightly wider cutoffs ¢y, 1_g so that ¢igdrg = P19, wWe separate variables, for

instance using Fourier series expansion

Goth_ps <o, F = (aN) ™D ag(@)er, (§)ean (mes s (€),

—

k

where ey, and e3y, are Fourier characters adapted to A x (a)) rectangles and ey, are
adapted to p x p rectangles. By the derivative bounds (5.1)) with o = VA, the coefficients
ap = () {PoV_gs<2,F, eg) satisfy

dlaz = O\ [E|™), j > 1. (6.44)

Consequently, the integral takes the form

(OM)*Z / e ap () [(Bapo) (, E)v—p(w, ) + Po(, €) (D) ()]

Z(a)\>_1¢g7guq/)ieﬁv, PM’E(D)M>,

Jj=12 ¥

X 8u(Q)ek, (§)ear, (n)es ks (O)u(§)v(n)w(C) dsdnd(dzx
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where

G, €) = k[P Pag(2)(Du0)ern, (€), 0 p(w,€) = [k Paz(x)doern, (€)
VL, p(wm) = k|~ _g(, m)esr, (n), V2, x(wm) = k| N3 (010 _9) (2, m) €1, (1)
P () = 15| ™/35,,(C)es s (€)

The 0, is harmless since ¢y, 1_g are Lipschitz in x, so we have a rapidly converging series
expansion

Pu(¢oup—gv) = Y > (aX)"'P, x(D) (@) cud | v)

j=12 g

where gzﬁe . W;(?,E e (K)y™NS(1, Ja,) and retain the angular localization of ¢y, 1_g. Although

these are not quite localized in output frequency, the bounds ((6.44]) imply rapid decay from

frequency A on the v\ scale. By Lemma these tails are negligible for square summability
in 6.

6.2.5. Proof of Lemmas and [6.9] Both parts can be proved in parallel. Without loss

of generality we consider just the ++ and +— interactions. Begin with the decompositions

+ - a,+
uv = E E gb“uvm,uv E E:%A UQA

A1/2<a<1 0

where vg, | = Z|w¥9\~a v¥ is a sum of frequency A packets. The arguments involved depend

on the relation between «, u/\, A~12 and for each of the following cases we discuss the
null form estimates (Cases la, 2a, 3a, 4) and the L? estimates (Cases 1b, 2b, 3b, 4) for both
++ and +— interactions. Note that Lemma [6.9]is covered by Cases 2 and 4 below. Denote
Q= Qg<\f/\'

Case 1: A2 < a < /A

Case la++: We can use Cauchy-Schwartz in w to obtain

1P,Q il < @20 (3 18QWm )I3)

|w—0|~a

For each w we expand @) using the null frame adapted to the direction w and discard the molli-
fier P,. For the term L¢g ,uLv®, Holder, energy estimates, and the wave packet bounds (4.37)
imply

||L¢e ,\ULUwHL? S ||L¢9 A“||L°°L2||va||L2L°° SAT 4||¢9 ,\UH 1,1 ||U || 1,
)\1 )\1
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For the other terms we use the characteristic energy estimate ([5.6]) and the packet bounds (4.10))
through (4.13) to get

Ta w 3 ho
| Edg \uEv [P (Z |CT|%§O)\2+1) _Sl%p HE%,AUH%?(T)
T

SAT 2“% ,\U||2 13 Z /\2|CT|L°°

Ale w

~ ~ ~ 2
||L¢3,,\ULUM||%2 Sl Z CTL¢9,)\ULUT“L2 + HLd)g,AU Z C/TUT||L2
T T

3 ~ ~
S (X lerlfdt2) - sup | LGl + L0l D purfar

T T
SAGGAUE,y D Nlerlde +1653ul Yo MicrlEs
>\1 wr=w /\1 wr=w
Overall
1
I1Pa@G v o)z S 8Bl oy (32 Xlere + el )
wr=w

~ o a 1 al % Ta %
1,Qw o) e S 2 (57) Mool ag (D0 D2 Nlerli +AlrlE;)
’ |w—0|~a wr=w~a
which can be summed in & when a € A7V, u/A].
Case la+—: In this case the waves ¢f ,u and v* propagate at small relative angles, so

by Proposition the characteristic energy estimate for the term L¢g \uLv®” improves by a
factor of . The previous estimates are replaced by

(o3 w 1 (6}
IPaQ65 )z S ad sl g (32 NPlenlie ISUAAR

wr=w
1

1 o 3
1Pl S ot (S2) Mmooy (X X Wlerlte + Al )

|w+9|~a wr=w~a

SO (X X Werlhe )

|wHb|~a wr=w~a

Case 1b++: For the L? estimate we also write

- 1 " " 1/2
|PuGsatni )iz S @N)F( D2 IRu(S5auv)lE:)

|w—0|~a

For each w, discard P, and use the pointwise bounds for the packets in v* and the charac-
teristic L* estimate for ¢§ \u along characteristic surfaces for v* (the second part of Propo-

sition 5.9 with 3 ~ 1).
1 1
Ta w T 1 2 L a 2
930 |z < sup G5 allzzcr - A (D lerlt ) S Al (3 ler i)

T T
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where x§ are square-summable in §. Thus

IG5 suile S @0HGule( Y Y ferfe)’

|w—0|~a w(T)=w
1 aA
5u2(7) Ixgules (> Z \cT\Lm) -
|w—0|~a w(T

Case 1b+—: The argument of the ++ case would yield a loss of a~! due to small angles
(8 = a in Corollary 6.9):

Al S (52) o gl (2 b |cT\Loo) .

|w+0|~a w(

Instead we use the method of Case 3 below with a null foliation ¢ranverse to ¢g \u to estimate

1
2
1Pu05aueg ) e S n (D0 o aull oo allieras, )
J

1
1 2
Sl (Y D lerlis)”

|w+0‘~a wr=w

Case 2: a > u/A > \71/2,
Case 2a++: By Lemma the estimates of the previous case hold with an additional
factor of (@A)~ + (a?A\)~V for any N:

1P.Q(d5 31, v 2
1

<o) () Ve (5 Vi gl g (53 Mlerke + Ml

X |w—0|~o wr=w

which is summable in «.
Case 2a+—:

HPMQ(¢3,AUa Uc—ye,x) 22
_ Ny LM QA
S [N+ @0V (O gl g (S Mol + A1)’
/\1

H |w+0|~a wr=w
% A2y 2 1
1 _N43 2 @ 2
P @) ol g (D2 DT Vel + Akl
’ |w40|~a wr=w
Case 2b++: The same considerations as for the null form estimate yield

||Pu(€53,xuvﬁx)||m§[(OM)_lﬂL(Oéz)\)_N]M;(%)\) Pule (Y Y lerli)

|w—0|~a wr=w

Case 2b—:

1
B e S 1N+ @20 b gl (30 S lerfte )

|w—0|~a wr=w
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Case 3: u < \/2 a = \712
Case 3a-++: A direct application of Bernstein and energy estimates would yield

15 QD531 vg) |2 S pll b aull o g 110Gl g
AL AL

The additional /f% gain required is precisely what would result from a characteristic energy
estimate over a p~! neighborhood of a null surface.
Using the null foliation Ay adapted to v%, ,, we partition spacetime into “null slabs” of

thickness p~*

R*+2 — U U Ah —. U Zj
J

J helip= G+l
Since the mollifier P, averages functions on the ! spatial scale, we have roughly
1Puflleeesy S pll fllezpaes,))- (6.45)

This is not quite accurate since the kernel of P, is not compactly supported. However, by
partitioning the kernel one can decompose P, =}~ Py where for any function f(z) and any
set K C R? one has

1P fllzacey Sv 27 pll fll s s mo2e1yy for any N.

Hence in the sequel we shall ignore the imprecision in the above Bernstein estimate.
We write

1P Q(¢5 3w v )12 S IR 31, 0% ) 1725, )-
J

Using the “space-localized” Bernstein ((6.45)) and the null frame for A, we estimate

1P.Q(dGau v ) L2y S mllQ(DGau, vl Loni(s,)
S #llLgg aull Lzl Lvg o

+ ul[Edg \ull zos)) | Evg Al Lo re(s;)

|L°°L2(Ej)

+ pllLogull Lo 2o | Lvgall L2 (s))-

Apply the characteristic energy estimate (5.6) to ¢ \u for the first two terms and to v, \

for the third term, thus obtaining a factor of ,u_%. Since each of the resulting three products
remains localized to X; in one factor, we may square-sum both sides in j to conclude that

Ta «a 1 Ta el @
[P, Q(d5 uw, vga)llzz S w2 ([[Vogaulleerz + [|[Oul[rp2) ([[Vog sl ez + [[Bvg sl p1r2)

f
NYE ||¢3,,\U||Xi:1% ||U39,,\||X;1%-
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Case 3a+—: In this case we omit the spacetime partition and directly apply Bernstein,
Holder, and the following small-angle improvements of the above estimates:

l (3 (e}
ALl 2 + N2 B aullis < 95l oy (by Lemma 513),
A1

} (by (#4.12)),

1
ILvZg pll oo 2 + A2 [[Ev2g 5[l o2 S [0200]l 1
A,

1
a 2 1«
(g allEeramy)* S A 0%l g by ETD.
J P

Consequently

L
|’PMQ(¢3,)\U7 Uc_x(a,,\)HL2 S XHﬁbaAU“X;}% ||U30,,\||Xi:1%-

Case 3b+=: For the L? estimate we also use (6.45) and invoking the second part of
Corollary with g ~ 1,

||Pu(¢3,,\uvfe,>\)||L2(2j) < M||¢3,AU||L2(Ej)Ufe,A||L°°L2(Ej)a

1
S M2\|X3U‘|L2|\Uga,,\

L®L2(55)s
which can then be square-summed in j and then in 6.

Case 4: ;1 < A\7Y/2,a > \~'/2. Combine the arguments from Cases 2 and 3.

Finally, to deduce ([6.28) we write uy := u®', vy := v*2, and use the Leibniz rule to
bound ((6.28)) by

1P (Geunvn) || 2 + [| Pu(udror)]| L2
To estimate the first term, decompose
uy = Pesa(Dy)uy + Posa(Dy)uy = u™ + uy?
The high-frequency piece satisfies the elliptic estimate
IVeeus Mz S AT ([Vuallzz + [10ual 2,
whose proof is similar to that of Proposition [2.19 Then by Bernstein and Holder,
1. (Osuz o)z S pull O™ 2 lJoall oo e

S MHUAHXQ%HUAH

1
0,5
X 2
A1

which is more than acceptable. On the other hand, the estimate ([6.27))

1
1P (O on) e S p2l|Ocull oy oAl oy,
X)\,l X)\,l

and by a simple commutation argument Hatuf’\HXO% < )‘HUAHXO,%-
Al Al

To treat the term || P, (ux0:v)| 12, we repeat the proofs of Case 1b, 2b, 3b, 4 and use (.13)
as well as the Bernstein estimates (4.30)), (4.34]) for the wave packet coefficients.
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6.3. Proof of Proposition We succesively consider the bounds in the proposition:

(1) First we consider the low modulation cases and (6.5)).

Let (x?); be a partition of unity with respect to tlme intervals (I;); of length ~ d, L and
let (¥7);, (x7); be similar families such that ¥/ = 1 on I; and ¥ = 1 on the support of ¥/.

By rescaling from Prop. using we obtain the product estimates for frequency

localized functions:

L3 L3
Xyt L]+ X 5] — Xx T [13] (6.46)

Note that the regularity of the metric’s coefficients i 1mproves with the rescaling. Suppose,
for instance, that d; < dy = dpax. Using properties (2.6)), (2.7), (2.5) we have

Hu)wdl ’ ’Uu,d2H2 1,3 < Z ”X UN,dy * Uy, dz)HQ 1,3
/ X/
N [dmax,u] j N [dmax,u]
S Z Xy - X Opaa]l® 1
XA, s[dmax,u] [I]
<ZHXXUAdH HXXU,dH 1
RSN X ]
< HU)\ d1H2 1,3 Z HX Uu7d2H2 1,3 < Hu/\ d1H2 1,3 ||U#,d2H2 1% :
Adl j Xu dg /\d1 udz

The same argument gives (6.5]).

Remark 6.12. Note that between the rescaled (6.2]) and ([6.46|) we have used the factors (%) 1

to sum over d- which is the modulation of the output. If we choose to keep this factor, the
same argument gives decompositions

w/2
Py(ura, Vuay) = Y Wyvar  Pultrg vnva) = Y W+ W,
d:dmax d:dmaxd0/2

for 1 < dj,dy < p, under the assumptions of Prop (1), such that

P A4

llwx xih S S (= ) ||Ux,dl||X;,C%¢l||Uu,d2||Xl1L,’§;2 (6.47)

o Hdyt
W —(— U v 6.48
1 ud||X§; A(M) (v Ml1|| X’dQHXi?iQ (6.48)

< K

Ll 6.49
[|w uu”d% AHu”qui;Hv”?”x;,ld? (6.49)

These will be useful in the proof of the Moser-type estimate.
(2) Recall that by Bernstein’s inequality and the energy estimate (2.3|) we have

||Uu||L§°z S ||Uu||X;’32

We now prove . We have

Ad ||UAd1 Uud2||L2 (/\d2||UAd1||L2)||Uu,d2||L°° S lunal oy 1wl 1y -
X>\d1 X”7d2
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For O

g7 (Unds " Vpd,) We consider

4210, s veasllie S d 210y s o 0, o
4 1D, — Do )tna, - Vpallie S M, 22 vl
& * uns - Oge vl S di *lluns =220 vyl oo
< BNV llerady 2 [0, vl
_%Hux Oy =0y Jopallie Sy ? a2l v, o
L 0ura, - vl S luaux 1221100 | =

S a ||UAd1||X1 1 [0V dy || ooz
A

Each of the five terms above is < ||u>\ d1|| | u,dzH ¥ i
)\ d
We continue with the proof of (6.7)). Here we will use Bernstem s inequality
HPWHL;I S pllwllzepr.

Assume without loss of generality that d; = dy,.c. We have

5 5
w2 una, - vndy 2ot S 2 lluaa |22 |[vaa, [ Lo r2

PN2/ N2
S <X> ( ) Hu}"dlnxlé ||U/\’7d2||X1,% . (6.50)

dmax A,dq ,\/742

11
The same argument applies for the V, , in the L? part of ,i,i For the L*°L? parts we use
Bernstein, the chain rule and L>®°L? x L®L? — L>®L.

For Oy_ _(uxd, - vx,4,) We split as before

8. stnar - Oxvazllrze S I8, suna ez lowas [
lurna, - Og_gonvaollzer S lusa ller2 Oy _ 50800l 2
[0ur g, - Ovxay || r2rr S (| Ouna [ 22 |OvN d, || oc 2

A

< =

(O s = Ug_ s )und - onvapllrzm S Mﬂam,dlﬂmHUA',dQHLwﬂ

!/

luna, - (Og = Bo_ ) llzze S Hux,dlHL?;Hé’UA’,dzHLM?

. 1. .
Each of the five terms times p2 is < [lung, || 1.1 [vv.a, Hxl’% , which completes the proof.
Adq N, do

7. THE PRODUCT ESTIMATE (|1.16])

We now turn our attention to the proof of (1.16). We recall the notations X = X*Y and
N = X191 with = 1 + ¢ and s = 1 + & + £. The duality property (2.13) states

N = (X—a —¢, 7—5 + LQH%—zE/—E)/'
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Therefore, by duality, to obtain ((1.16) it suffices to prove

‘I ‘I

Hul U X—s —e, 7 5 +L2H?_2€ —& ~U ||U1||X59 |u X—E/—E,%—E/J’_LQH%—QEI—&'

We reduce this estimate to the following bounds:

[ u2||L2H%_25,_5 < JJut|| o0 |u2||L2H%_25,_5 (7.1)
ot gy paesee S Tt ol ey (1.2

For both estimates we use the Littlewood-Paley trichotomy and reduce to estimates for
terms Py, (u}, - u3,).

Be begin with . In the high-high to low case A\; >~ Ay and in the low-high case
Al < Ag ~ A3 we use Holder’s inequality L°L* x L?L? — L?L? together with Bernstein’s
inequality ﬁ’)\lLOOLZ — AN L>®L*>®. In the high-low case \s < A\; =~ A3 we use Holder’s
inequality L>®L? x L2L> — L?L? together with Bernstein’s inequality Py, L2L? — Ay L2L*.

Now we turn to the proof of (7.2). We write

A1
uil = Z u}\hdl Hu/\1H2 gg - Z || /\1,d1H2 9‘9 .

di=1 di=1

and the similar decomposition of u3, relative to the space X —e'—e,5—¢

In the low-high case A\; < Ay it suffices to prove
1
||u)\1 u>\2||X22§ e’ SJ )\5 || )\1 ||X>1\-10-6 +e, g+s ||UA2||X22§—6

We estimate u}\hdlu?\%@ in X /\;Q[mzx( d1 ) ] for di,ds < A1 using (6.4) and computing the
weights we note that there is enough room to sum the modulations < A\;. For A\ < dy < Ay
we use instead and we obtain square-summability in ds.

In the high-low case Ay < A\; we follow the same argument and here we have a better
factor including a power of Ay/\;

In the high-high to low case A\; ~ Ay we have

1

||P)\3(u1\1 ’ u?\g)HX—E/—E’% —e/ +L2H§—25 —& N AE

2
s H )\1|| 2+5/||U/\2||X0’%_El'

A1 A2
For dl,dg < A3 we estimate PAB(u/\hdlu/\2 4,) using (6.5): with appropriate weights the

oL /
X [2dmax bound transfers to X)\; &3¢ ’ while the XMM one transfers to L2H%725 < For

max(dy, dg) > A3 we use Bernstein and ) to place the output into L2H22%

Remark 7.1 (Higher regularity). Let o > s. By applying the product estimate with a slightly
lower s’ < s (say s’ = 1+¢’ +¢/2) and considering the Littlwood-Paley trichotomy in terms
of w,Fy, uxF, (n < A) and P,(uyFy) (1 S A~ \) we obtain inequalities of type

—&/2

ey Ellxeros = X Ell o0 S o [Pl

[Pu(unEx) [ xo-ro-1 S (1/A)7°

[l x50

|u>\||Xs,0 |F)\/ ||X071,971
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Putting all these estimates together with the similar one for u)F), we obtain
Xs—1,9—1 (73)

Remark 7.2 (Higher regularity, Corollaries of (7.3)). Assuming higher regularity of the metric
g, by Remark which gives ||O,ul| xo-1.0-1 S ||ul|xoe for o < k41 and the identity

2Q,(u,v) = 2g*°0,udgv = O, (uwv) — ud,w — v,
from ([7.3) and (6.1) we obtain the null form bound
1Qg(u; v) |l xo-r0-1 S |ul Pz (7.4)

Furthermore, when w,v are bounded in X* we have the Moser estimates in the form
IT(w)|| xo0 S |lufl xoo and

I0(u) = L)l xee S llu—vllxee + l[u—vllxso ([[ullxoe + [[v]lxoe) (7.5)
Using this together with (7.3), (7.4), (1.17), (1.18)) we obtain
IT () Qg (v, w)ll xo-10-1 < [ullfsolull xo. (7.6)
Similarly one obtains a bound for I'(u)Q,(u, u) — T'(v)Q,(v,v) in X7~ 101,

[u - Fl|xo-10-1 S [luf

| Fllxo-r0-1 + [lull xeo || F]

Xs.0

xs0[[0llxe0 + lull xoollv]

8. THE MOSER ESTIMATE (|1.18]

In this section we prove the nonlinear estimate (|1.18)), which resembles the Moser-type
estimates in the context of Sobolev spaces (sometimes referred to as Schauder estimates)
that can be proved using paradifferential calculus and the chain rule (see [35, Lemma A.9]).
Here we will use the iterated paradifferential expansion strategy from [43] to leverage the
product estimates from Section [

Proposition 8.1. Let F' be a smooth bounded function with uniformly bounded derivatives
with 99V F(0) = 0 for |j| < C. Ifu € X** then F(u) € X** and

I ()]l o0 S Mlullxeo (1 + [JullXs0) (8.1)
Moreover, F(u) € X*% and
£ (w)]

oo S ullxeo (14 JullXeo) (8.2)

Remark 8.2. The bound ({.1]) should be seen as a key intermediate step in the proof of (8.2).
The space X*? is defined in Definition and X*% c X*?. The only difference between the
two spaces occurs at high modulations, where we discarded the terms )\s+9_2HDg< A, allz2s
making the norm X*? smaller. This allows us to have the factor (A\/\)® in Lemma ,

11 1
based on the better factors u/\ for X, ijﬁ compared to X ijﬁ in the estimates (6.5]), (6.7), thus
making (8.1)) easier to prove.

Notation-wise, we focus the proof on the case of functions F' of a scalar argument and note
that it is easy to see that the same argument applies for the case of multivariate arguments
F(uy, ... ug).
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8.1. Reduction of (8.2) to (8.1). In light of Lemma it suffices to show that O, F(u) €
L2Hs+972:
Lemma 8.3. If u € X*? then

IO, F (u)l| pemreso—2 S llullxeo (1 + [lullies)

Proof. We split O, F(u) into F'(u)Oyu and F"(u)Q,(u,u). Let G be either one of the terms
F'(u), F"(u) and let f be Oyu or Q,(u,u).
By Lemma [2.13] (1.17)) and (2.16) we have

£l z2prsvo-2 S ul

Xs,0 (1 + HU|

) (8.3)

To place Gf in L2H*2 we use a Littlewood decomposition and bound P\(Gf,) using
(8.3). When v < X we place G € L™ and get the factor (v/\)?>=*=%. When v > A, for
the term P\(G,f,) we first use Bernstein Py : L?L' — AL?L?  then we use the fact that
G € L™®H? by classical Moser/Schauder estimates (see [35, Lemma A.9]), obtaining the
factor (\/v)*+t0-1. O

We continue towards the proof of (8.1)) by setting up some preliminaries.

8.2. Iterated paradifferential expansions. We write

F(u) — F(v) = (u—v)h(v,u)
and
h(v,u) — h(z,y) = (v — x)hy(z,y,v,u) + (u — y)ho(z, Y, v, u)
and so on, where the h’s are generic smooth functions with uniformly bounded derivatives.
For v < < oo we may decompose
n/2
F<u<u> = F(U<,,) + Z F(u<2>\o> - F(u<>\0)

Ao=v
n/2
- F(U’<V) + Z u)\oh(u<)\07 u<2)\0)'

Ao=v
Repeating the same argument for h(ucy,, u<2y,) and denoting
h("7 U<y ) = hl <U’<)\1 y U2y U<2)1, u<4)\1) + h2<u<)\1/27 Uy U<y u<2)\1)

we further decompose

n/2 w/2 Ao/2
F(u<u) = F(U<V) + Z u)\oh(ubuS?) + Z Z u)\ou/\1h("7u<)\17 )
o=V Ao=V A1=2

Iterating this argument we can write F'(u-,) as a sum of three types of terms:

(1) F(u<y)
(2) upngh(ur, u<a), Ungtn, "1, U<ay . )yen UngUny = - Uny_ R(UL, ... u<E)
(3) UngUny = - U’)\Nh(u<)\1\r/ca e Uy - - 7u<c>\N)

forv <X <pand \g > A\ >---> Ay > 1.
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8.3. Bilinear estimates involving X spaces. Here we supplement the estimates from
Propositions and with some bounds in terms of the X Eii norms.

Lemma 8.4. Let p < d < X and u,, € )N(jiz. Then there exists a decomposition

Uy ST
such that
1
Jung - uiy ullxgo S ||uAd||Xseu [l 220, (8.4)
7 1
Jona 735z S (5) Tonall g zllonal sz (8.5)
Moreover, one has
1
[Jun<p - upy 20 S llunsallxge — (8.6)
lursn - w2l gee S lunspllyeo — (8.7)
Unsp " Uppllxyd ~ MWA<plixy? e ‘
and .
-l 555 S Nonallsgg = 0 (83)

Proof. We define u}fz by averaging u,, , in time on the A~! scale.

(1) We begin with (8.4) and (8.5). Similarly to the proof of (6.6), for all terms occurring
in each of the products we place the higher frequency term in L? and the lower frequency
term in L>°. For (8.4)) this works because

10, sl < )‘M_Huuunxsf’

while for (8.5 we use
_ w1l
lupllze S A ey ullzoe S 3 e el (8.9)

and we recall that the Xf\ '\ norm does not contain [, s terms.

(2) In the case of - we use L®L?* x L?L>* — L2?L? and Bernstein for the terms

Un <y - u#i‘“ Vmu,\ <u- V”ﬁ“uu and uy <, - Dg<fu§7l\t. We use L2L? x LXL>* — L?L? for

Ly U< u . The place where we use the <} smoothness is

A‘WHD

9. /5 MMHL? EHUNWHXZ:‘Z‘

Finally, in the case of (8.7) we always place the A\-frequency terms in L>°L?, using either
L®L% x L2L> — L2L% or L®°L? x L*L*>® — L*L? and Bernstein for the p-frequency terms.
This works because of and

o1
ST H uu”xse

L
lugillzeres < 500 e

(3) The proof of (8.8)) is straightforward by boundmg the u-frequency terms in L. [
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8.4. Multilinear estimates. The next order of business is to obtain effective bounds for
the products uyyuy, - - - Uy, in the expansion from section 8.2} while the effect of multiplying
by h(..u<yy..) is studied in the next subsection.

Lemma 8.5. Let \g > A1 > - > Ay for N > 1 and let u € X0 For any A < Ao

N
A’ 1
1P (g - - tay ) gz —)\SHUAO| x50 [l x50 (8.10)

=1 "1

More precisely, there exists a decomposition

A
P)\(U)\O ce u,\N) = ZU)"d
d=1

such that
min(3,N) 1 N
A® d i 1
S < -~ ] e — S - . S .
il < 55 1T min (b i) Tl [Tzl 1)

Moreover, if X > d > \; then we can replace H“/\oH)Zjﬁ by Hu,\deX;,ad.
0 (B

Remark 8.6. We recall that for 1 < d < \ the norms of Xi:g and X;:Z coincide.

Corollary 8.7. Under the assumptions of Lemma for N > 3 and any v < min(\, A3),

one has
N

1
Xi‘oe H ;”qu X’i;e (8'12)

=1 "

A

S
)N(i‘f/ 5 /\_8||u>\0|

|va, <+

Proof of Corollary . Using (8.11) with N > 3 to sum the norms of ||v) 4|72 and

HDg<ﬁv)\7dHLz over d € 1,7 we obtain a favorable factor, since (/\d’, )Z can be used to
always have a positive power of d on the RHS. When v = A\ we use energy estimates. U

Proof of Lemma[8.5. We prove the statement by induction with respect to N.

(1) For N = 1 we use Remark [6.12, Prop. [6.3| (2) and Lemma to obtain the decom-
position. We split
Py(uptn) = Y Pi(urdoting)
1<d; <\;,i=0,1

where for both \;, i = 0,1 we write, by Definition [2.16]

>\i/2 >\i/2
2 2 2
Un = D U, Fuxils0 = > llwna, oo T lonadlzee
d :1 2 dzzl 17 127

We obtain the desired estimate by a summation of dy, d; argument as in the proof of Prop.

[6.1] as follows:
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(1) In the high-low case A ~ Ay > A\;: for dy,dy < d < A\ we use ([6.47]) to obtain

dyil
onallxgs < (5) " 3 lmsallge ol (8.13)
while when \; < d = dy < A\, A\g we have
1
loxdllxse S >\€|| Ung.dll x50 ||UA1| X5 (8.14)

based on (6.6), (8.4) and defining vyg = Py(uxgqtn,<n) + P,\(u)\mdu;):g\l), where
uf“j\ is defined in Lemma .
When d = \; we define vy, = P,\(u,\07,\lu,\1,<,\1)—|—P,\(uAO,S,\lufl’\f\l) and using (6.6)),
(8.6) we have
1

||U)\7/\1 HX;Q ~ )\5 ‘

[0, nllxge_ Ml g0 (8.15)

Finally, when d = X we define vy, = P,\(u,\07<>\0u;):§\1) + Zd:/\o Py, (uy, quy,) and

using , , we have

1
vl

XS 6 r\/ )\g Hqul

ggollu gz (8.16)

(2) In the high-high to low case A < Ao >~ Ay: for d € [1,\), by (6.48]) we have

\ordya 1
Xi:Z ~ )\_3<X> )\—i||uxo,§d|

while for d = A, v, » contains the contributions of uy, 4,1z, ¢, When max(dy,d;) > A
(use (6.7)) and the contributions when dy,d; < A given by (6.49) obtaining

AS
w1 S eyl

||U>\,d| Xibﬁgd||ukl,§d|

X3 <a (8.17)

||U)\7>\| Xse |u,\1\Xso (818)

(2) Now we assume the statement holds for N — 1 and prove it for N. Letting v/V=1 =
Uy - - - Uny_,, summing the induction hypothesis for v,%,_l) over d’ < d for d < min(v, A1) we
obtain

¢ min(3,N—-1) d

14
- < i
X;:id ~ >\8 | | min (1 lIl(V )) H’U,)\0|

=1

N 1
oY)

lge (819)

N-1 1
X.s@ H AS
We consider three cases:
(1) A < A\y. We have
P/\('LL,\O .. .U)\N) = P)\(]B)\NU(Nil)U)\N).

For d < X we apply (8.17) to f’,\NU(N*I) and wuy, and then use (8.19)) for v ~ Ay.
When d = X\ we use (8.18)) instead of (8.17), and then (8.10) for N — 1 and P, for

v ~ Ay, as no powers of d/\ are necessary.
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(2) A ~ Ay. We decompose
PA(uAO...uAN ZP,\ PU UAN)

<A

For d < v we apply (8.13) and (8.15) for uy, and P,o"~1 together with (8.19),
while for d > v we use (8.14)), (8.16) together with (8.10)) for P,o¥~1. Summing the
factors that contain v we obtain

o1 (1 d) 7 min(3,N) X <d> 1 min(3,N)

AS e \\

which is favorable.
(3) A > Ay. We write

P)\(U)\O .. .U)\N) = pA(P)\U(Nil)U)\N).

For d < Ay we apply (8.13) and (8.15) to P\~ and u,, and then use ) for
v~ \. In the case Ay < d < X (8.14)) applies with ||v(N_1)| =0 on the RHS v\,
v,d

and this norm is estimated by the induction hypothesis. Flnally, when d = \ we use

(8.16) and then (8.10) for N — 1. O

For the sum of the output frequencies and modulations of the products we have:

Corollary 8.8. For N > 4, let )\0 >N > - > Ay and let w € X®. Denoting w =
Upg - - - Uny and M = ||uA0||Xge Y, )\E\ x50, Ome has

[wllzz + Az;§||w||LWL2 F AN Vegwl e + A§§||Vt,xw||LWL2 SAVT'M
Proof. First consider Ay < A. By summing (8.11)) and using also the argument of Cor. [8.7]
together with (2.1)), (2.3]) we obtain
_1 _1
lwallzz + Ax* llwallzeore + AT I Vigwallze + A AT Vigwallerz S ATAYM - (8.20)

Summing in A > Ay /C one obtains

_1 _3
lwsay 22 + An2 lwsaglorz + AN I Veawsaylr2 + A2 [ Vigwsay ez S AV M

Now we consider frequencies << Ay and write
P<<>\Nw = P/\N (u,\o e U)\Nil)u/\N.

We place uy, , Vi zuy, in L™ while for PAN (u,\o . UAN_l) we use the argument of the previous
step used to obtain (8.20)). U

8.5. Multiplicative properties. Now that we have bounds for multilinear terms in X% X d, in
order to make use of the expansion in terms uy,uy, - - - ux, h(..u<y,..) We need to investigate
which multiplications by h leave the Xi’,z spaces unchanged.

Definition 8.9. For d < A the norm of M) 4 is defined by

1

1
1llana = ol + S Veehlle + 18 bl g3 12
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and for p < X the norm of N, , is defined by

1
A
We also define the following version of the )Nfii norm adapted for function not assumed to
be frequency localized:

1
hllxy, = Bl + SIVeahll= + 0

g<ﬁhHL°°L2+,u,7%L2.

_1 _ _3
ypo = AN (wllpe + A2 [wllpeere + AT Veawllze + A2 [ Vegw] pere).

]

Then we have the following multiplication properties.

Lemma 8.10. For any function u localized at frequency >~ \ one has

Hu : hHXf\Z S HuHX;ZHhHM)\d (8'21)

and similarly with Xi:fl replaced by X;Z
For any function v localized at frequency ~ p < X one has

)\S

o+ bl S Sl v, (822
A° _
oWl 25 ol + #0310l o, 823
o Bllgae S X0 0N Few)l gy pall bl (8.24)
For functions w not assumed to be frequency localized one has:
Hw : h| X;fi 5 Hw| Y;"9 ‘h’HMA,A' (8'25>

Proof. The proof is straightforward, based on Leibniz’s rule, Holder’s inequality and the
energy estimate (2.3). For (8.22]) we also use Bernstein’s inequality L2 — pL2° for v. O

This property is used in conjunction with the following lemma.

Lemma 8.11. Let y < d < X and ¢ ~ 1. For any smooth, bounded function h with uniformly
bounded derivatives one has:

I Peuh(uci)llan g S 1+ [l (8.26)
[Paf(ucer) vy, S 1+ [ullfeo (8.27)
1Ryl s S (14 lullos) max [[PA(0°h) (uap)llze, 1< A (8.28)

The same statement holds for multivariate functions h(ucpje, -+ Ucp, -+ Ucep)-

Proof. The same argument applies for the scalar or multivariate case; however, for brevity
we will simply use the notation h(u.,) for both cases.

We begin with the V;,h(-) terms since the |||z~ bound is clear. By the chain rule, for
v € {p, c\}, we write schematically

vt,zh<u<y> = Z oh - Vt,ocu<ciu-
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We have ||0h||r~ S 1 and ||Viztcey

Next, we write

Oy Phlucy,) =[Oy PIh(ucy) + P g 50°hVuce, Ve, + P> 0h0,  ticey

In the case of -, since 1 < A for P = Py, the only parts of 0%h, Oh that contribute to
this equality are P\d%h, P\Oh for a frequency A multiplier Py. By Bernstein we have

90V e Vel S #210° Ml [Vl S 421020 el
”ga2hvu<cz‘/\vu<0j/\”L°OL2 S /\HVUSAH%WLZ S )\”’LL’ ;

~ X s,0

|p < v||ullxse, which suffices for all three bounds.

X 8,0

Similarly, for P € {P<,, P\} by writing [0
commutator estimate we obtain

95 P] = 9. P)0; 0, and using a standard

2

XS,G)

Pilh(uep)lle S 1210 o |01 szl T 2 + il PrOR| poe |01 00 tip]| oo 12
S [L2 max (Hf’)ﬂhHLm, |‘P)\a2h“[/oo) (1 + Hu\ 2

XS,Q)

Plh(ucollz=rz S MOsugallto 2 + 101a0sugallzmr S AL+ Jul%e0)

I8, 5 Peplh(ucp)llze S 1 l10ratigullioe 12 + mllOraOsugullor S 1 (1 + [luf

118

1=

I<vX?

Using Definitions , of the Xi’Z,X $9 spaces, the hypothesis 02g € L?L*>, Bernstein
and a summation argument in frequencies and modulations one obtains

3
10y_ su<cullrzre < p2flull xso

X .0

1
10y sucerlle < A lul
Using these we get
- 3 ~
[(P)OROy_ jticeullr2roe S p2[|(P)OR]| Lo [|ul

Xs,0

0RO, jucellze S Az 2 Ju| x50
Putting all the above inequalities together completes the proof of (8.26])-(8.28]). O

The main application of the multiplication properties above is:

Lemma 8.12. Let A~ X g > Ay > --- > Ay for N > 3 and v = uy, ... uy,. For any smooth,
bounded function h with uniformly bounded derivatives one has:

N

1
3(5,9) H )\5/2 X3 0 (8.29)

=1

[Pr(v - Peayh(ucay))]

go0 S Nl [l s (14 Jlul
A 2o

Proof. We decompose
P)‘(U ’ PS)\Nh<u<>\N>) = Z P/\(UX ’ PS)\Nh(u<>\N)> + Z PA(U# ’ p)‘PS)‘Nh<U’<)\N)

N A

where the second sum is non-zero only when Ay =~ A, in which case we can redenote ]5,\P5 Ay
by P,. We separately consider the terms with:
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(1) N ~ A. We use Lemma and Corollary to decompose vy. Applying (8.21)
together with (8.26) (with = Ay, d = Ay, resp. d > Ay) and (8.12), resp. (8.11]) we obtain

|

xeo (14 lul%eo) H sellnd

G H;nm

[vn,<ay - Paayh(uany)l

w0 S () ol

for d € [Ay, \1], while for d € (A1, \) we have

w0, S sl o

wpr (L+ [l

lvn.a - Poayh(uany)| .0

|

X59 (1 + HUHXse H /\EHUA |

=1

lvnd - Poayh(uany)| x50 S S lung,a X3!

N
1
lox - Poayh(uaan) gpe S lwllygo (1 + lulleo) HA—\UAZ-HX;,_H
_ K3

We square-sum these bounds to obtain the conclusion for the vy terms.

(2) p < A, in the case Ay >~ Ay_1 =~ -+ =~ \g ~ A. By (8.12) from Corollary and
(8.11]) we have

r N
< I+
H’UMK#”XEZ —+ ”’UM“HXE’,(Z ~ )‘(S)HU)\OHX;E)G 1 /\f

Using this together with (8.22)) and (8.27) (with ¢A = Ay) we obtain :

N

H 1
2 —
)(5,9> 1 )\Ze ||u)\1 )f;s\,ie.

19,2 - Pah(warn) g S ol xge (14 [lul

We regularlze U, in time on the A™! scale to split v,,,, = <’\ ut v>’\ We have

107 v et S A" 0l

X
so we can use this together with (8.23). Finally, we have
(0™, A7V 07|

AT Veao™? SATH T ol 5

30

LQQ#%LOOLQ ~ L2Np 2L°<JL2 ~

and we use this with (8.24)) to conclude. O

8.6. Nonlinear low frequency input — high frequency output estimates.
Low — high frequency interactions do not occur in bilinear or multilinear expressions,

thus one expects their effect to be under control for nonlinear interactions as well. We begin

with L*° bounds.
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Lemma 8.13. Let A > u and let h be a smooth, bounded function h with uniformly bounded
deriwatives. Then, for any even N > 2

1Pl S (5) ol

IV Pbucn)lse < ()l

Proof. For any nonzero multi-index § we may use the chain rule to write

18I

h(uc,) Z Z h(j)(u<u)8§1“<u e afj“<u> Bi # 0.

] 151+ +,B] 6

X0 (1 + ||u|

8) (8.30)

Xsﬁ(l + HUHXSﬁ) (8.31)

ys.0 We obtain

1
1P allie S I8 Paua)lie S (5) Tulls (14 ully

Using [|07ucpllz < ||l

X0
The same argument is used for V; , Pxh(u<,). O
For very low frequency terms we have:

Lemma 8.14. Let h be a smooth, bounded function with uniformly bounded derivatives such
that h(0) = 0. Then, for all X > 1 and even N > 2 one has

1

|23l xpo S s llunllpo (14 ull35). (8.32)
The same statement holds for h(u<c) and for multivariate functions h(u1, u<a, - -+, U<or).

Proof. When A =1 we use the Lipschitz property [h(u1)| < |wi| to control [[h(u1)|z2. For
18, Prh(uq)]| L2 we use the chain rule.
Now we assume A > 1. We have

~ 1 N
IPR(u)llze S 57 1A 7 Au) |2

Using the chain rule we write

Az +1h u1 Z h J) u1 351u1 afjul

We use the L? norm for 9%'u; and L* for the other terms. The same type of argument
applies for bounding [|0y__ Pah(u1)[z2. O

With all the preparatlons above we are ready to treat high frequency outputs in high
modulation spaces X X /\

Proposition 8.15. Let F' be a smooth, bounded function with uniformly bounded derivatives
such that FU)(0) = 0 for j < 4. Then, for any even N > 2 and any p < \ one has

< H N N+8 v\ N
w2 S (5) 0+ ) s () e (8.33)

[ PAF (uey)

We same result applies for multivariate functions Pxh(Ucpjcs - - Ucps - - Ucep)-
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Proof. We use the iterated paradifferential expansion from Section with v = 2 to express
F(uc,) as a sum of terms of type:
(1) F(ur),ur h(ur, uca), ..oy ungun, Up,unsh(ug, ..y uce) for A3 < Ao <A < Mg < p < A

Using (8.32), (8.8) we get

[PAF (un)|

Yoo ) [l
1

sz zg ol

1
30 S 3w (L+ Il

5,60
Xl

|P h(ul, U<2)|

[wre Prh(ur, uco)

AN

X59

1
AN

A
>

HquHxse(l + [lull o) uzall o0

> -

(8.34)

3
- 1 1
||u)\0u,\1u,\2uA3P,\h(u1, C.e ,Ugc)| Xi,i 5 _/\N 1+ Hu| ﬁj; | | /\<? i Xi,ie ‘USC" Xs,0
=0 "7

Then we may sum Ag, ..., As.
(2) wroun, Un,UngUn, (Uaryjor - o s Uarg, -y Ucen,) fOr Ay <ovn <A < A
By abuse of notation we denote

h(ucxn,) = h(tary/er -y Ucrg, - - -5 Ucery), W = UpgUx, Uny Ung U,
Then
P)\(w . h(u<>\4)) = P)\(U} . If’Ah(u<,\4))
We discard the Py and use (8.25):
|Pr(w - h(ucy,))]

By Corollary [8.8] we obtain

|P>\h(u<>\4> ||M)\,A

g5 S lwllyzo

4

A\ s+0 1
s < -~ s S -
w5 (5,) Tl I 56

Using ([8.28)) together with (8.30) (for h,dh and §*h) we obtain

]

- A\ V+2
IPshuar) s S (5) " lullxe (0 + lul ¥25)

We put these together and sum over all but A4. It remains to bound

1 A N+2—s5—0
> 1o ()(F) (14

S (%)N[Asip (%)NHMI X;f] > (%)2508(1 + [lu]

A4S Aa<p

NH8) <

Xs,@ ~

Xo0)

which completes the proof. 0]
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8.7. Conclusion - Proof of Proposition It remains to prove (8.1). We use the
iterated paradifferential expansion from section with ;1 = oo and v = A\/C to express

F(u) as a sum of terms of type:
(1) F(uen)
(2) un,h(ur, u<se), urngux, h(ur, t<ay .. )y ooy UngUn, UngUngR(UL, - . ., U<C)
(3) UAOUA1UAQUA3UA4h(U<)\4/C> sy Uy - oe 7U<c,\4)
for AS dpand \g > A > - >\ > 1.
The term ||PyF'(u«y)|| g0 18 estimated by (8.33)). Note that the RHS is square-summable
in A
For the terms in (2) we use ,forn < Ao
)\S
1P o, Py, 530 S Sollusgll g0
0 0

1

|Pnh(u1, --)”X;]ﬂ H e
i#0 " ?

Then we apply Lemma and sum in 7, \;,72 > 1. We have square-summability in A due
to the factors A Ag*||wy, |

0
We continue with the term (3). For n > Ay we use (8.10)) and Prop. for

P)\ [U)\OUAIU,\QU)\3U)\4Pnh(u<)\4/c, e ,u<,\4, Ce ,u<c>\4)],

and then sum n > C')\4 to obtain

5,0 .
X)\

A

4
s 1
1P [TLiun, Pox b ttans )]l g S )\SHUAonse (L + [fullx~s) H)\—

It remains to consider
Py [trgun, wr, urgun, Pox,h(targ jes - - - Ucngs - - -y Ucen,)]
For \g ~ X\ we use Lemma [8.12] Now we assume A\ >> ), in which case \; ~ Ay and
Py [ILuy, Poy h(ucy,..)] = Py [UAOP/\O (wry Wrywrgun, Pr, Ay, )]

We bound this by first using the estimate (8.10) for the two terms and then Lemma
applied to Py, (uAlu,\2uA3u>\4P5A4h(..u<,\4..)). This concludes the proof of Proposition 8.1 [

APPENDIX A. SMITH’S WAVE PACKETS

We briefly review Smith’s wave packet parametrix construction for wave equations
(0F — g (t,2)0a0y)u = 0, u[0] = (uo, 1)

with C1! coefficients [29]. This construction works as well for coefficients ¢ satisfying
0?g € L>L*. Begin with a partition of unity on R¢ :

L=[m (O +> D B

A>2 w

where, for each frequency A > 2, the w’s are summed over ~ A"z = directions that are
umformly separated on the unit sphere. The smooth functions h{(€) vanish outside the
annular sectors

(el A, 6/ lel—w] SA72 )
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and satisfy the natural bounds
Qo pw —j—lal
‘(W'Vi)jag hx(§)| SATTE

Thus each k% (€) is supported in a rectangle of size ~ (A2)"~! x X oriented in the w direction.

To each of them we associate a lattice =% in the physical space R} on the dual scale, i.e.

spaced A\7! in the w direction and spaced A~z in directions in wr. For each A we denote
Th=AT = (z,w) | z € E5}

and to each T we will associate a "tube” and a function @7 defined by

n+1

Pr(§) = (2m) I TS (6).
This function is concentrated in phase space around (x, Aw). Thus, we have

la| | nt1 1
4

w-V ij-V @ T S>\j+7+ 2
|( y)( y) 90(?/)| I+ MNw-(y—x)|+ |y —z|)V

These properties imply that for any sum we have

/ | Z dT90T|2dy§ Z |dr|”.
R"

ATETy ATETy

The family (7)1, is used to decompose arbitrary functions into highly localized components.
Indeed, for any f € L*(R™) we have

f=> eror, or 32/ erfdy

ATET
In addition, we have
[t = ¥ el
" ATETH

Note that if f is localized at frequencies ~ A, then it’s decomposition only contains terms
o7 with T € Ty where X' ~ \. By abuse of notation we will sometimes write simply the sum
over T' € T,. The decomposition is, in general, not unique since the ¢7’s are not linearly
independent.

Let T = (xz7,wr) € T, and fix a sign +. Let (z7(t),wr(t)) be the projection to S*(R™)
of the bicharacteristic initialized at (x7,wr). In other words, we set wr(t) = % and then
(x(t), wr(t)) solves

92— +0calt, v, w)
dt §O\L 4y . (.ab 1/2

t, , = 1/2Sa . Al

{— = Foalt,w) + W Bl mw)e, 00T et (&.1)

Define the orthogonal matrix ©%(¢) by the ODE

Ot = :F@i[w ® ax(t, r,w) — (a)(t, 7, w) ® w],
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where v ® w is the linear map x — v{w, x); by construction, ©F (t)wr(t) = wr. Set

uz(t,y) = er(O*(t)(y — 27 (t)) + 27),

1
vr(ty) = ml/ﬁ(@i(ﬂ(y — a7 () +ar),
where
Pr(€) = —Mwr, £) 7' @r(¢).
A parametrix for initial data u[0] := (ug, u;) is then given by

Z Z ur (L) + ug( t)){pr, uo) L2

A TETh

1
L[S A w0 — vr O (1 + Byu)z] + P (1 + By

A<ho TETR

=: c(t, 0)ug + s(t, 0)uq,

1
where \g > 1 is an absolute constant, and the operator E satisfies | E||zzr2 < Ay ? and
ensures that 0;s|;—o = I. The operators c(t,0), s(¢,0) are approximations of the usual wave
propagators costyv/—A, (vV—A)"tsinty/—A.

The functions ufTE, /\*11)35 then satisty the definitions of the packets in Section , and shall
hereafter be denoted generically by wup. If (ug,u;) is localized at frequency A > g, then
the frequency-A part of the solution u to Uju = 0 is approximated in the sense of .
- . . ), by retaining just the terms in w with frequencies comparable to A; see [29,
Theorem 4.3].

As

(O () (y — zr(t)),wr) = (y — zr(t), wr(t)),
for any N > 0 we have

|(wr(t) V) (wr(t) V) ur(t,y)|
1

< \HEHE . (A.2)
- (1+ Mwr(t) - (y = z2(®)] + Ay — z(6)[)V

Thus, ur(t, ) are concentrated on spatial rectangles of size A=! x ()\%)”_1 that get rotated
according to wr(t) as time evolves and are centered around x7(t). By slight abuse of notation,
we will also denote by T this space-time region, called a tube, where ur is concentrated. For
fixed w and a sign =+, corresponding to the lattice =5 we obtain a family 7;\iw of spacetime
tubes which are finitely overlapping.

We introduce the null foliation Ay with direction ¢ associated to the metric g_yi/2, and
construct a null frame {L, L, E'} as before.

The following computation is a variation of the proof of 29, Lemma 3.4].

Lemma A.1. Lur satisfies the decay estimate (4.1]).

Proof. By Lemma we can replace L with the operator 0; + (ag(t, y, E(t, Y)),0y).

Assume WLOG that 7 = 0. Then we have
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~ ~

(91 + {ag(t, 2(1), (1)), O,)ur (b, y) = (E(1),y — 2()){au(t, 2(1),£(1)), B,)ult, )

Therefore

&t y) — ag(t, 2(8), £(t, 2())), B )ur
— {a(t, 2(), (6, 2(1))), y — 2(O)E(L 2(1)), Dy )ur
+ (), y — 2(t)){au(t, 2(1),£()), 0, )ur

The third term is p|(y — x(£), £(t))| times an order 0 packet, therefore is also order 0.

To estimate the first two terms, for sAimplicity of notation we drop the dependence in t
and write z := z(t), £(y) := &(t,y), a(y,&(y)) = a(t,y,&(t,y)). The first two terms can then
be written as

o~ o~ ~

7)) = (au(2, (), y — 2)€(x), 9, )ur
)

~

— (aa(2,&(x)),y — 2)&(x), D, ur.
3 as(y E(x)) = age(y.E(x ))[A((y) £A(| 2)]+O0([(y) —E(@) ).

For the first term, write ag(y
2 le the linear term has size O(|y ) and is orthogonal to

The remainder is O(|y — z|
£ ( ) by homogeneity:

—~
<
~—

r—-v

; whi
(ace(y, E(2))[E(y) — E(@)],E(x)) = (E(y) — &), age(y, E(2))E(x)) =

Therefore

(ae(y,£(v)) — aely, (@), D )ur = p|y — wlor + ply — 2 wr,
where vy and wr satisfy order 0 decay, hence is also order 0. Finally, the remaining term is
acceptable since

~

(€(2), ag(y, &) — ae(, €(@)) = (ax(2,(x)), y — 2)€(x))
= a(y,&(x)) — a(z, (@) — (au(@,€(2)),y — @)
= 0([10%g(®) L ly — ),
while the component orthogonal to g(x) has size O(|ly — z|). O

A.1. General metrics. Smith’s construction adapts, with minor modifications, to more
general equations of the form
9°%0,08u = 0, u[0] = (ug,uy).
Here we will harmlessly assume that ¢ = 1.
For each frequency A > 1, factor the principal symbol of the mollified operator giﬁl 120408

as (1 —a™)(r —a”), where

ai(ta L, 5) = go<b)\1/2€b + [(go<b)\1/2€b)2 + ga<b)\1/2§a£b

are smooth convex/concave symbols in view of the hyperbolicity condition.
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Then the analogue of (A.1)) is
((dx

—_— :I:
P Oea™(t, x,w)
dw i n
i —0,a*(t, x,w) £ (w, 0pa™(t, z,w))w, (A.3)
de+ n n N
o = -0 way(t,z,w) — (ay)(t, z,w) @w],

and the analogues of u3 and vF are furnished by the following construction.

Lemma A.2. Fiz (zr,wr), and let o7 be as before. Then for all sufficiently large frequencies
A > 1, there exist functions go%, w% with similar properties as o1 such that

ur(t,y) = er(0F () (y — xr(t)), vr(t,y) = vr(OF(t)(y — 2r(1))),
satisfy the same estimates as before, and
uf (0) +uz(0) = pr + A72pr vF(0) — vz (0) = A7120r
O (0) + Spur(0) = A~2p Orvf(0) — Dz (0) = pr + A V2gp,
where 7 denotes generic function with similar smoothness and decay as @r.

Proof. Without loss of generality consider the first system. Using equations (A.3)), and
writing 7 = (o1, ©7)*, Fr = (or,0)*, the system takes the form

[Mp(D) + Rp(X, D)|®p = Fp + O(AY?).

where

1 1
Mr(D) = ( _<azr(0’ 2r), 0s) _<a£—(0’ 1), 0,) ) . zr = (zr,wr)

0 0
Ryp(X, D) = ( (OF(0)(z — 27),8,) (O (0)(x — 27), ) > '

When ¢ is restricted to a small sector centered at wp the main term is elliptic:

| det Mz (§)] = [{(af (0, 27) — ag (0, 27)),&)| ~ [€](a™ — a™)(0, zr) ~ [¢].

Further, in view of spatial localization the operator Rr(X, D) has order % when acting on

functions of the form @r. Thus it suffices to set ®7 := Mp(D) ' Fr. O

For each frequency A > 1 and time ¢, let ®(¢) : L? x A™'L? — L? x A\"1L? denote the

operator
call) = goo(l)

TeTy

B uh 4+ un vt — vn Jr _ <f> SOT>
Pr(t) = ( &ﬂé + 8;& 8,51}? — 3?21} > (®) (gT) a <<97‘PT>>’
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and set

O(t) == 3 BA(E)P + ( (1) | )PQO.

A> Ao
Then as ||®(0) — I||z2xm-1 512551 = O()\(;l/g), by choosing Ay sufficiently large the operator
®(0) is invertible on L? x H~!. Hence
O(t) = O(t)2(0) "
is a parametrix in the sense of Property [4.1]

APPENDIX B. MICROLOCAL ANALYSIS TOOLS

B.1. Symbols and phase space metrics. We begin by briefly reviewing the framework
of Hormander metrics; for further details consult [12], Section 18.4].

Let g be a slowly varying metric on phase space W := T*R" = R} x (R");. This induces
norms on tensors in the usual manner; in particular, if [ € T,W x --- T, W — R is k-linear
for some z € (z,§), set

L(t1,...,t
ILLI7 := sup l(t, )l ]S ! ?32’
orerw [[52y 9:(15)
Definition B.1. If m is a slowly varying function on W, write S(m,g) for the space of
functions u on W such that
sup |V*ul?(2)/m(z) < Cp for all z € W.

Definition B.2. A map x : W — W is g-smooth if the pullback x*S(1,¢g) C S(1, g).

By the chain rule and induction, this definition is equivalent to requiring that
k
|DEx (24, . . . yt)lg ) < Gk ng(tj)% for all ¢; € T, W, uniformly in 2.
j=1

B.2. Pseudo-differential calculus. Suppose A be the quadratic form on W given by
A(y,n) = (y,n), and for a« < 1 let g, denote the phase space metric . Let U, de-
note the phase space region

Us = {(2,6) : [¢| > a7}
In the language of Hormander 18.4, the phase space metric g is A-temperate in U, in the
sense that there exist constants C, N

Gu(t) < Ca.()(1 + g (z —w))N, for all z,w € U,,

where for a general quadratic form A one has

A
9., (AC) == sup
( ) nelm(A) gw(n)

and g24(j3) := oo for B ¢ Im(A). In the present case,
e W) = g5 (. y) = [, E)1 + a2n AP + €21y, )2 + ¢ Ply A €12,

where we write £ = £/\€l.
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Similarly, a slowly varying function m is A-temperate with respect to z € U, if
m(w) < Cm(2)(1+ g2(z —w))N for all w € U,.

For a symbol a, we define the corresponding pseudo-differential operator using right-
quantization

n

a(X, D) = (27)" / ¢ gz, €) de,

and write OPS(m, g) for the quantizations of symbols in S(m, g).
Recall that if a and b are symbols, then formally

a(X,D)b(X,D) = (aob)(X,D),
where

aob(x, ) = €i<D”’Dy>[a(fIJ, n)b(y,¢)]

‘ y=x .
n=¢
In particular, we have the first order and second order symbol expansions:

1 /1
aob:ab—i——,/ r1,sds
0

4

1 I
=ab+ —agb, — - sds,
ab+ —ac 2/0 2,5 S

where

Tj,s(xy 5) = eis(Dy,D7,) <ay7 877>j [CL(:L‘, n)b(ya g)]%:&

The remainder can be estimated as in [12, Section 18.4]. For a real parameter ¢ > 0, define
G Oy b(.%', 5) = 6it<Dn7Dy> [(I(l‘, 77)b(ZU> 6)] | y:aé‘
n=

Lemma B.3. Suppose my,my are slowly varying and A-temperate in the region U,. If
a € S(my,ga), b € S(ma, go) are symbols supported in U,, then

Q Oy be S(mlmZ; ga)
with constants uniform in 0 <t < 1.

Proof sketch. Follow the proof of Theorem 18.4.10 and Proposition 18.5.2 in Hormander [12].
The main point is that estimates for the Gauss transform ¢*4(”) only improve when ¢ < 1
since g*4 = t72g4 > g4

Let B; : denote the quadratic form on W @& W defined by By(x,n), (v,£)) := t{y,n), then
one needs to verify that

e The metric G := g, & g, is slowly varying and B;-temperate with respect to the
diagonal (z,&,2,€) in U, x Uy, and G < GP.

e The weight function M := m; ® ms is slowly varying and temperate with respect to
B; at the diagonal where |[¢] > a2

U
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We hereafter denote by S(m,g,) those symbols supported in the region |¢] > a2/8.
The corresponding operators a(X, D) € OPS(m, g,) accept input frequencies 2> a~2. The
previous lemma shows that OPS(my1, g,) - OPS(ma, go) C OPS(mims, ga).

In our applications we encounter a slightly more complicated class of symbols associated
to two angular scales. For 5 > «, let

Sp(m, ga) = {¢ € S(m, ga) : 0o € S(m. ga), et € S((BIE]) ™', ga)}-
In view of Lemma [B.3 and the identities
Ox(aob) = (0za)ob+ ao (idb),
O¢(aob) = (i0ca) o b+ ao (Ocb),
one sees that
OPSé(ml,ga) . OPSé(mg,ga) C OPSé(mlmg,ga).

However, we do not quite have the usual pseudo-differential calculus since OPS(m, g )

is not closed under taking adjoints. One remedy is to consider the subclass of operators in

OPS(m, g,) which output at frequencies > a 2.

Lemma B.4. Suppose m is slowly varying and temperate with respect to go.. If ¢ € S(m, ga)
satisfies $(X, D) = Ssoa—2(D)p(X, D)Ssq-2(D) then

¢* (IE, 5) = [€i<Dy7Dn>¢(y7 77)]%:2 € S(ma ga)
and is supported in €] > a2 /8.

This leads to the main L? estimate:

Lemma B.5. [10, Theorem 4.8] If a € S(1, g.) in addition satisfies

Sar(Ds + ale. &) < Ox () 1 <A< (@),

(€)

then a(X, D) is continuous on L*. In particular, the conclusion holds for operators of the
form

a(X,D) = S-r5(D)a(X, D)SA(D), A>a>

Proof. For the last statement, note that since

o(XDjutn) = [ 3t - €. a(6) de
the hypothesis implies that Scy/s(D, + §)a(z,§) = 0. O

We also need bounds for certain pseudo-differential operators which are strongly localized
in input frequency but do not quite satisfy the hypotheses of the previous lemma. For a
direction field z — ©(z) € S"! on R™, let

m=me(z,&) = (€= Ox) ", Li=¢/ll.

To express the angular localization of various symbols it will be convenient to introduce the
following

Notation. For a weight function m, write S(m®, g.) := Ny S(mY, ga).
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Lemma B.6. Suppose x — O(x) € S" ! C R" is Lipschitz, and let ¢ € S(m™,g,) be
supported in an annulus || ~ X > a2, Then ¢(X, D) is bounded on LP for all 1 < p < cc.

Proof. We use Schur’s test on the kernel K (z,y) = (2m)™ [ e“* %8¢ (x, &) dé = Fy 'z, 2 —
y) of (X, D). For fixed x, £ — ¢(z,€) is a Schwartz function with height 1 and adapted to
the sector | — O(z)| < «, |€] ~ A. Therefore

(K (2,9)] S MaX)" A (@ = y,0(2))] + adlz — y AO(x)]) ™ for any N,

SO

sup [ | ()] dy < .

To evaluate
sup [ | (z.y)] da,
y

decompose ¢ = > ¢“, where w ranges over a partition of the annulus |£| ~ X into A\ X
(aX)"! sectors, and for each w, v ranges over a partition of space into parallel a? x (o)™
parallelpipeds Ry with orientation w. The kernel decomposes as

K(z,y) =Y Y Flétra—y) =Y Y Ki(xy).

w w

Then
K3 (2,9)] S Ly (2) (0™ (w = ©(x7))) " " MaN)" (A {z — y,w)| + adfz —y Aw]) ™.
For a constant ¢ depending on the Lipschitz constant of O,
[IKeples Y @ w-em)
|z —y|<c(|lw—O(y)|+a)
« / MaN™ M|z — g, )| + aAz — y Aw]) 2 do
Ry
+ > (a7 w = 0(z7))) M (aAw — Oy~
[z —y|>c(|lw—O(y)|+a)
X / MaN)" Pz — y,w)| + oAz —y Aw|) N dx
Ry
S (M w=6y) N < oo

w

APPENDIX C. AN ANGULAR PARTITION OF UNITY

Throughout this discussion we fix a minimum angular scale oy, < 1.
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Choose 0 < n € C§°((—1,1)) with [n =1, and let n, = h~'n(h™"-). For each 6 € Q.,
with 6 = [a.b), define the scale functions

_ Lo §<a+b _ 104 §<a+b’
hl(g) - { 51;1604 6 > a+b h?(g) — { %(SOé 6 > a—jﬁ—b
B La, g < a+b B lOé, g S a-i—b’
h3(§) - { 11204 § > a+b h4(€) - { za’ 5 > a—j&-b

and for k£ = 1,2, 3,4, define gbe’ by mollifying the characteristic functions of 6 on a position-
dependent scale:

SRE) 1= 19 % M6 ().

Then each gb;“’k is smooth on the a scale and supported in a %\9| neighborhood of the
interval 0, and there exist ¢, co > 0 such that

a <> ¢t <o (C.1)
0€Q0
for any sequence k(0) € {1,2,3,4}.
Proposition C.1. Fiz a small dyadic number o, < 1/4. For each w € Q,,, there ewist

dyadic intervals 0y = w,0y,... on the circle from the families Q, with, |0; — w| ~ a; when
Jj > 1, such that we have the (fized time) partition of unity

1_2925&], )

where k(w) € {1,2,3,4}, and the scales a; satisfy
[ %Ozj_l S Q; S 20Zj_1, and
e at most O(1) consecutive a;’s are equal.

The families ), are independent of w.
Before the proof, we consider

Lemma C.2. Given w € §Q,,, there exists a sequence w = 0y,01,0s, ... of dyadic intervals
in R with the following properties:

e 0, is right-adjacent to 0;_.

o 2(0;_1| <10;] < 10;41]| for all j.

o If[0;—1] = 10;], then |0;11] = 2[6;].

o S 10;] < 410,] for all J.

The analogous statement with “right” and “left” interchanged also holds.

Proof. The idea of the construction is to “double whenever possible while moving right.”
Using the usual tree terminology, define the sequence 6; inductively as follows:

o If 0; is the left-child of its parent, let 6, be its sibling.
e Else let 0,11 be the right neighbor of ;’s parent.

Then |6,41| = |0;] in the first case and |0;1| = 2|6;| in the second. Since each interval has

only two children, there cannot be more than two consecutive intervals of the same width.
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The inequality Z;f:l 6, < 4]0,] is verified inductively. Assume it holds for all smaller J.
If ’9J+1| = 2’9]’, then
J+1

Z 101 < 410,4] + 2|0, < 4]0+,
j=1
while if [0;41] = |04, then |8, = 2|6;_1] and we have
J+1
> 1631 < 4185-1] +2165-1] +2165-1] < 4]6].

Jj=1

O

Proof of Prop.[C71]. Starting with w, we construct dyadic intervals 07,65, ... and 6},6}, ...
to the right and left of w, respectively, according to the lemma. Choose J” and J' maximal
such that

Jr 1 J! 1
S < s -l S <G - ol
j=1 j=1

By the lemma one must have

1w . 1
3T < |05, 10%] < 3~ |wl;

that is,

1 11
r l — —_— —_—
01,1601 € {16’8’4}'

Assume with loss of generality that [6%,] < 167.|.

o If |6',] = 1=, |07:| = 1, then 67, and 0", are separated modulo 1 by less than 10

16
dyadic intervals of width 1 (the worst case being when |6/, and |07, = 1).

ol = é
We replace @7, by its two children 07, 677 of width 3, and+reindex the intervals by
defining 67, = 07/, 0y = 02, and replacing J” by J" + 1.

o If |6%,] and |07, differ by at most one dyadic scale, then they are separated modulo

1 by at less than 6 dyadic intervals of width [6%,].
Let 07,...,0, € Q|9f,z|’ n < 10 be the intervening intervals. Projecting the intervals to R/Z,
we relabel the sequence
00,07, .. 05,01, ..., 0,05, ..., 0
as
0,01, ...,00M_1,
and write
aj = 0]

Then, interpreting the indices modulo M, we have

o ta; 1 <a; <2y, and

2
e at most O(1) consecutive «;’s are equal.
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For each 60; = [a;, ;) (mod 1), define the scales

Y4 < an
h;(€) = { 5 09 S %

—1 . .
16 Qy > (O 7EN]

and define gszj by mollifying the characteristic functions of 6; near the junction points.

& a;j+b;
o Lo, * Mn,_, (£), a].-J;. Y<e< %7
0, otherwise

This function has one of the four forms asserted in the proposition, and

M-1
1= %
=0

since the same is true for the sum of characteristic functions 1y, and the mollification scale
is the same near the boundary between ¢; and 6;;. OJ
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