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Tigres Workflow Library: Supporting Scientific
Pipelines on HPC systems

Valerie Hendrix, James Fox, Lavanya Ramakrishnan
Lawrence Berkeley National Laboratory

Berkeley, CA
Email: {vchendrix, jsfox, lramakrishnan}@lbl.gov

Abstract—The growth in scientific data volumes has resulted
in need for new tools that enable users to operate on and analyze
data on large-scale resources. In the last decade, a number
of scientific workflow tools have emerged. These tools often
target distributed environments and often need expert help to
compose and execute the workflows. Data-intensive workflows are
often ad-hoc and involve an iterative development process that
includes users composing and testing their workflows on desktops
and scaling upto larger systems. In this paper, we present
the design and implementation of Tigres, a workflow library
that supports the iterative workflow development cycle of data-
intensive workflows. Tigres provides an application programming
interface to a set of programming templates (i.e., sequence,
parallel, split, merge) that can be used to compose and execute
computational and data pipelines. In this paper, we a) present
the design and implementation of Tigres b) evaluate number
of scientific and synthetic workflows to show Tigres performs
with minimal template overheads (mean of 13 seconds over all
experiments) and c) study the factors that affect the performance
of scientific workflows on HPC systems.

I. INTRODUCTION

Scientific collaborations and experiments are increasingly
generating large data sets that need to be processed. Scientists
often develop their algorithms on their desktops but it is no
longer practical to download the data to a desktop to operate
on them. Large scale systems such as High Performance
Computing (HPC) centers and clouds are needed to run these
workflows. With current technologies, scaling an analysis to
an HPC center is difficult even for experts.

We need tools that can support the iterative development
process of data-intensive workflows that allow easy compo-
sition and seamless execution on multiple platforms. In this
paper, we present Tigres that addresses the needs of data-
intensive workflows. Tigres is a programming library that
allows one to compose large-scale scientific workflows in
a programming language and execute on multiple platforms
including desktops and supercomputers.

Tigres addresses the challenge of enabling collaborative
analysis of scientific data through a concept of reusable
”templates” that enable scientists to easily compose, run and
manage collaborative computational tasks. These templates
define common computation patterns used in analyzing a data
set. Tigres currently supports four templates sequence, parallel,
split and merge. Tigres can run on a variety of different
platforms including desktops, clusters and supercomputers

and supports various execution mechanisms including thread,
process and distribute.

Workflows from various scientific domains including astron-
omy, bioinformatics and earth sciences have been composed
in Tigres. These workflows vary in complexity as well as
computational, memory, I/O and storage requirements; they
were composed from existing executable scripts and binaries.

Scientists usually start with existing binaries or functions
and realize they need more workflow style capabilities. Tigres
is designed to allow users to design workflows, develop using
compose-able templates, run initial designs on their desktops
and receive feedback that will inform further workflow de-
sign. This cycle of design, develop, run and feedback into
further design is iterative workflow development. Tigres is
implemented in python. The focus of this paper is python
workflow implementations.

In this paper, our contributions are a) the design and
implementation of Tigres workflow library, b) evaluation of
three scientific applications and various synthetic workflows
that show Tigres has minimal overheads c) study of the factors
that affect the performance of scientific workflows on HPC
systems.

The rest of this paper as organized as follows. In Section
II, we discuss related work. In Section III, we describe
Tigres design and implementation. We layout our experiment
setup, workflows, evaluation metrics as well as discussing the
experiment results in Section IV. We present our conclusions
in Sections V.

II. RELATED WORK

There are a number of workflow tools for building scientific
workflows (e. g. Kepler [1], Taverna [2], Pegasus [3], Galaxy
[4], Trident [5], Makeflow [6] and Triana[7]) They come with
tools for data movement, orchestrating compute and data-
centric tasks, provenance tracking, monitoring progress and
error handling.

Fireworks [8], Swift [9] and Qdo [10] support executing
workflows on HPC. Fireworks is a high throughput workflow
system designed for HPC but needs to be installed and
managed by an expert. Swift, a parallel scripting language,
requires learning a domain specific language. Qdo is a python
tool designed to combine a many small tasks into a single
HPC batch job but lacks constructs to chain the batch jobs
together into a workflow.



The HPC community has been utilizing common pat-
terns [11] such as those in the thirteen dwarfs [12] and Hoare’s
Communicating Sequential Processes [13]. OpenMP [14] and
Unified Parallel C (UPC) [15] used for share-memory pro-
gramming adhere to the Message Passing Interface(MPI) [16]
standard; they require some effort to master the common data-
analysis operations (e. g. scatter, gather, reduction).

Tigres templates are inspired by concepts introduced by the
MapReduce [17] programming model. MapReduce is good
for handling big parallel data analysis but falls short for
scientific workflows [18], [19]. Workflow technologies that
support building a sequence of MapReduce jobs, such as
CloudWF [20] and Oozie [21], don’t offer more patterns
beyond MapReduce. Spark [22] supports MapReduce tasks
with it’s Resilient Distributed Datasets (RDD) APIs allowing
faster access to data in memory.

The Tigres library captures the common programming pat-
terns at a higher-level than the aforementioned models in a
programming interface. Many of these previously mentioned
tools require expert knowledge for setting up and writing initial
workflows and execution is tied to one set of resources. Also,
taking a set of existing binaries and scripts and transforming
them into a workflow is not always straightforward or possible
in other tools.

III. ARCHITECTURE

Figure 1 shows that Tigres has five major components
in a layered architecture: Templates API, Base API, State
Management, Execution Management and Monitoring.

User interacts with a 
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define the elements of 
their workflows 
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Fig. 1: Tigres provides a thin templates API to define the ele-
ments of workflows, log messages and monitor their program
execution.

The users interacts with the user layer where users work
with basic templates, manage template and task dependencies
and monitor workflow progress. The user layer in turn interacts
with the inter layers for state, execution and monitoring.

A. Basic Templates

The Tigres templates API allows users to programmatically
create workflows using the basic templates as building blocks.
A Tigres workflow is a python program that uses the Tigres
templates API to build and execute a workflow. There are four
basic Tigres template functions: sequence, parallel, merge and
split. The Tigres program can contain one or more of these

template functions. Templates are composed of individual tasks
that are units of work from the end-user that needs to be
executed.

Table I defines the Tigres data model. A Task is the most
basic unit of execution and can be defined as a python function
internal to the Tigres program or a separate executable. The
inputs to each Task execution can be statically defined or
retrieved from the results of previously executed Tasks or
Templates.

Task The atomic unit of execution. (tigres.Task)
Templates A collection of tasks. (tigres.TaskArray)
Task Array Patterns of execution from a combination of

tasks. (tigres.TaskArray)
Input Types The characteristic of the task the defines the

type of the inputs. (tigres.InputTypes)
Input Values The values used in a task execution. (ti-

gres.InputValues)
Input Array A collection of input values for a number of

tasks. (tigres.InputArray)

TABLE I: Tigres data model

Each template function minimally takes two named col-
lections: Task Array and Input Array. The Task Array is an
ordered collection of tasks to be executed together, in sequence
or parallel depending on the execution flow of the particular
template. The Input Array defines the inputs for each Task
in the corresponding Task Array and is a collection of Input
Values.

The Task, the atomic unit of execution in Tigres, has a
collection of Input Types that specifies the type of inputs a
task may take. A task’s Input Values is an ordered list of task
inputs and are passed to the task during execution. They are
are not included in the task definition which allows for task
reuse and late binding of data elements to the Tigres program
execution.

B. Dependencies

Tigres has both data and execution dependencies. The exe-
cution dependencies are simple and automatic. Each template
is executed in the the order it appears in the workflow. The
data dependencies are defined by the user and can be either
implicit or explicit in nature.
Program in execution dependencies. The subsequent tem-
plates must wait for the previous template to finish its execu-
tion. Tasks inside a template have the same behavior. A single
task must complete before the next task or set of parallel tasks
is executed. Similarly a set of parallel tasks must complete
before the next task is executed.

Tigres uses a special syntax called PREVIOUS syntax to
create implicit and explicit data dependencies between tasks.
The user can specify the output of a previously executed task
as input for a subsequent task.
Implicit Data Dependencies. Data dependencies are implicit
when there are no input values for a task execution. For
example, a template uses the entire output of the immediately
preceding task or template if any of the tasks inside are missing
input values. A set of parallel tasks, as in merge, split or
parallel templates, that are missing inputs will only use the



immediately preceding outputs if the results from the previous
task or template is a list and can be iterated over.
Explicit Data Dependencies. Explicit data dependencies in
Tigres are defined using the PREVIOUS syntax. This syntax
allows the user to reference data output before it has been
created and to define data dependencies between a task and
any of its preceding tasks. Additionally, if the output is from
parallel or split template, the PREVIOUS syntax provides a
way to index into the parallel results list.

C. Execution Management

The execution layer can work with one or more resource
management techniques including HPC and cloud environ-
ments. In addition, the separation of the templates API and the
execution layer allows us to leverage different existing work-
flow execution tools while providing a native programming
interface to the user.

Tigres can be executed in several different environments
from batch queues to local threads and processes. By using
the appropriate execution plugin, a Tigres program can be
executed on a single node or deployed without additional
infrastructure to department clusters and batch processing
queues on supercomputers. A program is written once and
only the execution plugin is changed at run time. This allows
users to easily scale from development (desktop) to production
(department clusters and HPC centers).

Tigres currently supports four execution plugins: local
threads, local processes, distribute processes, job manager.

Distribute, process and thread plugins use the relevant
Python concurrent programming libraries. Thread and process
are limited to executing on a single node while distribute
can scale across several nodes. Each execution mechanism
launches a worker for each core on a node.
Thread workers use Python threading. Python threads share
data with each other. There is little overhead on start up.
Python threads are real POSIX threads (pthread) but Python’s
Global Interpreter Lock (GIL) only allows a single thread at a
time to execute in the interpreter at any one time. There is no
real concurrency with Python threads. A thread must acquire
the GIL in order to execute.
Process workers use Python multiprocessing processes.
Python processes do not share any data implicitly and avoid
the GIL bottleneck by using subprocesses instead of pthreads.
Processes are slower to initialize because it must create and
maintain its own address space. Data shared among processes
must be serializable. Process execution uses Python Joinable-
Queue for both the task and results queue which use pipes
internally to transmit data.
Distribute workers use Python multiprocessing manager for
distributing Python processes across multiple nodes. This
mechanism shares data by having a server which manages
shared queues among clients. The clients which launch the
worker processes access the shared data on the server with a
proxy to the shared data. The client processes communicate
with the server through Transmission Control Protocol (TCP)
protocol.

Manager plugins support Sun Grid Engine (SGE) and Simple
Linux Utility for Resource Management(SLURM). Manager
execution submits tasks as manager jobs. The evaluation in
the paper does not include these execution plugins.

D. Monitoring and Logging

Monitoring is used by most Tigres components to log
system or user-defined events and to monitor the program
with a set of entities for querying those events. All the
monitoring information, both automatic and user-provided, is
semi-structured, i. e. it is broken into name/value pairs. In
general, the monitoring follows the Logging Best Practices
[23] that arose from the NetLogger [24] project.

Monitoring information in Tigres is produced at two levels:
system and user. All timestamped log events are captured in a
single location (a file). The user is provided with an API for
creating user-level events, checking for the status of tasks or
templates and searching the logs with a special query syntax.
System-level events provide information about the state of a
program such as when a particular task started or what is its
latest status (e.g., did task x fail?).

E. State Management

State management encompasses different execution manage-
ment aspects of the workflow. For instance, it validates the
user input to confirm they result in a valid workflow both
prior to start as well as during execution. It maintains state as
each template is invoked and integrity of the running Tigres
program.

workflow.py Templates API Monitoring State Execution

start()

Program.init()

monitoring.init()

log(RUN)

load(PLUGIN)

sequence()

run template sequence()

log(RUN)

run work sequence()

run work

prepare work

s
execute(Work)

s

LoopLoop

s
log(DONE)

end()

Program.clear()

log(DONE)

finalize()

Fig. 2: Event sequence diagram of a Tigres workflow execution

Underneath the hood Tigres translates tasks and templates
from the user-facing API into Work objects (Table II). Work
objects used by the Tigres state management layer models to
track a workflow’s progress. There are three types of Work
classes: WorkUnit, WorkSequence and WorkParallel.



The most basic class is WorkUnit which represents an
individual task with inputs. Task state (i.e., RUN DONE FAIL)
and results are stored in WorkUnit. The execution plugin
receives the WorkUnit contents, executes the defined task and
then updates it with the results (e.g, task x’s output) and state
(i.e., DONE FAIL). WorkParallel represents parallel execution
of tasks. It contains an ordered list of WorkUnits. The status
of a Work class is determined from the WorkUnits. WorkSe-
quence represents a sequential execution of tasks. It contains
an ordered list of WorkUnits in the case of sequence. For split
and merge is contains one WorkUnit and one WorkParallel.

Figure 2 is a simplified sequence of events for a Tigres
workflow (workflow.py) composed of a single sequence tem-
plate. It shows the interaction between the workflow and
the Tigres components (templates API, monitoring, state and
execution management) by walking through workflow initial-
ization (start) and sequence template execution (sequence).
We omit creation of Tasks (using Templates and Base APIs)
and corresponding Work objects (State Mgmt) for simplicity.
Workflow finalization is left out in the interest of space.
start(): Workflow initialization is either explicitly invoked by
the user code or implicitly when the first Tigres object (e.g
Task, InputValue,...) is created. At this time state management,
creates the workflow Program object, initializes monitoring,
logs the workflow in a RUN state and loads the requested
execution plugin. Program caches all the Work executed by
the workflow.
sequence(): After all tasks have been prepared in the
workflow, they are passed to the sequence template. The
templates API calls upon state management layer which
marks the template in a RUN state via monitoring. During
run work sequence the Work objects are created from the
tasks and input values and then they are iterated over and run
(run work). Inside the Loop, the inputs are validated and any
results from previous tasks or templates are evaluated. If this
completes successfully, the execution plugin is invoked and
waits for task completion. If the work completes successfully
the template is marked in a DONE state.

WorkBase Base Work object inherited by all.
WorkUnit Represents an individual task with inputs and

it’s state (READY,RUN,DONE,FAIL) and re-
sults.

WorkParallel Represents parallel execution of tasks. It con-
tains an ordered list of WorkUnits. State is
determined from the WorkUnits.

WorkSequence Represents a sequence execution. It contains an
ordered list of WorkUnits and WorkParallel.

TABLE II: Tigres Work classes

IV. EVALUATION

A. Experiment Setup

System. All workflows were executed on Edison, a Cray XC30
system at the National Energy Research Scientific Computing
Center (NERSC). The workflows, supporting libraries, input
and output data used Edison’s local filesystem (scratch) where
possible. Edison has a peak performance of 2.57 petaflops/sec,

133,824 compute cores and 357 terabytes of memory. All
python code was executed with Python 2.7.9.

We also used NERSC’s global scratch and project filesys-
tems as specified. Global scratch and project are based on
IBM’s General Parallel File System (GPFS) and available on
most NERSC systems. Global scratch can temporarily store
large amounts of data and Global project is permanent storage
shared across a team.

The workflows were run on single-core, multi-core or multi-
node. Single-core is used by workflows with only sequence
templates. Multi-core workflows executed on a single Edison
node with 24 cores. Our multi-node workflows ran on 2 to 75
nodes (i.e., 48 to 1800 cores). In the case of multi-core and
multi-node compute resources, the concurrent task execution
is equivalent to the total number of available cores.
Workflows The workflows in the experiments are a combina-
tion of actual science applications and those with synthesized
characteristics. The synthetic workflows are divided into two
main characteristics: I/O and compute bound. Additionally,
these workflows were designed to exercise all Tigres templates
(sequence, parallel, merge, split).
BLAST BLAST, a bioinformatics application, allows com-
parison of biological sequences for different proteins against
a sequence database. We measured input size by the total
number of database protein sequence queries between 7500
and 45,000, in this case. Data was partitioned into files that
contained 25 sequences each based on previous studies that
shows bunching of inputs helps with performance [25]. Each
task execution received a single input file which was used to
query against the same reference database.

Figure 3a shows the BLAST workflow. It consists of two
single sequence templates and a parallel template in-between.
The first sequence template runs a single task, a shell script,
that partitions an input sequences file into smaller files of
25 sequences each. The parallel template then runs NCBI’s
BLAST application, blastall on these smaller files and stores
the results in-memory. Finally, the sequence template runs a
single a task, a Python function, to reduce all the outputs into
a single output file, finishing the workflow. All data sets are
on Edison’s scratch file system unless noted otherwise.
Montage. Montage is a software toolkit for assembling Flex-
ible Image Transport System (FITS) images into custom
mosaics. We implemented the Montage workflow in Tigres
as documented in previous literature [26], [27]. Our test cases
assembled images of sky survey M17 on band j from the Two
Micron All Sky Survey (2MASS) Atlas images. FITS input
files were pre-fetched to the the scratch filesystem. The main
input to the workflow is used to control coverage of the sky
by square degrees.

Figure 3b shows the Montage workflow. It consists of three
parallel and two sequence templates. The sequence templates,
Merge Background Model and mImgTbl to mJPEG, maintain
their task counts of two and four respectively as the square
sky degree is increased. The parallel templates, mProjectPP,
mDiffFit and mBackground, task counts increase as the degree
increases. Task implementations are compiled C programs that
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Fig. 3: Tigres Workflows

take FITS files as both input and output. The final task takes
a FITS input and outputs a JPEG of the assembled image.
CAMP. Community Access MODIS Pipeline (CAMP) [28] is
a toolkit for reprojecting satellite data products from NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument. A CAMP Tigres workflow, shown in Figure 3c,
uses a single parallel template, called Reprojection, to process
NASA MODIS satellite data. Each task is a python script
that reprojects a day’s observations for a specific location on
the earth. Tigres was used to execute CAMP workflows in
production and the data presented here is from those runs.
The parallel template converts daily satellite observations into
194 land locations for an entire month which is ~5800 total
parallel tasks for a single workflow execution.

The database was located on Edison’s local scratch filesys-
tem and the observation files were on a global scratch. The
resulting output files were written to Edison scratch filesystem.
Synthetic Workflows We cover two main types of synthetic
workflows: I/O and compute bound. Both workflows are
implemented with each of the four Tigres templates (sequence,
parallel, merge, split). In the case of the merge, split and paral-
lel templates the I/O and light compute tasks are parallelized.
The number of tasks in the experiments is equivalent to the
number of physical cores requested. Table III summarizes the
four synthetic template versions.
Synthetic Compute (SC) workflows consist mainly of a single
task that performs five million multiplication operations on a
random set of inputs. Each SC template version was evaluated
for three task implementations: C executable, python function
and python executable.
Synthetic I/O (SIO) workflows’ main task uses the linux dd
program to write files of varying sizes. Table III describes
the four template versions. Each SIO template version was
evaluated for varying file sizes.

B. Metrics
The metrics used in our experiment evaluations are workflow

turnaround, template turnaround, template overhead and task
time. All metrics are mined from the Tigres logs for start and
end times.
Workflow turnaround is the time for the execution of the en-
tire workflow inside the Tigres python program. It includes the

Parallel Prepares inputs and invokes a parallel template. A random
list of integers is initialized for the tasks in SC workflow
and inputs are prepared for task dd, that is executed in
parallel.

Merge Prepares inputs and executes a merge template. A Tigres
merge template executes a parallel template followed by a
single task. SC merge task sums the results of the merge
parallel and SIO reads the outputs from the parallel I/O
tasks combines them into a single file.

Split Prepares the inputs in the split task for the parallel tasks. A
Tigres split template executes a single split task followed
by a parallel template. The split workflow generates the
inputs in the split task instead of outside the workflow as
in the Parallel and Merge workflows.

Sequence Performs the tasks in sequence. SC computes a result in
each task and then passes the result to the next task. SIO
uses dd for each task to write a file.

TABLE III: Summary of Synthetic Workflow Template Imple-
mentations.

execution between start() and end() which maybe implicitly
or explicitly invoked.
Template turnaround is the time for the execution of a single
Tigres template. This time includes the execution inside a
template function (sequence(), parallel(), split(), merge()).
Template overhead is the time during template execution
that no tasks are running. This includes the time it takes for
Work object initialization, execution plugin setup and task
preparation. It is the time before the first task starts, after
the last task ends and time between a sequence of tasks as in
sequence, merge and split templates.
Task time is the time for the execution of a single template
task. It includes Tigres execution mechanism overhead (dis-
tribute, process, thread) plus the actual wall time of the task
execution.

C. Template Overheads

Template overhead was measured for all application exper-
iments (BLAST, CAMP, Montage, Synthetic).

Figure 4 shows template overhead (in seconds) by varying
task count. As template task count increases so does the
template overhead. The figure compares distribute, process
and thread execution for all workflow experiments. Distribute
mechanism has higher template overhead compared to the
other methods with lots of variability as seen by the numerous
data points above 100 seconds. Distribute mechanism has
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affect on template overhead.

higher setup and communication costs than thread and process
mechanisms as discussed in Section III-C. Figure 4 also
shows that process execution has consistently higher template
overhead than thread.

Distribute execution has higher variability in template over-
head for all task counts. Since all templates should have similar
costs for internal task initialization we infer that this reflects
the variability of the network communication versus those of
pipes (process) and shared address space(thread).

Table IV shows the mean template overhead times (mean,
median, max and min) for Synthetic I/O and sequence tem-
plates. All overheads, no matter the number of tasks or task
implementation is less than a one second with one exception.
Python executable task implementation shows a max overhead
of ~3 seconds. Figure 5 shows template overhead for Syn-
thetic I/O multi-core workflows by task file size comparing
distribute, process and thread execution for parallel templates.
This box plot demonstrates that when task count is consistent
and file size being written per task increases that there is no

Task Impl Mean Median Max Min
C Exe 179 ms 154 ms 362 ms 66 ms
Python Exe 375 ms 125 ms 2972 ms 65 ms
Python Fn 174 ms 143 ms 368 ms 69 ms

File Size Mean Median Max Min
20 MB 9 ms 9 ms 10 ms 5 ms
40 MB 9 ms 9 ms 12 ms 5 ms
160MB 194 ms 9 ms 929 ms 6 ms
200 MB 18 ms 12 ms 29 ms 11 ms
400 MB 11 ms 12 ms 14 ms 7 ms

TABLE IV: Synthetic Sequence Template Overhead is
negligible as evidences by times mostly under 1 sec.

demonstrated effect on template overhead. Similar behavior
was seen for merge and split (Figures not shown due to space
constraint)

In general, it was found that scaling up the parallel tasks
increased the template overhead. We observed that template
overheads are minimal with a large variance for distribute ex-
ecution. We observe a mean template overhead of 13 seconds
over all our experiments.

D. Comparison of Execution Mechanisms

CAMP Each CAMP workflow execution had different inputs
which results in different execution times. Thus, it is not
practical to directly compare turnaround time across all runs.
However, we can compare execution mechanisms by a subset
of task types.

The place on the earth (sinusoidal tile) that a task is acting
on determines the number of input files processed. This in
turn increases the memory and computation requirements. A
sinusoidal tile is composed of longitude (hN) and latitude (vN)
where N is an integer. For our analysis, four latitude ranges
of sinusoidal tiles were chosen with two tiles in each latitude
range. These different latitude ranges of tiles have a similar
number of inputs. The ranges start at the equator (v08) and
goes up to the North Pole (v01). Equitorial tiles would have
the least (0-3) number of input files on average and the polar
tiles would have the most (15-20). The other two tile classes
chosen, v05 and v02, would see an increase in the number
of inputs files as they get away from the equator and closer
to the North Pole as indicated by the decrease in N.

Figure 6 shows the CAMP task turnaround comparing
sinusoidal tile tasks by execution mechanism. We see that
each pair of tiles in latitude range has similar box plots. This
validates that CAMP task input size governs much of the task
turnaround time. As expected the equatorial tiles have the
lowest median turnaround time and the polar tiles the greatest.
Thread execution has the highest mean time (2 minutes) and
largest variance of 3.4 minutes over all latitude ranges. The
large variance in task times could be due thread execution
being not truly concurrent. Process execution has a faster mean
time than distribute until the North Pole tiles v01. Distribute
has the least variability for all latitude ranges. This is due
to the fact the TCP protocol (distribute) has lower overhead
than pipes (process). The execution plugin overhead for tasks
does not include initialization and task preparation costs as in



template overhead; it only includes the cost of communicating
task definitions and results.

The CAMP workflow task turnaround shows that distribute
execution is ideal for a large number of tasks that have I/O,
compute and memory intensive activities. The median times
and variability in task turnaround are acceptable for small and
large task inputs.
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Montage. Figure 7 shows the workflow turnaround time for
multi-core Montage runs. It shows that as degree increases
so does workflow turnaround for all Tigres execution mecha-
nisms. Workflow turnaround for thread and process execution
are very similar. Distribute starts out slower but the gap
between it and both thread and process workflow turnaround
times closes as the degree increases. The initial setup cost is
high for distribute (Section III-C) but this cost is a smaller
percentage of execution time as the task count increases with
the increase in degree. The parallel template in Montage
dominates the trend of the workflow.

Figure 8 shows parallel task turnaround time by execution
mechanism. As task count increases, so does the reliability of a
quick task turnaround (<1 sec). The medians for all execution
mechanisms are virtually equivalent. However, the difference
in variability in times between execution plugins becomes
larger as the task count increases. Distribute task times are less
variable as can be see by the closer clustering of slower outlier
times (black dots). Process has the most variability in task
times which could be due to the communication cost of pipes
as compared to TCP. Thread execution task time variability is
between process and distribute showing that even though there
is no true concurrent execution the communication through a
shared address space performs better than pipes (process) on
average.

E. Effects of Filesystem Performance

BLAST. Figure 9 shows the results of running three iterations
of BLAST weak-scaling experiments using multi-node, dis-
tribute execution. Weak-scaling is achieved by appropriately
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Fig. 7: Montage Multi-core Workflow Turnaround plot
shows the initial setup cost higher for distribute than process
and thread but this cost difference becomes negligible as the
task count increases with the increase in degree.
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Fig. 8: Montage Parallel Task Turnaround shows that
variability in task time increases with task count and that
process communication is least reliable.

scaling both core count and total query count. The initial
sequence template partitions the original queries into smaller
input files of 25 queries each, and each partition gets its
own core. Input files larger than 7500 query counts are
synthesized from recycling queries from the 2500-query input
file, implying relatively uniform work load.

The ideal trend for weak-scaling would be a constant slope,
as the execution time would stay the same when the available
parallelism never outpaces available cores. The experiment
seem to indicate this constant trend is realized in BLAST
while using Edison’s “scratch” file system. BLAST workflows
on all tested input sizes finished in a 10-20 minute window.
This indicates that that distribute execution for BLAST is quite
scalable up to the 1800 core. This demonstrates that Tigres is
able to scale with application needs.

In contrast, the turnaround times for project file system
indicate that the overhead of additional input queries out-
paces parallel performance from additional cores. Interestingly,
the execution time difference going from 15000 to 22500
queries, and 1200 to 1512 or 1200 to 1800 queries, is even
worse than would be expected on single-node execution.
Further investigation revealed that IO is a limiting factor.
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Fig. 9: BLAST Multi-node experiments results for distribute-
execution weak scaling, by file system. In comparison to figure
b), turnaround times for multi-node distribute are a fraction of
the the times of their single-node counterparts. However, file
system made a big difference, as the scaling is almost constant,
using Edison’s “scratch” file system.

Each BLAST task, although executing independently, reads
the same database, and writes an estimated 1.4 MB to disk,
prior to a final merge sequence. For reference, running BLAST
for 22500 queries produces roughly 1.3 GB of final output.
Edison’s scratch file system is optimized for run-time I/O
needs of workflows. scratch’s Lustre file system is designed
for running I/O intensive jobs, with 4x the peak throughput
of project’s GPFS, which is designed for permanent, shared
storage. For instance, 37500 queries correspond to 1512 tasks
running on 1512 cores, and potentially reading from the same
database simultaneously. On project the IO-contention may
be manageable for lower degrees of parallelism, but will
become increasingly less so past a certain point, which would
explain the trends observed. Another factor that affects the
performance was number of jobs currently running in queue.
To minimize interference, during our experiments with scratch
we made sure only one job was active at a time. During the
experiments with project, multiple jobs might have been active
at a time causing further slowdown.
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Fig. 10: Synthetic I/O Multi-core Workflow Turnaround
for parallel templates was evaluated by template, task file size
and Tigres Execution. A trend of increase in turnaround time
as file size per task increases. There are two exceptions to
this for Tigres distribute execution. Writing 160MB task file
sizes was much faster than 80MB. Which leads us to question
whether there is a variability in file system performance that
is affecting these file write dominated workflows.

Synthetic I/O workflows in Figure 10 show the turnaround

by Tigres execution and task file size. The parallel tasks writes
24 files concurrently at varying sizes. Figures 10 shows a trend
of increase in turnaround time as file size per task increases.
There are two exceptions to this for Tigres distribute execution.
In these plots, writing 160MB task file sizes was much faster
than 80MB. This is likely due to scratch filesystem variability
in performance and that variability affects the Synthetic I/O
workflow turnaround times.

Figure 11 has two plots that relate the Synthetic I/O task
turnaround time with the variability in the scratch filesystem
write performance. Figure 11a shows the task turnaround times
for all Synthetic I/O parallel tasks by Tigres execution and
task file size. Figure 11b uses the NERSC health data for
file creation on Edison’s scratch filesystem. This plot ties the
mean Edison scratch create file time to each task execution
in the left plot; it plots the NERSC create file time by Tigres
execution and task file size.

Figure 11a shows that for 20, 40 and 160 MB distribute
experiments there was a very low mean task turnaround with
much variability in the 3rd quartile as evidenced by the large
upper boxes. Figure 11b shows that the mean create file times
at NERSC were comparatively low (~2.5 secs) when compared
to 80MB distribute (~4 secs). While comparing these two plots
will not exactly predict workflow performance it demonstrates
that there is much variability in the filesystem which makes it
difficult to predict workflow and task performance.

F. Comparison of Task Implementations

Synthetic Compute. Figure 12 shows the multi-core results
for all four template versions. These results demonstrate the
effectiveness of three compute bound task implementations: C
executables, Python executable and Python function.
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Fig. 12: Synthetic Compute Multi-core Workflow
Turnaround for parallel templates demonstrates that
compute bound python executable task implementations
perform poorly for all templates. C programs and inline
python functions perform similarly in plot a except for thread
execution which performs poorly in comparison. This is most
likely due to the fact that python thread execution does not
actually run concurrently.

Figure 12 omits a single outlier for readability. The re-
lationship between workflow turnaround times for the three
task implementations is the same for all templates (merge
and split plots omitted due to space constraint). The synthetic
compute tasks are CPU bound with low use of memory or
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Fig. 11: Synthetic I/O Tasks. These plots demonstrated Edison’s scratch filesystem variability for the Synthetic I/O experiments.
The left plot shows the Task Turnaround times for all Synthetic I/O parallel tasks by Tigres execution and task file size. The
right plot uses the NERSC health data for file creation on Edison’s scratch filesystem. It plots create file time in relation to
each Synthetic I/O experiment.

communication. In the case of process and distribute, both C
Exe and Python Fn perform the same with distribute execution
being slower over all.

Thread execution gives us different behaviors for Python
Exe and Python Fn execution. While the workflow turnaround
for Python Exe has the same median there is more variability in
times as seen by the large size of the box in Figure 12. Python
Fn turnaround times have little variability for thread execution
as evidenced by the small boxes in Figures 12. The reason
Python Fn performs worse in thread execution is that tasks
are not truly concurrent because they are hindered by the GIL.
However, Python Exe and C Exe tasks are concurrent for the
duration of their execution because they are executed outside
of the python interpreter. There is more variability in Python
Exe thread execution for all Tigres templates which could be
due to the bottleneck of launching from worker threads slowed
down by Python’s GIL. We saw a similar result for CAMP
tasks (Figure 6). This demonstrates initialization of the python
interpreter is highly variable. Thread execution can achieve
almost true parallelism when invoking executables and is most
efficacious for binary executables.

Figure 13 demonstrates the effect of scaling up synthetic
compute workflows from 24 to 1536 cores for Synthetic
Compute parallel templates. Merge and split templates had
similar results but were omitted to to space constraint. The
core count is equivalent to the task count and the distribute
execution mechanism is used because it can distribute tasks
across multiple nodes. As expected, Python Exe performs
poorly becoming extremely slow at the higher core counts.
Since we are comparing distribute executions we know that the
communication cost is similar. Neither C Exe nor Python Fn
initializes a new python interpreter for each task execution as
Python Exe does. The cost of Python interpreter initialization
causes Python Exe to perform poorly as the core count rises.
Python Fn and C Exe execution start out even as we see in Fig-
ure 12. At 1536 cores, Python Fn performance degrades which
is understandable as compiled languages perform better than
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Fig. 13: Synthetic Compute Multi-node Workflow
Turnaround for parallel templates shows that workflow
turnaround for Python Exe task implementation increases
dramatically as the core count increases. Turnaround times
for C Exe and Python Fn have a relatively flat increase in
time until 768 cores. This is due to the increase overhead
in communication for the internal queues of the execution
mechanisms.

interpreted ones and there is more data being communicated
than C Exe because the python function is serialized and sent
to the Tigres clients in addition to the task parameters.

G. Summary

Our findings from the synthetic and science applications
demonstrate several factors that affect the performance of sci-
entific workflows. In this section, we summarize our evaluation
results.
Template overheads and task count. Tigres has minimal
template overhead (mean of 13 seconds over all experiments).
Tigres template overhead increases with task count, is unaf-
fected by I/O, and is negligible for sequence templates. Dis-
tribute execution communication and setup costs for parallel
execution is more costly than process and thread.
Task turnaround and task count. As parallel task count
increases, the initial overhead cost of distribute is gained back
by better communication performance during task execution
than process and thread execution as seen in the Montage



multi-core experiments. The multi-core CAMP application,
where task count was ~5800, saw the distribute execution
plugin out perform in all classes of task complexity.
Task Implementation and execution plugin. Task imple-
mentation and execution plugin are important considerations
when designing a Tigres workflow. Python executable tasks
are the worst performing especially when used in conjunction
with thread execution. Binary executables tasks have good
workflow performance for all execution plugins.
Filesystem and node count. It is critical to choose the right
filesystem when scaling up application task and node count for
applications with significant I/O, such as BLAST. The BLAST
experiment showed that choosing Edison scratch which is
designed for job’s I/O saw relatively no increase in time.

During our experimentation process, we saw a number
of failures. For example, out of 1730 workflows (Montage,
CAMP and Synthetic) that ran between May and July 2015,
8% failed due to wall clock exceeding from filesystem vari-
ability, communication errors, etc.

V. CONCLUSIONS

In this paper, we presents the design and implementation
of Tigres, a library that supports scientific workflow pipelines
on HPC systems. We evaluated three scientific and several
synthetic applications and show that Tigres has minimal over-
heads. Additionally, we evaluated various factors that might
affect workflow performance including execution mechanisms,
task implementations and file system performance. Our results
show that scientific applications must carefully select various
application and resource mechanisms for optimal performance.
Tigres enables scientists to compose their workflows and port
them to various environments seamlessly.
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