
Lawrence Berkeley National Laboratory
Materials Sciences

Title
Odd-Parity Superconductivity in the Vicinity of Inversion Symmetry Breaking in Spin-Orbit-
Coupled Systems

Permalink
https://escholarship.org/uc/item/3z7657pz

Journal
Physical Review Letters, 115(20)

ISSN
0031-9007

Authors
Kozii, Vladyslav
Fu, Liang

Publication Date
2015-11-13

DOI
10.1103/physrevlett.115.207002
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3z7657pz
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

50
8.

00
57

4v
1 

 [
co

nd
-m

at
.s

up
r-

co
n]

  3
 A

ug
 2

01
5

Odd-parity superconductivity in the vicinity of inversion symmetry breaking in

spin-orbit-coupled systems

Vladyslav Kozii and Liang Fu
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

We study superconductivity in spin-orbit-coupled systems in the vicinity of inversion symmetry
breaking. We find that due to the presence of spin-orbit coupling, fluctuations of the incipient parity-
breaking order generate an attractive pairing interaction in an odd-parity pairing channel, which
competes with the s-wave pairing. We show that applying a Zeeman field suppresses the s-wave
pairing and promotes the odd-parity superconducting state. Our work provides a new mechanism
for odd-parity pairing and opens a route to novel topological superconductivity.

PACS numbers: 74.20.Rp, 74.20.Mn, 74.45.+c

Over the last few years, the search for unconventional
superconductors has received a new impetus from the
study of topological phases of matter. After early works
on superfluid Helium-3 [1] and recent developments on
topological insulators, it has been theoretically estab-
lished [2] that superconducting states can be classified by
their topological properties. Unlike conventional s-wave
superconductors, topological superconductors are pre-
dicted to harbor exotic quasiparticle excitations on the
boundary. There is currently intensive effort searching
for topological superconductivity in naturally-occurring
materials (see for example, Ref. [3–13]), though definitive
experimental evidence is still lacking. For the majority
of superconductors that are time-reversal and inversion
symmetric, the single most important requirement for
being topologically nontrivial is that the pairing order
parameter must be odd under spatial inversion [3, 14],
e.g., p- or f -wave. This rekindles interest in finding odd-
parity superconductors.

The parity of the pairing order parameter is tied with
its spin. In the absence of spin-orbit coupling, odd-parity
pairing is spin-triplet and vice versa. It has long been
known from studies on superfluid He [15] that triplet
pairing can be induced by enhanced ferromagnetic spin
fluctuations in the vicinity of ferromagnetic instability.
This mechanism for triplet pairing, if realized in the solid-
state, can lead to a topological superconductor [16], anal-
ogous to the topological superfluid He.

In this Letter, we propose an alternative mecha-
nism for odd-parity pairing in the vicinity of nonmag-
netic, inversion-symmetry-breaking phases in spin-orbit-
coupled systems. In the presence of spin-orbit interac-
tion, such parity-breaking orders directly couple to elec-
tron’s spin texture on the Fermi surface [17]. As a re-
sult, the fluctuations of an incipient parity-breaking or-
der, which we call “parity fluctuations”, generate an ef-
fective interaction that is strongly momentum and spin
dependent. Without assuming any special features of the
Fermi surface, we show on general ground that this ef-
fective interaction is attractive in both the s-wave and
an odd-parity pairing channel. Moreover, the pairing in-

teractions in the two channels are found to be of the
same order of magnitude, and in several cases, roughly
equal. We show that either Coulomb interaction or Zee-
man field suppresses the s-wave pairing and promotes the
odd-parity superconducting state on the border of parity-
breaking order. Finally, we propose the pyrochlore oxide
Cd2Re2O7 and doped SrTiO3 heterostructures as candi-
date systems where odd-parity superconductivity medi-
tated by parity fluctuations may be realized.

In this work, we consider parity-breaking orders that
are time-reversal invariant and carry zero momentum.
Such order may originate from an unstable odd-parity
phonon or the electron-electron interaction. The order
parameter can be represented by a Hermitian fermion
bilinear operator Q̂ with the same symmetry, which takes
the form

Q̂ =
∑

k,αβ

Γαβ(k)c
†
kαckβ , with Γ†(k) = Γ(k). (1)

Here α, β are pseudospin indices for the two degenerate
states at every k. In spin-orbit-coupled systems, these
states are not spin eigenstates, but remain degenerate
in the presence of time-reversal (Θ) and inversion (P )
symmetry [18]. For simplicity of notation, we have chosen
an Ising-type parity-breaking order in Eq.(1). Vector and
high-rank tensor orders are described by a multiplet of
Hermitian operators denoted by Q̂µ; these orders will be
encountered later.

Different types of parity-breaking orders are classified
by their transformation properties under crystal symme-
try operations, which act on electron’s spin and momen-
tum jointly. Before proceeding to the symmetry analysis,
we emphasize that the form factors for physical observ-
ables, such as Γ(k) for Q̂, depend on the basis for the
doubly degenerate energy band. For the purpose of this
work, it is most convenient to choose the “manifestly co-
variant Bloch basis” (MCBB) [17]. In this basis, the two-

component electron operator (c†k1, c
†
k2) transforms simply

as a spinor field in k space under time reversal and crystal
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symmetry operation g ∈ O(3):

Θc†kαΘ
−1 = ǫαβc

†
−kβ (2)

gc†kαg
−1 = Uαβ(g)c

†
k∗β , (3)

where k∗ = gk is the star of k, ǫαβ is the Levi-Civita
symbol, and U(g) is the U(2) matrix that represents the
action of g on the pseudospin, in the same way as it acts
on the spin of a free electron.
It then follows from the symmetry transformation laws

(2, 3) that the form factor Γ(k) of time-reversal-invariant
and parity-breaking orders satisfies the condition

Γ(k) = ǫΓ∗(k)ǫ = −Γ(−k), (4)

and hence takes the general form [17]

Γ(k) = dk · σ, with dk = −d−k (5)

where σ = (σx, σy, σz) denotes Pauli matrices in pseu-
dospin space. The d-vector field dk defines the pseu-
dospin splitting in the ordered state, whose magnitude
and direction vary over the Fermi surface.
It may seem counter-intuitive that nonmagnetic parity-

breaking orders, such as structural distortion and or-
bital order, couple to electron’s spin. As we show by
example in Supplementary Material [19], this remark-
able fact is a general consequence of spin-orbit interac-
tion in centrosymmetric systems. It will play a crucial
role in meditating superconductivity in the vicinity of
parity-breaking order. In contrast, for spin-rotationally-
invariant systems, the above symmetry analysis implies

that parity-breaking orders at zero momentum cannot

couple directly to electrons on the Fermi surface, unlike
the nematic order that is even-parity [20, 21]. There-
fore, spin-orbit coupling is crucial for superconductivity
meditated by odd-parity phonons or parity fluctuations.

In a system close to a parity-breaking instability, the
effective interaction arising from the order parameter
fluctuations is given by

Heff =
∑

q

VqQ̂(q)Q̂(−q) (6)

where Q̂(q) = Q̂†(−q) is the Fourier transform of the
order parameter field in real space:

Q̂(q) =
1

2

∑

k,αβ

(Γαβ(k + q) + Γαβ(k))c
†
k+qαckβ (7)

Within the random-phase approximation (RPA), Vq can
be expressed in terms of the q dependent susceptibility:
Vq = I/(1+χ(q)I). Vq is enhanced and has a maximum
at q = 0 close to a q = 0 instability. Restricting the ef-
fective interaction (6) to the Cooper pairing channel with
zero total momentum, we obtain the pairing interaction

Hp =
∑

k,k′

Vαβγδ(k,k
′)c†kαc

†
−kβc−k′γck′δ. (8)

Using (5), (6) and (7), we find the momentum- and
pseudospin-dependent interaction vertex Vαβγδ(k,k

′) is
given by

Vαβγδ(k,k
′) = −

1

8

(

Vk−k′(~dk + ~dk′) · ~σαδ (~dk + ~dk′) · ~σβγ − Vk+k′(~dk − ~dk′) · ~σαγ(~dk − ~dk′) · ~σβδ

)

. (9)

To proceed, we expand Vk±k′ in the pairing interaction
(9) in terms of spherical harmonics on the Fermi surface:

Vk±k′ = V0 ∓ V1k̂ · k̂′ + .... Below we consider the lead-
ing term V0. Despite V0 is a constant, the interaction
vertex (9) inherits the form factor of the parity-breaking
order parameter Q̂, which is strongly pseudospin- and
momentum-dependent. It consists of two types of terms:
V = V e + V o, where V e contains the product of compo-
nents with the same momentum:

V e
αβγδ(k,k

′) = −
V0
8

∑

i,j

(dikd
j
k + dik′d

j
k′)(σ

i
αδσ

j
βγ − σi

αγσ
j
βδ),

and V o contains the cross terms:

V o
αβγδ(k,k

′) = −
V0
8

∑

i,j

(dikd
j
k′ + dik′d

j
k)(σ

i
αδσ

j
βγ + σi

αγσ
j
βδ).

Note that V e (V o) is an even (odd) function of k,k′, and
antisymmetric (symmetric) under exchanging the pseu-
dospin indices either αβ or γδ. Therefore, V e and V o cor-
respond to the even-parity pseudospin-singlet and odd-
parity pseudospin-triplet pairing channels, respectively.

The above pairing interaction can be decomposed into
different superconducting channels that belong to differ-
ent representations of the crystal symmetry group. Be-
fore proceeding, we describe the general classification
of time-reversal-invariant superconducting order param-
eters, taking the form

F̂ † =
1

2

∑

k,αβγ

ǫβγFαβ(k)c
†
kαc

†
−kγ . (10)

where the form factor F (k) satisfies the symmetry con-
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dition

F †(k) = F (k) = −ǫF ∗(−k)ǫ. (11)

Moreover, it follows from (3) that ǫβγc
†
kαc

†
−kγ has the

same transformation law under crystal symmetry op-
erations as c†kαckβ. This implies every time-reversal-
invariant superconducting order parameter has a coun-
terpart in the particle-hole channel, with the same sym-
metry. In particular, odd-parity superconducting order
parameters, which have F (k) = −F (−k), admit the
same classification as particle-hole orders Q̂ described
earlier.
To proceed with the classification, it is instructive to

first consider the most symmetric group O(3), the group
of all joint 3D rotations and reflections of spin and mo-
mentum, from which all point groups descend. In this
case, all possible odd-parity orders defined by the form
factor (5) are classified by the total angular momentum
J and the orbital angular momentum L (which must be
odd) [17]. At the lowest order L = 1, there are three
types of particle-hole orders: gyrotropic, ferroelectric and
multipolar. The corresponding form factors are listed in
Table I. Classification for 2D systems with O(2) symme-
try is also presented.
As expected from the one-to-one correspondence be-

tween particle-hole and particle-particle orders, these
form factors also classify odd-parity pairing symmetries
of spin-orbit-coupled superconductors. For example, the
pairing order parameter with the isotropic form factor
Γ1 = k · σ coincides with a particular choice of order
parameters for the Balian-Werthamer phase of He-3 [22].
On the other hand, the pairing order parameters with
anisotropic form factors Γ2 and Γ3 are time-reversal in-
variant and spontaneously break the rotational symme-
try, resulting in an odd-parity superconductor with ne-
matic order [23]. To our knowledge, such anisotropic
phases have not been found in He-3; their existence re-
quires spin-orbit coupling.
We now use the effective interaction Heff given by

Eq.(6) to study superconductivity in the vicinity of
each type of parity-breaking order in Table I; for multi-
component operator Q̂µ, summation over µ is taken. In
all cases, we restrict Heff into Cooper pairing channel
with zero momentum, and decompose the pairing inter-
action Hp into various superconducting channels:

Hp = V0(a0Ŝ
†Ŝ +

∑

n

an
∑

µ

F̂µ†
n F̂µ

n ), (12)

where Ŝ† = (1/2)
∑

k,αβ ǫαβc
†
k,αc

†
−kβ is the s-wave su-

perconducting order parameter, and Fµ†
n denotes various

odd-parity order parameters defined in Eq.(10) and clas-
sified in Table I. Coefficients an take different values for
different types of interactions, and all are gathered in the
Table II. Details of our calculation can be found in Sup-
plementary Material [19]. Since V0 < 0, an > 0 means

3D system with O(3) symmetry transformation property

Γ1(k) = (k̂ · σ) pseudoscalar

Γi
2(k) = [k̂× σ]i vector

Γij
3
(k) = k̂iσj + k̂jσi

−
2

3
(k̂ · σ)δij rank 2 tensor

2D system with O(2) symmetry transformation property

Γ̃1(k) = k̂xσx + k̂yσy pseudoscalar

Γ̃2(k) = k̂xσy
− k̂yσx pseudoscalar

Γ̃i
3(k) = k̂iσz vector

Γ̃ij
4
(k) = k̂iσj + k̂jσi

− (k̂ · σ)δij rank 2 tensor

TABLE I: Classification of odd-parity order parameters for
spin-orbit coupled systems, and their transformation proper-
ties under joint spin and momentum rotations in three and
two dimensions. Rank 2 tensor Γ3 (Γ̃4) is symmetric and
traceless, and hence has 5 (2) independent components.

type of interaction a0 a1 a2 a3

Q1(q)Q1(q) 1 1 −1 0

Qi
2(q)Q

i
2(−q) 2 −4/3 1/2 −1/4

Qij
3
(q)Qji

3
(−q) 20/3 0 −5/3 −1/2

type of interaction a0 a1 a2 a3 a4

Q̃1(q)Q̃1(q) 1 1 −1 -1 0

Q̃2(q)Q̃2(−q) 1 -1 1 -1 0

Q̃i
3(q)Q̃

i
3(−q) 1 −1/2 −1/2 1 −1/4

Q̃ij
4
(q)Q̃ji

4
(−q) 4 0 0 -4 0

TABLE II: Decomposition of the different types of interaction
into different pairing channels, see Eq. (12). n = 0 denotes
the s-wave channel; n = 1, ..., 4 denotes the odd-parity chan-
nels classified in Table I. an > 0 corresponds to attractive
pairing interaction.

attractive interaction in the corresponding pairing chan-
nel.

From Table II, we obtain the superconducting insta-
bility driven by each type of parity fluctuations. In all
cases, there is an instability in the s-wave channel, sim-
ilar to phonon-meditated pairing in conventional super-
conductors. More importantly, in all cases except the
multipolar orders Γ3 and Γ̃4, there is also an instabil-
ity in the odd-parity channel with the same symmetry as
the incipient particle-hole order that drives superconduc-
tivity. Remarkably, for Ising type orders described by a
single-component Q̂, the pairing attraction in the odd-
parity channel is equal to the one in the s-wave channel,
leading to identical superconducting transition tempera-
tures. For ferroelectric type orders described by a vector
Q̂i, the pairing attraction in the odd-parity channel is
weaker than, but still of the same order of magnitude as,
the one in the s-wave channel.

Although fluctuations of multipolar orders in rotation-
ally invariant systems do not lead to pairing in any odd-
parity channel, the situation becomes different in real ma-
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terials where the crystal symmetry is taken into account.
In any crystals, the five components of rank 2 tensor Γ3

invariably split into more than one representations of the
point group. For example, for Oh point group, the diag-
onal and off-diagonal components of Γ3 split to form eg
and t2g representations, which have 2 and 3 independent
components respectively. For many point groups such as
D4h, Γ̃4 also splits into one-dimensional representations,
with form factors kxσx − kyσy and kxσy + kyσx respec-
tively. We find fluctuations of such multipolar orders of
reduced symmetry generate attractive pairing interaction
in the odd-parity channel of the same symmetry. The in-
teraction strength is weaker than the s-wave channel in
the case of eg and t2g orders, and is equal to the latter

in the case of Ising type Γ̃4 orders [19].

The above finding of odd-parity pairing meditated by
parity fluctuations in spin-orbit-coupled systems is the
main result of this work. It is interesting to make a com-
parison with the mechanism of triplet pairing meditated
by spin fluctuations. In that case, the effective interac-
tion is given by

∑

q V (q)s(q) ·s(−q), where s is the spin
operator and V (q) = I/(1 + Iχs(q)) is determined by
the spin susceptibility χs(q). Importantly, to obtain the
pairing interaction in the triplet channel requires χs(q) to
have a nontrivial q-dependence. Approximating χs(q) by
its zeroth spherical harmonic, which is a constant, does
not generate triplet pairing, simply because two electrons
at the same spatial location cannot form a triplet. In
contrast, we obtained odd-parity pairing in this leading-
order approximation, without relying on any special fea-
tures of the susceptibility of parity-breaking order.

Given that the pairing interaction we found has compa-
rable or even identical strengths in the s-wave and odd-
parity channels, small residual interactions or external
perturbations become important in lifting the degener-
acy and eventually determine which one of the two com-
peting pairing symmetries is realized. An in-depth study
of the effects of residual interactions necessarily involve
material-specific details, which is beyond the scope of
this work. Nonetheless, it should be noted that Coulomb
interaction is most repulsive and pair-breaking in the s-
wave channel, which can make the odd-parity pairing en-
ergetically favorable. This role of Coulomb interaction in
the competition between s-wave and odd-parity pairings
has been recognized [3] and emphasized [24] in recent
model studies.

In addition to Coulomb interaction, the s-wave pair-
ing is suppressed by a magnetic field B that splits the
spin degeneracy, which is pair-breaking and sets the Pauli
limit for the upper critical field. However, Zeeman spin
splitting has variable effects on odd-parity superconduct-
ing states in spin-orbit-coupled systems, as we show now.
First, let us consider how the doubly degenerate bands at
every k, or the pseudospin, split under a Zeeman field.
The coupling of pseudospin to Zeeman field takes the

general form

HZ =
∑

k

c†kgij(k)Biσj(k)ck. (13)

The g-factor gij(k) is a function of k, and can be ex-
panded into different spherical harmonics over the Fermi
surface. Importantly, since the pseudospin operator σj is
defined in the manifestly covariant Bloch basis and has
the same symmetry as electron’s spin, gij(k) generally
has a dominant zeroth spherical harmonic component
g0ij . Assuming gij(k) ≃ g0ij , we obtain a uniform spin
splitting over the Fermi surface, with a spin quantization
axis in the direction of hi = g0ijBi. The Pauli limit will
be absent for the odd-parity pairing if its d-vector d(k)
is perpendicular to h, for all k on the Fermi surface.
For example, in 2D systems with rotational symmetry,
an in-plane field B induces a spin splitting in the direc-
tion parallel to the field. The odd-parity pairing with
Γ̃3(k) = (kxσz, kyσz), whose d-vector is out of plane, is
not Pauli limited. Therefore, Zeeman field is an effective
way of tuning the competition between different pairing
symmetries and promoting certain types of odd-parity
superconductivity for which the Pauli limit is absent or
largely enhanced.

Finally, we propose candidate materials for odd-parity
superconductivity in the vicinity of parity-breaking or-
der. First, the pyrochlore oxide Cd2Re2O7 undergoes
a continuous parity-breaking phase transition at Tp =
200K [25, 26] with a large mass enhancement of con-
duction electrons [27], and becomes superconducting at
Tc = 1.1K [28]. The application of high pressure has
significant effects on these phases, and generates a vari-
ety of new phases identified from resistivity anomalies.
Remarkably, around a critical pressure of Pc = 4.2GPa
where the parity-breaking order is suppressed, an anoma-
lously large upper critical field of 7.8T is observed, which
is 27 times larger than at ambient pressure and signif-
icantly higher than the Pauli limit 4.2T evaluated as
Hp = 1.84Tc [29]. These phenomena seem to fit into
the theoretical picture presented in this work. Therefore,
we propose that the superconducting state of Cd2Re2O7

around Pc is driven by parity fluctuations, and may have
an odd-parity pairing symmetry.

Another candidate system is inversion-symmetric het-
erostructure of doped SrTiO3 with intrinsic spin-orbit
coupling [36]. Bulk SrTiO3 is close to the ferroelectric
instability and becomes superconducting upon electron
doping [37, 38]. In doped SrTiO3 heterostructures with
the superconducting dopant layer of a few nanometers
thickness, the in-plane upper critical field exceeds the
conventional Pauli limit [36]. It is worthwhile to ex-
amine the possibility of an odd-parity superconducting
state under a large in-plane field, as we discussed ear-
lier. A model study for possible superconducting phases
in SrTiO3 heterostructure will be presented elsewhere.
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Throughout this work, we have stayed away from the
immediate neighborhood of the quantum phase tran-
sition point, where long-wavelength and low-frequency
fluctuations of the parity-breaking order pile up and the
RPA type effective interaction used in this work is inap-
plicable. The physics in the quantum critical regime is
an interesting topic which is left to future study.
Acknowlegement: This work is supported by the David

and Lucile Packard foundation.
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Supplemental materials

This Supplementary Material consists of two sections. In section I, within an inversion-symmetric two-orbital model,
we explicitly derive the Fermi surface form factor of a parity-breaking order, which elucidates the important role of
spin-orbit coupling. In section II, we provide a detailed derivation of the decomposition of effective interactions into
different pairing channels.

I. BILAYER RASHBA MODEL

We consider a two-layer system with intrinsic spin-orbit coupling, which is the 2D analog of the model considered by
Fu and Berg for the topological insulator Bi2Se3 [S1]. The same model applies to inversion-symmetric heterostructures
of SrTiO3 [S2]. Importantly, the two layers in the system considered here, denoted by τz below, are interchanged
under the inversion. It follows from symmetry that electrons on a given plane experience an out-of-plane electric field,
which is opposite for the upper and lower plane. This local electric field generates local Rashba spin-orbit coupling
for electron’s motion within the plane, with opposite signs for the upper and lower planes. In addition, there is an
inter-plane tunneling, which takes the off-diagonal form mτx. Based on symmetry considerations, the Hamiltonian
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2-band model 1-band model

τysz F̃1(k) = k̂xσx + k̂yσy

τ z F̃2(k) = k̂xσy
− k̂yσx

τysx F̃ x
3 (k) = k̂xσz

τysy F̃ y
3
(k) = k̂yσz

TABLE SI: The correspondence between pairing orders in 2-band model considered in [S1] and 1-band model presented in this
Letter.

for such a bilayer Rashba system, up to first order in k, is given by:

H =

∫

dk

(2π)2
ψ+
k [mτ

x + v(kxsy − kysx)τz − µ]ψk. (S1)

where µ is chemical potential, τ i and si are Pauli matrices in the layer and spin space, correspondingly. Without loss
of generality, we assume the chemical potential lies in the conduction band.
Since the superconducting gap is much less than chemical potential, it is convenient to consider the conduction

band only, and completely ignore valence band. To do that, we need to expand creation and annihilation operators
ψ+
k , ψk in terms of the eigenstates of the conduction and valence bands, and then simply omit the contribution of the

valence band. This expansion takes the form

ψk =
∑

αi

aikαc
i
kα, (S2)

where i = c, v labels conduction/ valence band, and α = 1, 2 denote band eigenstates in the MCBB. In this ba-
sis, eigenvectors ackα corresponding to the states of the conduction band, which is the two-orbital analog of Bloch
wavefunctions in the continuum, have the form

ack1 =









β+
ik̂+β−
β+

−ik̂+β−









, ack2 =









−ik̂−β−
β+

ik̂−β−
β+









, (S3)

where k̂± = k̂x ± ik̂y, and β± = (1/2)
√

1± (m/µ), µ =
√

m2 + v2k2F . Mathematically, the mapping onto conducting
band simply implies that in (S2) we keep ackα only, and omit terms with avkα.
Now, we consider an inversion-symmetry-breaking charge order: an electron density imbalance on the two layers,

(n1 − n2)(r) = ψ+(r)τzψ(r), which does not involve electron’s spin. After the mapping onto the conduction band,
this expression can be rewritten in the form

ψ+(r)τzψ(r) →
vkF
2µ

∑

k,p

ǫijc
+
kα(k̂ + p̂)iσj

αβcpβe
−ir·(k−p), (S4)

which exactly coincides with the Fourier transform of Γ̃2 (see Table I). Now, we see explicitly this form factor
is pseudo-spin dependent. This derivation illustrates how inversion-symmetry-breaking charge order in spin-orbit-
coupled systems couples to the pseudospin degree of freedom on the Fermi surface.
It is also instructive to present the correspondence between p-wave pairing order parameters in single-band model

and in 2-band model considered in [S1, S3, S7]. We demonstrate the derivation of the correspondence on the example of
the two-component order parameter, ∆̂i

k = ψkα(iτ
ysisy)αβψ−kβ . To establish the correspondence we, again, perform

mapping onto conduction band using MCBB, Eq. (S3). The result of this mapping reads as follows:

∆i
k = ψkα(iτ

ysisy)αβψ−kβ → ±
vkF
µ
k̂i[ck1c−k2 + ck2c−k1] = ±

vkF
µ
ckα(ik̂

iσzσy)αβc−kβ, (S5)

where + (−) sign corresponds to i = x (i = y). The correspondence between other pairing orders can be obtained
analogously. The result is shown in Table SI.
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II. DECOMPOSITION OF THE EFFECTIVE INTERACTION INTO SUPERCONDUCTING CHANNELS

Here we show the detailed derivation of Eq. (12) and Table II. We start with the effective interaction (9) and use
the approximation V (k ± k′) = V0. We consider all possible types of interactions, i.e. gyrotropic, ferroelectric and
multipolar, in both three and two dimensions.

A. Rotationally invariant interaction

We start with the case of rotationally invariant interaction. We demonstrate the details of the calculation using
gyrotropic interaction in 3D as an example, and then present the results for all other types of interaction in 3D and
2D.
The task is to decompose the effective interaction into different p-wave superconducting channels, classified in Table

I, and, possibly, s-wave channel. Mathematically, it means that interaction matrix elements given by Eq. (9) need to
be rewritten in the form:

Vαβγδ(k,k
′) =

V0
4

(

a0(iσ
y)αβ(iσ

y)+γδ + a1(iF1(k)σ
y)αβ(iF1(k

′)σy)+γδ + a2(iF
i
2(k)σ

y)αβ(iF
i
2(k

′)σy)+γδ+

+a3(iF
ij
3 (k)σy)αβ(iF

ji
3 (k′)σy)+γδ

)

, (S6)

where summation over repeated indices i, j = x, y, z is implied. All Fi have the same momentum and spin dependence
as Γi in Table I, but denote pairing in particle-particle channels.
For the case of gyrotropic interaction, the Hamiltonian has the form

Hg
eff =

V0
4

∑

k,k′,q

a+kαa
+
k′−qβak′γak−qδ

(

2k̂− q̂
)

· σαδ

(

2k̂′ − q̂
)

· σβγ . (S7)

Restricting this Hamiltonian to the Cooper channel only, we obtain the pairing Hamiltonian (8) with the vertex

Vαβγδ(k,k
′) = −

V0
8

(

(k̂+ k̂′) · σαδ(k̂ + k̂′) · σβγ − (k̂− k̂′) · σαγ(k̂− k̂′) · σβδ

)

. (S8)

This interaction corresponds to the choice ~dk = k̂ in Eq. (9).
As we pointed out earlier, this vertex consists of two different terms. The first one contains the product of

components of the same momenta:

V e
αβγδ(k,k

′) = −
V0
8

∑

i,j

(k̂ik̂j + k̂′ik̂′j)(σi
αδσ

j
βγ − σi

αγσ
j
βδ). (S9)

This term describes s-wave pairing and corresponds to the first term in Eq. (S6). Indeed, using the identity

σi
αδσ

j
βγ + σi

βγσ
j
αδ − σi

αγσ
j
βδ − σi

βδσ
j
αγ = −2(iσy)αβ(iσ

y)+γδδ
ij (S10)

we find

V e
αβγδ(k,k

′) =
V0
4
(iσy)αβ(iσ

y)+γδ, (S11)

therefore, a0 = 1, and we have attraction in the s-wave pairing channel.
Next, the second term in the vertex is the bilinear function of different momenta and has the form

V o
αβγδ(k,k

′) = −
V0
8

∑

i,j

(k̂ik̂′j + k̂′ik̂j)(σi
αδσ

j
βγ + σi

αγσ
j
βδ). (S12)



8

This term is responsible for the p-wave pairing, and need to be decomposed into p-wave superconducting channels,
listed in Table I. After some algebra, we find

V o
αβγδ(k,k

′) =
V0
4

{

(i(k · σ)σy)αβ(i(k
′ · σ)σy)+γδ − (i[k× σ]σy)αβ(i[k

′ × σ]σy)+γδ

}

. (S13)

After summation, V = V e + V o, we end up with the expression for the interaction vertex:

Vαβγδ(k,k
′) =

V0
4

{

(iσy)αβ(iσ
y)+γδ + (i(k · σ)σy)αβ(i(k

′ · σ)σy)+γδ − (i[k× σ]σy)αβ(i[k
′ × σ]σy)+γδ

}

. (S14)

It has the form of Eq. (S6) with coefficients a0 = a1 = 1, a2 = −1, a3 = 0. These are exactly the coefficients in the
first row of Table II.
We see that we have superconducting instabilities in s-wave and gyrotropic p-wave channels. As we mentioned

above, they have identical transition temperatures, Tc ∼ ω0 exp(−1/ν|V0|), where ω0 is some low-energy cutoff, and
ν is the density of states at Fermi level. The detailed derivation of the transition temperatures for the case of
unconventional superconductors can be found, for example, in [S4, S5].
All the cases of other possible interactions in three and two dimensions can be analyzed absolutely analogously.

The results of the decomposition into different superconducting channels are gathered in Table II.

B. Multipolar interaction with reduced rotational symmetry

Here we demonstrate that multipolar interaction in crystals with reduced rotational symmetry leads to the attraction
in the correspondent particle-particle channel in both two and three dimensions. Moreover, in two dimensions, the
critical temperature for the multipolar channels is the same as for s-wave channel.
We consider the 3D case first. We perform the same analysis as in the previous section, but now we consider

diagonal and off-diagonal parts of the multipolar interaction separately. Specifically, we consider Hamiltonians

Hd
eff =

V0
4

∑

k,k′,q

a+kαa
+
k′−qβak′γak−qδ

∑

i

(Γii
3 (2k− q))αδ(Γ

ii
3 (2k

′ − q))βγ , (S15)

Ho
eff =

V0
4

∑

k,k′,q

a+kαa
+
k′−qβak′γak−qδ

∑

i6=j

(Γij
3 (2k− q))αδ(Γ

ji
3 (2k

′ − q))βγ , (S16)

where Γij
3 are defined in Table I. The whole analysis is similar to what we did before, with the only difference that

now we need to consider diagonal and off-diagonal pairing channels separately:

Vαβγδ(k,k
′) =

V0
4

(

a0(iσ
y)αβ(iσ

y)+γδ + a1(iF1(k)σ
y)αβ(iF1(k

′)σy)+γδ + a2(iF
i
2(k)σ

y)αβ(iF
i
2(k

′)σy)+γδ+

+ad3
∑

i

(iF ii
3 (k)σy)αβ(iF

ii
3 (k′)σy)+γδ + ao3

∑

i6=j

(iF ij
3 (k)σy)αβ(iF

ji
3 (k′)σy)+γδ



 . (S17)

The results of the decomposition into different channels are presented in Table SII.
We see that, if considered separately, diagonal and off-diagonal parts of the multipolar interaction also lead to the

attraction in the correspondent pairing channel. However, the interaction strength is smaller (though comparable)
than that for the s-wave channel. As a result, the transition temperature for the s-wave channel is much higher.
As we already mentioned, Γij

3 is a traceless symmetric tensor, so it has only 5 independent components. That is

why the diagonal part of Γij
3 forms duplet (Γ1

3, Γ
2
3) with

Γ1
3 = Γxx

3 − Γyy
3 , Γ2

3 = 2Γzz
3 − Γxx

3 − Γyy
3 , (S18)



9

type of interaction a0 a1 a2 ad
3 ao

3
(

Qij
3
(q)Qji

3
(−q)

)d
8/3 0 −2/3 1 −1

(

Qij
3
(q)Qji

3
(−q)

)o
4 0 −1 −3/2 1/2

type of interaction a0 a1 a2 a3 ad
4 ao

4

Q̃xx
4 (q)Q̃xx

4 (−q) 1 0 0 -1 1 -1

Q̃yx
4
(q)Q̃xy

4
(−q) 1 0 0 -1 -1 1

TABLE SII: Decomposition of the multipolar interaction with reduced rotational symmetry into pairing channels. Diagonal

and off-diagonal parts of the interaction in 3D are defined as
(

Qij
3
(q)Qji

3
(−q)

)d
=

∑

i Q
ii
3 (q)Q

ii
3 (−q),

(

Qij
3
(q)Qji

3
(−q)

)o
=

∑

i6=j
Qij

3
(q)Qji

3
(−q) correspondingly, see Eqn. (S15), (S16).

rather than triplet (Γxx
3 , Γyy

3 , Γzz
3 ). Hopefully, the diagonal part of the interaction can easily be rewritten in terms of

(Γ1
3, Γ

2
3) in both particle-hole and particle-particle channels:

(Γxx
3 (k))αδ(Γ

xx
3 (k′))βγ + (Γyy

3 (k))αδ(Γ
yy
3 (k′))βγ + (Γzz

3 (k))αδ(Γ
zz
3 (k′))βγ =

= 2(Γ1
3(k))αδ(Γ

1
3(k

′))βγ +
2

3
(Γ2

3(k))αδ(Γ
2
3(k

′))βγ , (S19)

(iΓxx
3 (k)σy)αβ(iΓ

xx
3 (k′)σy)+γδ + (iΓyy

3 (k)σy)αβ(iΓ
yy
3 (k′)σy)+γδ + (iΓzz

3 (k)σy)αβ(iΓ
zz
3 (k′)σy)+γδ =

= 2(iΓ1
3(k)σ

y)αβ(iΓ
1
3(k

′)σy)+γδ +
2

3
(iΓ2

3(k)σ
y)αβ(iΓ

2
3(k

′)σy)+γδ. (S20)

Finally, we consider the multipolar interaction with broken rotational symmetry in 2D. Unlike 3D case, Γ̃4 splits
now into two one-dimensional representations with form factor Γ̃xx

4 (k) = kxσx − kyσy and Γ̃xy
4 (k) = kxσy + kyσx.

Consequently, diagonal and off-diagonal parts of interaction are given now by

Hd
eff =

V0
4

∑

k,k′,q

a+kαa
+
k′−qβak′γak−qδ(Γ̃

xx
4 (2k− q))αδ(Γ̃

xx
4 (2k′ − q))βγ , (S21)

Ho
eff =

V0
4

∑

k,k′,q

a+kαa
+
k′−qβak′γak−qδ(Γ̃

xy
4 (2k− q))αδ(Γ̃

yx
4 (2k′ − q))βγ . (S22)

We emphasize that there is no any summation over different components of Γ̃4 here. Indeed, due to the equalities
Γ̃xx
4 (k) = −Γ̃yy

4 (k) and Γ̃xy
4 (k) = Γ̃yx

4 (k), this summation would only lead to the overall factor 2 in front of the
interaction Hamiltonian. Analogously, we do not double count different components when decompose the effective
interaction into different pairing channels.
The results of the decomposition are again gathered in Table SII. In contrast to the 3D case, s-wave channel

and corresponding multipolar channels now have the same interaction strength, and, as a result, the same critical
temperature Tc ∼ ω0 exp(−1/ν|V0|).
In order to obtain the last row of Table II, one need to sum up diagonal and off-diagonal contributions from Table

SII and to multiply it by 2. This factor 2 comes exactly from the double counting of the components of Γ̃4 that we
mentioned above.
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