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Abstract

Recent studies have identified thousands of regions in the genome associated with chroma-

tin modifications, which may in turn be affecting gene expression. Existing works have used

heuristic methods to investigate the relationships between genome, epigenome, and gene

expression, but, to our knowledge, none have explicitly modeled the chain of causality

whereby genetic variants impact chromatin, which impacts gene expression. In this work we

introduce a new hierarchical fine-mapping framework that integrates information across all

three levels of data to better identify the causal variant and chromatin mark that are concor-

dantly influencing gene expression. In simulations we show that our method is more accu-

rate than existing approaches at identifying the causal mark influencing expression. We

analyze empirical genetic, chromatin, and gene expression data from 65 African-ancestry

and 47 European-ancestry individuals and show that many of the paths prioritized by our

method are consistent with the proposed causal model and often lie in likely functional

regions.

Author summary

Genome-wide association studies (GWAS) have revealed that the majority of variants

associated with complex disease lie in noncoding regulatory sequences. More recent stud-

ies have identified thousands of quantitative trait loci (QTLs) associated with chromatin

modifications, which in turn are associated with changes in gene regulation. Thus, one

proposed mechanism by which genetic variants act on trait is through chromatin, which

may in turn have downstream effects on transcription. In this work, we propose a method

that assumes a causal path from genetic variation to chromatin to expression and inte-

grates information across all three levels of data in order to identify the causal variant and

chromatin mark that are likely influencing gene expression. We demonstrate in simula-

tions that our probabilistic approach produces well-calibrated posterior probabilities and

outperforms existing methods with respect to SNP-, mark-, and overall path-mapping.
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Introduction

Discerning the genetic and molecular basis of complex traits is a fundamental problem in biol-

ogy. Genome-wide association studies have revealed that the majority of variants associated

with disease lie in noncoding regulatory sequences [1, 2]. Identifying the target genes of these

variants and the mechanisms through which they act remains an open problem [3]. Recent

efforts to systematically characterize how genetic variation impacts more granular molecular

phenotypes have yielded thousands of single nucleotide polymorphisms (SNPs) that associate

with local and distal histone modifications—termed histone quantitative trait loci (hQTLs) [4–

7]. Furthermore, recent studies have identified many expression quantitative trait loci (eQTLs)

that co-localize with hQTLs, implying there may exist a shared genetic influence on epigenetic

traits and gene expression [8–11]. Therefore, one proposed mechanism by which regulatory

variants may affect gene expression and thereby impact traits is through changes in chromatin

state [10]. However, this putative chain of causality whereby the effects of SNPs on expression

are mediated by chromatin modifications has yet to be established. This is further com-

pounded by the complex space of plausible causal directions connecting transcription factor

binding, DNA methylation, chromatin variation, and gene expression. Since laboratory experi-

ments are very costly, there is a need for statistical methods that can accurately prioritize the

causal SNP and chromatin mark within an implicated region under a plausible causal model.

However, even if the causal direction is given, pinpointing the exact SNP and mark within a

genomic region is very challenging due to the confounding effects of linkage disequilibrium

(LD) among SNPs and correlations among marks [5, 6, 10, 12–14].

Methods to investigate the relationships between the genome, the epigenome, and expres-

sion have largely focused on quantifying the overlap between hQTLs and eQTLs [10, 14, 15].

Previous studies have sought to identify hQTLs by selecting the SNP with the strongest p-value

for association to a local chromatin mark and to local gene expression [10, 14, 15]. Moreover,

various methods exist for the fine-mapping of SNPs that may be concurrently affecting two

traits, including eCAVIAR [16] and Coloc [17]. Although these methods can be applied to

jointly analyze SNP, chromatin, and expression data, they do not model the causal path

whereby SNPs impact expression through chromatin alteration.

Here we propose a fine-mapping framework, pathfinder, that explicitly models the hierar-

chical relationships between genome, chromatin, and gene expression to predict both the

causal SNP and the causal mark within a gene region that are influencing expression of a given

gene. Our framework assumes a causal model where a SNP impacts a chromatin which in turn

alters gene expression. In our framework we refer to a “causal” SNP as any SNP that disrupts

inter-individual variation of chromatin state either through a direct biological mechanism

(e.g., chromatin accessibility) or indirectly through an unobserved biological mechanism. Sim-

ilarly, we refer to a “causal” chromatin mark as either a mark that biologically alters expression

or that tags an underlying epigenetic regulatory mechanism of expression. Our framework

takes as input the strength of association (as quantified through the standard Z-scores)

between all SNP/mark pairs and all marks to expression as measured in a given set of individu-

als. To explicitly account for the correlation structure among SNPs and marks, we use a

Matrix-variate Normal distribution to model all Z-scores jointly. By construction, this allows

our probabilistic model to assign posterior probabilities for each SNP, mark, and path (where

paths include all possible SNP-mark combinations) to be causal in the region. A key advantage

of our approach is that it produces well-calibrated posterior probabilities for causality. Thus,

pathfinder can be used to prioritize variants and marks for validation experiments.

In simulations we compare against several existing methods, demonstrating that path-
finder outperforms alternative approaches with respect to both accuracy and calibration.
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This is largely because our comparators do not take into account mark-expression associa-

tions. In some cases, these additional associations may help distinguish between two poten-

tially causal paths that have comparable evidence for causality. For example, in cases where a

SNP is associated with expression of a local gene and is also associated with two local chro-

matin marks, knowledge of the impact of each mark on gene expression may help distin-

guish between two possible paths for causality. Finally, we analyze genotype, chromatin and

expression data from 65 African-ancestry and 47 European-ancestry individuals. We show

that the top causal SNPs proposed by pathfinder tend to lie in more functional regions and

disturb more regulatory motifs than expected by chance. We also present evidence that most

of the top paths reported by pathfinder demonstrate consistency with our proposed sequen-

tial model, thus strengthening the case for our method’s applicability to empirical biological

data.

Results

Overview of hierarchical fine-mapping with genetic, chromatin, and gene

expression data

Here we introduce a hierarchical statistical method for fine-mapping of causal SNPs and chro-

matin marks (e.g., histone modifications) that may be concordantly influencing gene expres-

sion within a genomic region. We build upon previous insights that a vector of Z-scores is

well-described by a Multivariate Normal (MVN) distribution parameterized by LD [13, 18, 19]

to model association statistics between chromatin marks and gene expression. We analyze all

chromatin peaks across four mark types (DHS, H3K4me1, H3K4me3, and H3K27ac) jointly in

the same framework; we refer to a “mark” as a chromatin peak at a particular location, and

“mark types” as DHS, H3K4me1, H3K4me3, and H3K27ac. To simultaneously take into

account both SNP LD and the correlations between chromatin marks, we use the Matrix-vari-

ate Normal distribution to jointly model association statistics between all SNPs and marks

within a region. Our method takes as input SNP-mark and mark-expression associations

within a region centered around a particular gene, as well as correlations among all SNPs (LD)

and correlations among all considered marks. Pathfinder enumerates over all possible causal

paths, considering one causal SNP and one causal mark for each path, and outputs a posterior

probability for each path to be causal, which can subsequently be used to prioritize SNPs and

marks for validation. We compute marginal probabilities for individual SNPs (or marks) to be

causal by summing the posterior probabilities over all paths that contain the SNP (or mark).

For simplicity, in this work we refer to a “causal” mark as a mark that either causally drives

inter-individual variation of gene expression or is correlated to an underlying causal mecha-

nism (e.g. transcription factor binding), though it may not be biologically causal for

expression.

The advantage of our method over existing approaches is that it integrates mark-expression

associations which may help distinguish between two paths with otherwise comparable evi-

dence for causality. We illustrate a scenario in Fig 1. Consider a genetic region where SNP g1

has a strong association with two local marks h1 and h2, as well as a significant association with

gene expression. Using only SNP-mark and SNP-expression effects, we are unable to discern

whether SNP g1 influences expression through mark h1 or h2. However, if we consider mark-

expression effects, we see that mark h1 has a strong association with gene expression where

mark h2 does not. This additional information helps support the hypothesis that there is a

causal path from SNP g1 to mark h1 to gene expression.

Methods for fine-mapping with chromatin and expression data
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Pathfinder improves fine-mapping performance

We used simulations to compare pathfinder’s performance against alternative methods with

respect to SNP-, mark-, and path-finding efficiency as well as the calibration of its posterior

probabilities. We generated genetic, chromatin, and gene expression data for 10,000 50kb

regions, each centered around a single gene, over 100 individuals, using SNP LD and mark

correlations derived from 65 Yoruban (YRI) individuals (see Methods). We define a “mark” as

an individual peak location for any mark type in the dataset (DHS, H3M4me1, H3K4me3, or

H3K27ac). For each gene, we randomly assigned a single causal pathway from one SNP to one

mark to gene expression. We then ran our methods on all regions individually and assessed

their ability to correctly prioritize the true causal path in each region (Methods).

We compare against an independent fine-mapping approach (whereby we fine-map SNP-

mark associations and mark-expression associations independently and take the product of

the resulting probabilities to produce posterior probabilities for paths), a Bayesian network

analysis [20], a naive ranking (where we rank SNP-expression and mark-expression associa-

tions to prioritize SNPs and marks within a region; for path-finding, we rank the product of

these two), a formal colocalization method [17], and finally, against overlaps between eQTLs

and hQTLs within a region centered around a gene of interest (see Methods). Unlike the first

four approaches, the overlap methods do not produce rankings, but yield candidate sets of

causal SNPs, marks, and paths. For this reason, we present these results in a separate analysis

using an alternative metric for comparison.

We find that pathfinder has consistently better performance than the other ranking

approaches with respect to all three features—SNP-, mark-, and path-mapping within a region

(Fig 2). For example, association ranking, Coloc, Bayesian network analysis, and independent

fine-mapping accumulate 55%, 62%, 47%, and 13% of the top paths on average in order to

recapture 90% of the causal paths, whereas our method only requires 8% of the top paths.

Note that SNP-expression association ranking is equivalent to running a basic eQTL analysis,

which does not take into account chromatin data, in order to identify causal SNPs. A similar

improvement in accuracy was observed for the size of the credible sets, defined as the number

of SNPs required to capture a given percentage of the causal variants (S1 Table).

Fig 1. Schematic of hierarchical model whereby SNPs affect histone marks, which in turn affect gene expression. We illustrate a scenario

where SNP g1 and mark h1 are causal. All other induced correlations, such as the effect of g1 on h2, are an effect of LD and/or correlations among

marks. To the right we show our mathematical model for this hierarchical framework. On the top level, we model mark-expression associations

with a Multivariate Normal (MVN) distribution. On the bottom, we jointly model all associations between all SNPs and marks with a Matrix

Variate Normal distribution (see Methods).

https://doi.org/10.1371/journal.pgen.1007240.g001
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Next, we evaluated pathfinder’s performance compared against standard analyses that

investigate overlaps between hQTLs and eQTLs within a genomic region. In such experiments,

the variant with the strongest association to each local chromatin mark is selected, as well as

the variant with the strongest association to local gene expression. In addition, marks are fil-

tered to ensure a 10% FDR (see Methods). This produces a set of candidate marks, as well as

one candidate SNP per mark, and one SNP deemed causal for gene expression in the region.

Implicitly, the overlap of these variants suggests a set of candidate SNPs, marks, and paths for

the region. For the same set sizes, pathfinder identifies 96% of the causal marks versus 74% in

the standard overlap approach (Fig 3). SNP-finding accuracy is comparable between the two

methods.

We next assessed the calibration of the posterior probabilities for causality output by path-
finder. Our method has slightly deflated credible sets for SNP- and path-finding, but well-cali-

brated credible sets for mark-finding (Fig 4). In contrast, the independent fine-mapping

approach has consistently inflated credible sets—that is, it captures more causal paths than

expected, but also has drastically larger credible set sizes. For example, when accumulating

90% of the posterior probabilities over all regions, pathfinder captures 88% of the true causal

paths within the top 380 candidate paths, whereas independent fine-mapping captures 94% of

the causal paths within the top 1026 candidate paths. Similar outcomes were attained for the

50% and 99% credible sets (S1 Fig). Overall, pathfinder’s credible sets are less biased and nar-

rower than those obtained through the independent fine-mapping approach.

Finally, we investigated the effects of simulation and method parameters on pathfinder’s

accuracy. Firstly, we varied the causal SNP and mark effect sizes such that the variance

explained of mark and gene expression ranged from 0.1 to 0.5. As anticipated, increased heri-

tability leads to better performance (See Fig 5A–5C). Secondly, in order to assess the impact of

SNP LD and mark correlations on SNP- and mark-finding performance, we stratified our

existing simulations based on the mean correlation of the causal SNP or mark to all other

SNPs or marks (See Fig 5D–5I). We grouped our simulations into three categories: low,

medium, and high correlations. As anticipated, SNP-finding performance decreases slightly as

SNP LD increases. Notably, mark-finding performance is actually improved at higher SNP

LD. This is due to the redundancy in information about SNP-mark associations at the causal

mark when these effects are exhibited across multiple correlated SNPs. SNP- and mark-finding

Fig 2. Comparison of our method against four potential competitors—Independent fine-mapping, a simple ranking of associations,

Coloc, and Bayesian network analysis. We measure performance as the number of simulated causal SNPs, marks, and paths that each method

is able to recapture, while varying the number of SNPs, marks, or paths considered.

https://doi.org/10.1371/journal.pgen.1007240.g002
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performance, however, do not seem to be significantly affected by mark correlations in our

simulations—at least not at the level of variation exhibited in our data. In addition to stratify-

ing our existing simulations by LD, we also assessed the impact of using European rather than

African LD in the same regions, as European LD is known to be more extensive. Here we

retained the YRI mark and expression data in order to isolate the effect of SNP correlations.

The credible set sizes computed from the CEU dataset do not substantially differ from those

obtained in YRI (S2 Table). This result demonstrates that the more extensive LD observed in

European individuals will not significantly affect pathfinder’s performance. Thirdly, we

Fig 3. Comparison of our method to standard eQTL + hQTL overlap analyses. In overlap analyses, only the top SNP for association to each

histone mark and gene expression is considered. We demonstrate significant gains in our method with respect to mark-finding accuracy, where

SNP-mapping performance is comparable between the two methods.

https://doi.org/10.1371/journal.pgen.1007240.g003
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evaluated the effect of the prior variance tuning parameter on fine-mapping performance (See

Fig 5J–5L). The prior variance is an estimate of the variance explained by the causal SNP and

mark in the region, as we do not know a priori what the causal effect sizes are. We show that

the optimal range for the prior variance parameters is between 5 and 10, in simulations with a

variance explained of 0.25 on both levels. Overall, performance does not seem to change drasti-

cally in response to variations in the prior variance, even significantly outside of this optimal

range.

Violations of the model

Our hierarchical model makes several key assumptions that may sometimes be violated in

empirical data. Firstly, pathfinder assumes that a single causal SNP and a single causal mark

are driving the associations within a region, where in reality there may exist multiple true

causal SNPs or marks [13, 19]. Secondly, pathfinder assumes that SNP effects on gene expres-

sion are mediated by a chromatin mark, which may not be the case in real data. We therefore

assessed the performance of our method when these two assumptions are violated in various

ways, diagrammed in Fig 6.

First, we investigate violations 1–3, which include multiple causal pathways throughout the

region. Path-mapping accuracy, measured by the proportion of causal paths identified, is

reduced in all three scenarios (Fig 6). Note that the number of causals identified does not nec-

essarily decrease, but rather the proportion, as there are more causal paths in each region.

SNP- and mark-finding accuracy under these violations are also compromised, but with two

notable exceptions. In the multi-causal-SNP scenario, mark-finding accuracy increased in

comparison with the single-SNP simulations; for example, only 8% of marks were selected

(versus 18% in the single causal simulations) to capture 90% of the causal marks. In the multi-

Fig 4. 90% credible sets for SNP-, mark-, and path-mapping. We compare pathfinder to the technique of independently fine-mapping the two

levels of data, with respect to (A) the calibration of their credible sets and (B) the size of their credible sets. In (A), we compare the proportion of

causal variants that were captured in the 90% credible sets using pathfinder vs. independent fine-mapping against the expected proportion

(represented by the dotted line). In (B), we display the corresponding sizes of these credible sets.

https://doi.org/10.1371/journal.pgen.1007240.g004
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Fig 5. Performance of our method as we vary levels of variance explained, SNP LD, mark correlations, and the prior

variance parameter. (A-C) We simultaneously vary the variance explained by SNP and mark from 0.1 to 0.5 per region.

(D-I) We stratified based on mean SNP/mark correlations at the causal SNP/mark. (J-L) We show that pathfinder is not

sensitive to variations in our prior variance parameter.

https://doi.org/10.1371/journal.pgen.1007240.g005
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causal-mark scenario, SNP-finding accuracy increased. Intuitively, this is due to the redun-

dancy in the signal that is captured by the Matrix-variate Normal distribution.

We next investigate violations 4–5, in which an additional SNP or mark influences gene

expression directly. We observe in these two scenarios that performance is reduced for SNP-,

mark-, and path-finding, but not drastically. For example, in order to capture 90% of the causal

paths, pathfinder must select on average 25% and 28% of paths under violations 4 and 5,

respectively (compared with 15% under standard simulations). Because anti-correlated marks

(e.g. activating and repressing marks) often tend to act in the same region, we also assess path-
finder’s behavior specifically when two marks have opposite effects on expression. As expected,

pathfinder’s performance does not decline in the presence of anti-correlated peaks (S2 Fig).

Finally, we discuss pathfinder’s performance under violations where the causal order is

modified (violations 6–7). Under violation 6, where a single causal SNP affects gene expression

directly, which in turn affects a single mark, pathfinder actually captures a higher proportion

of the affected marks and overall paths. For example, in order to capture 90% of the causal

paths, pathfinder must select on average only 3% of the top-ranked paths (compared with 15%

under standard simulations). In violation 7, where the SNP has independent effects on the

mark and the gene expression, we show that pathfinder’s accuracy in finding the causal mark

and path is significantly reduced. Note that in this case, the “path” is not truly a path but a

Fig 6. Performance of our method under violations of the causal model. (A-C) pathfinder’s SNP-, mark-, and path-mapping accuracy for

standard simulations compared with seven model violations. (D) The model violations include the following scenarios: (1) multiple causal SNPs

impact a single causal mark, which affects gene expression, (2) a single SNP impacts multiple causal marks, which both affect gene expression, (3)

two SNPs affect two marks (respectively), which both impact gene expression, (4) a single causal SNP impacts a single causal mark that affects

gene expression, with an additional SNP also impacting gene expression directly, (5) a single causal SNP impacts a single causal mark that affects

gene expression, with an additional mark also impacting gene expression, (6) a single causal SNP affects gene expression directly, which in turn

affects a single mark, and (7) a single causal SNP has independent effects on a single mark and gene expression.

https://doi.org/10.1371/journal.pgen.1007240.g006
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SNP/mark pair, as effects of the SNP on mark and gene expression are independent. Our

power in distinguishing between these two models depends on the prior variance explained

parameter. Under violation 7, the variance explained in gene expression by the causal mark is

much smaller than expected, thus reducing our confidence in the true causal configuration.

We conclude that under the SNP!expression!mark violation, pathfinder will identify causal

paths very confidently even if they do not follow the assumed SNP!mark!expression model.

Therefore a high posterior probability for a path may not be sufficient evidence for causality.

On the other hand, when SNP effects on mark and expression are independent, pathfinder is

less likely to produce false positives. For these reasons, we recommend a pre- or post-filtering

step to retain only those regions that show some prior evidence for the SNP!mark!expres-

sion model using a conditional analysis or partial correlation approach (Methods).

For completeness, we also assess existing methods under these simulations (S3 Fig). Most

notably, the simple association-ranking approach shows a distinct improvement under viola-

tions 6 and 7, in which SNPs have a direct effect on gene expression. This is expected as path-
finder assumes the causal effect to be mediated by chromatin. A similar improvement can be

observed for Coloc under violation 7, in which the SNP affects both chromatin and gene

expression directly.

Empirical data analyses

We evaluated the behavior of our hierarchical fine-mapping method when applied to empirical

data. We performed these analyses on data from 65 YRI individuals whose genotypes were

obtained through 1000 Genomes, and whose PEER-corrected H3K4me1, H3K4me3,

H3K27ac, DHS, and RNA expression levels in lymphoblastoid cell lines (LCLs) were obtained

from [10]. In each region, we analyzed all four mark types jointly (H3K4me1, H3K4me3,

H3K27ac, and DHS) by including all peaks spanning the region for each mark type. Each peak

of each mark type was therefore treated as a single chromatin mark. We filtered the 14,669

regions using a two-step regression analysis to yield 1,317 regions that showed evidence for the

sequential model of SNPs affecting histone marks which in turn affect gene expression (see

Methods). pathfinder’s runtime scales approximately as s3t3, where s and t are the number of

SNPs and marks within a region, respectively. On average, each 50kb region contained 160

SNPs and 25 marks. Most runs were completed in under a few minutes. The most dense region

contained 331 SNPs and 66 marks and took approximately 21 minutes (S4 Fig).

In Table 1, we report the average 50%, 90%, and 99% credible set sizes produced when run-

ning pathfinder on real data. We compare against basic eQTL mapping, where we fine-map

SNPs to gene expression ignoring chromatin data. We show that the credible set sizes are sig-

nificantly narrower when running pathfinder with all three levels of data, consistent with our

findings in simulations. For example, eQTL mapping requires an average of 45.3 SNPs in

order to capture 90% of the posterior probability for SNP causality, whereas pathfinder only

requires 28.4 SNPs. If we define a gene to be fine-mapped if 99% of the posterior probability

mass for SNP causality is contained within the top 10 SNPs or fewer, then standard eQTL

mapping fine-maps 46 of the genes in our data, whereas pathfinder fine-maps 73 of the genes.

Table 1. 50%, 90%, and 99% credible sets for SNP-, mark-, and path-mapping for real data analysis. We compare pathfinder to basic eQTL mapping, with respect to

the size of their credible sets, averaged across all regions. Standard errors are included next to each measurement.

method 50% credible set 90% credible set 99% credible set

SNPs Marks Paths SNPs Marks Paths SNPs Marks Paths

pathfinder 4.9 (0.2) 1.0 (0.0) 7.4 (0.3) 28.4 (1.1) 1.8 (0.1) 158.4 (6.0) 64.2 (2.4) 6.3 (0.2) 765.5 (29.0)

eQTL mapping 8.1 (0.3) - - 45.3 (1.7) - - 92.9 (3.6) - -

https://doi.org/10.1371/journal.pgen.1007240.t001
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Notably, pathfinder also requires only 1.8 marks on average in order to capture 90% of the pos-

terior probability for causal marks. In 82% of the regions where the top two marks capture

more than 90% of the posterior probability, these two marks are two distinct peaks of the same

mark type.

The mean variance explained observed in the top path chosen by pathfinder, across all

conforming regions, were 0.38 (s.e. 0.01) for the SNP-mark effect and 0.20 (s.e. 0.01) for the

mark-expression effect (S5 Fig). These effects are reasonably consistent with the 25% variance

explained we used in simulations at each level (see Simulations). The correlation between the

SNP-mark and mark-expression effect size magnitudes in the top selected paths across all

regions was 0.03 (p = 0.400). That is, the strength of the SNP-mark effect did not seem to cor-

relate with the strength of the mark-expression effect. We assessed the relative impacts of each

type of histone mark by computing the proportion of probability mass assigned to each mark

type in aggregate over all regions (S3 Table). H3K4me3 is the most informative mark type in

this data, capturing 31% of the total probability mass despite being the least prevalent of all

four mark types, constituting only 13% of all marks.

We also report the size of pathfinder’s credible sets when applied to empirical CEU data

rather than YRI in Table 2. These two datasets are not directly comparable, as the types of epi-

genetic marks and their quantities differ substantially. Nonetheless, we demonstrate that path-
finder’s performance on the CEU dataset does not drastically diverge from its behavior in YRI.

Data pre-processing strategies such as PCA and PEER correction may substantially impact the

number of mark-expression correlations that are retained [21]. We find that credible set sizes

for PEER-corrected data are narrower, giving a slight but significant improvement in perfor-

mance (S4 Table).

As our pre-filtering step was designed to preserve only regions in which SNP effects on

gene expression are mediated by chromatin, we expected a large majority of the analyzed

regions to show evidence for this mechanism. To confirm this, we investigated whether the

top paths prioritized by our method demonstrate consistency with this causal model. We

defined a set of top paths as those which were ranked first in a region and whose posterior

probabilities for causality were assigned by pathfinder to be greater than 0.1. This resulted in

480 total top paths. Out of 480 top paths, only 12 had a significant (p< 0.05/480) partial

correlation between SNP and gene expression after controlling for chromatin. However, 193

paths had a significant partial correlation between SNP and chromatin after controlling

for gene expression. This finding suggests that the top paths are more consistent with the

SNP!mark!expression model than with a SNP!expression!mark model.

Next we examined the relationship between the product of the effect sizes between SNP-

mark and mark-expression against the overall SNP-expression association (Fig 7). We expect

this relationship to be correlative; if truly mediated by the mark in question, the overall SNP-

expression effect size should be proportional to the product of the two contributing effect

sizes. Note that we weight our correlation by the reported posterior probability for each path,

such that the paths we have more confidence in will contribute more to this metric. We find a

Table 2. 50%, 90%, and 99% credible sets for SNP-, mark-, and path-mapping for simulations using empirical YRI and CEU data. We compare pathfinder’s perfor-

mance when using SNP LD from YRI vs from CEU, with respect to the size of its credible sets, averaged across all regions. Standard errors are included next to each

measurement.

method 50% credible set 90% credible set 99% credible set

SNPs Marks Paths SNPs Marks Paths SNPs Marks Paths

YRI 4.9 (0.2) 1.0 (0.0) 7.4 (0.3) 28.4 (1.1) 1.8 (0.1) 158.4 (6.0) 64.2 (2.4) 6.3 (0.2) 765.5 (29.0)

CEU 7.4 (0.3) 1.0 (0.0) 10.6 (0.4) 30.1 (1.1) 1.3 (0.0) 90.1 (3.3) 59.5 (2.2) 2.8 (0.1) 269.6 (9.8)

https://doi.org/10.1371/journal.pgen.1007240.t002
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high correlation (r = 0.91) between these effect size vectors for our top paths, as compared

with a correlation of r = 0.36 when running the same analysis on random paths within each

region. This result indicates that pathfinder is identifying many pathways that are likely to be

following its causal model.

In Table 3, we list the top ten paths prioritized by pathfinder across all real data regions.

Most SNPs implicated in these paths are known to alter several regulatory motifs and often lie

in an enhancer region or a promoter region of the genes whose expression they affect. 59%

(s.e. 2%) of the SNPs implicated in the top paths fall into active ChromHMM states (1–7) in

LCLs, including active TSS, flanking active TSS, transcription at gene 5’ and 3’, strong tran-

scription, weak transcription, genic enhancers, and enhancers. Only 47% (s.e. 2%) of random

Fig 7. Relationship between the product of the SNP-mark and mark-expression effect sizes against the overall SNP-expression effect size.

(A) We observe a high correlation (r = 0.91) between these effect size vectors, indicating that our method is identifying many pathways that are

likely to be following our causal model. Here we included only the top paths whose posterior probabilities for causality were assigned to be

greater than 0.1. (B) We show that a significant correlation does not exist for randomly chosen paths.

https://doi.org/10.1371/journal.pgen.1007240.g007

Table 3. Top causal paths produced by real data analysis. For each path, we report the chromosome, the RSID of the implicated SNP, the implicated mark type, the poste-

rior probability we assigned to this path, three Z-scores (SNP to mark association, mark to expression association, SNP to expression association), the GENCODE gene

around which this region was centered, the ChromImpute [24] annotation for the SNP, and the number of regulatory motifs altered by the SNP, as designated by HaploReg

[25].

chr rsid mark type posterior SNP-mark Z mark-exp Z SNP-exp Z gene chromatin state motifs altered

12 rs835044 H3K27ac > 0.99 -13.05 4.97 -4.65 NDUFA12 1TssA 5

1 esv3587154 H3K4me1 > 0.99 -18.13 17.40 -14.97 GSTM1 15Quies -

19 rs385895 H3K4me1 > 0.99 12.60 2.41 1.50 CLC 7Enh 3

15 rs8025332 H3K4me1 > 0.99 -12.07 2.11 -2.35 CELF6 15Quies 1

5 rs1217817 H3K4me1 > 0.99 -14.59 5.58 -4.52 MAP1B 7Enh 4

1 rs7417106 DHS > 0.99 -8.62 -0.16 -0.54 C1orf170 4Tx 22

1 rs111900551 H3K4me3 > 0.99 -8.82 2.26 -2.95 CLCNKA 15Quies 18

3 rs57339700 H3K4me1 > 0.99 -9.66 2.37 -2.29 CAND2 14ReprPCWk 5

6 rs9349050 H3K4me3 > 0.99 -12.47 10.80 -8.19 MDGA1 11BivFlnk 2

3 rs6763025 H3K4me1 > 0.99 10.59 -2.21 -2.18 PRSS50 7Enh 4

https://doi.org/10.1371/journal.pgen.1007240.t003
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paths fall into these active states (p = 0.001834). Moreover, on average, SNPs in the top paths

disturbed 5.35 (s.e. 0.26) regulatory motifs, whereas random SNPs chosen at the same regions

only disturbed 4.40 (s.e. 0.20) motifs on average (p< 0.001). We did not, however, observe a

similar change in transcription factor binding affinity at these motifs (δ = 5.26 vs δ = 5.27,

(p = 0.511)). As an example, in Fig 8A–8D, we display the genomic context for the top region

reported by pathfinder, including average mark signals for DHS, H3K4me1, H3K4me3, and

H3K27ac, stratified by genotype, in a 4kb region centered around the TSS of the NDUFA12

gene. The implicated SNP lies within the NDUFA12 TSS. Fig 8E plots the gene expression sig-

nal against that of the top mark, stratified by genotype. In S6 Fig, we show associations for the

top region reported by pathfinder, spanning a 50kb region centered around the NDUFA12

TSS.

Fig 8. Genomic context of top path reported by pathfinder in real data. (A-D) Mark signals for DHS, H3K4me1, H3K4me3, H3K27ac in a

4kb region centered around the NDUFA12 TSS, stratified by genotype. The implicated SNP, signified by the vertical dotted line, lies 6bp

downstream of the gene TSS, and falls within an H3K27ac peak, which is also the top mark reported by pathfinder. The posterior probability for

causality for this peak was greater than 0.999. (E) Relationship between the H3K27ac peak signal and gene expression, stratified by genotype.

https://doi.org/10.1371/journal.pgen.1007240.g008
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Next we examined the spatial relationships between the SNP, mark, and TSS implicated in

the top paths reported by pathfinder (Fig 9). SNP to mark and mark to TSS distances were sig-

nificantly lower in our selected paths compared with randomly chosen paths at the same

regions. The average distance from SNP to mark in pathfinder’s top paths was approximately

11.7kb, compared to 15.3kb in randomly chosen paths (p< 0.001). The average distance from

mark to TSS in selected paths was approximately 8.6kb, compared to 9.7kb in randomly cho-

sen paths (p = 0.026). SNP to TSS distances were not significantly different in top versus ran-

dom paths (p = 0.108), with top SNPs lying on average 11.7kb away from the TSS and random

SNPs lying 12.4kb away. 5% of top SNPs lied within 2kb of the TSS while 15% lied within 2kb

Fig 9. Spatial relationships between SNP, mark, and TSS in top paths reported by pathfinder vs random paths. (A) Distances from SNP to

mark (B) Distances from mark to TSS (C) Distances from SNP to TSS.

https://doi.org/10.1371/journal.pgen.1007240.g009
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of the corresponding peak. 23% of peaks in the top paths lied within 2kb of the gene TSS. S7

Fig displays all three distances where top paths are stratified by mark type.

To further validate the top paths chosen by pathfinder, we determined the extent to which

SNPs in these paths overlap with eQTLs that have been identified in LCLs using the larger

scale Geuvadis data set [22]. 21% of the top paths contained SNPs that were also identified as

eQTLs from the Geuvadis data set. In comparison, when randomly choosing paths at the same

regions, only 11% overlapped with eQTLs (p< 0.001). Simply choosing the SNP with the high-

est association with gene expression in each region (equivalent to standard eQTL-mapping)

resulted in an overlap of 24% with existing eQTLs. These results contradict the improvement

in accuracy demonstrated in simulations when using pathfinder. We suspect this discrepancy

is due either to imperfect locus ascertainment (i.e., a number of loci may include SNPs that

directly affect gene expression rather than indirectly through chromatin) or the fact that the

Geuvadis eQTLs were also selected using standard fine-mapping approaches and we may thus

expect a stronger agreement between the two resulting eQTL sets.

We also investigated the extent to which pathfinder’s top SNPs overlap with eQTLs that

have been experimentally validated through differential expression in an LCL dataset [23].

Here, we define the set of validated eQTLs to be those whose p-values for differential expres-

sion passed a threshold of 0.01. We find that 2.2% (or 13) of pathfinder’s top SNPs overlap

with this validated set, where choosing the SNP with the highest association with gene expres-

sion in each region resulted in an overlap of 2.3% (also 13 SNPs).

Finally, we investigated whether any of the top paths reported by pathfinder could be found

within GWAS hit regions for various autoimmune diseases, as our data were collected from

LCLs. These autoimmune diseases included Celiac disease, Crohn’s disease, PBC (Primary Bil-

iary Cirrhosis), SLE (Systemic Lupus Erythematosus), MS (Multiple Sclerosis), RA (Rheuma-

toid Arthritis), IBD (Irritable Bowel Disease), and UC (Ulcerative Colitis). We restricted to

GWAS hits with variants associated to the trait with p< 5 × 10−8. We found that 19 of our 480

top paths were contained in a GWAS-implicated region. In Table 4, we report the paths that

localized within autoimmune GWAS regions. In order to determine whether our top paths are

truly enriched in GWAS regions, we established how many of these paths appear in an equiva-

lent number of random regions that have not been implicated by an autoimmune GWAS. We

centered each random region around a SNP that was matched for a similar MAF and LD score

as the GWAS tag SNP. We ran this analysis 100 times to define a null distribution for the num-

ber of top paths found in a background region. We found that 19 out of 480 top paths was not

a significant enrichment (p = 0.44).

Discussion

In this work we proposed a hierarchical fine-mapping framework that integrates three levels of

data—genetic, chromatin, and gene expression—to pinpoint SNPs and chromatin marks that

may be concordantly influencing gene expression. A key contribution of our approach is the

ability to model the correlation structure in the association statistics using a Matrix-variate

Normal distribution. Our approach is superior to existing methods, demonstrating the advan-

tage of using a probabilistic approach that takes into account the full sequential model. More-

over, pathfinder produces well-calibrated posterior probabilities, and is thus a reliable method

for the prioritization of SNPs and marks for functional validation.

We conclude by addressing some of the limitations of our method. Most notably, our

method is based upon the SNP!mark!expression assumption. In many genomic regions that

show simultaneous evidence for SNP to mark and SNP to gene expression effects, this model

will not necessary hold true. In simulations, we show that under the SNP!expression!mark
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violation, pathfinder may identify causal paths very confidently, leading to false positives under

the proposed model. When a SNP is in fact independently influencing a mark and gene expres-

sion, pathfinder is less likely to produce false positives. However, the risk of mis-appropriating

our method in this way can be reduced by requiring genomic regions to show evidence for our

causal model. We recommend a pre-filtering step before running pathfinder on real data that

we outline in Methods. In our empirical data analyses, we demonstrate that this two-step

regression robustly filters out non-conforming regions. We also acknowledge that, though

there are multiple lines of evidence for SNPs influencing expression through local hQTLs,

recent works have also emphasized the importance of interactions with distal hQTLs. Thus,

developing a systematic way to incorporate data in distal regions with evidence for interactions

with a local eQTL would be a fruitful direction. Moreover, pathfinder assumes that the true

causal SNP and mark within a region are present in the data, which may not always be the case.

In this scenario, pathfinder will instead place its confidence in the SNP or mark that best corre-

lates with the missing causal SNP or mark in question. Similarly, many epigenetic marks are

not themselves causal for gene expression, but are simply correlated to a causal event (e.g., tran-

scription factor binding). It is also often the case that multiple marks at promoter and enhancer

regions are concordantly acting to impact gene expression. In these cases, individual marks are

not necessarily causal in themselves, but may be viewed as a cause for inter-individual variation

or simply correlated to a causal factor. In this light, pathfinder aims to identify the epigenetically

modifying region so that it can be tested experimentally and/or characterized functionally (for

example, to identify the effector transcription factor). We also note that pathfinder currently

uses an approximation whereby the observed Z-score at the causal SNP is used to estimate the

true NCP at the causal SNP (Methods). We leave this to be addressed in future work; this

Table 4. Top causal paths reported in real data analysis that localized within GWAS regions for 8 autoimmune diseases. For each path, we report the chromosome,

the RSID of the implicated SNP, the implicated mark type, the posterior probability we assigned to this path, three Z-scores (SNP to mark association, mark to expression

association, SNP to expression association), the GENCODE gene around which this region was centered, the ChromHMM [24] annotation for the SNP, and the number

of regulatory motifs altered by the SNP, as designated by HaploReg [25].

chr rsid GWAS mark type posterior SNP-mark mark-exp SNP-exp gene chrom state motifs altered

2 rs2975781 UC, IBD H3K27ac 1.00 -9.00 5.33 -4.96 GPR35 7Enh 9

8 rs2618481 SLE H3K27ac 0.94 -6.04 6.59 -3.99 BLK 2TssAFlnk 0

16 rs9927129 Crohn’s, IBD H3K4me1 0.66 -7.82 -0.79 1.59 RP11-

1348G14.2

15Quies 1

6 rs2071889 UC, SLE, MS, RA, IBD DHS 0.61 6.51 -3.23 -1.78 TAPBP 4Tx 2

16 rs394502 Crohn’s, IBD H3K4me1 0.44 9.96 -1.59 -2.62 EIF3CL 15Quies 4

1 rs57126490 UC, MS, RA, IBD DHS 0.43 4.65 -0.14 0.04 PANK4 5TxWk 0

6 rs915654 UC, SLE, Crohn’s, PBC, MS, RA,

IBD

H3K4me3 0.42 3.48 5.98 3.51 LTA 7Enh 5

1 rs114312440 Crohn’s H3K4me3 0.41 -4.54 3.44 -2.79 MTX1 5TxWk 2

3 rs71155551 SLE H3K27ac 0.39 4.73 3.20 1.27 COPG1 5TxWk 2

1 rs34769708 Crohn’s H3K4me3 0.39 -4.86 2.13 -2.71 ASH1L 7Enh 3

6 rs13197384 MS H3K4me3 0.35 6.68 4.44 3.84 AHI1 1TssA 16

6 rs147085011 UC, SLE, PBC, MS, RA, IBD H3K4me3 0.32 5.11 -0.27 -0.42 RPP21 1TssA 16

16 rs243332 PBC, MS DHS 0.28 4.45 2.26 0.74 SOCS1 1TssA 9

6 rs575034 RA H3K4me1 0.23 3.73 3.51 0.85 SLC35B2 1TssA 1

2 rs737231 Crohn’s, Celiac H3K4me1 0.22 3.59 3.13 2.10 SLC9A4 15Quies 6

5 rs17097187 MS H3K4me3 0.22 -2.94 6.27 -4.93 PCDHGA1 9Het 4

2 rs737231 IBD H3K4me1 0.22 3.59 3.13 2.10 SLC9A4 15Quies 6

1 rs2641116 UC, IBD H3K4me3 0.20 4.57 0.59 1.08 PARK7 4Tx 1

20 rs6115319 MS H3K27ac 0.11 -5.58 6.39 -4.13 FAM182B 15Quies 0

https://doi.org/10.1371/journal.pgen.1007240.t004
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correction will likely further improve the calibration of our method’s credible sets. We note that

pathfinder only uses individuals for which we simultaneously have genetic, chromatin, and

gene expression measurements, thus ignoring eQTL data that has been measured in larger sam-

ple sizes. However, eQTL data from larger samples could potentially be used as a prior for

expectation of SNP causality or perhaps for validation after running pathfinder on real data.

Finally, although our analyses showed that H3K4me3 marks are the most informative for fine-

mapping, small data set sizes analyzed in this work prohibit us in making definitive conclusions

on which mark is most useful leaving such avenues for future work.

Materials and methods

Model and likelihood

For each individual, let h be the signal value for the causal histone mark and G be their vector

of genotypes at a region containing s SNPs. Let E be the individual’s mRNA expression level

for the gene at this region and H be a vector representing all t marks at the region, which con-

tains h. Here we analyze all individual peak locations across all available mark types in a joint

framework. As such, each of t individual marks represents one peak location for a particular

mark type. Our causal framework can be modeled as:

h ¼ Gbg þ �g ð1Þ

E ¼ Hbh þ �h ð2Þ

where �g � N ð0; 1 � s2
gÞ and �h � N ð0; 1 � s2

hÞ. The vector βg represents the allelic effects on

the causal histone mark whose entries will be non-zero only at the causal SNP. The vector βh

represents the histone mark effects on expression levels whose entries will be non-zero only at

the causal histone mark. s2
g and s2

h represent the variance explained at the SNP-mark and

mark-expression levels.

Modeling mark to expression associations. We estimate mark to expression effects with

linear regression to quantify the strength of association of the kth mark through the Wald sta-

tistic:

Zk
h ¼

^
b

k
h

SEð ^
b

k
hÞ

ð3Þ

Zk
h � N ðlk

h; 1Þ ð4Þ

l
k
h ¼

b
k
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var ðhkÞ

p

sh

ffiffiffiffi
N
p

ð5Þ

Here,
^
b

k
h is the estimated effect size of the causal peak on expression. l

k
h represents the

strength of our signal for causal marks [19]. However, correlations between histone marks will

induce a non-zero non-centrality parameters (NCPs) at non-causal histone marks. If we collect

all pairwise mark correlations into Sh, and let Λh,d be the vector of NCPs for all histone marks

on expression given causal mark d, all summary statistics can be approximated by an MVN.

ZhjCh � N ðΣhΛh;d;ΣhÞ ð6Þ

where Ch is an indicator vector containing zeros at all non-causal marks and 1 at the causal

Methods for fine-mapping with chromatin and expression data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007240 February 26, 2018 17 / 25

https://doi.org/10.1371/journal.pgen.1007240


mark d, and ΣhΛh,d represents the vector of induced effect sizes at non-causal marks due to

inter-mark correlations.

As we do not know the causal effect size Λh,d, we use a normal prior on the causal mark

NCPs which can be integrated out as follows:

Λh;djCh; s
2

h � N ð0;ΣC;hÞÞ ð7Þ

ΣC;h ¼ s2

hDiagðChÞ þ Diagð�Þ ð8Þ

ZhjΣh;Ch �

Z

N ðΣhΛh;d;ΣhÞN ð0;ΣC;hÞdΛh;d

� �

PðChÞ ð9Þ

¼ N ð0;Σh þ ΣhΣC;hΣhÞPðChÞ ð10Þ

Here the prior probabilities of the causal set vector P(Ch)) is set to be uniform. As a parameter

of the model, we set a prior variance explained s2
h for the mark effects. We found the method

to be fairly robust to variations in this parameter (Fig 5J–5L), and chose a prior variance of 5

for our analyses. In practice, we add an � of 0.0001 along the diagonal of SC,h to ensure positive

semidefiniteness. Thus, the mark-expression association statistics can be expressed as:

ZhjCh � N ð0;Σh þ ΣhΣCh
ΣhÞ ð11Þ

Modeling SNP to mark associations. As before, we estimate SNP to mark effects with lin-

ear regression to quantify the strength of association of the jth SNP on the kth mark through

the Wald statistic:
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^
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Here,
^

b
j;k
g is the estimated effect size of the causal SNP on the causal peak. l

j;k
g , the NCP, rep-

resents the strength of our signal for causal SNP-mark effects. However, LD between SNPs and

correlations between marks will induce non-zero NCPs at non-causal SNP-mark pairs. We

collect all pairwise SNP correlations into Σg and all pairwise mark correlations into Σh, and use

the Matrix-variate Normal distribution to jointly approximate the association statistics for all

SNPs on all marks as:

ZgjCg;Ch �MN ðM;Σg;ΣhÞ ð15Þ

Here, M is an s × t matrix representing association means between all s SNPs and all t
marks, where each entry Mj;k ¼ Σj;c

g Σ
k;d
h lc;d, such that the induced NCP for SNP j on mark k is

just the NCP for causal SNP c on causal mark d, attenuated by the correlation between SNPs j
and c, as well as the correlation between marks k and d. Here, rather than integrating out the

causal NCPs as we did with the mark-expression associations, we use the observed Z-score for
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the causal SNP-mark pair to approximate the λj,k terms, as the integration is not straightfor-

ward in the matrix-variate setting.

Computing posterior probabilities for causality. The posterior probability for causality

for a given path can be expressed as

PðCh;CgjZg;ZhÞ ¼
PðZg;ZhjCh;CgÞPðCh;CgÞ

PðZg;ZhÞ
ð16Þ

A prior can be specified on the probability that a SNP or mark within a fine-mapping region is

causal, informed by features like distance to TSS, which is known to correlate with causality

[10, 21], or functional annotations. Here we assign this prior to be uniform:

PðCh;CgjZg;ZhÞ ¼
PðZg;ZhjCh;CgÞ

PðZg;ZhÞ
ð17Þ

¼
PðZhjChÞðPðZgjCh;CgÞ

PðZg;ZhÞ
ð18Þ

We obtain P(Zh|Ch) from Eq 11 and P(Zg|Ch, Cg) from Eq 15. We then compute P(Zg, Zh) by

summing over the individual likelihoods for all possible causal paths. Here our method

assumes a single causal SNP and mark per region, as we restrict our enumeration to only pair-

wise causal SNP-mark combinations.

Simulation framework

We simulated data for 100 individuals over 10,000 50KB regions, using genotypes and LD

from 65 YRI individuals obtained through 1000 Genomes [26]. SNP and mark correlations in

our simulations were taken from the true correlations exhibited in these regions derived from

these individuals. To determine causal status, we randomly chose one SNP and one mark to be

causal in each region, thus defining a causal path through the data. Subsequently, we standard-

ized genotypes and simulated values for chromatin marks and gene expression over all 100

individuals.

In order to simulate correlations between histone marks as observed in our empirical

data, we drew mark values from an MVN as N ðHind; �gShÞ, where the means, Hind = HcSh,c,

represent the induced values on non-causal marks due to correlations with the causal mark.

The mean mark values for the causal mark were generated for each of the 100 individuals as

Hc = βgGc, where Gc is the genotype of the individual at the causal SNP, the effect size βg was

drawn from a normal distribution, N ð0; s2
gÞ, with variance set to the desired variance

explained by SNPs on marks s2
g ¼ 0:25, with the error term �g set to 1 � s2

g . Finally, the indi-

viduals’ values for gene expression are computed as E = βhHc + �h, where Hc is the causal

mark value as computed from the MVN, the effect size βh was set to the desired variance

explained from mark to expression s2
g ¼ 0:25, with the remaining error term given by

N ð0; 1 � s2
gÞ.

For simulations in which there were multiple causal SNPs or marks, we randomly drew m
or p, the number of causal SNPs or marks, from a binomial distribution where the expected

number of causals per region was set to 1. However, we only included simulations with two or

more causals. For multi-causal-SNP simulations, we then randomly selected m causal SNPs in

the region and simulated chromatin marks and gene expression as described previously,

but drew the effect sizes of each SNP as N ð0; s2
g=mÞ, such that the total expected variance
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explained remained at 0.25. For multi-causal-mark simulations, we randomly selected p causal

marks in the region and simulated chromatin marks by defining the means, Hc, of each causal

mark independently as described for the single-causal simulations. We then computed gene

expression by drawing the effect size, βh, of each causal mark from N ð0; s2
g=pÞ such that the

total expected variance explained remained at 0.25.

Existing approaches

We benchmark our method against five alternative approaches. Firstly, we compare against

the standard overlap analysis whereby hQTLs and eQTLs are independently identified within

a region centered around a gene. We follow the protocol outlined in [14]. In this experiment,

we computed the best SNP association in each region with every mark measured in the region

as well as with the gene expression value for that region. We determined adjusted p-values for

each top association by performing permutation tests. We then accounted for multiple testing

at the mark level by determining the minimum FDR at which each adjusted p-value would be

considered significant. This was estimated via the qvalue package [27]. This procedure resulted

in a set of significant SNP-mark associations, as well as one SNP-expression association within

the region, as only the top SNP association is retained for each biological phenotype. We then

evaluated the number of causal SNPs, marks, and paths that were ultimately included in these

candidate sets.

Secondly, we compared against the approach of independently fine-mapping the two levels

of data (SNP-mark and mark-expression), and multiplying together pairs of posterior proba-

bilities to produce probabilities of causality for paths. For these independent fine-mapping

experiments, we used a simple approach that assumes a single causal variant, approximating

posterior probabilities for causality directly from Z-scores [28].

In addition, we compared against a basic ranking approach, where we independently com-

puted SNP-mark, mark-expression, and SNP-expression associations for every SNP and mark

within a region. For SNP and mark prioritization, we simply produced a ranking of the SNP-

expression and mark-expression posterior probabilities for causality, respectively. For path pri-

oritization, we produced a ranking of the product of SNP-mark and SNP-expression posterior

probabilities.

We next compared against a bayesian network model which computes directed association

strengths between all possible pairs of nodes in a given network [20]. The method takes as

input raw genotype and phenotype values. As nodes, we included all SNPs and marks, as well

as the gene expression value, within a region. We allowed only for node pairings directed from

SNP to mark or from mark to gene expression. For SNP and mark prioritization, we ranked

association strengths over all directed SNP-expression edges and mark-expression edges,

respectively. For path prioritization, we produced a ranking of the product of SNP-mark and

mark-expression strengths.

Finally, we compared against Coloc, which is designed to identify SNPs that are likely to

be causal for multiple traits at once. Specifically, Coloc outputs a posterior probability that a

SNP is causal for two arbitrary traits simultaneously. We adapted Coloc for our purposes by

running the method on all SNPs independently. For each SNP, the two given traits were (1)

gene expression, and (2) a mark value. Thus, we ran Coloc independently for all SNP-mark

combinations. This produced a set of posterior probabilities indicating, for each SNP-mark

combination, the likelihood that the SNP is causal for both the mark value and gene expres-

sion simultaneously. For path prioritization, we ranked these probabilities over all SNP and

mark combinations. For SNP and mark prioritization, we marginalized over all marks and
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SNPs, respectively, producing posterior probabilities for each SNP and mark to be causal

independently.

Real data

The real data analyses were done on 65 YRI individuals whose genotypes were obtained

through 1000 Genomes and standardized. PEER-normalized [29] H3K4me1, H3K4me3,

H3K27ac, DHS, and RNA expression marks in lymphoblastoid cell lines (LCLs) for these indi-

viduals were obtained from [10]. For each gene in the dataset, we computed associations for

every SNP-mark, SNP-gene, and mark-gene pair within a 50kb window centered around the

gene TSS. On average, each region contained 160 SNPs and 25 marks (across the four mark

types—H3K4me1, H3K4me3, H3K27ac, and DHS—whose peak values we analyzed together

in each region). Overall, from 14,669 50kb regions, we filtered for regions that exhibited evi-

dence for our sequential model where SNPs affect chromatin marks, which in turn affect gene

expression. Specifically, for each region we performed a two-stage regression where we first

regressed gene expression on all chromatin marks, and (2) regressed the proportion of expres-

sion explained by the chromatin marks on each SNP. If at least one SNP had a low p-value for

association (p< 0.05/n.snps) to the proportion of gene expression explained by chromatin

data, we kept this region for our real data analysis. After this filtering procedure, we retained

1,317 regions.

We obtained motif annotations from HaploReg [25] and ChromHMM annotations from

the NIH Roadmap Epigenomics Consortium [30]. When comparing annotations of top priori-

tized paths with those of random paths, we established corresponding background paths by

choosing a random SNP/mark combination at every region where a top path was reported.

For GWAS analyses, we explored regions whose tag SNP was associated to an autoimmune

trait with p< 5 × 10−8. Associations were obtained from recent literature for eight autoim-

mune phenotypes [31–36]. For each of pathfinder’s top reported paths, we determined whether

the corresponding SNP was contained within any of the GWAS regions in our dataset. In

order establish a null distribution for this statistic, we ran the same analysis for random regions

in the genome not overlapping with the GWAS regions in our dataset. Specifically, for each

GWAS region, we randomly selected a SNP in the same chromosome matched for MAF

(� = 0.01) and LD score (� = 0.001) with the GWAS tag SNP. We established a window around

this matched SNP corresponding to the window size of the GWAS region. Finally, we deter-

mined the number of top paths that fell within these random regions. We repeated this experi-

ment 100 times to establish the null distribution of this measurement and calculated a p-value

using a Z-test.

Supporting information

S1 Table. 50%, 90%, and 99% credible sets for SNP-, mark-, and path-mapping in simula-

tions. We compare pathfinder to basic eQTL mapping with respect to the size of their credible

sets, averaged across all regions. Standard errors are included next to each measurement.

(TIF)

S2 Table. 50%, 90%, and 99% credible sets for SNP-, mark-, and path-mapping for simula-

tions using YRI LD and CEU LD. We compare pathfinder’s performance on simulations

using SNP LD from YRI versus from CEU, with respect to the size of its credible sets, averaged

across all regions. Standard errors are included next to each measurement.

(TIF)
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S3 Table. Aggregate probability mass assigned to DHS, H3K4me1, H3K4me3, and

H3K27ac. We compare the total probability amassed at all peaks for each mark type after run-

ning pathfinder on empirical data. We display both the raw probability mass and the average

mass contribution per peak location for each mark type.

(TIF)

S4 Table. 50%, 90%, and 99% credible sets for SNP-, mark-, and path-mapping for real

data analysis in CEU individuals. We compare pathfinder’s performance on PEER-corrected

data and raw data, with respect to the size of its credible sets, averaged across all regions. Stan-

dard errors are included next to each measurement.

(TIF)

S1 Fig. 50%, 90%, and 99% credible sets for SNP-, mark-, and path-mapping, in compari-

son to independent fine-mapping. We compare pathfinder to the technique of independently

fine-mapping the two levels of data, with respect to the calibration of their credible sets (A, C,

E) and the size of their credible sets (B, D, F).

(TIF)

S2 Fig. Performance of the method in the presence of two anti-correlated mark effects. We

assess pathfinder’s behavior in simulations with respect to SNP-, mark-, and path-mapping

(A-C) when an additional peak in the region has an effect on expression that is opposite from

the mediating peak in question, compared with regions in which the effect of the additional

peak has a matching sign.

(TIF)

S3 Fig. Comparison of ranking approaches in response to violations of the causal model.

We compare pathfinder’s response to violations of the causal model against the behavior of

other ranking approaches. Causal models are illustrated to the left of the figure. (A, D, G, J, M,

P, S) display SNP-mapping accuracy. (B, E, H, K, N, Q, T) display mark-mapping accuracy.

(C, F, I, L, O, R, U) display path-mapping accuracy.

(TIF)

S4 Fig. Runtime analysis. pathfinder’s runtimes on empirical data with respect to the number

of SNPs, marks, and paths within a region (A-C). We plot each simulation as a point and fit a

line to all points.

(TIF)

S5 Fig. Observed h2
g in empirical data. We report the distribution of SNP-mark (A), mark-

expression (B), and SNP-expression (C) h2
g levels observed across all top paths selected by path-

finder.

(TIF)

S6 Fig. Association plots for top region reported by pathfinder in real data, spanning a

50kb region centered around the NDUFA12 TSS. (A) Mark-expression Z-scores are reported

for all marks. (B) SNP-mark Z-scores are reported for the top mark chosen by pathfinder. The

implicated SNP, rs835044, lies 6bp downstream of the NDUFA12 TSS.

(TIF)

S7 Fig. Spatial relationships between SNP, mark, and TSS in top paths reported by path-
finder vs random paths, stratified by mark type. (A-C) DHS. (D-F) H3K4me1. (G-I)

H3K4me3. (J-L) H3K27ac.

(TIF)
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