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Genome-wide scan inHispanics highlights
candidate loci for brain white matter
hyperintensities

ABSTRACT

Objective: To investigate genetic variants influencing white matter hyperintensities (WMHs) in the
understudied Hispanic population.

Methods: Using 6.8 million single nucleotide polymorphisms (SNPs), we conducted a genome-
wide association study (GWAS) to identify SNPs associated with WMH volume (WMHV) in 922
Hispanics who underwent brain MRI as a cross-section of 2 community-based cohorts in the
Northern Manhattan Study and the Washington Heights–Inwood Columbia Aging Project. Multi-
ple linear modeling with PLINK was performed to examine the additive genetic effects on ln
(WMHV) after controlling for age, sex, total intracranial volume, and principal components of
ancestry. Gene-based tests of association were performed using VEGAS. Replication was per-
formed in independent samples of Europeans, African Americans, and Asians.

Results: From the SNP analysis, a total of 17 independent SNPs in 7 genes had suggestive evi-
dence of association with WMHV in Hispanics (p , 1 3 1025) and 5 genes from the gene-
based analysis with p , 1 3 1023. One SNP (rs9957475 in GATA6) and 1 gene (UBE2C)
demonstrated evidence of association (p , 0.05) in the African American sample. Four SNPs
with p , 1 3 1025 were shown to affect binding of SPI1 using RegulomeDB.

Conclusions: This GWAS of 2 community-based Hispanic cohorts revealed several novel WMH-
associated genetic variants. Further replication is needed in independent Hispanic samples to val-
idate these suggestive associations, and fine mapping is needed to pinpoint causal variants.
Neurol Genet 2017;3:e185; doi: 10.1212/NXG.0000000000000185

GLOSSARY
GWAS 5 genome-wide association study; HDAC 5 histone deacetylase; LD 5 linkage disequilibrium; mRNA 5 messenger
RNA; NOMAS 5 Northern Manhattan Study; SNP 5 single nucleotide polymorphism; WHICAP 5 Washington Heights–
Inwood Columbia Aging Project; WMH 5 white matter hyperintensity; WMHV 5 WMH volume.

White matter hyperintensities (WMHs) are frequently detected by MRI in the aging brain1 and
are associated with a range of negative health outcomes.2–6 Prevalence ranges from 40% to 70%
in the fifth decade7 and increases with age. It is important that Hispanics and African Americans
have shown more severe WMHs than ancestral Europeans.8 Although heterogeneous in etiol-
ogy, there is a consistent link between WMH burden and cerebrovascular risk factors, as well as
with retinal microvascular abnormalities and vascular pathology.9 Thus, WMHs could be
considered a quantitative marker of small vessel injury.10 Moreover, WMHs have a significant
genetic component, with heritability estimates from 0.45 to 0.80.10–13

Identifying genetic determinants of WMHs has been a challenge. Linkage studies have
yielded conflicting findings regarding the genetic loci influencing WMHs.12–14 The most
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consistently replicated locus identified for
WMHs is on chromosome 17q25 and was
first identified in ;9,500 individuals of Euro-
pean descent.15 This locus was later replicated
and additional loci on chromosomes 10q24
and 2p21 identified.16 A multiethnic meta-
analysis, including ;2,000 African Ameri-
cans, ;800 Hispanics, and ;400 Asians,
identified additional loci on chromosomes
1q22 and 2p16.16

Although Hispanics and African Americans
show more severe WMHs than Europeans,8

these populations have not been the focus
of genetic discovery. To address this, we
performed a genome-wide association scan to
identify genetic variants influencing WMHs in
Hispanics in 2 community-based cohorts from
the NorthernManhattan Study (NOMAS) and
the Washington Heights–Inwood Columbia
Aging Project (WHICAP).

METHODS Participants. Hispanic participants fromNOMAS

and WHICAP with WMHs and genotype data available were

included in this study. All participants provided written informed

consent. The study was approved by the Institutional Review Boards

of the University of Miami and Columbia University Medical

Center. The research design and detailed ascertainment scheme for

NOMAS and WHICAP were described in detail previously.17,18

To be eligible for recruitment in the NOMAS, participants had to

be at least 40 years of age, never been diagnosed with a stroke, and

resided for at least 3 months in a household with a telephone in

Northern Manhattan. A total of 3,298 participants were enrolled

from 1993 to 2001, and 199 unrelated household members were

recruited from 2003 to 2008. Data were collected at enrollment

using standardized data collection instruments, medical records,

and fasting blood samples.

For the WHICAP, participants were recruited in 2 waves

(1992–1994 and 1999–2002) through the use of a probability

sample of Medicare beneficiaries who were older than 65 years

and residing in a defined area of Northern Manhattan. Each

WHICAP participant underwent an in-person interview of gen-

eral health and functional ability at the time of study entry,

followed by a standardized assessment, including medical history,

physical and neurologic examination, and a neuropsychological

battery.

Quantitative measurement of WMH volume. Selected

NOMAS and WHICAP participants were scanned on the same

1.5T Philips Intera scanner at Columbia University Medical Cen-

ter using the same sequences. Participants were selected for MRI,

on average 6 years after recruitment, if they were 55 years or older,

were classified as nondemented at a previous study visit, had no

contraindications for MRI, and signed informed consent.17,18

Data sets were transferred electronically to UC Davis for mor-

phometric analysis as previously described.19 Briefly, nonbrain

elements were manually removed from the image by operator-

guided tracing of the dura mater within the cranial vault,

including the middle cranial fossa but excluding the posterior

fossa and cerebellum. The resulting measure of the cranial vault

was defined as the total intracranial volume. After image intensity

nonuniformities were removed from the image, the corrected

image was modeled as a mixture of 2 Gaussian probability

functions with the segmentation threshold determined at

the minimum probability between these 2 distributions. Once

brain matter segmentation was achieved, a single Gaussian dis-

tribution was fitted to image data, and a segmentation threshold

for WMHs was determined a priori as 3.5 SDs in pixel intensity

above the mean of the fitted distribution of the brain pa-

renchyma.20 For the NOMAS, high interrater reliabilities

were documented for both the intracranial volume (0.97) and

WMH (0.99).2

Genotyping, imputation, and quality control. DNA sam-

ples were obtained through whole blood extraction. For the NO-

MAS, genotyping of DNA samples was performed using

Affymetrix Genome-Wide Human SNP Array 6.0 chips ac-

cording to Affymetrix procedures at the Genotyping Core of the

John P. Hussman Institute for Human Genomics at the Uni-

versity of Miami. Genotype calling was performed using Affy-

metrix Power Tools v.1.15.0. For the WHICAP, genotyping was

performed in 2 batches on the Illumina HumanHap 650Y

(WHICAP1) and Omni 1M (WHICAP2) chips, according to

Illumina procedures at Columbia University. Genotype calling

was performed separately for WHICAP1 and WHICAP2 using

GenomeStudio v.1.0. Genome-wide genotype data were available

on a total of 1,067 Hispanics meeting all inclusion criteria from

either NOMAS (811) or WHICAP (191 WHICAP1 and 65

WHICAP2). Because both NOMAS and WHICAP were sam-

pled from Northern Manhattan, we expected some participants

to be enrolled in both studies. Therefore, we checked for unex-

pected relationships with identical-by-descent proportion .0.25

using PLINK21 and found 34 duplicate and 15 related pairs

between NOMAS and WHICAP1 or WHICAP2. After drop-

ping at least 1 from each pair, typically the one genotyped on the

smaller array, a total of 1,019 unrelated individuals remained for

the final joint analysis.

Quality control was applied to both DNA samples and sin-

gle nucleotide polymorphisms (SNPs). Specifically, samples

were removed from further analysis if they had call rates below

95%, sex discrepancies, relatedness, autosomal heterozygosity

beyond 4 SDs from the mean. In addition, a subset of

;51,000 independent SNPs (R2 # 0.2) across the genome were

used to infer principal components using Eigenstrat software.22

Samples were eliminated if they were outliers beyond 6 SDs

from the mean based on the first 10 principal components.

An additional 50 participants from the WHICAP with a diag-

nosis of stroke were excluded from further analysis. This led to

760, 97, and 65 samples available for analysis from NOMAS,

WHICAP1, and WHICAP2, respectively. SNPs were excluded

if they were not in the Hardy-Weinberg equilibrium (p , 1 3

1026) or had a genotyping call rate less than 95%. This led to

a total of 813,769; 624,026; and 970,293 SNPs available in

NOMAS, WHICAP1, and WHICAP2, respectively. A total of

6%, 1%, and 11% of SNPs were dropped because of low call

rate for NOMAS, WHICAP1, and WHICAP2, respectively.

Only ;100,000 SNPs overlapped between all 3 data sets, so

imputation was performed on each data set using IMPUTE223

with the 1000 Genomes Phase I (interim) NCBI Build b37

(June 2011) reference panel. This reference panel included

1,094 individuals from across Europe, Africa, Asia, and the

Americas. SNPs were subsequently removed if the imputation

quality score was less than 0.8 or the minor allele frequency was

less than 0.01 in any of the NOMAS, WHICAP1, or WHI-

CAP2 samples, resulting in a total of 6,783,792 SNPs for

analysis.
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Statistical analyses. To compare the sample characteristics

between the NOMAS and WHICAP Hispanic cohorts, a x2 test

was used to test for frequency differences for categorical variables

and a student t test was performed to test for mean or median

differences for continuous variables using R.24 Population substruc-

ture was assessed using ADMIXTURE,25 including reference pop-

ulations of Europeans (Utah residents with northern and western

European ancestry) and Africans (Yoruba in Ibadan, Nigeria) from

1000 Genomes as well as Native Americans from the Human

Genome Diversity Project.26 Because of the skewed distribution,

WMHs were log transformed. To evaluate the association of

WMHs with each SNP, using PLINK,21 an additive genetic model

was fit by regressing log-transformed WMHs on genotype dosage

(0–2 copies of the variant allele) after adjusting for age at MRI, sex,

total intracranial volume, and the top 2 principal components of

ancestry to account for population substructure. No adjustment for

treatment was needed, as all patients were classified as non-

demented. These analyses were performed separately in each of the

NOMAS, WHICAP1, and WHICAP2 cohorts. An inverse-

variance meta-analysis under a fixed-effects model was used in

METAL (released March 27, 2011)27 to summarize results across

the 3 strata. SNPs with I2 heterogeneity estimates greater than 50%

were removed post hoc. VEGAS (v.01)28 was used to assign SNPs

to genes (within 50KB using NCBI Build b37) and produce gene-

based test statistics and empirical p values by simulation. A random

sample of 200 Hispanics from the NOMAS was used to estimate

linkage disequilibrium (LD) patterns for each gene.

To determine the relevance of our findings to other race and

ethnic groups, summary statistics were obtained from CHARGE

analyses of;18,000 Europeans,;2,000 African Americans, and

;400 Asians16 for each of our top SNPs from the single SNP

analysis (using an a priori threshold of p , 1 3 1025 and inde-

pendence with R2 # 0.2 based on an LD-clumping procedure)

and each SNP within our top genes (using an a priori threshold of

p , 1 3 1023). Although the CHARGE analyses16 included

;800 Hispanics, these samples overlapped largely with NOMAS

and WHICAP and therefore did not provide a suitable and inde-

pendent replication of our study. A multiethnic meta-analysis was

performed using a z-score–based fixed-effects model in METAL

(released March 27, 2011). An inverse-variance meta-analysis was

not possible, given the data format produced by the previous

CHARGE z-score–based meta-analyses.

VEGAS2 (v.02)29 was used to produce gene-based empirical

p values from the CHARGE summary statistics using 1000

Genomes reference panels of Europeans, Africans, and Asians

to estimate LD patterns for each gene. While VEGAS allows

input of a customized reference data set to estimate LD (necessary

for our Hispanic cohorts), VEGAS2 does not allow this option.

VEGAS2 does, however, provide more extensive reference panel

data than VEGAS for the analysis of the European, African

American, and Asian samples used in the CHARGE analyses.

Nonetheless, the VEGAS and VEGAS2 algorithms are based

on the same simulation strategy and produce similar results, given

the same input data set. Sensitivity analyses were conducted using

MAGMA (v.1.06),30 which produced similar results (data not

shown).

RESULTS The sample characteristics of the NOMAS
and WHICAP Hispanic MRI cohorts are presented in
table 1. Among the 922 Hispanic participants overall,
the mean age was 71.1 6 9.0 years, and 63.7% were
women. Compared with NOMAS Hispanic partici-
pants, WHICAP Hispanic participants had a greater
WMH volume (WMHV) and smaller intracranial
volumes because of the older age distribution. The
population substructure of each of the NOMAS and
WHICAPHispanicMRI cohorts is presented in figure 1.
The overall cohort was on average 57% European,
31% African, and 12% Native American, expected,
given the largely Dominican Hispanic population of
Northern Manhattan.

In the meta-analysis of Hispanic samples, the
quantile-quantile plot (figure e-1 at Neurology.org/ng)
did not reveal an obvious departure from the distri-
bution of expected p values by chance (genomic
inflation factor [l] of 0.997), suggesting no signifi-
cant inflation of probability values due to population
substructure. Genome-wide association results are
shown in figure 2. While no SNP reached genome-
wide significance, 17 independent SNPs (R2 # 0.2)
were associated with WMHV at p , 1 3 1025.
Frequencies and effect estimates for these 17 SNPs
are shown in table 2. The mean changes in ln
(WMHV) for per copy increase in these risk alleles
ranged from 0.14 to 0.55, corresponding to 14.4%–

21.7% of the mean WMHV. Seven of the 17 SNPs
were within a known gene. While none of the 17
SNPs demonstrated statistical significance at a multi-
ple testing threshold of 2.9 3 1023 (0.05/17), one of

Table 1 WMH measures and associated risk factors

Risk factors and
phenotypes

Overall
(N 5 922)

NOMAS
(N 5 760)

WHICAP1
(N 5 97)

WHICAP2
(N 5 65)

NOMAS vs WHICAP1 NOMAS vs
WHICAP2

WHICAP1 vs
WHICAP2

N (%)
p Value (Pearson x2)

Female 587 (63.7) 474 (62.4) 68 (70.8) 45 (69.2) 1.69 3 10201 3.34 3 10201 1.00

Mean 6 SD p Value (Student t test)

Age at MRI 71.1 6 9.0 69.1 6 8.4 80.2 6 5.3 81.0 6 5.1 1.42 3 10240 9.92 3 10231 3.52 3 10201

WMHV, mL 8.0 6 9.7 6.9 6 8.7 11.3 6 11.4 15.5 6 13.2 3.88 3 10204 2.72 3 10206 4.13 3 10202

Intracranial volume, mL 1,133.7 6 112.5 1,139.0 6 112.9 1,114.9 6 108.5 1,099.7 6 105.3 4.23 3 10202 5.20 3 10203 3.74 3 10201

Abbreviations: NOMAS 5 Northern Manhattan Study; WHICAP 5 Washington Heights–Inwood Columbia Aging Project; WMH 5 white matter hyper-
intensity; WMHV 5 WMH volume.
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these 17 SNPs, rs9957475 (risk allele 5 C, beta 5
0.188, p 5 6.19 3 1026) located in GATA-binding
protein 6 (GATA6), demonstrated evidence of asso-
ciation with p , 0.05 in an independent sample of
African Americans (rs9957475, risk allele 5 C, p 5

0.020). In the NOMAS Hispanic sample, the average
WMHV for 0, 1, and 2 copies of the risk allele were
6.08, 8.58, and 8.95 mL, respectively. No SNPs
reached genome-wide significance in the z-score–
based or sample size–weighted, multiethnic meta-
analysis, not surprising given the substantial weight
(per the sizable sample) of the largely insignificant
European cohort.

Using RegulomeDB,31 we sought to determine
whether any SNP associated with WMHV had reg-
ulatory function. Of the 95 SNPs with p , 1 3

1025 (17 independent SNPs with R2 # 0.2), 5 were
likely to affect protein binding: one of these variants,
rs2670314, was located downstream of GDNF fam-
ily receptor a 4 (GFRA4) on chromosome 20p13,
while the remaining 4 variants (rs73306471,
rs73306449, rs73306445, and rs73306424) were
located on chromosome 20q13 within an LD block
spanning 3 genes, including WAP four-disulfide
core domain 3 (WFDC3), deoxynucleotidyltransfer-
ase terminal-interacting protein 1 (DNTTIP1), and

Figure 1 Global genetic ancestry

The plots depict the ancestral proportions observed within each cohort, where individual is represented on the x-axis and
proportion ancestry on the y-axis. Global ancestry was calculated using 50,327 independent single nucleotide polymor-
phisms (R2 # 0.2), with reference populations including 46 Europeans (Utah residents with northern and western European
ancestry from 1000 Genomes), 46 Africans (Yoruba in Ibadan, Nigeria from 1000 Genomes), and 46 Native Americans
(Surui and Karitiana of Brazil and Maya and Pima of Mexico from the Human Genome Diversity Project). NOMAS5Northern
Manhattan Study; WHICAP 5 Washington Heights–Inwood Columbia Aging Project.

Figure 2 Single nucleotide polymorphism association results for meta-analysis of white matter hyperintensity volume

TheManhattan plot depicts the –log 10 p values by position from the Hispanic meta-analysis of Northern Manhattan Study andWashington Heights–Inwood
Columbia Aging Project single single nucleotide polymorphism association results.
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Table 2 Single SNP association results (independent with R2 < 0.2) with p £ 1.0 3 1025 among Hispanics

Chr:MB rsID Gene:Func

Hispanic cohorts CHARGE

Meta-pRA N FRQ W1 FRQ W2 FRQ b p I2 AFR FRQ AFR p ASN FRQ ASN p EUR FRQ EUR p

1:92.0 rs13447479 CDC7:intron G 0.16 0.17 0.11 0.19 8.12 3 10206 42.6 0.10 9.40 3 10201 0.26 13.53 3 10201 0.18 18.22 3 10202 8.83 3 10203

2:107.4 rs76479473 ST6GAL2:UTR3 A 0.97 0.97 0.96 0.44 3.16 3 10206 0.0 0.98 9.70 3 10201 0.95 6.33 3 10201 0.95 13.04 3 10201 6.61 3 10202

4:18.4 rs6832924 — T 0.93 0.95 0.90 0.28 5.62 3 10206 0.0 0.79 15.39 3 10201 NA NA NA NA 1.97 3 10203

4:58.4 rs1372094 — T 0.29 0.22 0.21 0.15 5.81 3 10206 0.0 0.29 1.12 3 10201 0.02 12.80 3 10201 0.28 16.57 3 10201 3.35 3 10201

5:87.4 rs75027182 — T 0.02 0.01 0.02 0.55 8.56 3 10206 0.0 0.06 16.31 3 10201 NA NA NA NA 4.44 3 10203

5:119.0 rs162603 — G 0.33 0.31 0.34 0.18 1.26 3 10207 31.3 0.33 18.59 3 10201 0.33 12.36 3 10201 0.31 5.72 3 10201 4.77 3 10201

6:72.4 rs272210 — A 0.03 0.02 0.08 0.42 5.23 3 10206 11.9 0.09 13.11 3 10201 NA NA NA NA 7.67 3 10204

8:136.1 rs79780482 — A 0.02 0.03 0.01 0.46 9.98 3 10206 0.0 0.07 8.46 3 10201 0.01 7.33 3 10201 NA NA 1.16 3 10202

15:98.7 rs62024995 — C 0.75 0.75 0.79 0.18 4.78 3 10207 25.8 0.89 17.41 3 10201 0.75 13.67 3 10201 0.63 15.98 3 10202 2.59 3 10203

18:19.8 rs9957475 GATA6:intron C 0.19 0.18 0.18 0.19 6.19 3 10206 0.0 0.45 11.99 3 10202 0.09 14.98 3 10201 0.02 6.65 3 10201 1.12 3 10201

18:27.0 rs9947408 — G 0.10 0.07 0.10 0.26 8.51 3 10206 0.0 0.31 4.74 3 10201 NA NA NA NA 7.27 3 10202

18:29.8 rs10502586 — G 0.11 0.13 0.08 0.23 9.13 3 10206 0.0 0.19 19.40 3 10201 0.03 6.87 3 10203 0.07 9.24 3 10201 6.53 3 10201

20:3.6 rs2670314 GFRA4:ds G 0.61 0.58 0.53 0.14 7.74 3 10206 0.0 0.39 6.75 3 10201 0.54 13.66 3 10201 0.71 18.34 3 10201 2.70 3 10201

20:5.9 rs73596147 TRMT6:intron T 0.92 0.91 0.96 0.24 7.95 3 10206 0.0 0.89 7.02 3 10201 0.91 8.75 3 10201 0.98 18.40 3 10201 3.27 3 10201

20:44.4 rs6032525 WFDC3:intron G 0.03 0.02 0.03 0.44 1.17 3 10206 18.7 0.06 11.50 3 10201 NA NA NA NA 1.02 3 10204

22:35.4 rs5999656 — C 0.85 0.87 0.87 0.20 3.34 3 10206 0.0 0.68 14.39 3 10201 0.94 19.22 3 10201 0.93 3.00 3 10201 8.18 3 10201

22:45.7 rs6007590 FAM118A:intron G 0.08 0.13 0.11 0.24 8.77 3 10206 0.0 0.09 17.83 3 10201 0.31 16.44 3 10201 0.11 19.25 3 10201 2.59 3 10201

Abbreviations: NOMAS 5 Northern Manhattan Study; SNP 5 single nucleotide polymorphism; WHICAP 5 Washington Heights–Inwood Columbia Aging Project. N FRQ, W1 FRQ, W2 FRQ, AFR FRQ, ASN FRQ, and
EUR FRQ - NOMAS, WHICAP1, WHICAP2, CHARGE African American, CHARGE Asian, and CHARGE European allele frequencies, respectively. NA - not applicable, indicating the variant was monomorphic or not
well imputed (INFO , 0.4) in the replication sample. CHARGE results with p , 0.05 are indicated in bold text.
All BP are in HG19 coordinates in the form chromosome:megabase. I2 5 heterogeneity statistic describing the percentage of variation across NOMAS, WHICAP1, and WHICAP2 due to heterogeneity. CHARGE
results are based on 17,936 Europeans, 1,943 Africans, and 405 Asians. SNPs which have not been analyzed in select populations are monomorphic.
A “1” sign indicates that the direction of effect is the same as that seen in Hispanics.
The Meta-p was calculated using a z-score–based fixed-effect meta-analysis of Hispanic and CHARGE cohorts. No I2 is available due to the z-score–based method.
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ubiquitin-conjugating enzyme E2 C (UBE2C). In
total, these 5 SNPs were predicted to influence the
binding of 70 proteins. A list of the proteins affected
by each SNP and associated RegulomeDB scores are
shown in table e-1. Notably, Spi-1 proto-oncogene
(SPI1) was the only protein influenced by
rs2670314 on 20q13 and rs73306449 on 20p13.
Two additional SNPs within the WFDC3-
DNTTIP1-UBE2C LD block influenced the
binding of SPI1. No other proteins were influenced
by 4 or more SNPs. Of the 6,395 SNPs with p , 1
3 1023, 110 were likely to affect the binding of
130 proteins (table e-1). The most commonly
affected proteins were RNA polymerase II subunit
A (POLR2A), which was influenced by 24 variants
across 12 chromosomes, and CCCTC-binding fac-
tor (CTCF), which was influenced by 23 variants
across 13 chromosomes (table e-2).

Table 3 indicates the results from our gene-based
association tests (p, 1.003 1023). The most strongly
associated gene in our Hispanic sample, UBE2C (p 5
3.613 1024), demonstrated evidence of association in
the African American sample (p 5 0.034). The single
SNP results of all variants within this gene region in
the Hispanic and all replication samples are shown in
table e-3. The majority of SNPs within 50KB of
UBE2C with p , 1.00 3 1025 in Hispanics were
monomorphic in the European and Asian samples.

DISCUSSION In this genome-wide association study
(GWAS) of 2 community-based Hispanic cohorts, 17
independent SNPs located within 7 genes showed
suggestive associations with WMHV with p , 1 3

1025. One SNP in GATA6 demonstrated evidence of
association in an independent sample of African
Americans. A total of 110 unique variants with p, 1
3 1023 were shown to influence the binding of
130 unique proteins, most commonly CTCF and
POLR2A. Four of 5 of the 110 variants with p, 13

1025, all on chromosomes 20q13 and 20p13, influ-
enced the binding of SPI1. A gene-based analysis
implicated UBE2C on chromosome 20q13 in our
Hispanic sample, a finding which was supported in an
independent sample of African Americans. This study
focuses on a minority population as a means of dis-
covery for novel genetic variants that influence white
matter lesion burden.

GATA6 encodes a member of the GATA family of
transcription factors and has been shown to regulate
angiogenesis and promote survival of endothelial
cells.32 Expression in early embryogenesis is crucial
to heart development, and mutations in this gene
have been shown to be associated with a number of
congenital abnormalities including dilated cardiomy-
opathy33 and atrial fibrillation.34 In addition to
GATA6 displaying a single SNP association with
WMHV in Hispanics and African Americans, 18
variants with p , 1 3 1023 in the Hispanic analysis
affect the binding of at least 1 of GATA6, GATA1,
GATA2, and GATA3. Similar to GATA6, the other
members of the GATA family of transcription factors
are important in the vascular and lymphatic systems
through regulation in the development of erythrocytes
(GATA1) and lymphocytes (GATA2 and GATA3).35

Other notable transcription factors affected by our
top SNP associations include CTCF and POLR2A.
CTCF is a regulator protein, which can bind histone
acetyltransferase–containing complex or histone de-
acetylase (HDAC)-containing complex, functioning as
a transcriptional activator or repressor. Protein acety-
lation has been implicated in a host of neurologic dis-
eases in recent years due primarily to HDAC-associated
decrease in the level of a protein or widespread genomic
transcriptional losses.36 Thus, CTCF also plays a critical
role in this pathway for neurodegeneration. POLR2A
plays a role in messenger RNA (mRNA) processing
through the transcription of pre-mRNA from the geno-
mic DNA; thus, inhibition of POLR2A binding could

Table 3 Gene-based association results with p £ 1.0 3 1023 among Hispanics

Chr Start (MB) End (MB) Gene # SNP p

CHARGE

AFR ASN EUR

# SNP p # SNP p # SNP p

20 44.39 44.50 UBE2C 285 3.61 3 10204 479 3.35 3 10202 244 7.14 3 10201 327 8.34 3 10201

10 17.58 17.71 PTPLA 251 2.15 3 10204 775 3.75 3 10201 433 9.68 3 10201 535 8.20 3 10201

2 108.4 108.6 RGPD4 193 5.37 3 10204 316 8.49 3 10201 189 5.95 3 10201 284 7.52 3 10201

2 73.56 73.89 ALMS1 641 6.01 3 10204 1,251 9.79 3 10201 412 8.01 3 10201 673 4.85 3 10201

15 56.87 57.08 ZNF280D 265 3.70 3 10204 312 9.09 3 10202 258 7.15 3 10201 428 8.78 3 10201

Abbreviation: AFR, ASN, EUR - CHARGEAfrican American, Asian, and European cohorts. SNP5 single nucleotide polymorphism.
All BP are in HG19 coordinates in the form chromosome:megabase. CHARGE results are based on 17,936 Europeans,
1,943 Africans, and 405 Asians.
Gene start and end positions are 650KB from the gene. # SNPs 5 # nonmonomorphic SNPs analyzed.
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also lead to widespread RNA dysregulation, an integral
element in a number of neurologic disease.37

Perhaps, one of the most interesting findings in
this study is the implication of UBE2C in the gene-
based test for both Hispanics and African Americans.
This ubiquitin-conjugating enzyme is an important
regulator in cell cycle progression, and overexpression
has been associated with progression of malignant
gliomas.38 There is a substantial amount of LD in
Hispanics between SNPs within 50KB of UBE2C,
including SNPs in WFDC3, DNTTIP1, TNNC2,
SNX21, ACOT8, and ZSWIM3. WFDC3 functions
as a protease inhibitor, and notably, both protein
degradation though ubiquitination and protease inhi-
bition are represented among neurodegenerative
diseases.39 Furthermore, DNTTPI1 acts as a chroma-
tin-binding module in complex with HDAC1 and
HDAC2. As previously mentioned, 3 SNPs with
p , 1 3 1025 within WFDC3 and DNTTIP1 on
chromosome 20q13 affect protein binding of SPI1,
with both genes also showing nominal significance in
Hispanics with p5 9.553 1023 and p5 2.403 1023,
respectively. This is a transcription factor which is
involved in the activation of gene expression during
myeloid and B-lymphocyte development and is crit-
ical for viability and function of human brain micro-
glia, with a loss reducing the ability of microglia to
clear debris by phagocytosis.40 Outside chromosome
20q13, 1 additional SNP on chromosome 20p13
with p , 1 3 1025 and 7 additional SNPs with
p, 13 1023 across 5 additional chromosomes affect
binding of SPI1.

The CHARGE consortium identified loci for
WMHV on chromosomes 17q25, 10q24 2p21,
1q22, and 2p16 in primarily individuals of European
descent but also through multiethnic meta-analysis
and replication, inclusive of;2,000 African Americans,
;400 Asians, in addition to the;18,000 Europeans
(which we have now used as replication of our
findings) and ;800 Hispanics (a majority subset of
our NOMAS and WHICAP samples).16 Only 2 of
these loci (PDCD11 on 10q24 and PMF1 on 1q22)
demonstrated a nominal level of significance (p ,

0.05) in the Hispanic sample, with the same risk allele
as seen in Europeans. This may be due to differences
in allele frequency across populations and supports
the importance of genetic discovery in minority pop-
ulations. However, SNPs implicated by CHARGE
within 17q25, 10q24, and 2p16 have been shown
to influence binding of 30 proteins,30 29 of which
are also influenced by SNPs with p , 1 3 1023 in
the Hispanic analysis, most notably POLR2A. This
may indicate common pathways across populations.

A strength of the current study is that it focuses on
discovery of novel variation influencing WMHV in
a Hispanic sample. It includes analysis of 2

community-based cohorts which used the same
MRI protocol and quantitative measurement of
WMHV at the same medical center. However, our
study also has limitations. First, with 922 Hispanic
participants, we had limited power, at a genome-
wide significance level, to uncover an association with
small-to-moderate effect sizes. Second, as comprehen-
sive genotype data are not available for Hispanic pop-
ulations in the 1000 Genome database, imputations
were based on pooled samples from populations of
the Americas, Europe, Africa, and Asia. Bias in allele
frequency estimates cannot be excluded for those
SNPs with large allele differences across subpopula-
tions, although high imputation quality was observed.
Third, since this GWAS was performed in Hispanics,
findings may not necessarily extend to other race-
ethnic groups. For instance, we see varying allele fre-
quency differences across notable SNPs such as the
one found in GATA6. The majority of SNPs we see
as associated in Hispanics within 50KB ofUBE2C are
in fact monomorphic in the European and Asian rep-
lication samples, findings which are underscored by
the population substructure observed in our study
sample. This is a weakness for generalizability but
emphasizes the importance of genetic study in diverse
samples.

This GWAS of 2 community-based Hispanic co-
horts revealed several novel genetic loci for WMHV.
Further replication is needed in an independent His-
panic sample as well as samples from additional race/
ethnic groups. In addition, local ancestry computa-
tion may provide additional insight into the ancestral
risk haplotypes. While fine mapping is needed to pin-
point causal variation for drug targets in relevant pop-
ulations, this study represents progress toward
elucidating the genetic underpinnings of increased
WMHV potentially underlying cognitive impairment
and vascular dementia.
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