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Abstract

Mass drug administration, a strategy in which all individuals in a population are subject to 

treatment without individual diagnosis, has been recommended by the World Health Organization 

for controlling and eliminating several neglected tropical diseases, including trachoma and soil-

transmitted helminths. In this article, we derive effective reproduction numbers and average post-

treatment disease prevalences of a simple susceptible–infectious–susceptible epidemic model with 

constant, impulsive synchronized and non-synchronized drug administration strategies. In the non-

synchronized model, the individuals in the population are treated at most once per period and their 

treatment times are uniformly distributed. Mathematically, the set of pulses for the non-

synchronized model has the cardinality of the continuum. We show that synchronized and constant 

strategies are, respectively, the most and least effective treatments in disease control. Elimination 

through synchronized treatment is always possible when adequate drug efficacy and coverage are 

fulfilled and sustained. For a strategy with multiple rounds of synchronized treatment per period, 

the average post-treatment prevalence is irrelevant what the time differences between treatments 

are, as long as there are the same number of treatments per period.
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1. Introduction

Mass drug administration (MDA) is the distribution of drugs to entire populations, 

regardless of ascertainment of disease or infection status. It was once widely implemented in 

the era of malaria eradication campaign with generally unsuccessful outcome, due to 

emerging drug and insecticide resistance. We ask the following questions: is it feasible to 

eliminate infection with repeat mass treatments, what is the minimum necessary frequency 

of mass treatment for a given population or geographic region, how can we maximize cost-

effectiveness with limited resources and finally, when can MDA be terminated (Ray et al., 
2009)? Melese et al. (2004, 2008) conducted randomized clinical trials in the Gurage Zone 

in Ethiopia and their studies strongly suggests the feasibility of locally eliminating trachoma 

with repeat mass antibiotic distributions.

Repeat mass treatment may be studied using the theory of impulsive systems as a useful 

idealization. The transmission dynamics of infectious diseases undergoing impulse effects 

can be described by a system of impulsive differential equations (Lakshmikantham et al., 
1989; Bainov & Simeonov, 1993), i.e. continuous-time differential equations between 

impulses and impulsive equations at the time of impulse. The main difference between 

impulsive and periodic epidemic models is that the former describe instantaneous changes in 

the values of state variables at impulsive points, while the latter describe periodic changes in 

the values of model parameters (Bacaër & Ouifki, 2007; Gao et al., 2014b). For example, 

there are numerous studies on disease control and elimination in the presence of pulse 

vaccination (Agur et al., 1993; Shulgin et al., 1998; Gao et al., 2007; Yang et al., 2013), 

pulse chemotherapy (Panetta, 1996; Lakmeche & Arino, 2000; Smith, 2006), pulse 

radiotherapy (Freedman & Belostotski, 2009), pulse immunotherapy (Bunimovich-

Mendrazitsky et al., 2008; Castiglione & Piccoli, 2007), pulse removal (Fuhrman et al., 
2004; Jin & Haque, 2007), and pulse birth (Roberts & Kao, 1998; Jiang & Yang, 2009).

MDA, however, differs from vaccination in that it helps infected people to recover from 

illness, infection or colonization, while vaccines are usually used to help uninfected people 

develop temporary or lifelong immunity. A theory of disease elimination by MDA is being 

developed (Anderson et al., 2012). By fitting a stochastic model to observed data for 

trachoma, Lietman et al. (1999) concluded that moderate endemic areas need annual MDA 

in eliminating trachoma, while hyperendemic areas need biannual MDA. Ray et al. (2007) 

fitted a stochastic epidemic model to collected data from Ethiopia and found that local 

elimination is achievable, while large-scale elimination requires more frequent treatments 

and the reduction of imported transmission. On the basis of a periodic Ross–Macdonald 

model, Gao et al. (2014a) numerically found that the optimal timing of MDA for malaria is 

not at high mosquito season. Griffin and his collaborators (Griffin et al., 2010; Griffin, 2015) 

studied the effect of pulsed interventions (such as MDA and indoor residual spraying) on the 

reproduction number for malaria with seasonally varying mosquito numbers.

In this article, we will use mass oral azithromycin administration for trachoma as a case 

study. Trachoma is an infectious ocular disease caused by the bacterium Chlamydia 
trachomatis and it has long been a leading cause of blindness and visual impairment. About 

232 million people in 51 countries are at risk of trachoma worldwide, of whom 
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approximately 55 million people received antibiotic treatments for trachoma in 2013. 

Repeated administration of antibiotics has dramatically reduced the prevalence of active 

trachoma in many areas (Schachter et al., 1999; Gaynor et al., 2003; Burton et al., 2010). A 

single dose of the macrolide antibiotic azithromycin takes less than a week to clear C. 
trachomatis with an average efficacy of 92–98% and the World Health Organization (WHO) 

recommended coverage for trachoma control programs is 80% or higher (Lietman et al., 
1999). There is no documented evidence of emerging azithromycin resistance after mass 

distribution of azithromycin for trachoma (Solomon et al., 2005; Hong et al., 2009).

Trachoma campaigns are typically conducted by having teams of field workers visit 

communities and apply antibiotics to everyone at the same time. While expensive, this 

reduces the possibility of creating a temporal refuge for the bacterium in individuals who are 

not treated at a particular time. But we may, however, consider an alternative strategy, in 

which mass administration is transferred to routine care, each child receiving his or her 

annual dose at (for instance) a birthday, avoiding the need for centrally coordinated field 

teams. Are asynchronous or decentralized MDA campaigns feasible? In what follows, we 

will explore idealized models to gain insight into the importance of synchrony in application 

of MDA, by examining models in which individuals are treated annually, but 

asynchronously.

In the next section, we consider three formulations of a deterministic susceptible–infectious–

susceptible (SIS) epidemic model under: (1) constant treatment, (2) impulsive synchronized 

treatment (representing what might be seen in practice) and (3) a hypothetical non-

synchronized treatment campaign, respectively. In the constant treatment model, antibiotics 

are constantly distributed to a population at random and an individual may receive multiple 

doses in one treatment period. In both the impulsive synchronized and non-synchronized 

treatment models, no one receives more than one dose in one treatment period; e.g. for 

annual mass treatment, no one receives more than one dose per year. The synchronized 

model represents the typical MDA where the whole population receives treatment nearly at 

the same time. In the non-synchronized model, each individual is still only treated once per 

period, but the individuals in the population are treated at different times, distributed 

uniformly throughout the time period. The effective reproduction numbers and average 

disease prevalences of the model under all three drug administration strategies are derived 

and compared in Section 3. Numerical examples are presented to confirm theoretical results 

and to determine right treatment frequency for regions with different levels of endemicity or 

disease intensity in Section 4.

2. Three treatment strategies

We consider a simple SIS infectious process with standard incidence, in which infection 

confers short-term immunity or none at all to an infectious individual upon recovery. For a 

constant population, let S(t) and I(t) be the fractions of uninfected and infected people at 

time t, respectively. The disease transmission is described by a system of two ordinary 

differential equations
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dS
dt = − βSI + γI,

dI
dt = βSI − γI,

(2.1)

where β is the transmission coefficient and γ is the recovery rate. It is well known that the 

basic reproduction number of the model (2.1) is ℛ0 = β/γ and the disease dies out for 

stochastic effects if ℛ0 ≤ 1 and persists at an endemic equilibrium (1/ℛ0, 1 − 1/ℛ0) if ℛ0 > 1

(Brauer & Castillo-Chavez, 2012).

The antibiotic efficacy depends not only on effective coverage but also on drug distribution 

strategies. A strategic distribution plan to maximize the effectiveness of antibiotics and 

minimize the risk of side effects is most desirable. This is particularly crucial in areas where 

health-care resources are very limited or antibiotic resistance is a big concern. In what 

follows, we will compare three typical drug distribution strategies (regardless of health 

status): constant treatment, impulsive synchronized MDA and impulsive non-synchronized 

treatment. Let T be the length of one treatment period (e.g. year), p be the curative efficacy, 

q be the coverage rate and θ = p × q ∈ (0, 1) be the effective coverage of a single distribution 

(further details will be provided below). The medication is assumed to take effect 

instantaneously at dosing time and does not drive significant antibiotic resistance. In Table 1, 

we give a summary of parameter descriptions and ranges based on trachoma.

2.1 Constant treatment

The treatment is modeled as a continuous process in which individuals receive treatment at 

rate θ/T. The fraction of infected population follows the equation

dI
dt = β(1 − I)I − γI − θ

T I and 0 < I(0) ≤ 1. (2.2)

The effective reproduction number of model (2.2) is ℛc = β
γ + θ /T , the disease eventually 

disappears if ℛc ≤ 1 and the disease prevalence stabilizes at Pc = 1 − 1/ℛc if ℛc > 1.

In this model, e.g. we may consider each individual to receive treatments according to a 

Poisson process with intensity given by θ/T, so that some individuals receive more than one 

treatment per period, while others receive none.

2.2 Impulsive synchronized treatment

Assuming that drugs are distributed to the whole population at the same time with effective 

coverage θ (i.e. the fraction of people being successfully treated) and the effects of drugs are 

instantaneous. The proportion of the population who are infectious satisfies
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dI
dt = β(1 − I)I − γI − ∑

k = 0

∞
δ(t − kT)θI and 0 < I(0) ≤ 1, (2.3)

where δ(t) is the Dirac delta function (i.e. 1 when t = 0 and 0 otherwise). We define the 

effective reproduction number of model (2.3) as ℛ1 = β
γ − ln(1 − θ)/T  (see e.g. Melese et al. 

(2004)).

More generally, consider a treatment strategy with multiple rounds of impulsive 

synchronized MDA per period where the change in infectives is described by

dI
dt = β(1 − I)I − γI − ∑

k = 0

∞
δ(t − τk)θkI and 0 < I(0) ≤ 1. (2.4)

We assume that 0 = τ0 < τ1 < ⋯ < τm−1 < τm = T, τk+m = τk + T, θk ∈ (0, 1) and θk+m θk for 

k = 0, 1, … and m ∈ {1, 2, …} Clearly, (2.4) is a logistic system with periodic impulsive 

perturbations and its effective reproduction number is defined as

ℛm, 1 = β

γ − ∑k = 0
m − 1ln(1 − θk)/T

(see Liu & Chen, 2004; Jin & Haque, 2007). If ℛm, 1 > 1 then (2.4) possesses a unique 

positive periodic solution, denoted by I*(t), which is globally attractive (Liu & Chen, 2004).

2.3 Impulsive non-synchronized treatment

In reality, individuals are not, in fact, simultaneously treated. We also, therefore, consider the 

opposite special case: each individual receives no more than one treatment per period and 

the distribution of treatment times in the entire population is uniform over the treatment 

period. Specifically, the nonsynchronized model divides one treatment period into 

infinitesimal intervals (t,t + Δt), to each of which there corresponds a small fraction of the 

population, ΔH, who are treated at times t, t + T, t + 2T,…, over time. In other words, we 

split a completely homogeneous population and one treatment period into the same number 

of portions satisfying n ≡ 1/ΔH = T/ΔT and periodically treat the jth subpopulation of size 

ΔH = 1/n at time t = (j − 1)ΔT + kT = ((j − 1)/n + k)T, k = 0, 1, 2,…, for j = 1,…,n. All 

subpopulations are well mixed and each of them is subject to the same force of infection 

determined by the overall instantaneous prevalence, I(t). The fraction of the infectives in the 

jth subpopulation, denoted by Ij(t), satisfies

dI j
dt = β 1

n − I j I − γI j − ∑
k = 0

∞
δ t − j − 1

n T − kT θI j, 1 ≤ j ≤ n, (2.5)
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where I(t) = I1(t) + I2(t) + ⋯ + In(t), 0 ≤ Ij(0) ≤ 1/n and 0 < I(0) ≤ 1. System (2.5) is formed 

by a cooperative system with a recurrent pulse effect.

As the number of portions, n, increases to infinity, we obtain a limiting system of (2.5). Let 

s(a, t) and i(a, t) be the densities of the uninfected and infected at phase a ∈, [0, T) and time 

t, respectively, s(a, t)Δa and i(a, t)Δa be the fraction of uninfected and infected people at 

phase interval a,a +Δa) and time t, respectively. Obviously, we have

s(a, t) + i(a, t) = 1, for ∀a ∈ [0, T) and t ≥ 0.

The overall fraction of infectives in the population at time I(t) = 1
T ∫ 0

T i(a, t)da. By taking 

Ij(t)/(1/n) → i(a, t), the limiting form of (2.5) is

∂i(a, t)
∂t = β 1 − i a, t I t − γi a, t − ∑

k = 0

∞
δ(t − a − kT)θi a, t (2.6)

with initial condition satisfying 0 < I(0) ≤ 1 and 0 ≤ i(a, 0) ≤ 1 for a ∈ [0, T). Note that 

system (2.6) has a continuum (ℵ1) of pulses; this differs from the typical impulsive 

differential in which the number of pulses is countably infinite.

3. Mathematical results

In this section, we first solve the impulsive synchronized model (2.3) and obtain its average 

prevalence at the stable state if the disease remains persistent after repeat treatments. Then 

we study the impulsive nonsynchronized treatment model (2.6) and establish the global 

threshold dynamics in terms of the effective reproduction number. Finally, we compare the 

three treatment strategies through their corresponding effective reproduction numbers, stable 

average prevalences and other measures. By a change of variables: βT → β, γ T → γ and 

t/T → t, it suffices to consider the models (2.2)–(2.6) with T = 1.

3.1 The solution of the impulsive synchronized model

Solving the logistic differential equation

dI
dt = β(1 − I)I − γI and I(0) = I0 ≠ 1 − 1/ℛ0

by separating variables, we obtain

I(t) = K

1 + K /I0 − 1 e−rt with k = β − γ
β and r = β − γ .

It follows from I*(0+) = I*(1+) = (1 − θ)I*(1) that
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I0 = er(1 − θ) − 1
er − 1

K < K = 1 − 1/ℛ0 .

The average prevalence of the synchronized model (2.3) at the positive stable state is

P1 ≡ ∫0
1

I*(t)dt = K
r ln

er + K /I0 − 1
K /I0

= K
r ln(1 + er(1 − θ) − 1)

= K
r (r + ln(1 − θ)) = 1 − γ − ln(1 − θ)

β = 1 − 1
ℛ1

.

We can derive the stable average prevalence of the m rounds of impulsive synchronized 

MDA model (2.4), denoted by Pm,1, without solving the model equation. If ℛm, 1 > 1 then 

the unique positive periodic solution (S*(t), I*(t)) of (2.4) exists and satisfies

dI*
dt = β(1 − I*)I* − γI* ∫0

1 1
I*(t)dI*(t) = ∫0

1
(β − γ − βI*(t))dt

∫τ0
τm 1

I*(t)dI*(t) = ∑
k = 1

m ∫τk − 1

τk dI*(t)
I*(t) = ∑

k = 1

m
(ln(I*(τk)) − ln(I*(τk − 1 + )))

= ∑
k = 1

m
ln(I*(τk)) − ∑

k = 1

m
ln((1 − θk − 1)I*(τk − 1))

= − ∑
k = 1

m
ln(1 − θk − 1) + ∑

k = 1

m
(ln(I*(τk)) − ln(I*(τk − 1)))

= − ∑
k = 0

m − 1
ln(1 − θk) + ln(I*(τm)) − ln(I*(τ0)) = − ∑

k = 0

m − 1
ln(1 − θk)

= ∫0
1

(β − γ − βI*(t))dt = (β − γ) − β∫0
1

I*(t)dt

Pm, 1 ≡ ∫0
1

I*(t)dt =
β − γ + ∑k = 0

m − 1ln(1 − θk)
β = 1 − 1

ℛm, 1
.

THEOREM 3.1 For system (2.4), if ℛm, 1 ≤ 1, then the disease always dies out; if ℛm, 1 > 1, 

then there exists a unique positive periodic solution with period 1, denoted by I*(t), i.e. 

globally asymptotically stable in the sense that limt→∞ |I(t) − I*(t)| = 0, and the average 

disease prevalence converges to 1 − 1/ℛm, 1 where I(t) is any solution of system (2.4) with 

I(0) > 0.

REMARK 3.2 It is worth noting that the effective reproduction number, ℛm, 1, and the stable 

average disease prevalence, Pm,1, of model (2.4) are independent of the selection of 

treatment times (τ1, τ2,…, τm). For an example of biannual treatment strategy, the post-

treatment prevalence is independent of the time difference between two biannual treatments 

as long as they are twice per year.
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3.2 The solution of the non-synchronized model

It follows from theoretical studies on impulsive cooperative systems (Jiang, 1994; Liu & 

Chen, 2006) and numerical simulations (see Fig. 1) of the discretized system (2.5) that the 

disease under non-synchronized treatment either dies out or persists at a positive periodic 

state, denoted by I1* t , …, In* t . Moreover, the periodic solution satisfies I j* t + 1 , …, I j* t

and I j* t , …, I j + 1* t + 1/n . The overall instantaneous prevalence I* t = ∑ j = 1
n I j* t  is a 1/n-

periodic function. In fact,

I*(t + 1/n) = ∑
j = 1

n
I j*(t + 1/n) = I1*(t + 1/n) + ∑

j = 2

n
I j*(t + 1/n)

= In*(t + 1) + ∑
j = 2

n
I j − 1* (t) = In*(t) + ∑

j = 1

n − 1
I j*(t) = ∑

j = 1

n
I j*(t) = I*(t) .

As the partition of population and time gets finer and finer, the period of the overall 

prevalence function I*(t) of (2.5) becomes smaller and smaller and I*(t) approaches a 

constant as n →∞. Hence the solution of the limiting system (2.6) either converges to zero 

or a time-periodic state, denoted by i*(a, t). Similarly, the time-periodic solution satisfies

i*(a, t + 1) = i*(a, t) and i*(a, t) = i*(a + s, t + s), t ≥ 0, (3.1)

for a ∈ [0, 1) and s ∈ [0, 1 − a). The overall prevalence I* t = ∫ 0
1i*(a, t)da of (2.6) is a 

positive constant. In fact, equalities (3.1) and the change of variables give

I*(t + s) = ∫0
1

i*(a, t + s)da = ∫0
s
i*(a, t + s)da + ∫s

1
i*(a, t + s)da

= ∫0
s
i*(a + 1 − s, t + s + 1 − s)da + ∫s

1
i*(a − s, t)da

= ∫1 − s

1
i*(a, t)da + ∫0

1 − s
i*(a, t)da = ∫0

1
i*(a, t)da = I*(t) .

We next establish the necessary and sufficient conditions for the disease persistence of the 

nonsynchronized model (2.6) and estimate the stable average prevalence P∞ ≡ I*(t) = I*(0) 

or I0*. It follows from (3.1) that it suffices to solve the linear impulsive differential equation

di(0, t)
dt = βI0* − βI0* + γ i(0, t), t ≠ 0, 1, …,

i(0, t + ) = (1 − θ)i(0, t), t = 0, 1, …
(3.2)

at t ∈ (0, 1]. Direct calculations find that (3.2) has a unique globally stable periodic solution

I*(0, t) = (A − Ce−Bt)/B, t ∈ (0, 1],
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where

A = βI0*, B = βI0* + γ and C= θA
1 − (1 − θ)e−B . (3.3)

Furthermore, following i*(0, 1 − a) = i*(a, 1) = i*(a, 0), we have

0 = ∫0
1

i*(a, 0)da − I0* = ∫0
1

i*(0, 1 − a)da −I0* = ∫0
1

i*(0, t)dt −I0*

= ∫0
1 A − Ce−Bt

B dt − I0* = A
B − (1 − e−B) C

B2 − I0* .

Making the substitution (3.3) in above equation yields

F(I0*) ≡
βI0*

βI0* + γ − 1 − e
−(βI0* + γ)

(βI0* + γ)2
×

θβI0*

1 − (1 − θ)e
−(βI0* + γ) − I0* = 0,

which is a complex transcendental equation of I0*. Before proceeding further, we present a 

lemma which is useful in later proofs and whose proof is postponed to Appendix A.

LEMMA 3.3 Let h(x) = 1/x − 1/(ex − 1) for x ∈ [0, ∞) and g(x) = 1/ ln(1 − x) + 1/x for x ∈ [0, 

1]. Then we have

(i) h(x) is strictly decreasing and strictly convex on [0, ∞) with lim
x 0

h(x) = 1/2, 

lim
x ∞

h(x) = 0, lim
x 0

h′(x) = − 1/12 and lim
x ∞

h′(x) = 0;

(ii) g(x) = 1 − h(− ln(1 − x)), x ∈ [0, 1];

(iii) g(x) is strictly increasing on [0, 1] with lim
x 0 +

g(x) = 1/2, lim
x 1 −

g(x) = 1, 

lim
x 0 +

g′(x) = 1/12 and lim
x 1 −

g′(x) = ∞.

Since F(0) = 0 and F(1) < −γ/(β + γ) < 0, the transcendental equation F(I) = 0 has at least 

one positive root in (0, 1) provided that

F′(0) = β
γ − β(eγ − 1)θ

γ2(eγ − 1 + θ)
− 1 > 0.

Moreover, the condition F′(0) > 0 is also necessary for the existence and uniqueness of a 

positive zero of F(I). The proof can be found in Appendix B.

LEMMA 3.4 The equation F(I) = 0 has exactly one positive root in (0, 1) when F′(0) > 0 and 

no positive root in (0, 1) when F′(0) ≤ 0.
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Now we define the effective reproduction number of the impulsive non-synchronized 

treatment model (2.6) as

ℛ∞ = β

γ + 1/(1/θ + 1/(eγ − 1) − 1/γ)
.

The model (2.6) also demonstrates global threshold dynamics which are determined by the 

reproduction number.

THEOREM 3.5 For model (2.6), assume that there always exists a globally stable solution. If 

ℛ∞ ≤ 1 then the disease goes extinct; else if ℛ∞ > 1 (implies ℛ0 > 1) then there is a time-

periodic positive solution i*(a, t) which is globally asymptotically stable, and the overall 

disease prevalence I(t) converges P∞ ≡ I0* provided that the disease is initially present. Here 

I0* = Y* − γ /β and Y* is the unique positive zero of the function

G(Y) = 1
θ − 1

β − Y + 1
eY − 1

− 1
Y

on (γ, β − θ) provided that G(γ) > 0 or equivalently ℛ∞ > 1.

The proof of Lemma 3.4 indicates that F′(0) and G(γ) have the same sign, and G(γ) > 0 if 

and only if ℛ∞ > 1. The above theorem is immediately followed by Lemma 3.4.

3.3 Comparison of the reproduction numbers and prevalences

We now determine the best treatment strategy through the comparison of their effective 

reproduction numbers, post-treatment prevalences, minimum required effective coverage 

rates and minimum allowable periods for elimination. Recall that ℛc = β/ γ + θ  and 

ℛ1 = β/ γ − ln 1 − θ . In the following, we ignore the trivial case where the disease will 

eventually go extinct with or without treatment.

PROPOSITION 3.6 For any given parameter set, we have ℛc > ℛ∞ > ℛ1 and Pc > P∞ > P1.

Proof. It follows from h(γ) ∈ (0, 1/2) and g(θ) ∈ (1/2, 1) for γ > 0 and θ ∈ (0, 1) that

ℛc > ℛ∞
1
θ > 1

θ + 1
eγ − 1

− 1
γ h(γ) = 1

γ − 1
eγ − 1

> 0

and

ℛ∞ > ℛ1
1
θ + 1

eγ − 1
− 1

γ > 1
−ln(1 − θ) g(θ) = 1

θ + 1
ln(1 − θ) > h(γ) .

On the other hand, if ℛ∞ > 1 then
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G(βPc + γ) = G(β − θ) = 1
eβ − θ − 1

− 1
β − θ = − h(β − θ) < 0

and

G(βP1 + γ) = G(β + ln(1 − θ)) = 1
θ + 1

ln(1 − θ) + 1
eβ + ln(1 − θ) − 1

− 1
β + ln(1 − θ)

= g(θ) − h(β + ln(1 − θ)) > 0.

We conclude that G(βPc + γ) < 0 = G(βP∞ + γ) < G(βP1 + γ) and hence Pc > P∞ > P1.

REMARK 3.7 Note that Pc = 1 − 1/ℛc and P1 = 1 − 1/ℛ1. However, P∞ > 1 − 1/ℛ∞ > P1. 

Actually, by the strict monotonicity of h(x) on [0,∞), we know that

G(β(1 − 1/ℛ∞) + γ) = h(γ) − h(β(1 − 1/ℛ∞) + γ) > 0 = G(βP∞) + γ) if ℛ∞ > 1.

For a general value of the treatment cycle T, the minimum required effective coverage θmin 

for elimination of infection using constant treatment, impulsive synchronized MDA and 

impulsive nonsynchronized treatment, if it exists, are

θc = (β − γ)T , θ1 = 1 − e−(β − γ)T < 1 and θ∞ = 1
1

(β − γ)T + 1
γT − 1

eγT − 1

,

respectively, provided that ℛ0 = β/γ > 1. For any given effective coverage θ ∈ (0, 1), the 

maximum allowable period Tmax of constant treatment, impulsive synchronized MDA and 

impulsive non-synchronized treatment for elimination of infection are

Tc = θ
β − γ , T1 = − ln(1 − θ)

β − γ and T∞ = θ
β − γ + θ 1

γ −
T∞

eγT∞ − 1
, (3.4)

respectively, provided that ℛ0 = β/γ > 1. Here T∞ > 0 is the unique zero of the strictly 

increasing function

G(T) = 1
θ − 1

(β − γ)T + 1
eγT − 1

− 1
γT .

It follows from Lemma 3.3 that

θ∞ > θ1
1

1 − e−(β − γ)T > 1
(β − γ)T + 1

γT − 1
eγT − 1

g(1 − e−(β − γ)T) = 1
1 − e−(β − γ)T + 1

−(β − γ)T > h(γT) = 1
γT − 1

eγT − 1
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and

G(Tc) = − h(γTc) < 0 = G(T∞) < G(T1) = g(θ) − h(γT1) .

Hence θc > θ∞ > θ1 and Tc < T∞ < T1, so that impulsive synchronized MDA uses the least 
antibiotic to achieve elimination. For any given transmission setting and treatment cycle, the 

impulsive synchronized MDA is always able to eradicate the disease with sufficiently high 

effective coverage, while the other two treatment strategies may fail.

In addition, if we equally split one pulse into m pulses at time kT, kT + T/m,…, kT + T(m 
− 1)/m, then the corresponding effective reproduction number and stable average prevalence 

for impulsive synchronized MDA and impulsive non-synchronized treatment are

ℛ1, m = β
γ − ln(1 − θ /m)/(T /m) , P1, m = 1 − 1/ℛ1, m

and

ℛ∞, m = βT /m
γT /m + 1/(m/θ + 1/(eγT /m − 1) − 1/(γT /m))

, P∞, m ≠ 1 − 1/ℛ∞, m,

respectively, where P∞,m is the unique positive root of the equation

Gm(βI + γ) = m
θ − m

βT − (βI + γ)T + 1
e(βI + γ)T /m − 1

− 1
(βI + γ)T /m = 0.

As expected, both ℛ1, m and ℛ∞, m are strictly increasing to ℛc as m → ∞. By the squeeze 

theorem, P1,m and P∞,m converge to Pc as m → ∞.

REMARK 3.8 It follows from Remark 3.2 that the results throughout this section still hold for 

the comparison among constant treatment (T → T/m), impulsive non-synchronized 

treatment (T → T/m) and the m rounds of impulsive synchronized MDA model (2.4) with 

identical effective coverage→(θ0 =⋯= θm−1 = θ) and randomly selected initial treatment 

times (0 =·τ0·< τ1·< ⋯ < τm−1 < τm = T).

The main results we obtained in this article are summarized in Table 2.

4. Numerical simulations

In this section, using trachoma as a case study, we give examples to compare the maximum 

allowable period for elimination, minimum required effective coverage and the speed of 

convergence of three treatment strategies. We discuss the situations when trachoma can be 

administrated by a single dose of azithromycin on an annual or biannual basis. Unless stated 

otherwise, time is measured in years in what follows.
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EXAMPLE 4.1 Choose β = 1.8 and γ = 0.9. Using formula (3.4), the relationship between Tmax 

and θ under three treatment strategies is plotted in Fig. 2a. With 90% effective coverage, the 

maximum allowable period of impulsive synchronized MDA is 2.6-fold longer than that of 

constant treatment. When individuals are treated annually, Fig. 2b describes the average 

prevalence at the stable state of each treatment strategy versus effective coverage. The 

minimum effective coverage requirements are θc = 90%, θ1 = 59.3% and θ∞ = 65.1%, and 

the impulsive synchronized MDA is most effective.

Moreover, the impulsive synchronized MDA takes less time to achieve elimination than 

either constant or impulsive non-synchronized treatment does (see Fig. 3a). However, if the 

impulsive synchronized MDA cannot eliminate infections, then it may take longer time to 

stabilize at a stable periodic state than others do (see Figure 3b).

EXAMPLE 4.2 With parameter ranges in Table 1, we use the Latin hypercube sampling method 

to generate 100,000 parameter sets of the form {β, γ, θ}. Since the goal of the WHO 

trachoma control program is to reduce active trachoma to less than 5% in children aged 1–9 

years (Melese et al., 2004; Taylor et al., 2014), and impulsive synchronized MDA may be 

discontinued if the trachoma prevalence falls below the set threshold, we choose 45,418 

scenarios whose equilibrium prevalences before treatment are greater than 5%. Among these 

qualified scenarios, 15,919 have pretreatment prevalence less than 35%, 7,929 have 

pretreatment prevalence from 35 to 50% and the remaining 21,570 have pretreatment 

prevalence greater than 50%. The maximum allowable treatment periods of all qualified 

scenarios (solid line) and scenarios with pretreatment prevalence less than 35% (dash-doted 

line), from 35 to 50% (dashed line) and greater than 50% (dotted line) are presented in Fig. 

4. In particular, 85.6% of simulations that start with less than 35% pretreatment prevalence, 

representing low to moderately endemic areas, end in elimination with annual mass 

treatment, while 43.9% simulations that start with over 50% pretreatment prevalence, 

representing hyperendemic areas, cannot eliminate infections with biannual treatment. It 

somewhat differs from previous work (Lietman et al., 1999), because we used broader 

parameter ranges. These numerical results provide a quantitative exploration of the 

impulsive synchronized model, but direct applicability to any particular setting would 

require detailed parameter fitting based on prevalence surveys.

In addition, based on qualified scenarios, the partial rank correlation coefficients for 

maximum allowable treat period with respect to β, γ and θ are −0.83, 0.82 and 0.73, 

respectively. This suggests that all three parameters are almost equally important in 

determining T1.

5. Discussion

MDA i.e. the treatment of all at-risk populations without assessment of infection, is being 

implemented as a core strategy for the control and elimination of several neglected tropical 

diseases (NTDs) around the globe. The success of MDA programs depends on the treatment 

coverage and efficacy of the drugs, as well as the costs, side effects, and drug resistance. In 

this article, we use a simple SIS model to determine the feasibility of disease elimination via 

synchronized MDA and compare it with constant treatment and impulsive non-synchronized 
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treatment. In terms of post-treatment prevalence, synchronized MDA is far more effective 

than impulsive non-synchronized treatment, while impulsive non-synchronized treatment is 

slightly better than constant treatment (Pc > P∞ > P1). MDA as currently implemented is 

substantially better than non-synchronized alternatives. For a given treatment frequency (i.e. 

times per year), elimination by synchronized MDA is always possible with appropriate 

effective coverage, while the other two treatment strategies may fail ℛc > ℛ∞ > ℛ1 . Our 

analysis of the maximum allowable period and minimum required effective coverage may 

provide guidance in specific settings on the appropriate treatment frequency and coverage. 

The idea behind the nonsynchronous model is applicable to other impulsive non-

synchronized processes such as periodic mass immunization program. This model could, for 

instance, be extended to assess the consequences of year round field teams visiting each 

region once per year (for instance) but visiting each region at a different time. For the 

treatment strategy with multiple rounds of synchronized MDA per period, we note that the 

average prevalence only depends on the number of rounds but not on their timing within the 

period. However, the timing of MDA does matter if seasonal effects are considered (Lee et 
al., 2005). Numerical calculations suggest that the selection of treatment times does make a 

difference for the discretized model (2.5). We conjecture that the impulsive non-

synchronized treatment is the least effective periodic unrepeated treatment strategy.

We note that MDA has considerably broader application than trachoma. It has been 

successfully used for malaria and lymphatic filariasis in China and onchocerciasis in Latin 

America. MDA can be used to contain and eliminate an infectious disease if inexpensive, 

safe and highly effective medicines are available (Hotez, 2009; Smits, 2009). The WHO 

recommends repeat use of albendazole with ivermectin or diethylcarbamazine for lymphatic 

filariasis, ivermectin for onchocerciasis, praziquantel for schistosomiasis, albendazole or 

mebendazole for soil-transmitted helminths and azithromycin for trachoma (Hotez, 2009; 

Smits, 2009). About 711 million people received MDA treatments in 2010 and more than 

1.9 billion people in 124 countries require annual MDA for at least one NTD (World Health 

Organization, 2013). Note that Anderson et al. (2014), Truscott et al. (2014a,b) studied the 

possibility for control and elimination of soil-transmitted helminths through repeated mass 

treatment programs. The 2012 London Declaration on NTDs aims to eliminate or control 10 

of the 17 NTDs by 2020. Extensions of the model we presented for trachoma could be used 

to examine alternative implementations of MDA-based control in such macroparasitic 

settings.

This study provides insight into the important role of synchrony in the implementation of 

MDA. More comprehensive studies should consider the influence of partial acquired 

immunity (Liu et al., 2013), chemoprophylaxis in susceptible persons, seasonality in 

transmission (Lee et al., 2005), age-structure in the host population (Bailey et al., 1999; 

Lietman et al., 1999; Gambhir et al., 2009), bacterial load (Shattock et al., 2015), case 

importation, and other ecological or epidemiological factors (Lietman et al., 1999). Changes 

in population size, structure and distribution need to be reflected in a long-term MDA 

program. In clinical trials, antibiotic treatment may only target those at the highest risk of 

infection (e.g. people with symptoms or those under a certain age (Lietman et al., 1999)), 

known as targeted MDA which is similar to targeted mass vaccination (Keeling & Rohani, 
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2008). A large-scale MDA campaign involving millions of people takes neither a day nor a 

full period, so a more general model based on the non-synchronized model and the non-

treatment model may be more realistic. In the presence of antibiotic resistance, a strategy to 

reach the goal of elimination and to reduce the risk of emerging resistance associated repeat 

treatments is expected. In cases where the efficacy of oral azithromycin for trachoma is 

lower than previously estimated (Liu et al., 2014), more repeated distributions per period are 

required for elimination. A combination of MDA and other interventions (e.g. the SAFE 

strategy for trachoma—Surgery, Antibiotics, Facial cleanliness and Environmental 

improvement) could interrupt disease transmission more rapidly and reduce the use of 

antibiotics.
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Appendix A.: Proof of Lemma 3.3

Proof. (i) The first and second derivatives of h(x) are

h′(x) = 2ex(1 + x2/2 − coshx)

(ex − 1)2x2
and h″(x) = 2e3x − (x3 + 6)e2x − (x3 − 6)ex − 2

(ex − 1)3x3
,

respectively. It follows from L’Hospital’s rule that

lim
x 0

h(x) = 1
2 and lim

x 0
h′(x) = − 1

12 .

Let h1(x) and h2(x) be the numerator of h′ (x) and h′′ (x), respectively. Thus

h1(x) = 2ex 1 + x2
2 − ∑

k = 0

∞ x2k

(2k)! = − 2ex ∑
k = 2

∞ x2k

(2k)! 0, ∀x 0,

and

Gao et al. Page 15

Math Med Biol. Author manuscript; available in PMC 2018 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



h′2(x) = ex(6e2x − (12 + 3x2 + 2x3)ex + 6 − 3x2 − x3) ≡ exh3(x),

h2(0) = h3(0) = 0,

h3
(4)(x) = ex(96ex − 96 − 96x − 27x2 − 2x3) ≡ exh4(x),

h′3(0) = h″3(0) = h3
(3)(0) = h3

(4)(0) = h4(0) = 0,

h4
(3)(x) = 96ex − 12 > 0, ∀x ≥ 0,

h′4(0) = 0, h″4(0) = 42.

So h′ (x) < 0 and h′′ (x) > 0 for x > 0.

(ii) The second part can be easily verified.

(iii) Let y = − ln(1 − x). Then lim
x 0 +

g(x) = 1 − lim
y 0 +

h(y) = 1/2 and 

lim
x 1 −

g(x) = 1 − lim
y ∞

h(y) = 1.

Differentiating g(x) = 1 − h(−ln(1 − x)) gives

g′(x) = − h′(y) × 1
1 − x > 0 for x ∈ [0, 1] .

Therefore, lim
x 0 +

g′(x) = − lim
y 0 +

h′(y) × 1 = 1/12 and

lim
x 1 −

g′(x) = lim
x 1 −

− 1
x2 + 1

(1 − x)(ln(1 − x))2
= − 1 + lim

y ∞
ey

y2 = ∞ .

Appendix B.: Proof of Lemma 3.4

Proof. Denote Y = βI + γ ∈ [γ, β + γ] and transform the transcendental function F(I) as

F(I) (βI + γ)2
I = − (βI + γ)2 + β(βI + γ) − βθ(eβI + γ − 1)

eβI + γ − 1 + θ

= − Y2 + βY − βθ(eY − 1)
eY − 1 + θ

< (β − Y)Y ≤ 0 if Y ≥ β

= β
1
Y + 1

β − Y

− β
1
θ + 1

eY − 1

= βG(Y)
( 1
Y + 1

β − Y )(1
θ + 1

eY − 1
)

if Y < β,

where G(Y) = G1(Y) + G2(Y) with G1(Y) = 1
θ − 1

β − Y  and G1(Y) = 1
eY − 1

− 1
Y  It is easy to 

show that G1(Y) is positive and strictly decreasing on (γ,−β − θ) and G2(Y) = −h(Y) is 

negative and strictly increasing on (0,∞).
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Note that F I0* = 0 for some I0* ∈ 0, 1  is equivalent to G(Y*) = 0 for Y* = βI0* + γ ∈ γ, β + γ

Since G(Y) < 0 for Y ≥ β − θ, it suffices to solve G(Y) 0 on (γ, β − θ). follows from 

G″1 = −2
β − Y 3 < 0 on (γ, β) and G″2(Y) = − h″(Y) < 0 on (0,∞) that G″2(Y) < 0 on (γ, β). 

This means that G(Y) is strictly concave on (γ, β). Since G(Y) < 0 on [β − θ, β), G(Y) = 0 

has exactly one positive root on (γ, β −θ) if G(γ) > 0. The proof of the first part is complete 

by noting that F′(0) and G(γ) have the same sign because of

F′(0) = lim
I 0

F(I) − F(0)
I − 0 = lim

I 0
F(I)

I

= lim
I 0

βG(Y)
( 1
Y + 1

β − Y )(1
θ + 1

eY − 1
)

1
Y2 = βG(γ)

(1
γ + 1

β − γ )(1
θ + 1

eγ − 1
)

1
γ2 .

For the second part, using the strict concavity of G(Y), it suffices to show that G(γ) ≤ 0 

implies G′(γ) ≤ 0. In fact

G(γ) ≤ 0 1
β − γ ≥ 1

θ + 1
eγ − 1

− 1
γ > 1

2
1

(β − γ)2
≥ 1

θ + 1
eγ − 1

− 1
γ

2
,

G′(γ) = −1
(β − γ)2

− eγ

(eγ − 1)2
+ 1

γ2 ≤ 0 1
(β − γ)2

≥ 1
γ2 − eγ

(eγ − 1)2

and

1
θ + 1

eγ − 1
− 1

γ

2
− 1

γ2 − eγ

(eγ − 1)2

= 1
θ + 1

eγ − 1
− 2

γ
1
θ + 1

eγ − 1
+ eγ

(eγ − 1)2

= 1
θ − 1

eγ − 1
+ 2 1

eγ − 1
− 1

γ
1
θ + 1

eγ − 1
+ eγ

(eγ − 1)2

> 1
θ − 1

eγ − 1
− 1 1

θ + 1
eγ − 1

+ eγ

(eγ − 1)2

= 1
θ2 − 1

eγ − 1 2 − 1
θ − 1

eγ − 1
+ eγ

(eγ − 1)2
= 1

θ
1
θ − 1 ≥ 0.

This completes the proof of the theorem.
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Fig. 1. 
The disease prevalence of each subpopulation and whole population through one time 

period. (a) The plot of I j*(t) for the jth subpopulation under one impulsive synchronized 

treatment per period, 1 ≤ j ≤ n. (b) The plot of I*(t) under n impulsive treatments per period. 

The parameter values are β = 5, γ = 2, θ = 90%, T = 1 and n = 5.
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Fig. 2. 
(a) The curves of maximum allowable period for elimination of infection and (b) the curves 

of stable average prevalence under constant treatment (dashed line), impulsive synchronized 

MDA (solid line) and impulsive non-synchronized treatment (dotted line). Parameter values 

are β = 1.8, γ = 0.9 in both figures and T = 1 in the right figure.
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Fig. 3. 
Numerical solutions of the system under constant treatment (dashed line), impulsive 

synchronized MDA (solid line) and impulsive non-synchronized treatment (dotted line). (a) 

Even if all three treatment strategies can eliminate an infectious disease in one population, 

synchronized MDA is still the best one in the speed of achieving elimination. (b) If all three 

treatment strategies fail to eliminate an infectious disease, then synchronized MDA may 

spend the longest time in attaining a stable state. Dotted horizontal lines in the right figure 

are at the stable average prevalence of the system under constant treatment, impulsive 

synchronized MDA and impulsive non-synchronized treatment, respectively. Parameter 

values are β = 1.8, γ = 1.2, T = 1, θ = 70% in (a) and θ = 40% in (b).
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Fig. 4. 
Smoothed probability density plot of maximum allowable period of impulsive synchronized 

MDA. Solid line—all qualified scenarios, dash-doted line—scenarios with pretreatment 

prevalence less than 35%, dashed line—scenarios with pretreatment prevalence from 35 to 

50% and dotted line—scenarios with pretreatment prevalence greater than 50%. The 

parameter ranges are listed in Table 1.
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Table 1

Ranges and baseline values for model parameters.

Description Range Baseline Unit Reference

β: transmission rate 0.516–5.28 2.4 year−1 Lietman et al. (1999); Ray et al. (2007) and Liu et al. (2014)

γ: recovery rate 0.264–5.76 1.2 year−1 Bailey et al. (1999); Lietman et al. (1999) and Liu et al. (2014)

p(%): antibiotic efficacy 92–98 95 – Lietman et al. (1999) and Lee et al. (2005)

q(%): antibiotic coverage 60–100 80 – Lee et al. (2005) and Melese et al. (2008)

θ (%): effective coverage 50–98 90 – Ray et al. (2007) and Liu et al. (2014)

T: treatment cycle 0.5–3 1 year Lietman et al. (1999); Ray et al. (2007) and Liu et al. (2014)
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Table 2

Summary of measures for three treatment models. The full names of abbreviations in the first column are basic 

reproduction number (BRN), stable average prevalence (SAP), minimum required effective coverage (MREC) 

and maximum allowable period (MAP), respectively. Here Y* and T∞ are the unique positive zero to 
1
θ − 1

(β − Y)T + 1
eYT − 1

− 1
YT  with respect to Y and T, respectively. We show that ℛc > ℛ∞ > ℛ1, Pc > P∞ > P1, 

θc > θ∞ > θ1 and Tc < T∞ < T1.

Constant treatment Non-Synchronized treatment Impulsive Synchronized treatment (MDA)

BRN ℛc = β
γ + θ /T

ℛ∞ = β

γ + 1/ T
θ + T

eγT − 1
− 1

γ
ℛ1 = β

γ − ln 1 − θ /T

SAP Pc = 1 − 1
ℛc

P∞ = Y* − γ
β

P1 = 1 − 1
ℛ1

MREC θc = β − γ T θ∞ = 1
1

β − γ T + 1
γT − T

eγT − 1
θ1 = 1 − e− β − γ T

MAP Tc = θ
β − γ

T∞ T1 = − ln 1 − θ
β − γ
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