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Abstract. A number of recent, low-redshift, lensing measurements hint at a universe in
which the amplitude of lensing is lower than that predicted from the ΛCDM model fit to the
data of the Planck CMBmission. Here we use the auto- and cross-correlation signal of unWISE
galaxies and Planck CMB lensing maps to infer cosmological parameters at low redshift.
In particular, we consider three unWISE samples (denoted as “blue”, “green” and “red”) at
median redshifts z ∼ 0.6, 1.1 and 1.5, which fully cover the Dark Energy dominated era. Our
cross-correlation measurements, with combined significance S/N ∼ 80, are used to infer the
amplitude of low-redshift fluctuations, σ8; the fraction of matter in the Universe, Ωm; and the
combination S8 ≡ σ8(Ωm/0.3)0.5 to which these low-redshift lensing measurements are most
sensitive. The combination of blue, green and red samples gives a value S8 = 0.784± 0.015,
that is fully consistent with other low-redshift lensing measurements and in 2.4σ tension with
the CMB predictions from Planck. This is noteworthy, because CMB lensing probes the same
physics as previous galaxy lensing measurements, but with very different systematics, thus
providing an excellent complement to previous measurements.
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1 Introduction

Weak lensing of the CMB (see [1, 2] for reviews) is rapidly becoming one of our most powerful
cosmological tools. This is because of its rapidly-increasing statistical power and the robust-
ness that arises from the well characterized statistical properties and redshift of the source
(i.e. the primary CMB). CMB lensing by itself is sensitive to a wide range of redshifts. When
cross-correlating CMB lensing with low-redshift tracers (CMB lensing tomography) such as
galaxies, we extract the information over the redshift range of interest (see for example [3–5]
for some of the early work and [6–13] for more recent analyses). Moreover, because of the
different dependence on galaxy bias of the auto and cross-correlations, we can efficiently break
the degeneracy between bias and the amplitude of fluctuations at low redshift, providing tight
cosmological constraints on the low-redshift Universe.

In a companion paper [14], we have presented the cross-correlation signal between the
Planck 2018 CMB lensing maps [6] and the infrared-detected unWISE galaxies [15]. The
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unWISE catalog is further split in three redshift bins at median redshift z ∼ 0.6, 1.1 and
1.5, which we call the “blue”, “green” and “red” samples respectively, and a number of quality
cuts are performed to maximize the uniformity in properties and the masking of spurious
sources. In ref. [14], we also performed a number of null and systematics tests to confirm the
robustness of our results.

In this paper we explore the modeling of the signal as well as the cosmological conse-
quences of our measurements. In particular our goal is to measure a combination of the matter
density Ωm and the amplitude of fluctuations σ8 for each tomographic sample. After checking
for consistency, the constraints from all samples can be combined in one measurement with
the most statistical power.

This measurement is particularly timely and interesting: there are hints that the ampli-
tude of lensing at low redshift (which is most sensitive to the parameter S8 ≡ σ8(Ωm/0.3)0.5)
from BOSS, KiDS, DES and CFHTLenS (see [16–19] respectively) might be lower than the
most recent constraints from the primary CMB as measured by the Planck satellite [20]. At
the same time, hints of a lower-than expected amplitude of low-redshift fluctuations are also
present in recent analyses of the redshift space galaxy power spectrum [21, 22].

The combination of CMB lensing and galaxy clustering allows us to test the same physics
(gravitational deflection of light low redshift structure) as with galaxy based lensing, but with
a very different set of systematics, as our measurement is insensitive to intrinsic alignments,
blending and photometric redshift errors of the sources. Moreover, if this discrepancy is
confirmed, a tomographic measurement with large redshift lever arm such as ours will be
essential to investigate its origin. Because our target is measuring low redshift fluctuations
only, and to test consistency with galaxy lensing results, we have decided to exclude the CMB
lensing power spectrum from the analysis. By only using the unWISE auto spectrum and its
cross-correlation with CMB lensing, we are extracting information only over the redshift range
of the unWISE sample. The inclusion of the CMB lensing power spectrum would tighten the
constraints, but also introduce sensitivity to fluctuations at higher redshifts, which we would
like to avoid.

The outline of the paper is as follows: in Section 2 we summarize the properties of the
Planck and unWISE data used in this analysis, and in Section 3 we describe the theoretical
model used. In Section 4 we present the mocks used to validate our non-linear model and
in Section 5 we present the result of these tests on mocks. The cosmological constraints are
presented in Section 6. Finally in Section 7 we summarize our results and directions for future
research.

We follow the same convention as in our earlier paper [14], specifically that WISE mag-
nitudes are quoted in the Vega system. They can be converted to AB magnitudes with AB
= Vega + 2.699, 3.339 for the W1 and W2 bands, respectively.

2 The data

2.1 Planck

Gravitational lensing of the CMB creates a distortion in the temperature and polarization
fields that allows for the lensing potential to be reconstructed efficiently (see e.g. refs. [1, 2]
for reviews). By searching for these statistical patterns it is possible to reconstruct the
lensing convergence, κ, from quadratic combinations of the foreground-cleaned maps [23].
We use the latest CMB lensing maps from the Planck 2018 release [6] and their associated
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Figure 1. Plot of the maps used in the analysis (κ for Planck lensing convergence and density contrast
δ for the galaxy samples). The maps have been band-pass filtered with `min = 100 and `max = 1000,
and this explains the lack of large-scale power. From ref. [14].

masks, downloaded from the Planck Legacy Archive.1 These maps are provided as spherical
harmonic coefficients of the convergence, κ`m, in HEALPix format [24] and with `max = 4096.
For convenience, we convert this to a HEALPix map with Nside = 2048 by setting κ`m =
0 above `max. Our fiducial analysis uses the minimum-variance (MV) estimate obtained
from both temperature and polarization, based on the SMICA foreground-reduced CMB map.
Since the MV reconstruction is dominated by temperature, residual galactic and extragalactic
foregrounds may contaminate the signal. Extensive testing of foreground contamination has
been performed by Planck, showing no significant problems at the statistical level of the
lensing maps. Since the thermal Sunyaev-Zel’dovich (tSZ) contamination is expected to be
one of the largest potential contaminants to cross correlations with tracers of large-scale
structure in other analyses [25–28], we showed (in our previous work [14]) that the lensing-
galaxy bandpowers do not shift significantly when using lensing reconstruction on SMICA
foreground-reduced maps where tSZ has been explicitly deprojected [6].

2.2 unWISE

We form three galaxy samples using the WISE W1 and W2 magnitudes; these are the same
samples described in ref. [14], and we refer the reader to that paper for a more comprehensive
discussion of them. Table 1 gives the adopted color selection for the three samples, which we

1PLA: https://pla.esac.esa.int/
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Label W1−W2 > x W1−W2 < x W2 < x z̄ δz n̄ b sµ kmax(z̄)
Blue – (17−W2)/4 + 0.3 16.7 0.6 0.3 3409 1.6 0.455 0.20
Green (17−W2)/4 + 0.3 (17−W2)/4 + 0.8 16.7 1.1 0.5 1846 2.2 0.648 0.12
Red (17−W2)/4 + 0.8 – 16.2 1.4 0.5 144 3.3 0.842 0.09

Table 1. Color and magnitude cuts for selecting galaxies of different redshifts, together with the
mean redshift (z̄) and the standard deviation of the redshift distribution (δz; as measured by matching
to objects with photometric redshifts on the COSMOS field [29]), number density per deg2 within
the unWISE mask (n̄), mean bias (b), and response of the number density to magnification (sµ ≡
d log10N/dm). The final column gives the maximum fitted wavenumber (in h Mpc−1) at z̄, i.e.
(`max + 1/2)/χ(z̄). Galaxies are additionally required to have W2 > 15.5, to be undetected or not
pointlike in Gaia, and to not be flagged as diffraction spikes, latents or ghosts. We require that the
blue and green samples have 15.5 < W2 < 16.7, and the red sample has 15.5 < W2 < 16.2. See
ref. [14] for further details.

term the blue, green, and red samples [15]. Table 1 also summarizes important properties
of each sample including the redshift distribution, the number density, galaxy bias, and the
response of the number density to galaxy magnification: sµ ≡ d log10N/dm (see discussion
in Appendix D of ref. [14]).

As described in ref. [14], we remove potentially spurious sources and each of the samples
is required to be either undetected or not pointlike in Gaia, reducing stellar contamination to
∼ 1%. The mask is likewise described in ref. [14] and is based on the 2018 Planck lensing mask
[6], with additional cuts to mask bright infrared stars, diffraction spikes, nearby galaxies, and
planetary nebulae. The effective sky fraction after masking is fsky = 0.586.

2.2.1 Redshift distribution

We use two methods for estimating the redshift distribution of our samples, which are de-
scribed in detail in ref. [14]: (1) Cross-matched redshifts, where unWISE galaxies can be
directly matched to galaxies with relatively precise photometric redshifts from the COSMOS
photometric catalog [29] and (2) cross-correlation redshifts with spectroscopic galaxies and
quasars from BOSS and eBOSS [30–32]. The two distributions are fully consistent with each
other [14]. We set the cross-correlation redshifts to zero beyond z = 1.7 (2.5, 3.0) for the blue
(green, red) samples, since we find no statistical evidence for any galaxies above this redshift
from either the cross-correlation with spectroscopic samples or cross-matched redshifts. The
cross-correlation derived redshifts have considerably smaller statistical uncertainty, and the
present analysis will rely primarily on these, because of the added feature that they are a
direct measurement of b(z) dN/dz rather than dN/dz. Given the relatively large width in
redshift of these samples and the non-negligible bias evolution with redshift of each sample,
a direct measurement of b(z) dN/dz is actually desirable, since this product is what enters
at lowest order in the modeling of Cgg` and Cκg` as shown in Section 3. Some higher order
terms, as well as lensing magnification, depend on dN/dz instead, and for those, we use
the cross-matched redshifts from COSMOS. We propagate the uncertainty in b(z) dN/dz to
uncertainty on cosmological parameters following the procedure described is Section 5.2.

2.3 Angular power spectra

Our measurements consist of the mode-decoupled angular power spectra, Cgg` and Cκg` , for
each galaxy sample (Fig. 3). Specifically we measure pseudo-C` from the maps (and masks)
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Figure 2. Redshift distribution derived from cross-correlations with spectroscopic surveys (top row)
or photometric redshifts in the COSMOS field (bottom row). Cross-correlation redshifts constrain
the product of the unWISE galaxy bias and redshift distribution. Since b(z) is increasing, the cross-
correlation bdN/dz is shifted to higher redshifts than the cross-match dN/dz. Red points show the
measured cross-correlation bdN/dz, blue line shows the best-fit smooth B-spline, and the light gray
lines are samples of redshift distributions consistent with the noise in the measured cross-match or
cross-correlation redshift distribution. We use these samples to propagate the uncertainty in the
redshift distribution into our cosmological parameter constraints.

using the MASTER algorithm [33] as implemented in the code NaMaster2 [34]. A full descrip-
tion of the pipeline to obtain the C` is in Section 4.1 of the companion paper [14]. In brief,
after applying an appropriately apodized mask, the “mask deconvolved” or “decoupled” C` for
both the auto and cross correlations are obtained with NaMaster. The analysis is performed
with `NaMaster

max = 6000, to ensure unbiased results, while only the ` < 1000 are retained and
used in the analysis and null/systematic tests. We correct for the pixel window function
for both the auto and cross-correlations. We validate our pipeline on a set of 100 simulated
Gaussian lensing and galaxy maps (generated with the correct cross-correlation). These simu-
lations have the same power spectrum as the data, including at very low `, which are not used

2https://github.com/LSSTDESC/NaMaster
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Figure 3. Angular power spectra for the blue, green and red samples. The left panel shows the auto
spectra (Cgg` , including shot noise) while the right panel shows the cross-correlation with Planck CMB
lensing (Cκg` ; multiplied by 10). In most cases the statistical error bars are smaller than the symbols.

in our analysis. Because the unWISE samples have significant amounts of spurious power at
` < 20, we find a few percent biases on large scales due to the mask-induced mode coupling,
even after mask decoupling with NaMaster. We suppress these biases by filtering out ` < 20
modes from the unWISE maps before masking, finding that this reduces the biases to ∼ 1%.
We further correct for this residual bias with a transfer function (which differs from unity by
order a percent) measured on the 100 simulated maps. In conclusion, we have tested that our
pipeline can recover both the auto and cross-correlation to sub-percent over the whole range
of scales used in the analysis.

We do not use the galaxy auto-spectra at ` < 100, because in ref. [14] we find that
the low-` bandpowers are contaminated by systematics in the unWISE galaxy samples. In
contrast, we find that the galaxy-CMB lensing cross-correlation is systematics free to `min =
20, which is imposed by the fact that we filter these modes from the unWISE galaxy map.

2.4 Covariance

As in our earlier work [14], we approximate the covariance matrix to be given by the dis-
connected (Gaussian) component only, and further assume that the covariance matrix of the
decoupled binned bandpowers of width ∆` is given by [33]:

Cov(CXY` , CXY`′ ) =

[
CXX` CY Y` +

(
CXY`

)2]
measured

fsky(2`+ 1)∆`

w4

w2
2

δ`,`′ (2.1)

Where X and Y are either g or κ. Here the weights w2 and w4 are defined in terms of the
arbitrary mask weights W (n̂) as:

wifsky =
1

4π

∫
4π
dΩn̂W

i(n̂) (2.2)

with w1fsky = fsky.
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We have also checked that using the more accurate method for analytic Gaussian pseudo-
C` covariance proposed in [35, 36], the largest off-diagonal correlation between bandpowers
is 4% for the two lowest ` bins, and that the on-diagonal elements agree to percent level.
Therefore we conclude that the approximation in Equation 2.1 is adequate for our purposes.
Furthermore, we neglect any non-Gaussian contribution to the covariance matrix, since on
the scales analyzed here, those corrections are expected to be negligible. Finally, we find
that our analytic covariance matrix is very similar to a covariance matrix calculated from the
cross-correlation of 300 Planck lensing simulations with the unWISE galaxy maps.

3 Model

Our constraints will be based on measurements of the angular auto-power spectra of the
unWISE galaxies Cgg` and their cross-spectra with the Planck CMB lensing convergence Cκg`
(Fig. 3). In what follows we describe our hybrid model for the 3D power spectra of galaxy
and matter, and their projection required to predict the auto and cross-correlation between
CMB lensing and unWISE galaxies.

We model the angular galaxy autocorrelation and galaxy-CMB lensing cross-correlation
using a hybrid model that combines fits to N-body simulations with perturbation theory
calculations. Specifically we use a linear bias times the HALOFIT prescription for the matter
power spectrum ([37, 38] as implemented in CAMB [39, 40]), with additional beyond linear bias
terms from one-loop Lagrangian perturbation theory (specifically Convolution Lagrangian
Effective Field Theory [41–44]) as implemented in the velocileptors code3. This hybrid
approach correctly models non-linearities in the matter fluctuations, while adding a well-
motivated expansion of non-linear bias terms to describe the galaxy field. We validate this
approach on realistic mocks of the unWISE samples in Section 4 and show that it correctly
recovers unbiased cosmological parameters over the range of scales and redshifts considered
here. The matter m and galaxy g power spectra are modeled as:

Pgm = b1,E(z)Pmm,HF (k, z) +
b2,L(z)

2
Pb2(k, z) +

bs,L(z)

2
Pbs(k, z) (3.1)

Pgg = b1,E(z)2Pmm,HF (k, z) + b2,L(z)Pb2(k, z) + bs,L(z)Pbs(k, z)

+ b1,L(z)b2,L(z)Pb1b2(k, z) + b1,L(z)bs,L(z)Pb1bs(k, z) + b2,L(z)bs,L(z)Pb2bs(k, z)

+ b2,L(z)2Pb22(k, z) + bs,L(z)2Pb2s(k, z)

+ Shot Noise (3.2)
Pmm = Pmm,HF (k, z) (3.3)

where Pmm,HF is the HALOFIT matter power spectrum of non-neutrino density fluctuations
and the subscripts E and L indicate the Eulerian and Lagrangian biases respectively, with
b1,E = b1,L + 1. The power spectrum contributions Pb2 , Pbs , etc. are computed analytically
as a function of the linear power spectrum Plin(k, z) following Equation 3.1 in ref. [44] and
shown in Fig. 4 at z = 1. The shot-noise is scale-independent, i.e. a constant.

This is equivalent to making the following substitutions in the CLEFT equations for Pgg
and Pgm (as given in ref. [11], originally equation 2.7 of ref. [42] and equation B.2 of ref. [41];

3https://github.com/sfschen/velocileptors
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Figure 4. Components of the power spectrum model at z = 1, fiducial bias relations from [46], and
fiducial linear bias and higher bias evolution of the unWISE samples.

similar to the approach in ref. [45] for modelling cosmic shear)(
1− αcrossk

2

2

)
PZ + P1−loop → Pmm,HF (3.4)

(
1− αautok

2

2

)
PZ + P1−loop → Pmm,HF (3.5)

Pb1 → 2Pmm,HF (3.6)

Pb21 → Pmm,HF (3.7)

where PZ is the Zeldovich contribution, P1−loop is the 1-loop contribution, and αcross and αauto

are EFT parameters encapsulating small-scale physics that cannot be modelled by perturba-
tion theory. In ref. [42] the EFT counterterm α was allowed to differ between Pgg and Pgm
to encompass other terms neglected in that analysis. Thus the first two substitutions replace
the perturbative plus EFT expansion with the empirical matter power spectrum, whereas the
third and fourth slightly simplify the bias power spectra. Finally, while Pmm,HF (k, z) varies
with the cosmological parameters, we fix the higher-order terms Pb2(k, z), Pbs(k, z), etc. to
their values at the fiducial cosmology (the true cosmology of the simulation, or the Planck
2018 cosmology in data).
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We use the Limber approximation [47, 48] to project the 3D galaxy power spectra into
angular power spectra:

Cgg` =

∫
dχ
W g(χ)2

χ2
Pgg(kχ = `+ 1/2, z) (3.8)

Cκg` =

∫
dχ
W g(χ)W κ(χ)

χ2
Pgm(kχ = `+ 1/2, z) (3.9)

where the galaxy kernel and CMB lensing kernels are

W g(χ) =
dN

dχ
, W κ(χ) =

3

2
ΩmH

2
0 (1 + z)

χ(χ? − χ)

χ?
(3.10)

where Ωm is the low-redshift matter density, i.e. including the neutrino density Ων , and χ? the
comoving distance to the surface of last scattering at z ≈ 1100. Note that since we include
bias evolution in Pgm and Pgg (Equations 3.1 and 3.2), we do not include bias terms in the
galaxy kernel W g.

We also include magnification bias in our modelling, as it contributes to the angular
power spectra at the few percent level [14]. The magnification bias kernel for a galaxy sample
i [49–51] is given by

Wµ,i(χ) = (5sµ − 2)
3

2
ΩmH

2
0 (1 + z)gi(χ) (3.11)

gi(χ) =

∫ χ?

χ
dχ′

χ(χ′ − χ)

χ′
H(z′)

dNi

dz′
(3.12)

where sµ is the response of the galaxy number density to a change in magnitude (Table 1).
Therefore our total model for the observed angular power spectra is given by

CunWISE,unWISE
` = Cgg` + 2Cgµ` + Cµµ` (3.13)

Cκ,unWISE
` = Cκg` + Cκµ` (3.14)

The Limber approximation is accurate to < 1% on the scales that we consider (` > 20)
[48, 52, 53] so we do not consider extensions beyond the first-order correction: ` → ` + 1/2
[48].

In our fiducial model and measurement, we fix the higher-bias evolution b2,L(z) and
bs,L(z) (Fig. 4) and use cross-correlation redshifts that estimate the product of b1,E(z) and
the redshift kernel. We use cross-correlation redshifts rather than cross-match redshifts in
the leading-order term both to allow us to include b1,E(z) and because the uncertainties on
the cross-correlation redshifts are smaller and better understood. For higher-order terms, we
use cross-match redshifts from the COSMOS field to directly estimate dN/dχ.

The evolution of b2,L and bs,L (Fig. 4) is determined from the relations between b1,L,
b2,L and bs,L presented in Fig. 8 of [46], as directly measured from the clustering of protohalos
in N -body simulations. This agrees very well with separate-universe simulations [54] or local
Lagrangian biasing within the Sheth-Tormen or Press-Schechter mass function and we assume
that these halo relationships are indicative of those of the galaxies (e.g. as seen in [55]).

In the data, for the fiducial b1,L(z) evolution required for the fiducial b2,L(z) and bs,L(z),
we use [14]

b1,L,fid(z) = 0.8 + 1.2z − 1 Blue (3.15a)

b1,L,fid(z) = max (1.6z2, 1)− 1 Green (3.15b)

b1,L,fid(z) = max (2z1.5, 1)− 1 Red (3.15c)
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with max (a, b) meaning the larger of a and b.
In the simulations, we directly measure the bias evolution of the simulated galaxies and

use this for b1,L(z) (Fig. 6).
On large scales cross-correlation redshifts measure the product of the redshift distribu-

tion and the linear Eulerian bias evolution:

Ŵ xc,g(χ) ∝ b1,E(z)
dN

dχ
(3.16)

We note that in principle the equation above has some (weak) dependence on the fiducial
cosmology assumed when obtain cross-correlation redshifts. On the contrary, no fiducial
cosmology needs to be assumed to obtain direct matching redshifts from COSMOS. The
normalization of cross-correlation redshifts such that

∫
dχ Ŵ xc,g(χ) ≡ 1 partly removes the

dependence on the fiducial cosmology, by shifting that dependence to the galaxy bias (which
is marginalized over in our constraints).

In our fiducial analysis of the data, we fix the distance-redshift relation (i.e. explicit
factors of χ(z) and H(z)) appearing in Eqs. 3.8 and 3.9, to that in our fiducial cosmology.
We refer to this procedure as “fixed geometry”, and whenever analyzing the real data, we
use Planck 2018 cosmological parameters as fiducial. To validate this procedure, after the
cosmological fits we updated the cosmology to the best-fit cosmology obtained from the green
sample (the most constraining) and repeat the analysis. The cosmological parameters shift by
< 0.2σ when updating the fiducial cosmology in the redshift-distance relation, and therefore
we conclude that our procedure is appropriate given our statistical uncertainty.

For terms that require dN/dz rather than b(z)dN/dz (such as magnification or higher
order biases), we note that dN/dz is the quantity directly measured by cross-matching with
COSMOS and therefore we fix dN/dz and allow H(z) to vary with the cosmological param-
eters.

In tests on mocks, we test both the “fixed geometry” procedure, as well as a “free geome-
try” one in which we fix b(z) dN/dz, and allow H(z) to vary. We find very similar constraints
as shown in Table 4.

If we define beff
1,E as the weighted average of b1,E(z) over the redshift distribution:

beff
1,E ≡

∫
dχ b1,E(z)

dN

dχ
(3.17)

we may write

Ŵ xc,g(χ) =
b1,E(z)dN/dχ

beff
1,E

(3.18)

Integrating Equation 3.18 over χ gives unity as required.
Substituting the sum in Equation 3.2 into Equation 3.8 yields a sum of angular power

spectra

Cgg` = C
gg,(I)
` +C

gg,(II)
` +C

gg,(III)
` +C

gg,(IV )
` +C

gg,(V )
` +C

gg,(V I)
` +C

gg,(V II)
` +C

gg,(V III)
` (3.19)

For Cgg,(I)` , we can use Equation 3.18 to replace dN/dχ with the observable Ŵ xc,g(χ), yielding

C
gg,(I)
` =

∫
dχ
(
beff
1,E

)2 Ŵ xc,g(χ)2

χ2
Pmm,HF (k, z) (3.20)
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The second term requires the direct measurement of dN/dz from the COSMOS field, Ŵ dir,g(z)

C
gg,(II)
` =

∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
b2,L(z)Pb2(k, z) (3.21)

where N is the normalization

N ≡
∫
dχŴ dir,g(z)2H(z) (3.22)

and b2,L is a function of redshift through its dependence on b1,L,fid(z). Likewise for the third
term

C
gg,(III)
` =

∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
bs,L(z)Pbs(k, z) (3.23)

The cross terms with b1,L require both Ŵ dir,g(z) and Ŵ xc,g(χ) and recalling b1,E = 1 + b1,L
we see that

C
gg,(IV )
` = beff

1,E

∫
dχ
Ŵ dir,g(z)H(z)Ŵ xc,g(χ)

Nχ2
b2,L(z)Pb1b2(k, z)

−
∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
b2,L(z)Pb1b2(k, z) (3.24)

C
gg,(V )
` = beff

1,E

∫
dχ
Ŵ dir,g(z)H(z)Ŵ xc,g(χ)

Nχ2
bs,L(z)Pb1bs(k, z)

−
∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
bs,L(z)Pb1bs(k, z) (3.25)

The final three terms require only Ŵ dir,g(z)

C
gg,(V I)
` =

∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
b2,L(z)bs,L(z)Pb2bs(k, z) (3.26)

C
gg,(V II)
` =

∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
b2,L(z)2Pb22(k, z) (3.27)

C
gg,(V III)
` =

∫
dχ
Ŵ dir,g(z)2H(z)2

N2χ2
bs,L(z)2Pb2s(k, z) (3.28)

Cκg` does not require any mixed terms

Cκg` =

∫
dχbeff

1,E

Ŵ xc,g(χ)W κ(χ)

χ2
Pmm,HF (k, z)

+

∫
dχ
Ŵ dir,g(z)H(z)W κ(χ)

Nχ2

b2,L(z)

2
Pb2(k, z)

+

∫
dχ
Ŵ dir,g(z)H(z)W κ(χ)

Nχ2

bs,L(z)

2
Pbs(k, z) (3.29)

For Cκµ` and Cκµ` , we use Ŵ dir,g(z) in the galaxy kernel, and for Cgµ` , we use Ŵ xc,g(χ).
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The combination of the cross-correlation and cross-match redshifts allows us to perform
a consistency check on the higher-order terms in our model. When integrating over comoving
distance in Equations 3.20 to 3.29, we assume that the evolution of b1 is proportional to the
ratio between cross-correlation and cross-match redshifts. However, the small-scale clustering
used for measuring the cross-match redshifts will also be sensitive to the higher-bias terms.
This contribution cannot be so large that it changes the effective small-scale bias (i.e. ratio
of the galaxy power spectrum in our model, including higher-order bias contributions, to the
matter power spectrum) to be much different from the linear bias. To assess self-consistency,
we divide the cross-correlation redshift distribution by the cross-match redshift distribution
and multiply by the best-fit linear bias from Section 6.4 and Fig. 17 to get b1(z). Then we
evaluate Equation 3.2 for Pgg(z), Fourier transform to the correlation function, integrate to
get the projected correlation function wp, and average over the relevant scales (2.5 to 10 h−1

Mpc), as in Equation 4.3. We find that the difference between this effective small-scale bias
and b1(z) is much smaller than the measurement error on the bias from uncertainty in the
clustering measurement (i.e. errorbars in Fig. 6). We therefore conclude that our model is
self-consistent, within the errorbars on the spectroscopic cross-correlation.

In our fiducial model, we vary beff
1,E , sµ and the shot noise for each sample, along with

the two cosmological parameters, Ωm and σ8. We hold the higher-order biases fixed and
only evaluate the higher bias power spectra Pb2 , Pbs , etc. at the fiducial cosmology. We
tested models in which we allowed an overall scaling in b2,L(b1,fid(z)) or added a constant to
b2,L(b1,fid(z)) but these did not change our results.

4 Mocks

In this section we describe the mocks that we use to test our cosmological inference pipeline.
These mocks are intended to create a plausible sample of mock galaxies to test the impact of
non-linearities, scale-dependent bias, and uncertain redshift distribution, rather than repre-
senting a faithful HOD model of the unWISE galaxies. Since our goal is to test our pipeline,
rather than calibrate any aspect of our model or covariance we primarily need a sample of
objects with similar clustering and redshift distribution to our data with a plausibly complex
relationship to the underlying matter distribution.

To this end we model the unWISE galaxies using a simple HOD applied to dark matter
halos in an N -body simulation. We simply use a 6-parameter family4 of HODs based on
ref. [58] with

〈Ncen〉 =
1

2
fsamp

[
1 + erf

(
log10M − log10Mcut√

2σlog10M

)]
(4.1)

and

〈Nsat〉 =

[
M − κMcut

βMcut

]α
. (4.2)

We adjust the parameters by hand to match the number density (Fig. 5), bias evolution
(Fig. 6) and therefore the bias-weighted redshift distribution constrained by the clustering
redshifts (Fig. 7). Specifically, we keep σ, κ, α, and β constant, adjust Mcut with redshift
to roughly match the bias evolution (Fig. 6), and exactly adjust fsamp to match the redshift

4There is some evidence that HOD parameters scale approximately universally with number density,
e.g. ref. [56]. A similar assumption is at the root of the ‘SHAM’ approximation [57].
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Figure 5. Left: Mcut as a function of redshift for the HOD of the 3 unWISE mock galaxy samples.
Right: Sampling fraction (i.e. factor by which the HOD of Eqs. 4.1 and 4.2 is downsampled) as a
function of redshift. When the sampling fraction exceeds unity, we augment the catalog with a Poisson
resampling of the halo catalog to better match the required dN/dz.

distribution. If fsamp > 1, we Poisson re-sample the halo catalog (i.e. some halos are double-
counted) to exactly match dN/dz. We favor fsamp < 1, but find fsamp > 1 is required for the
less massive blue sample due to the mass resolution of the simulation.

The requirement of matching both the number density and the bias evolution leads
to features such as the dip in Mcut at z ∼ 0.7 in green, to match a drop in the bias in
data, which also requires a drop in fsamp to match the number density. Such features may
indicate the limitations of our modeling; however we require primarily that the clustering
and number density are similar to that of the unWISE data and not that the model be
physically compelling. Recall these mocks are not used to calculate the theoretical predictions
or covariance matrices.

For blue, we use κ = 0.1, α = 1.0 and β = 15. We find that a redshift-dependent σ
works best, with σ = 0.22 at z > 0.5, 0.43 at z < 0.4, and a linear ramp from 0.4 < z < 0.5.
For green, we use σ = 0.25, κ = 0.1, α = 1.0, and β = 10; and for red, we use σ = 0.43,
κ = 1.0, α = 0.8 and β = 15. We plot Mcut and fsamp as a function of redshift in Fig. 5.

We populate halos from one of the simulations in the CrowCanyon2 simulation suite
(see Appendix A), specifically a FastPM [59] N -body simulation with 81923 particles in a
4096 h−1Mpc box. The force resolution factor B is 3 and 40 time steps are used between
z = 19 and z = 0. We use the full-sky lightcone output from CrowCanyon2, and halos are
identified using a friends-of-friends halo finder with linking length b = 0.2. The simulation
uses a ΛCDM cosmology close to the Planck 2018 cosmology, with Ωm = 0.3092, Ωb = 0.0496,
h = 0.677, ns = 0.968, and σ8 = 0.822. While the galaxy map is obtained by populating
Dark Matter halos with the HOD described above, the CMB lensing maps are obtained by
using the Born approximation5 and integrating the matter density on the lightcone, weighted
by the CMB lensing kernel, as described in Appendix A. The simulated volume is quite large
(69h−3Gpc3) but not overwhelmingly larger than the volume sampled by the data. Since
much of our constraining power comes from large scales, we expect some fluctuations in the

5The Born approximation is expected to be an excellent approximation on the scales of interest and for
Planck noise level [60–63].
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Figure 6. Comparison between bias for HODs in the CrowCanyon2 simulation (purple) and measured
bias from cross-correlations with LOWZ (green), CMASS (red), and DR14 quasars (blue).
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Figure 7. Comparison between cross-correlation redshift measurement of b dN/dz, and the bsml mea-
surement in Fig. 6 multiplied by the cross-match redshift distribution. The data redshift distributions
are truncated at z = 2.2, the maximum redshift of the CrowCanyon2 simulation.

galaxy clustering due to the sample variance from the initial conditions.
To make sure that the HOD roughly reproduces the correct bias evolution as seen in the

data, we compare to observations of cross-clustering with spectroscopic galaxies (Fig. 6) by
considering the quantity

bsml =
√
w̄gg/w̄mm with w̄ =

∫ rp,max

rp,min

drp wp(rp) (4.3)

where rp,min = 2.5 h−1 Mpc and rp,max = 10 h−1 Mpc. This matches the scales on which the
cross-correlation redshifts are measured.

The comparison of b(z)dN/dz between the mocks and the data is shown in Fig. 7, while
the comparison of Cκg` and Cgg` on the lightcone is shown in Fig. 8. We find qualitative agree-
ment for the bias evolution, redshift distribution and auto/cross-power spectra. Note that
the purpose of these mocks is to test that our non-linear model is flexible enough to recover
unbiased parameters from the underlying simulation, so that only qualitative agreement with
data is required.

– 14 –



100 200 300 400
Multipole 

0

1

2

3

4

5

6

7

8
10

4
C

Auto Blu mock
Grn mock
Red mock

Blu data ×1
Grn data ×2
Red data ÷5

100 200 300 400
Multipole 

Cross ×10

Figure 8. Comparison between Cgg` (left) and Cκg` (right) in the data (points with error bars) and in
the CrowCanyon2 simulation (lines) for the blue, green and red samples. To bring them to a common
scale while separating the lines for readability we have multiplied the green sample values by 2 and
divided the red sample values by 5. The cross spectra have all been multiplied by an additional factor
of 10 compared to the auto-spectra.

5 Testing the model on mocks

5.1 Recovering the input cosmological parameters of the simulation

We test the model defined in Section 3 on the mocks described in Section 4. In our setup, no
noise has been applied to the CMB maps. However, as explained above, we are use a single
box for the galaxies, so we are subject to a single realization of the galaxy power spectrum
and shot noise. Therefore while we expect to be on average < 1σ away from the true value in
the mocks, residual noise fluctuations mean that perfect agreement should not be expected.
As described below, when we add realistic reconstruction noise to the CMB lensing maps, the
recovered parameters are typically ∼ 1σ away from their true value, as expected.

We first verify that we recover the correct input cosmology on noiseless mocks, using the
true W dir,g(z) and W xc,g(χ) of the simulation (as given in Fig. 7). Our goal for validating the
pipeline is to recover S8, σ8 and Ωm to within 0.5σ (as measured from the marginalized one-
dimensional posteriors), although in some cases the biases in σ8 and Ωm are slightly higher,
possibly due to noise in the large-scale modes of the simulation that most of our constraining
power comes from.

In these cosmology runs, we fix the other cosmological parameters to their true values
in the simulation. This is a conservative test, as the errors in the data will be larger for two
reasons: first, marginalizing over the uncertain redshift distribution (marginally) increases
the errors (Section 5.2) and second, in our fiducial analysis we shall keep Ωmh

3 fixed (corre-
sponding to a fixed angle of the CMB peaks, see Section 6.3) rather than h, further increasing
the uncertainty on Ωm and σ8.

Our sampled parameters are the (Eulerian) linear bias beff
1,E , Ωm, sµ, log10(Shot Noise),

and ln (1010As). We summarize the priors on these parameters in Table 2. The priors on
Ωm and log(1010As) and beff

1,E are chosen to be uniform and much larger than the constraints
provided by the data; hence the arbitrary choice of where to cut off the uniform priors doesn’t
matter. For shot noise, the Gaussian prior on log shot noise corresponds to 50% variation from
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Parameter Prior
Ωm [0.1, 0.9]

ln(1010As) [1.0, 4.0]
log10(Shot Noise) N (log10(n̄−1), 0.22)

beff
1,E [−10, 10]

sblue
µ N (0.455, 0.04552)

sgreen
µ N (0.653, 0.06532)
sred
µ N (0.842, 0.08422)

Table 2. The priors on the model parameters, discussed in the text. The priors on the cosmological
parameters and bias are uniform and N (x, σ2) denotes a Gaussian distribution with mean x and
standard deviation σ. The Gaussian prior on log shot noise allows 50% variation from the Poisson
value.

the Poisson value. Finally, for the magnification parameter, sµ, we choose a 10% uncertainty
around the measured value from [14]. This is driven by two factors: first, since the WISE
depth varies with ecliptic latitude, the measured slope of the galaxy magnitude distribution
at the faint end also varies by about 5% (see Fig. 20 in ref. [14]); and second, to remove
potential modelling biases from the fact that the magnification term maps to larger k where
our model is likely to perform worse.

We sample from the posterior using the MCMC sampler developed for CosmoMC [64, 65]
and tailored for parameter spaces with a speed hierarchy, as implemented in the Cobaya6

package [66, 67]. We determine chain convergence using a generalized version of the R − 1
Gelman-Rubin statistic [65, 68], determining chains to have converged once R− 1 < 0.1. We
remove the first 30% of the chains from all analyses as burn-in.

Using a covariance matrix appropriate for the data with fsky = 0.586 we find that we
recover the correct input cosmology with `max = 300 for the blue and green samples, while
for the red sample, we choose the more conservative `max = 250. For all samples, we use
`min,auto = 100 and `min,cross = 20, exactly the same scale cuts that we use on data.

5.2 Marginalizing over the uncertain redshift distribution

Due to the noisy nature of redshift distribution measurement Ŵ xc,g(χ), it is important to
propagate the uncertainty on redshift distribution, to the uncertainty in cosmological param-
eters7. We shall do this by a simple averaging procedure as described below.

First, we generate W xc,g(χ) ∝ b1(z)dN/dχ samples consistent with the measurement
noise using B-splines following Section 5.2 in ref. [14]. These samples are obtained by consid-
ering the measured Ŵ xc,g(χ) and its noise covariance. A Gaussian random realization with
the correct noise covariance is generated many times (one for each sample), then this noise
realization is added to the measured Ŵ xc,g(χ) and finally a smooth B-spline with positivity
constraint and curvature penalty is fit to the resulting W xc,g(χ) sample. This procedure
generates (bias-weighted) redshift distributions that are consistent with the data and whose

6https://cobaya.readthedocs.io
7In principle we could do this for the cross-correlation redshifts by including all of the measured cross-

spectra in the inference, along with a model for dN/dz and the spectroscopic populations. This would
significantly increase the complexity of the model, and would not address the direct-match dN/dz estimates,
so we leave this for future work.
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density in the set of possible distributions is proportional to their probability of being the
correct one given the data8.

Next, we run a number of MCMC chains (each sampling over the 5 parameters listed
in the previous section), one for each sample W xc,g(χ) rather than just the best-fit Ŵ xc,g(χ).
Finally we combine the chains of eachW xc,g(χ) sample, weighting each by the posterior value
at the maximum (MAP) for each sample P (model at MAP|data).

We use 20 samples for the averaging, and have found that this is sufficient to propagate
the effect of redshift uncertainty, because of the considerable overlap of the contours with
different samples. As usual, we test this procedure on simulations before applying it to data.
We generate W xc,g(χ) samples for the mocks by adopting a similar error covariance matrix to
what we found in the data and then sampling from W xc,g(χ). We further apply a noise bias
correction as described in the next subsection, while noting that alternative methods such as
those described in [69, 70] can be used instead.

In Fig. 9, we show the parameter posteriors before and after redshift uncertainty marginal-
ization for the green sample in the CrowCanyon2 simulation (see Fig. 16 for equivalent plots
for the blue and red samples).

We find that W xc,g(χ) marginalization has a small impact on the marginalized Ωm and
σ8 constraints, changing them by < 15%, while it does cause a ∼ 20 − 50% increase in the
S8 errors (with a larger impact on the blue sample than green or red). More generally, we
find that W xc,g(χ) marginalization affects nuisance parameters such as beff

1,E more than our
cosmological parameters of interest.

Some previous analyses have adopted a more compact parametrization of the redshift
uncertainty, for example by marginalizing over a shift and a width of the redshift distribution.
In our specific setup, we find that such a marginalization is unable to properly account for
the redshift errors. For example, when analyzing the mocks with one of theW xc,g(χ) samples
rather than the true one, the addition of shift and width parameters don’t appear to decrease
the size of the bias. For this reason, we adopt the previous setup.

5.3 Noise bias correction

There is one further subtlety when computing a theoretical prediction for the C` by using a
noisy Ŵ xc,g, where we have further imposed a positivity constraint. Because the theoretical
C` are a non-linear function of the value of the dN/dz at a particular redshift, a noise bias is
introduced9 when computing the C` given a W xc,g(χ). This is easy to understand intuitively,
for example in the case of the auto-correlation Cgg` : suppose that true dN/dz was zero in a
particular redshift range. However, because of noise in its measurement and the positivity
constraint, the measured Ŵ xc,g(χ) will either positive (due to a positive noise fluctuation) or
zero. Therefore, a region with no galaxies will always appear to have a non-negative noise
floor in terms of effective number of galaxies, thus biasing the theoretical Cgg` . This is quite

8To be precise, given the cross-correlation between the unWISE galaxies and the spectroscopic data used
to determine Ŵ xc,g(χ). Some amount of information about the redshift distribution is also contained in the
goodness of fit to the Cgg` and Cκg` data, and this justifies the further weighting by the posterior value outlined
in the next paragraph.

9If we allowed a negative dN/dz and fully marginalized over the dN/dz noise realizations, there would be no
need for a noise bias correction. However, given our smoothness prior and the positivity constraint, we correct
for the small bias introduced with the method described in this session. Note that most “low-dimensional”
dN/dz marginalizations, such as those using a shift and a width parameter don’t fully marginalize over possible
noise realizations, and therefore introduce a noise bias that should in principle be corrected for.
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Test Ωm Bias/σ σ8 Bias/σ S8 Bias/σ
True value 0.3092 – 0.822 – 0.835 –
Fix geom. 0.3196± 0.016 0.63 0.826± 0.025 -0.17 0.852± 0.016 1.08

Fix geom., fix Ωmh
3 0.3305± 0.032 0.67 0.806± 0.046 -0.34 0.847± 0.017 0.7

Fix geom., sample dN/dz 0.3192± 0.016 0.61 0.820± 0.031 -0.07 0.846± 0.028 0.43
Fix Ωmh

3, sample dN/dz 0.3244± 0.030 0.51 0.812± 0.046 -0.22 0.844± 0.026 0.37

Table 3. Performance of the model on mock data for the blue sample. The tests are described in the
text. The test in the final row is also done with fixed geometry, which we omit from the row heading
for compactness. For each test we give the median and uncertainty of each recovered parameter, plus
the offset of the median from the true value as a fraction of the uncertainty (i.e. the bias in units
of σ). The grey row indicates the assumptions for our fiducial constraints. Values are quoted as the
median and 1/4 of the difference between the 2.5th and 97.5th percentiles.

general, and a noise bias is usually introduced when taking a non-linear function of a noisy
quantity.

We can correct for this by Monte-Carlo, by computing the C` with 1000 noise realiza-
tions in W xc,g(χ) and comparing the result to the C` computed at the fiducial Ŵ xc,g(χ).
More explicitly: for each of the galaxy auto and cross-correlation (separately), and for each
tomographic bin we compute the quantity

(∆C`)noise bias =
〈
Ctheory
`

〉
W xc,g(χ) samples

−
(
Ctheory
`

)
fiducial Ŵ xc,g(χ)

(5.1)

Where the “fiducial” Ŵ xc,g(χ) refers either to the best-fit measured one on the data10, or the
actual W xc,g(χ) in the mocks (they are very similar, but we treat each case separately and
self-consistently). Similarly, we have created a set of sample W xc,g(χ) for each of the mocks
and data, and for each tomographic bin. Before cosmological inference, we correct the theory
C` of both the mocks and the real data by subtracting the noise bias:

(C`)corrected = Ctheory
` − (∆C`)noise bias (5.2)

We find that this noise bias correction is significant for correctly interpreting Cgg` , while
it’s negligible for Cκg` . For completeness we always include this correction, except when
performing tests on mocks with W xc,g(χ) fixed to its fiducial (true) value. As validation, we
note that the median of the posteriors on mocks is nearly unchanged between the case with
the true dN/dz and the samples of dN/dz. While the noise bias correction is slightly different
between the mocks and the data (and we always use the appropriate one in any analysis), if
we use the mock-based noise bias instead of the data-based one when constraining parameters
with the data, we find shifts of < 0.5σ.

5.4 Results on mocks

The parameter constraints from mocks for the green sample, using the true W dir,g(z) and
W xc,g(χ) of the simulation, are shown in Fig. 9 (similar results for the blue and red samples
can be found in Fig. 16). The key result from this test is the discrepancy between the true
cosmological parameters and the median of the recovered values, which we refer to as the bias
in the parameters. Our fiducial estimate for the recovered parameters is the median rather
than the maximum a posteriori (MAP), although we find that the two are very similar.

10After smoothing with a B-spline.
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Test Ωm Bias/σ σ8 Bias/σ S8 Bias/σ
True value 0.3092 – 0.822 – 0.835 –
Free geom. 0.311± 0.013 0.18 0.833± 0.017 0.62 0.848± 0.016 0.86
Fix geom. 0.3111± 0.011 0.17 0.832± 0.020 0.49 0.847± 0.014 0.9

Fix geom., fix Ωmh
3 0.3178± 0.020 0.43 0.820± 0.034 -0.07 0.844± 0.015 0.62

Fix geom., sample dN/dz 0.3102± 0.012 0.09 0.831± 0.023 0.39 0.845± 0.018 0.58
Fix Ωmh

3, sample dN/dz 0.3167± 0.020 0.37 0.820± 0.033 -0.07 0.843± 0.017 0.47

Table 4. As for Table 3, but for the mock green sample.

Test Ωm Bias/σ σ8 Bias/σ S8 Bias/σ
True value 0.3092 – 0.822 – 0.835 –
Fix geom. 0.3031± 0.017 -0.37 0.869± 0.047 0.99 0.875± 0.043 0.94

Fix geom., fix Ωmh
3 0.2975± 0.032 -0.37 0.877± 0.061 0.9 0.877± 0.045 0.94

Fix geom., sample dN/dz 0.3012± 0.018 -0.45 0.871± 0.051 0.96 0.873± 0.049 0.77
Fix Ωmh

3, sample dN/dz 0.2983± 0.033 -0.33 0.875± 0.064 0.83 0.874± 0.047 0.83

Table 5. As for Table 3, but for the mock red sample.

We summarize the one-dimensional posteriors on Ωm, σ8 and S8 for different scenarios
in Tables 3, 4 and 5 for the blue, green and red samples respectively. Recall this test uses
noiseless CMB lensing maps, though we use only a single realization of the N-body simulation
so we expect some deviation from the input cosmology. However we expect the bias to be
< 1σ since the overall noise in our simulations is less than that of real data (the CMB lensing
noise is a large part of our error budget). We find that the parameters of interest are recovered
to better than 0.5σ for the blue and green samples in our fiducial setup. For the red sample,
the modeling is more challenging, and we find possible biases in S8 up to 0.8σ. The red
sample doesn’t provide much constraining power, so we shall not explore this further. In the
combined analysis, we add a systematic error correction to the red sample to account for the
larger modeling error. Specifically, for each bin in the auto and cross-correlation, we add in
quadrature a systematic error equal to 0.94 times the statistical error, as derived from the
third row of Table 5. This conservatively assumes that the entirety of the discrepancy in
Table 5 arises from modeling errors, although some of it may come from cosmic variance on
the single simulated sky that we used.

We also test the cosmology pipeline when Planck-appropriate noise is added to the κ
map. Unsurprisingly, here we find ∼ 1σ biases, since a single noise realization in the data
should cause scatter by ∼ 1σ in the parameters. However, this test does allow us to verify
that the model provides a good fit to the simulation data, with χ2/d.o.f. ∼ 1.

Additionally, we find that the maximum a posteriori cosmological parameters are quite
similar to the medians of the marginalized posterior quoted in Tables 3-5. Thus we opt not
to use the MAP and corresponding MAP-based confidence intervals as advocated by [71] for
weak lensing constraints, where the likelihood surface is more non-Gaussian.

We additionally try a number of variations on this model and find they do not affect
our results. We try allowing the higher-bias power spectra to vary with cosmology; allowing
the scaling factor on b2,L to vary or allowing for a linear offset in b2,L(z); measuring bsml in
on larger (more linear) scales (> 30h−1Mpc); using more points in z to interpolate bsml(z);
and using different simulation boxes with different seeds.
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Figure 9. Posteriors for the mock green sample, showing the key cosmological parameters: Ωm and
σ8 plus the derived parameter S8. We show the results for a fixed dN/dz and for sampling over
the dN/dz uncertainty, as described in the text. Dashed grey lines show the “true” values of the
parameters in the simulation, though we expect some scatter due to sample variance in the initial
conditions.

6 Cosmological constraints

6.1 Blinding strategy

Blinding is important to reduce the chances of introducing spurious biases (such as “confirma-
tion bias”) through our analysis choices, choice of parameters, scale cuts, data selection etc.
With this in mind, we adopt the following strategy: we don’t blind the bandpowers of the
auto and cross-correlation since those were already published [14]. In that work, however, we
did not attempt any cosmological inference. A large number of null and systematic tests were
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performed to confirm the robustness of the bandpowers. Next, for each tomographic bin we
have created mocks based on simulations to match the redshift distribution and bias evolution
of the sample, as described in Section 4. Then we tested the model described in Section 3,
and we chose scale cuts and which parameters to vary based solely on the mocks. After all
of the null tests were performed and passed, and the analysis choices fixed based on getting
unbiased cosmology from the mocks (i.e. recovering the input parameters of the underlying
dark matter simulation), we have decided to “unblind” the data, by running MCMC chains
on the measured bandpowers with the same setup used on the mocks. We have not modified
the pipeline or analysis choices after unblinding. In summary, throughout the analysis, we
have not been blinded to the bandpowers of the auto and cross-correlations, but we have been
fully blinded to the cosmology.

6.2 Systematics checks

In Section 7 of the companion paper [14], we performed a large number of null and systematics
tests to validate the robustness of our measurement. These tests are summarized in Fig. 12
of ref. [14] and here we briefly comment on them.

First we have tested the isotropy of the signal: no significant variation was observed
when restricting the analysis to the BOSS footprint, which is the one used to measure the
cross-correlation redshifts. Since the unWISE imaging depth is spatially dependent11, this is
an important test. Next we studied the impact of the range of scales involved in determining
Ŵ xc,g(χ) from the cross-correlation with BOSS and eBOSS, again finding negligible changes.
Similarly, the sky is split into two halves at Galactic longitude = 155◦ and both the power
spectra and clustering redshifts are consistent between the two halves. The use of systematic
weights or changing in the magnification bias slope sµ have likewise a very small impact on
the amplitude of the auto and cross-correlations. We have also verified that more restrictive
scale cuts have negligible impact. Additionally, extra masking around stars and the presence
of the transfer function described in Section 2 don’t impact our results. Finally, in Section
7.2 of ref. [14], we argued that our measurement should be robust to possible foregrounds in
the CMB lensing map that are correlated with the unWISE sample, based on the estimates of
[25, 27, 72], together with the null tests in [6], Section 4.5. As a further test we also repeated
the cross-correlation with CMB lensing maps obtained from tSZ-deprojected temperature
maps, getting consistent results.

In summary, in all of the tests that we have performed, the statistical error has always
been dominant over the shift in the auto and cross-correlation amplitude, giving confidence
in the robustness of the Cκg` and Cgg` used in this analysis.

6.3 Parameter marginalization

Our primary focus is determining the low-redshift values of the cosmological parameters that
set the amplitude of lensing. Since our measurements are only at low redshift, we are unable
to determine the full set of cosmological parameters as measured, for example, by the primary
CMB. First, our measurements are insensitive to (and independent of) the value of the optical
depth to reionization τ . Therefore we will set it to the fiducial value whenever calculating a
power spectrum with CAMB and drop it from our parameter set, noting that the results won’t
be affected by the particular value chosen. Second, we note that since we are using projected
quantities12 at low redshift, we are only sensitive to the total low-redshift matter density Ωm

11However our magnitude cuts ensure that completeness is close to 100% everywhere on the footprint.
12And hence the scale and size of the baryon acoustic oscillations (BAO) have been erased.
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and not separately to its components of cold Dark Matter (Ωc) and baryons (Ωb). Therefore
we will use only one parameter Ωm = Ωc + Ωb + Ων , and fix13 ωb ≡ Ωbh

2 = 0.02242. Third,
our measurement of low-redshift amplitude is not yet at the level that can allow a detection
of neutrino masses given the current bounds, and therefore we set the neutrino density to its
value predicted by the minimum mass, normal hierarchy scenario (

∑
mν = 0.06 eV).

Finally, our measurements of the lensing amplitude are quite degenerate with the dis-
tance to the unWISE redshift, i.e. the Hubble parameter h. To break this degeneracy, we will
use a measurement of the angular size of the sound horizon at recombination from the CMB,
θ?. This is one of best-measured and most robust quantities from the primary CMB and its
measurement is purely geometrical since it’s determined by the angular position of the peaks
in the CMB temperature and polarization power spectra. Therefore it’s largely independent
of the particulars of the cosmological model and the detailed physics of the CMB. The Planck
satellite provides a remarkable 0.03% measurement of θ? = 1.04109 ± 0.00030 [20]. A quick
calculation shows that within the ΛCDM model, θ? is primarily determined by the product
Ωmh

3 [73], leading to a geometrical 0.3% constraint on Ωmh
3 = 0.09633 ± 0.00029 [20]. It

is important to note that this measurement is largely independent of the complex physics
that determines the CMB power spectrum as well as any possible observational systematics
affecting the broad-band CMB power spectrum. Therefore, even within our philosophy of
being as independent as possible from the physics of the early Universe and of the CMB, we
have decided to fix Ωmh

3 in our fiducial analysis.
The only residual non-trivial dependence on Planck data and the physics of the CMB

is through the scalar spectral index ns. While in the current analysis we fix it to the best-fit
Planck value (ns = 0.9665± 0.0038, determined to 0.4% and therefore with negligible impact
on our uncertainty estimation), future measurements will either allow ns to be measured
internally, or alternatively, low-redshift measurements of ns such as from the galaxy power
spectrum can be used instead.

6.4 Results

Here we apply the methods discussed in the previous section to the band-powers for the auto
and cross correlation measured earlier [14] to constrain σ8, Ωm and S8 = σ8(Ωm/0.3)0.5, as
well as the nuisance parameters for each sample (linear bias, shot noise and magnification
slope sµ). As explained in Section 6.3, in our fiducial analysis we also vary h in such a way
as to keep the quantity Ωmh

3 fixed to its best-fit Planck value, Ωmh
3 = 0.09633, as inferred

from the angular position of the sound horizon at recombination θ?. Therefore, we are also
able to derive a posterior on h.

Our main results are summarized in Table 6 and shown in Fig. 11 (the posteriors for the
full parameter set and our fiducial sample can be found in Appendix B). This figure makes it
clear that we constrain the combination S8 = σ8(Ωm/0.3)0.5 more robustly than either Ωm or
σ8 alone, with those parameters being only loosely constrained in the degeneracy direction. As
is also apparent from Fig. 11, the green sample is the most constraining: this is a combination
of it being the highest S/N bin in the cross-correlation with Planck lensing and it being at high

13Note that, on the scales of interest, we are sensitive to baryons primarily through their gravitational
influence, which is degenerate with the effect of the Dark Matter. When running CAMB we choose to set the
value above, but point out that our results are largely independent of this choice within the range of currently
accepted values.
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Figure 10. Comparison between the data and model with MAP parameters from the individual
fits with fixed Ωmh

3. The power spectra are separated into various components: the dominant
contribution from b1 times Halofit; the magnification contribution; the contribution from higher bias
terms, and for the auto-spectra, shot noise. The model including correction for noise bias from the
redshift distribution (Sec. 5.3) is negligibly different from the model without the correction.

Sample Ωm σ8 S8

Blue, fix h 0.345± 0.020 0.734± 0.029 0.785± 0.016
Blue, fix Ωmh

3 0.370± 0.036 0.699± 0.046 0.776± 0.018
Blue, sample dN/dz 0.342± 0.019 0.728± 0.029 0.777± 0.020

Blue, fix Ωmh
3, sample dN/dz 0.368± 0.037 0.697± 0.045 0.771± 0.022

Green, fix h 0.298± 0.01 0.780± 0.021 0.776± 0.015
Green, vary boff

2 0.298± 0.01 0.789± 0.030 0.785± 0.030
Green, fix Ωmh

3 0.291± 0.018 0.794± 0.032 0.782± 0.014
Green, sample dN/dz 0.299± 0.011 0.778± 0.021 0.777± 0.018

Green, fix Ωmh
3, sample dN/dz 0.293± 0.018 0.792± 0.032 0.781± 0.019

Red, fix h 0.301± 0.019 0.818± 0.062 0.822± 0.061
Red, fix Ωmh

3 0.305± 0.041 0.816± 0.072 0.822± 0.062
Red, sample dN/dz 0.301± 0.023 0.814± 0.064 0.816± 0.064

Red, fix Ωmh
3, sample dN/dz 0.305± 0.046 0.813± 0.080 0.822± 0.066

Blue + green, fix Ωmh
3 0.302± 0.018 0.781± 0.032 0.785± 0.013

Blue + green, fix Ωmh
3, sample dN/dz 0.307± 0.018 0.773± 0.029 0.782± 0.015

+ BAO 0.307± 0.007 0.772± 0.018 0.781± 0.015
Blue + green + red, fix Ωmh

3 0.309± 0.017 0.774± 0.027 0.785± 0.013
Blue + green + red, fix Ωmh

3, sample dN/dz 0.307± 0.018 0.775± 0.029 0.784± 0.015
+ BAO 0.307± 0.007 0.775± 0.018 0.784± 0.016

Table 6. Parameter constraints for the unWISE-Planck cross-correlations. The different variations
on the analysis are discussed in the text, with our primary constraints being for fixed Ωm h

3 including
the sampling over the dN/dz uncertainty. We caution that constraints on Ωm and σ8 are correlated
(see Fig. 11), and this degeneracy needs to be broken by the addition of external data (e.g. SDSS I,
II and III BAO measurements [74, 75] plus 6dF BAO [76] in the last row).

enough redshifts that non-linearities at a fixed angular scale are less important14 and therefore

14Due both to the increase of kNL with redshift, and the fact that a fixed physical scale, k, projects to a

– 23 –



0.6 0.7

h

0.7

0.8

0.9

S 8

0.6

0.8

1.0

8

0.2

0.3

0.4

0.5

m

0.2 0.3 0.4 0.5

m

0.6 0.8 1.0

8

0.7 0.8 0.9

S8

Planck
Blue
Green
Red

Figure 11. Constraints on the cosmological parameters from the unWISE blue, green and red
samples, compared to those from Planck (temperature, polarization and lensing; purple lines and
contours). In all cases the unWISE contours include marginalization over dN/dz uncertainty. The
tight correlation between Ωm and h arises because we fix Ωmh

3 in our analysis (Section 6.3), thus Ωm
and h should not be regarded as independent.

it can be modeled to higher `max. The blue sample is the most affected by non-linearities,
rendering the modeling more challenging, while the large shot noise and the importance of
non-linear biases of the red limit its constraining power. Moreover, the green sample is the
most well-characterized in terms of both redshift distribution and sample properties. Broadly
speaking, we find that the three samples are statistically consistent, even though some of
the degenerate parameters for the green and blue are slightly offset. Moreover, as we will

larger ` at higher redshift [` ∼ kχ(z)].
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Figure 12. Constraints on the matter density and power spectrum amplitude from the unWISE blue
and green samples, compared to those from Planck (purple [77]), KiDS+BOSS+2dFlens (maroon
[17]) and DES (light brown [18]). We have importance weighted the KiDS and DES chains to impose
a similar prior on Ωmh

3 as used for unWISE, though that has only a minor effect on the contours. If
we add SDSS I-III and 6dF BAO data to our Blu+Grn constraints the constraints shrink dramatically
in the Ωm direction, tigthening around Ωm ≈ 0.3, however the constraint on S8 is unchanged.

see, the parameter determining the amplitude of lensing, S8, is very similar between all of
them. Given that the systematics, redshift, density, bias and amount of non-linearity are very
different for our three samples, this is a very important test and highlights the robustness of
our measurement.

The best-constrained, ‘lensing’ parameter S8 (roughly corresponding to the combination
perpendicular to the degeneracy direction in the Ωm−σ8 plane) appears to be below the values
from the Planck primary CMB measurements. In fact, Planck reports S8 = 0.832 ± 0.013
(including CMB lensing) [77]. For the green sample, we find S8 = 0.781 ± 0.019, showing
a “tension” with Planck to ≈ 2.2σ when adding the statistical uncertainties in quadrature.
For the blue sample, we find a very similar results of S8 = 0.771 ± 0.022, or a tension with
Planck of about 2.4σ. For the red sample we find a consistent value of S8 = 0.822±0.066; the
uncertainty is considerably larger than the other two samples due to the inclusion of modelling
systematic error and the considerably lower number density. The model with maximum a
posteriori parameters is compared to the data in Fig. 10. As described earlier we do not use
the Planck κ auto-correlation in our fits. The auto-correlation alone gives S8 = 0.818±0.018,
once BAO and weak priors are included [6]. The combined result is 1.5σ lower than this,
with a comparable uncertainty.

In our fiducial model, the higher-bias evolution is fixed using relations found from sim-
ulated dark matter halos [46]. We could instead allow the higher-bias evolution to vary by
adding a free constant boff

2 to b2(z) as given by Equation 3.15 and Fig. 8 of [46] (with an
unconstraining prior on boff

2 ). Adding this freedom to the green sample increases the errorbar
on S8 by a factor of 2 and decreases the tension with Planck to 1.17σ (using the upper error
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bar of 0.038 rather than the symmetric errorbar of 0.030 reported in Table 6, to account
for the asymmetry in the marginalized S8 posterior). This is because boff

2 is quite degen-
erate with S8, and in particular boff

2 ∼ −2 can restore S8 to nearly its Planck value while
still providing a good fit to the data. However, our data are quite consistent with boff

2 = 0
(boff

2 = −0.26 ± 1.02), and adding boff
2 does not improve the goodness of fit, nor does it re-

duce the differences between the true cosmology and the best-fit cosmology in Tables 3– 5.
Moreover, we expect that adding parameters will always degrade the constraining power of
the data, and we emphasize that our simulation tests were carried out with boff

2 = 0 and do
not detect nonzero boff

2 . Furthermore, we require a relatively large value of boff
2 = −2 to bring

our data into concordance with the Planck value of S8. Based on tests from simulations,
Refs. [78] and [55] suggest that boff

2 . 0.5 for galaxy samples selected using stellar mass or
star formation rate, though Ref. [55] estimate boff

2 from fits to data in the literature and find
boff
2 ∼ −2 for the BOSS DR12 measurements of Ref. [21].

Given the difficulty in breaking the σ8 −Ωm degeneracy without external datasets, and
the consistency in the value of S8, we have decided to combine the green, blue and red samples
and to quote joint constraints as our fiducial values (we note that the red sample adds hardly
any constraining power and the combined result is very similar to the green plus blue result).
We combine the blue, green and red Cgg` and Cκg` into a single data vector and include a
smooth fit to the measured cross-correlation between blue, green and red galaxies (Fig. 22 in
[14]) when computing the joint covariance matrix. (The blue-green, blue-red and green-red
cross-correlations are not included in the data vector.) The “blue + green + red” joint fit
has χ2/d.o.f. = 17.1/16 (i.e. a good fit), and we find S8 = 0.784 ± 0.015, which is ≈ 2.4σ
lower than Planck. We also note that a similar preference for lower S8 than Planck has also
been found from cross-correlating optical galaxies with the Planck lensing map [10, 11]; with
ref. [10] interpreting their result as a constraint on Ω0.78

m σ8 = 0.297± 0.009. For the unWISE
sample the addition of SDSS I-III and 6dF BAO data [74–76] serves to fix Ωm ≈ 0.3 and
breaks the Ωm − σ8 degeneracy, however it does not alter our constraint on S8 (see Table 6).
We find that our data are quite consistent with the BAO results, and the best fitting model
is a good fit to the joint data.

In general we find good agreement with recent galaxy lensing measurements. Fig. 12
compares our measurements to the DES Y1 [18] “3 × 2” analysis, which includes the auto-
correlation of shear and tracer galaxies, as well as their cross-correlation. We find excellent
agreement with the DES Y1 results (S8 = 0.773+0.026

−0.020) and we are able to further tighten their
constraints15. We are also fully consistent with the results from the KiDS+BOSS+2dFlens
surveys, with S8 = 0.766+0.020

−0.014 [17] from a combination of lensing and galaxy clustering.
We also agree with galaxy-galaxy lensing measurements using the BOSS galaxies [79]; our
blue+green+red sample has (σ8/0.8228)0.8(Ωm/0.307)0.6 = 0.95±0.02 while they find 0.85±
0.05(stat)± 0.05(sys) (their constraint from Planck CMB lensing is consistent with ours but
significantly weaker). Similarly “low” values of S8 have also been found by the first year
cosmic shear analysis of HSC [80], and by CFHTLenS [19].

While we probe the same physics as galaxy lensing, we do so in a way that is operationally

15When comparing DES to our results, we should consider that (as explained in the introduction), we have
chosen not to include the CMB lensing auto-power spectrum, which would considerably tighten our contours.
However, using it would introduce sensitivity to the higher-redshift matter fluctuations and we have decided
to avoid it in order to get “low-redshift”-only constraints. By contrast the galaxy lensing auto correlation is
included in the DES results and other “3× 2” analyses. The Planck lensing autocorrelation is consistent with
the primary CMB constraints [77].
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very different. For example, estimation of the lensing potential from CMB maps involves
measurements of local statistical anisotropy of a very well-characterized source (the primary
CMB), and hence is independent of many issues that could potentially affect shear estimation
and its interpretation, such as blending, shear calibration, photometric redshift uncertainty
of the sources, etc. The excellent agreement between these measurements is therefore a very
important check.

We are unable to attribute the bulk of the S8 tension with Planck to low Ωm or low σ8,
and the situation in the broader literature is also unclear.

The Planck constraint on the matter fraction is Ωm = 0.3166 ± 0.0084 when fitting
to primary CMB only, and Ωm = 0.3153 ± 0.0073 when including the CMB lensing auto-
power spectrum [77]. This can be compared to our tightest measurement from the green
sample of Ωm = 0.293± 0.018, i.e. our measurement of Ωm is about 1.2σ lower than Planck
when combining the error bars. However, while the values of S8 are very comparable, the
blue sample has a preference for a higher value of Ωm (combined with a lower value of σ8)
highlighting the difficulty in separating these two parameters along the degeneracy direction.
In fact the best fit to the blue sample at Ωm ≈ 0.28 (the best fit to the green sample) has a
χ2/d.o.f. of 6/4, so such a ‘low’ Ωm value is an acceptable fit to the blue sample despite the
contours in Fig. 11. The combined blue + green + red sample has Ωm = 0.307 ± 0.018, or
about 0.4σ lower than Planck.

Interestingly, there are other hints of a “low” value of Ωm and S8 in the low-redshift
Universe: using a BBN prior on ωb = Ωbh

2 to fix scales in physical units, an analysis of the
“full-shape” redshift-space BOSS galaxy power spectrum [21] reports Ωm = 0.295± 0.010 and
S8 = 0.703 ± 0.045. In that analysis the low value of S8 is mostly driven by the low value
of σ8 = 0.721± 0.043, rather than a particularly low Ωm. Very similar results were obtained
with a similar model by refs. [22, 81, 82].

There are also hints that within ΛCDM the Planck preference for higher Ωm is being
driven by the high ` temperature data. For example when viewed in terms of distances along
and across the line of sight (Fig. 28 of ref. [77]) the PlanckTT+lowE (green points) are shifted
to lower Ωm by the addition of any (or all) of CMB lensing, polarization or BAO. Dropping
the ` > 800 data but combining with lensing and BAO gives Ωm = 0.3081 ± 0.0065 and
σ8 = 0.8058 ± 0.0063, both within 1σ of our result. Similarly, WMAP9 results16 [83], find
a lower value: Ωm = 0.279 ± 0.025 (CMB only; though this moves to Ωm = 0.301 ± 0.008
including low-redshift BAO data, leading to a higher S8 = 0.8201 ± 0.025), together with a
slightly higher h = 0.693 ± 0.009. Indeed it appears that the high ` (> 800) in the CMB
temperature likelihood may be driving the fits to higher values of Ωm and lower values of h
(see Fig. 81 and Section 3.9.2 of ref. [84] for further discussion). This behaviour of the high-`
CMB TT is not unique to Planck: a recent joint analysis of WMAP9 and ACT data [85] finds
a “high” value of Ωm = 0.313±0.016 and S8 = 0.840±0.030, even though thanks to the larger
error bars, the “tension” with our measurement is < 2σ. Unfortunately, while suggestive, all
of these trends are of low statistical significance.

The underlying cause of the S8 tension is thus unclear. Fortunately, both CMB and low-
redshift measurements will rapidly improve over the next few years, which will either resolve
the tension or more definitely isolate its source: CMB data from ACT and SPT will soon have
comparable statistical power to Planck, providing a great independent check, while Simons
Observatory primary CMB measurements will halve the errors on Ωm and h. Upcoming CMB

16Effectively an ` < 800 experiment.
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Figure 13. Marginalized posteriors for the dimensionless Hubble constant, h, and lensing amplitude,
S8 = σ8(Ωm/0.3)0.5. Curves are shown for the three unWISE samples (blue, green and red), the
Planck data, the KiDS+BOSS+2dFlens data and the DES Y1 data. The DES and KiDS data alone
do not meaningfully constrain h, but we have imposed a prior on Ωmh

3 as we did for the unWISE
data and this leads to a constraint on h via the DES or KiDS constraint on Ωm. The vertical dashed
lines in the left panel show the central values measured by the Carnegie-Chicago Hubble Program
(left; [86]) and the SH0ES team (right; [87]).
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Figure 14. Marginalized posteriors for the lensing amplitude, S8 = σ8(Ωm/0.3)0.5, from a variety
of experiments. Curves are shown for the Planck (purple [77]), KiDS+BOSS+2dFlens (maroon [17])
and DES Y1 (light brown [18]) data plus the combination of the blue, green and red unWISE samples
(black; see text).

lensing maps will allow sub-percent measurements of cross-correlations, which together with
cosmic shear and clustering measurements from DES, DESI and Rubin Observatory (as well
as upcoming space missions such as the Roman Space Telescope and Euclid) will shed light
on the composition and expansion history of our Universe.
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In Fig. 13 we show our posterior on h, derived from the constraint that we keep Ωmh
3

fixed in the chains. For our fiducial blue+green+red sample we find h = 0.68± 0.01, slightly
larger than Planck’s h = 0.677± 0.004 (when including CMB lensing and low-redshift BAO).
Adding low-redshift BAO to our fiducial blue+green+red sample tightens the constraint on
h and shifts it towards Planck, h = 0.68 ± 0.005. The value from the red is very similar,
with approximately double the error. Our fiducial result is fully consistent with the direct
supernovae measurement by the Carnegie-Chicago Hubble Program [86], but still in mild
tension with the SH0ES results [87] (shown as dashed lines in Fig. 13).

7 Conclusions

The combination of low redshift galaxy surveys with CMB lensing provides a particularly
powerful tool for constraining cosmology. In an earlier paper [14] we presented the galaxy
auto and galaxy-convergence cross spectra for three galaxy samples (at z ' 0.6, 1.1 and
1.4) selected from the unWISE catalog. In this paper we use these spectra to constrain
cosmological models, with an analysis that is fully blinded to the cosmology. Our analysis
is complementary to, but probes the same quantities as, the cosmic shear analyses of BOSS,
KiDS and DES [16–18] and because it uses the CMB as a source it is immune to intrinsic
alignments of galaxies, blending or photometric redshift errors of the source galaxies. The
high redshift of our source screen also allows us to measure the lensing signal significantly
above z ' 1, which is very difficult to do with cosmic shear.

To fit the spectra we employ a hybrid model that combines a fitting function for the
matter power spectrum with Lagrangian perturbation theory calculations of scale-dependent
bias (Section 3). Comparison with mock catalogs (Section 4) shows that our model is capable
of fitting data similar to our samples up to `max ' 250−300 (Section 5) with negligible biases.
While we have previously published the angular power spectrum measurements (and so are
“unblinded”) we performed all of our analysis blind to the cosmological parameters and did
not change any of our procedures after unblinding.

We find good constraints on the lensing parameter, S8 = σ8(Ωm/0.3)0.5, and weaker
constraints on the matter density, Ωm, and amplitude of clustering, σ8 (Section 6; Figs. 11,
12 and Table 6). Since we impose a constraint on Ωmh

3 (Section 6.3) from the highly robust,
preferred angular scale in the CMB our constraint on Ωm implies a constraint on H0 (Fig. 13).
Our parameter constraints are broadly consistent with the previous literature, but confirm the
tendency of lower redshift lensing measurements to give a lower S8. Our fiducial constraint
(Fig. 14) comes from a combination of the blue and green samples, which implies an S8 that
is just under 2.5σ lower than the value preferred by Planck and in good agreement with
recent cosmic shear [17, 18] and galaxy-galaxy lensing [79] measurements (both also at low
redshift). This agreement, with a method that is independent of many of the possible sources
of systematic errors in those measurements, provides a valuable cross-check on the reported
tension. While we have not attempted to combine different experiments, the agreement of
several statistically independent measurements on a low value of S8 is a strong indication
of either a common systematic17, a fluctuation in the CMB measurements, or new physics
between the surface of last scattering and the low-redshift Universe.

17We have reduced the set of possible common systematics significantly by using CMB lensing rather than
galaxy lensing. Nonetheless, some of the non-linear modeling and photo-z methods are quite similar between
different analyses.
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While our measurements and analyses are currently state-of-the-art in terms of signal
to noise ratio and precision, we anticipate rapid progress in this field in the very near future.
First, combining more sensitive, ground-based measurements of the CMB with the existing
Planck data should improve the signal to noise on Cκg` for all samples, and hence the con-
straints on the power spectrum amplitude, σ8. Lower noise observations will increase the
constraining power of the high ` data (that are not very constraining in our measurement)
and require improvements in modeling the signals. For such analysis we could employ a La-
grangian bias emulator [88–91] or the HZPT model [92] which should both be sufficient to
model all scales to kmax ' 0.6hMpc−1 or `max = 900 at z = 0.6. Finally, the uncertainty
on the redshift distribution, which currently contributes a large fraction of our error budget,
can be reduced using spectroscopic observations of a subsample of the unWISE galaxies and
further work on incorporating the uncertainty in dN/dz could pay dividends.
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A CrowCanyon2 simulations

The CrowCanyon2 simulations were created using the FastPM code [59], modified to enhance
performance on the NERSC18 machine Cori. Each run evolved 81923 equal mass particles
in a periodic, cubic volume of 4096h−1Mpc resulting in a mean inter-particle separation of
0.5h−1kpc (comoving) and a mass resolution of 1.1 × 1010 h−1M�. The code used a 245763

mesh (i.e. a force resolution factor B = 3) for the gravity calculation and took 40 time steps
from z = 19 to z = 0. The linear power spectrum was computed using CAMB [39] at z = 0
and initial conditions were generated from this using second-order Lagrangian perturbation
theory at z = 19.

To demonstrate the accuracy of the chosen configuration we compare FastPM simulations
to four TreePM [95] simulations. The TreePM code has been compared to other N-body codes
in ref. [96], finding percent level agreement on basic statistics. We used existing TreePM runs
with similar mean interparticle spacing and volume sufficient to probe the lengths and halo
masses of interest [97, 98]. Specifically we started four FastPM runs from the initial conditions
of four TreePM simulations, each employing 20483 particles in a box of 1380h−1Mpc. These
simulations differed only in the random number seed chosen for the initial conditions and
we used the average of the four comparisons to reduce the statistical noise. As for the

18http://www.nersc.gov
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Figure 15. Comparison of the real-space power spectra between the TreePM and FastPM simulations
for two example redshifts (z = 0.5 and z = 1.0) and number densities (n̄ = 3 × 10−4 h3Mpc−3 and
n̄ = 10−3 h3Mpc−3). The upper panels show the halo and matter auto- and cross-power spectra, while
the lower panels show the ratio FastPM/TreePM for each statistic (the light and dark grey bands
showing 1 and 2% agreement). For the halo autospectrum in the upper panels we show the results
with (solid) and without (dashed) Poisson shot-noise subtracted (shown as the horizontal, dotted line
in the upper panels). In the lower panels the ratio is with shot-noise subtracted.

CrowCanyon2 runs, we used B = 3 and 40 time steps from z = 9 to z = 0. Due to the
ratio of box size to particle load this is slightly lower resolution than the CrowCanyon2
configuration, so the convergence test should be considered conservative. Across a wide range
of number densities and redshifts appropriate for the unWISE samples, we find agreement to
better than 1% between the halo autospectrum and halo-matter cross-spectrum of the two
simulation boxes to k = 0.3 h Mpc−1, the scales of interest for the unWISE analysis (Fig. 15).

We measure Cgg` and Cκg` on the lightcone to create realistic mocks. A particle at space-
time coordinate (x(t), t) is included in the light-cone, if and only if the distance from the
particle to the observer is the same as the distance light can travel for the same duration,
also known as the co-moving distance Dc,

Dc(temit) = |xi(temit)|. (A.1)

In the simulation, the particle trajectory xi(t) is interpolated between time steps using the
FastPM Kick and Drift factors. The simulation box is tiled to allow full-sky coverage of the
lightcone. On average, each light-cone slice contains the same number of particles as the total
number of particles used in the simulation.

Convergence maps were generated as a weighted surface mass density [51]

κ(θ) =
3H2

0 Ωm

2

∫ z∗

0

dz

H(z)

(1 + z)χ(z)(χ? − χ(z))

χ∗
δm(χθ, χ; z) (A.2)

where χ? is the comoving distance to the surface of last scattering. This implementation is
available as part of the SIMPLEHOD package19, which also includes the implementation of

19https://github.com/bccp/simplehod/blob/master/scripts/wlen.py
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the unWISE HOD. We also generate magnification maps for each of the three samples, µi(θ),
in the same way:

µi(θ) =
3H2

0 Ωm

2
(5sµi − 2)

∫ z∗

0

dz

H(z)

∫ z∗

z

dz′

H(z′)

χ(z)(χ(z′)− χ(z))

χ(z′)
H(z′)

dNi

dz′
δm(χθ, χ; z)

(A.3)
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Figure 16. Posteriors for the mock blue (left) and red (right) samples, showing the key cosmological
parameters: Ωm and σ8 plus the derived parameter S8. Results for both fixed dN/dz and sampling
over the dN/dz uncertainty are shown (see discussion in text). The dashed grey lines show the “true”
values of the parameters in the simulation, though we expect some scatter due to sample variance in
the initial conditions.

B Posterior distributions in mocks and data

Fig. 16 shows the posteriors for the mock blue and red samples, which are also unbiased
under our modeling assumptions.

Fig. 17 shows the posteriors for the full set of cosmological and nuisance parameters for
our fiducial, blue + green, sample.
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