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From black hole entropy to energy-minimizing states in QFT

Raphael Bousso,* Venkatesa Chandrasekaran,† and Arvin Shahbazi-Moghaddam‡

Center for Theoretical Physics and Department of Physics University of California, Berkeley,
California 94720, USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 6 November 2019; accepted 15 January 2020; published 5 February 2020)

Behind certain marginally trapped surfaces one can construct a geometry containing an extremal surface
of equal, but not larger area. This construction underlies the Engelhardt-Wall proposal for explaining the
Bekenstein-Hawking entropy as a coarse-grained entropy. The construction can be proven to exist
classically but fails if the null energy condition is violated. Here we extend the coarse-graining construction
to semiclassical gravity. Its validity is conjectural, but we are able to extract an interesting nongravitational
limit. Our proposal implies Wall’s ant conjecture on the minimum energy of a completion of a quantum
field theory state on a half-space. It further constrains the properties of the minimum energy state; for
example, the minimum completion energy must be localized as a shock at the cut. We verify that the
predicted properties hold in a recent explicit construction of Ceyhan and Faulkner, which proves our
conjecture in the nongravitational limit.

DOI: 10.1103/PhysRevD.101.046001

I. INTRODUCTION AND SUMMARY

There is a remarkable interplay between testable low-
energy properties of quantum field theory (QFT), and
certain conjectures about quantum gravity, in which the
area of surfaces is associated to an entropy. For example,
the classical focusing theorem in general relativity relies on
the null energy condition (NEC) and so can fail in the
presence of quantum matter. A quantum focusing con-
jecture (QFC) was proposed to hold in the semiclassical
regime; it implements a quantum correction to the classical
statement by replacing the area with the area plus exterior
entropy, i.e., the generalized entropy. This was a guess
about quantum gravity, but it led to a new result in QFT.
Namely, the quantum null energy condition (QNEC) was
discovered as the QFT limit of the QFC [1].
The QNEC has since been laboriously proven within

relativistic quantum field theory [2–4]. The fact that the
QNEC arises more directly and simply from a hypothesis
about quantum gravity is striking. Experimental tests of the
QNEC may be viable and should be regarded as test of this
hypothesis.

Here we will discover a related but distinct connection
of this type. We begin again with a classical gravity
construction, though one motivated by quantum gravity.
The notion that black holes carry Bekenstein-Hawking
entropy (proportional to their area) has been fruitful and
widely explored, but we stress here that it is a hypothesis
that has not been experimentally tested. This hypothesis
leads to a puzzle: if the black hole was formed from a pure
state, then the entropy should vanish. Thus, the Bekenstein-
Hawking entropy must be the von Neumann entropy of
another quantum state, presumably one that is obtained by
an appropriate coarse graining of the original state. What
characterizes this coarse-grained state?
This question was the subject of a recent conjecture by

Engelhardt and Wall (EW) [5]. The EW conjecture applies
to a class of surfaces that may lie on or inside the event
horizon. The Bekenstein-Hawking entropy associated with
a “minimar” surface σ is the area of the extremal (Ryu-
Takayanagi [6] or Hubeny-Rangamani-Takayanagi [HRT]
[7]) surface, maximized over all spacetimes that agree with
the given solution outside of σ). (The input spacetime may
have no such surface and thus no entropy.) Engelhardt and
Wall showed that the coarse-grained entropy so defined
does indeed agree with the area of σ. The interpretation of
extremal surface area as an entropy in the quantum gravity
theory is well motivated by the success of the RT proposal
in asymptotically anti-de Sitter spacetimes. We review the
EW coarse-graining procedure in Sec. II.
However, the EW construction and proof are purely

classical. In particular, the construction fails when quantum
matter is included, because it relies on the null energy
condition. Moreover, there is considerable evidence that in
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semiclassical gravity, it is the generalized entropy [8] (and
not the area) that is naturally associated with thermal states
of the underlying quantum gravity theory [9,10].
Here, we will formulate a semiclassical extension of the

EW coarse-graining proposal for black hole states; that is,
we include effects that are suppressed by one power of Gℏ
compared to the classical construction. In Sec. III, we
consider a suitably defined quantum version of a minimar
surface. At this order, we must hold fixed not only its
exterior geometry but also the exterior state of the quantum
fields. We conjecture a construction that explains the
generalized entropy of the quantum minimar surface σ
in terms of a suitably coarse-grained state: one can find an
interior completion of the geometry and quantum state that
contains a quantum stationary surface [9–11] with equal
generalized entropy, but none with larger generalized
entropy. Moreover, we propose that saturation is obtained
by extending σ along a stationary null hypersurface whose
classical and quantum expansions both vanish.
Unlike the classical EW construction, we cannot prove

our conjecture. But in Sec. IV, following the example of the
QFC → QNEC derivation, we are able to extract a pure
quantum field theory limit. We apply our construction to
states on a fixed background black hole spacetime with a
complete Killing horizon. In this limit, coarse graining
requires the existence of QFT states with specific and
somewhat surprising properties, which we list. The most
striking property of the coarse-grained state is that the
energy flux across the horizon has delta-function support
on σ; and that it vanishes at all earlier times on the horizon.
(At later times, the state agrees with the input state by
construction.) The strength of the delta function is set by
the derivative of the von Neumann entropy along the
horizon in the input state ℏS0=2π.
In particular, the existence of a quantum state with these

properties would imply a new result in QFT, Wall’s “ant
conjecture” [12] concerning the minimum energy of global
completions of a half-space quantum state. (We review the
ant conjecture in Appendix. The QNEC follows from this
conjecture, but it has also been directly proven.)Our proposal
thus implies that a state that maximizes the generalized
entropyminimizes the nongravitational energy inside of a cut
of a Killing horizon, subject to holding fixed the state on the
outside. Roughly speaking, ignorance saves energy.
In fact, Wall’s ant conjecture was recently proven by

Ceyhan and Faulkner (CF) [4]. The CF construction takes
as input a state on a Killing horizon and a cut at some
surface σ on the horizon. Connes cocycle flow then
generates a family of states that differ only to the past
of the cut. In the limit of infinite flow, a state is approached
whose properties prove the ant conjecture.
In greater than 1þ 1 dimensions, the requirements we

derive appear to be stronger than those demanded by the ant
conjecture; see Appendix. Thus, it is not immediately
obvious that the quantum states required for our coarse-

graining proposal exist. However, in Sec. V, we show that
the CF family of states attains all of the properties required
by our conjecture. In particular, a delta function shock
appears at the cut, with precisely the predicted strength. It is
interesting that this feature arises in an algebraic construc-
tion, whereas in the black hole setting, it arose geometri-
cally from requiring a source for a discontinuity in the
metric derivative. Thus, the CF construction proves the
QFT limit of our conjecture, even though it was originally
designed to prove the ant conjecture.
We briefly discuss some future directions in Sec. VI.

II. CLASSICAL COARSE GRAINING
OF BLACK HOLE STATES

In this section, we review a classical geometric con-
struction by EW [5,13]. In Sec. II A, we provide definitions
of (classically) marginally trapped, minimar, stationary, and
HRT surfaces.
In Sec. II B, we summarize the EW proposal for the outer

entropy of a minimar surface, a marginally trapped surface
σ that satisfies certain addition conditions. EW define this
entropy in terms of geometries that agree with in the
exterior of σ but differ in the interior. For any such auxiliary
geometry, inspired by the Ryu-Takayanagi proposal, the
von Neumann entropy is assumed to be given by the area of
a stationary surface. Maximizing this area over all possible
auxiliary geometries, EW show that it agrees with the area
of σ, which thus represents a coarse-grained entropy in
agreement with the Bekenstein-Hawking formula.

A. Classical marginal, minimar, and stationary surfaces

We begin by fixing some notations and conventions; see
Sec. II of [13] for details. Let σ be a Cauchy-splitting
surface, that is, σ is an achronal codimension two compact
surface that divides a Cauchy surface Σ into two sides, Σin
and Σout.
Let ka, la be the two future-directed null vector fields

orthogonal to σ, normalized so that kala ¼ −1; and let θk,
θl be their expansions.
If exactly one null expansionvanishes, we shall take this to

be the k expansion. Then σ is calledmarginally outer trapped,
with k defining the “outside.” If θl < 0 everywhere on a
marginally outer trapped σ, we call σ marginally trapped.
The outer wedgeOW ½σ� of a marginally trapped surface σ

is the set of spacelike separated events on the outside of σ
(the side that k points toward; see above):OW ½σ�≡D½Σout�,
where D denotes the domain of dependence. See Fig. 1.
A minimar surface is a marginally trapped surface σ that

satisfies two additional restrictions:
(i) OW ½σ� contains a connected component B of an

asymptotic conformal boundary (as would be the
case, for example, if σ lies in a single black hole
formed from collapse in asymptotically anti-de
Sitter or flat spacetime). Moreover, OW ½σ� admits
a Cauchy surface on which σ is the surface homolo-
gous to B that minimizes the area; see Fig. 1.
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(ii) ka∇aθðlÞ < 0
A stationary surface X is a surface whose expansion

vanishes in both null directions, k and l,1

θk ¼ θl ¼ 0 everywhere on X: ð1Þ

An HRT surface X is a stationary surface that satisfies
additional requirements: it is the stationary surface with the
smallest area, subject to a homology condition [6,7]. Here,
we will require that X be homologous to a minimar surface
σ and hence to a connected component B of a conformal
boundary.

B. Bekenstein-Hawking entropy from
coarse graining behind minimar surfaces

Engelhardt and Wall [13] argued that the area of a
minimar surface σ can be understood as a coarse-grained
entropy. For geometries with a conformal field theory
(CFT) dual, an explicit prescription for this coarse graining
can be formulated in the CFT. Here, we will be interested in
the bulk definition of this coarse graining, which can be
discussed in more general geometries.
In the bulk, the coarse graining consists of holding fixed

the outer wedge of σ, OW ½σ�, while erasing the spatial
interior of σ and replacing it with an auxiliary geometry.
One seeks the auxiliary geometry with the largest possible
HRT surface X behind σ. The coarse-grained entropy of σ is
defined as A½X�=4Gℏ.
So far, we have reviewed the definition of the outer

entropy. The EW proposal is the conjecture that
(i) Souter ≡ A½X�=4Gℏ represents the von Neumann

entropy of a well-defined state in a quantum gravity
theory and

(ii) A½X� ¼ A½σ�.
EW proved the first part of the conjecture for the special

case where B lies on the conformal boundary of an
asymptotically AdS spacetime, and σ lies on a perturbed
Killing horizon; moreover, the proof assumes the Ryu-
Takayanagi [6] and HRT [7] proposals for the von
Neumann entropy of the boundary CFT. In this case, it
is possible to construct the dual CFT state explicitly and to
show that its entropy agrees with Souter.
The second part of the conjecture was proven more

generally [13]. Using the maximin definition of the HRT
surface [14], it can be shown that

A½X� ≤ A½σ�: ð2Þ

This argument assumes the NEC that the stress tensor
satisfies

Tabkakb ≥ 0 ð3Þ

for any null vector ka.
EW explicitly construct an interior geometry that satu-

rates the inequality (2). This implies

Souter½σ�≡ A½X�
4Gℏ

¼ A½σ�
4Gℏ

: ð4Þ

The interior geometry with A½X� ¼ A½σ� is constructed
by specifying initial conditions on the null hypersurface
N−

k orthogonal to σ toward the interior and past.
Appropriate initial data are generated by null translating
the intrinsic geometry of σ, thus generating a stationary null
hypersurface,

θk ¼ 0 on N−
k : ð5Þ

This ensures that all cross sections of N−
k—in particular,

X—have the same intrinsic metric and area as σ. This
construction is consistent with the relevant constraint, the
Raychaudhuri equation,

ka∇aθk ¼ −
1

2
θ2k − ς2 − 8πGTkk; ð6Þ

if one sets

ς ¼ 0 and Tkk ¼ 0 on N−
k ð7Þ

on N−
k . EW [13] show that this choice is always possible.

Since θk vanishes on σ, Eqs. (6) and (7) ensure that the
entire extrinsic curvature tensor in the k direction vanishes
everywhere on N−

k , achieving the desired stationarity
of N−

k .
Moreover, it is important to show that there exists a

stationary (HRT) surface X on N−
k . The outgoing expansion

θk vanishes on any cut of N−
k by the above construction.

FIG. 1. Penrose diagram of a black hole formed from collapse
in anti-de Sitter space, showing a minimar surface σ and its outer
wedge OW ½σ� with Cauchy surface Σ.

1In an abuse of language, this is sometimes referred to as
extremal rather than stationary.
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The question is whether there exists a cut X on which the
ingong expansion θl vanishes as well. This is accomplished
in the following sequence of steps.
The minimar assumption dictates that on σ, θl < 0 and

ka∇aθl < 0. One can choose initial conditions on N−
k such

that along every null generator of N−
k , k

a∇aθl is constant
and equal to its value on σ: by the cross-focusing equation,

ka∇aθl ¼ −
1

2
R − θkθl þ χ2 þ∇ · χ þ 8πGTkl; ð8Þ

this can be accomplished by choosing all terms on the right-
hand side to be constant on N−

k . This is already ensured for
the intrinsic curvature scalarR and for the (vanishing) θkθl
term by stationarity of N−

k . The twist, or normal one form,
is defined by

χa ¼ hcald∇ckd; ð9Þ

where hab ¼ gab þ 2lðakbÞ is the induced metric on a cut.
The twist evolves according to

ka∇aχi ¼ 8πTikðþterms that vanish when θk ¼ ς ¼ 0Þ:
ð10Þ

To summarize, one can accomplish ka∇aθl ¼ ka∇aθljσ
on N−

k by choosing Eqs. (5) and (7) and in addition, along
each null generator of N−

k ,

Tkl ¼ Tkljσ and Tik ¼ 0 on N−
k : ð11Þ

Again, EW argue that these choices are always possible.
Let v be the affine parameter associated to ka, and let y

be the transverse coordinates (angular coordinates) on σ.
The location of a stationary surface X, v ¼ fðyÞ is
determined by the differential equation

La½f� ¼ −θljσ; ð12Þ

where La is the stability operator (see Ref. [13] for details).
This can be shown to have a solution with −∞ < f < 0, so
the HRT surface exists and lies on N−

k .
EW then glue the geometry exterior to X (i.e.,N−

k and the
outer wedge) to its CPT image across X. This constructs a
“two-sided” geometry in which X functions as a kind of
bifurcation surface of a two-sided black hole/white hole
pair. (However, the stationary auxiliary portionN−

k does not
in general correspond to the horizon of a Kerr-Newman
black hole, as its intrinsic metric can differ.)
In a final step, EW show that X is not just stationary but

is an HRT surface, i.e., that X is the smallest-area stationary
surface homologous to σ. This step uses the NEC as well as
the second part of the minimar property of σ.

This concludes our summary of the EW coarse-graining
prescription. Again, we refer the interested reader to
Ref. [13] for more detailed definitions and arguments.

III. SEMICLASSICAL COARSE GRAINING
OF BLACK HOLE STATES

In this section, we formulate a semiclassical extension of
the Engelhardt-Wall construction, starting from a quantum
marginally trapped surface σ. We conjecture that the
semiclassical state invoked in our construction exists in
the full quantum gravity theory, and that in this theory this
state has a von Neumann entropy given by the generalized
entropy of σ.
In Sec. III A, we introduce relevant concepts such as

generalized entropy, quantum expansion, quantum margin-
ally trapped surfaces, and quantum HRT surfaces.
In Sec. III B, we state our quantum extension of the EW

coarse-graining proposal.
In Sec. III C, we refine our conjecture by describing key

properties that the coarse-grained state is expected to satisfy
at the level of semiclassical gravity. (These properties will
be shown to have an interesting nongravitational limit in
Sec. IV. In Sec. V, we will show that a recent construction
by Ceyhan and Faulkner [4] generates quantum field theory
states which achieve these properties in a certain limit.)

A. Quantum marginal, minimar,
and stationary surfaces

Before we turn to the question of why and how the EW
construction should be extended to the semiclassical
regime, we introduce here the relevant concepts: general-
ized entropy, quantum expansion, quantum (marginally)
trapped surfaces, and quantum extremal surfaces. More
details can be found, e.g., in Refs. [2,10,15,16].
The notion of generalized entropy was originally intro-

duced by Bekenstein [8] as an extension of ordinary
entropy that includes the contribution from black holes,
Sout → Sout þ A

4Gℏ. But in an expansion in Gℏ, it is the
exterior entropy that should be regarded as a quantum
correction

Sgen ¼
A

4Gℏ
þ Sout þ…: ð13Þ

Equivalently, 4GℏSgen represents a quantum-corrected
area.
In Bekenstein’s original proposal, A represented the area

of a cut of a black hole event horizon; and Sout represented
the entropy in the black hole’s exterior. However, the
generalized entropy can be defined for any Cauchy-
splitting surface σ, with Sout the von Neumann entropy
of the quantum fields restricted to one side of σ. A=4Gℏ
should be regarded as the leading counterterm that cancels
divergences in the entropy; we suppress subleading terms
here. Given its wide applicability, the notion of generalized
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entropy can be used to define quantum-corrected notions of
trapped, stationary, etc. as follows.
Recall that the classical expansion of a surface σ̂ at a

point y ∈ σ̂ is the trace of the null extrinsic curvature at y. It
can also be defined as a functional derivative

θ½σ̂; y� ¼ hðyÞ−1=2 δA½V�
δVðyÞ ; ð14Þ

where h is the area element on σ̂. Here VðyÞ defines a
surface that lies at an affine parameter distance V from σ̂
along the null geodesic emanating from σ̂ at y.
The above definition is overkill, as the classical expan-

sion depends only on the local geometry near y. But it
generalizes directly to the quantum expansion, Θ, which
depends on σ̂ nonlocally,

Θ½σ̂; y� ¼ 4Gℏffiffiffiffiffiffiffiffiffi
hðyÞp δSgen½V�

δVðyÞ : ð15Þ

A quantum marginally outer trapped surface is a surface
whose quantum expansion in one of the two null directions
(say, k) vanishes at every point. Let σ be such a surface,

Θk½σ; y�≡ 0: ð16Þ

It follows that

θkðyÞ ¼ −
4Gℏffiffiffiffiffiffiffiffiffi
hðyÞp δSout

δVðyÞ ð17Þ

at every point on σ.
A quantum marginally trapped surface is a quantum

marginally outer trapped surface for which in addition

Θl½σ; y� < 0: ð18Þ

(As usual, antitrapped corresponds to the opposite inequal-
ity on the l expansion.)
The outerwedgeOW ½σ� of a quantummarginal surface σ is

the set of spacelike separated events on the “marginal” side of
σ, i.e., the side that k points toward: OW ½σ� ¼ D½Σout�;
see Fig. 1.
A quantum minimar surface is a quantum marginally

trapped surface σ that satisfies two additional restrictions:
(i) OW ½σ� contains a connected component of an

asymptotic conformal boundary (as would be the
case, e.g., if σ lies in a single black hole formed from
collapse in asymptotically anti-de Sitter or flat
spacetime). Moreover, OW ½σ� admits a Cauchy sur-
face on which σ is the surface homologous to B that
minimizes the generalized entropy; see Fig. 1.

(ii) ka∇aθl < 0.
Note that we impose the second condition on the classical
expansion, not the quantum expansion. Since the inequality

is strict, the classical expansion θl will dominate in the
semiclassical expansion in Gℏ.
A quantum stationary surface is a surface whose quan-

tum expansions vanish in both null directions k and l. We
will demand that X be such a surface,

Θk½X; y�≡ 0; Θl½X; y�≡ 0: ð19Þ

A quantum HRT surface satisfies additional require-
ments: it is the quantum stationary surface with the smallest
generalized entropy; and it must obey a homology con-
dition [10]. Here, we will require that it be homologous to a
quantum minimar surface σ and hence to a connected
component B of a conformal boundary.

B. Generalized entropy from coarse graining behind
quantum marginally trapped surfaces

We will now motivate and formulate a quantum exten-
sion of the EW proposal. To see that such an extension is
needed, note that the classical EW construction relies on the
null energy condition, Eq. (3). The NEC guarantees that no
HRT surface with area greater than that of the marginally
trapped surface can be constructed. It also guarantees that
the stationary surface with equal area is an HRT surface.
But the NEC is known to fail in any relativistic quantum
field theory, so none of these conclusions survive at the
semiclassical level.
Indeed, one does not expect any quantum state of the full

quantum gravity theory to correspond to just the area of a
surface (as is implicit in the classical EW construction).
Rather, one expects its von Neumann entropy to match the
generalized entropy. That is, to the extent that a quantum
state corresponds to a surface, one expects it to also
describe the surface’s exterior.
There is significant evidence supporting this expectation

from the AdS=CFT correspondence [17]. Consider the
quantum state ρB on a region B, where B can be all or part
of the boundary. This state is expected [9,18] to describe the
entire entanglement wedge of B, i.e., the spacetime region
enclosed by B and the HRT surface X½B�. The 1=N
expansion on the boundary (with N the rank of the
CFT’s gauge group) corresponds to the Gℏ expansion in
the bulk. In particular, the von Neumann entropy SðρBÞ can
be expanded in this way, with the leading OðN2Þ piece
corresponding to the area of X½B�, and the subleadingOð1Þ
piece corresponding to the exterior bulk entropy Sout. When
expanding to higher orders, XB should be taken to be the
quantum HRT surface of B [10].
We thus seek a proposal in which the generalized entropy

of a surface σ is explained as a coarse-grained entropy. The
coarse graining should correspond to maximizing the
generalized entropy of a quantum HRT surface X, subject
to holding fixed the outer wedge OW ½σ� (now including the
quantum state of bulk fields inOW ½σ�). The coarse-graining
prescription will be successful if Sgen½X� ¼ Sgen½σ�.
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The remaining question is what characterizes a surface σ
that we may consider for coarse graining. In the classical
case, the appropriate criterion was that σ be minimar. In the
quantum case, the natural candidates are minimar surfaces
or quantum minimar surfaces. In the EW construction of
the maximally coarse-grained state, the HRT surface X of
the coarse-grained state lies on a stationary null surface N−

k
extended to the past and inward from σ. Our construction
will share this feature. This excludes (classically) minimar
as the relevant criterion for σ. The variation of Sout does not
have definite sign on such surfaces, and so their quantum
expansion would not have a definite sign. However, if
Θ½σ� > 0, then by the quantum focusing conjecture, it
would be impossible to find an X with Θ½X� ¼ 0 on N−

k ½σ�.
Therefore, we will require that σ be quantum minimar; in
particular, Θ½σ� ¼ 0.
We now state our proposal. Let σ be a quantum minimar

surface homologous to a boundary region B, with gener-
alized entropy Sgen½σ� and outer wedge OW ½σ�. Let X̄ be a
quantum HRT surface in any geometry such that

(i) OW ½X̄� ⊃ OW ½σ�.
(ii) X̄ is homologous to σ.
(iii) Both the geometry and the quantum state of OW ½X̄�

agreewith that ofOW ½σ� upon restriction ofOW ½X̄� to
OW ½σ�. (To be precise, letΣout½X̄� be a Cauchy surface
of OW ½X̄� such that Σout½X̄� ∩ OW ½σ� is a Cauchy
surface of OW ½σ�, Σout½σ�, and let ρX̄ and ρσ be the
state of the quantum fields on Σout½X̄� and Σout½σ�,
respectively. We require that TrΣout½X̄�−Σout½σ�ρX̄ ¼ ρσ.)

We claim that

supX̄Sgen½X̄� ¼ Sgen½σ�: ð20Þ

Moreover, let X be a surface X̄ that achieves the supremum.
(This should be taken as a limiting statement if no such X
exists.) Then OW ½X� represents a coarse graining of the
original geometry, with respect to the quantum minimar
surface σ. In particular, in AdS=CFT the quantum state on
B dual to the entanglement wedge OW ½X� has von
Neumann entropy Sgen½σ�.
Unlike the classical case, we will not prove this con-

jecture, but we will provide some evidence supporting its
plausibility. We proceed in two steps as in the classical
case: first, we will argue that

Sgen½X̄� ≤ Sgen½σ� ð21Þ

for any X̄ satisfying the conditions in our proposal. We then
refine our conjecture by detailing the properties of a
semiclassical geometry and quantum state that would
achieve equality.
In order to show Eq. (21), we generalize the result in [13]

to the quantum case. This involves two main assumptions.
The first assumption is the quantum focusing conjecture [1]
which asserts that in the semiclassical limit the derivative of

the quantum expansion of codimension two surfaces under
any null deformation is non-negative,

δΘk½X; y�
δVðyÞ ≤ 0: ð22Þ

The second assumption is a slightly weaker quantum
generalization of the classical maximin construction [14].
More precisely, we assume that the quantum extremal
surface X̄ is also the surface of minimal generalized entropy
on some Cauchy slice Σ.
By global hyperbolicity, the congruence of null geo-

desics orthogonal to σ in the �k directions intersects Σ at
some Cauchy-splitting surface σ̄. (The congruence should
be terminated at conjugate points or self-intersections
[19,20]). Since σ is a quantum marginally trapped surface,
quantum focusing ensures that

Sgen½σ̄� ≤ Sgen½σ�: ð23Þ

The quantum maximin assumption further implies

Sgen½X̄� ≤ Sgen½σ̄�; ð24Þ

which establishes Eq. (21).

C. Properties of a generalized entropy
maximizing bulk state

Wewill now describe a geometry and quantum state with
a quantum extremal surface X whose generalized entropy
saturates the inequality (21). The existence of a state with
the properties we describe would imply our conjecture,
Eq. (20).
By asserting the existence of this semiclassical state, we

are refining our conjecture. In Sec. IV, we will explore the
implications of this refinement in a pure field theory limit.
In Sec. V, we will show that these implications are realized
in a recent construction by Ceyhan and Faulkner [4].
Our construction will be analogous to the classical one,

in that we will approach X along the null hypersurface
N−

k ½σ�. Since we require Θk½σ� ¼ Θk½X� ¼ 0, the quantum
focusing conjecture (Θ0

k ≤ 0) requires that Θk ¼ 0 every-
where on N−

k . That is, Sgen must be constant along N−
k .

(This is analogous to classical focusing and the null energy
condition requiring that N−

k have constant area in the
classical case.)
In the classical case, all relevant quantities could be

chosen to be constant onN−
k . In other words, the surfaceN

−
k

is truly stationary. This would not be the case if θ and the
derivative of the entropy varied along N−

k , with only their
sum Θk vanishing. Motivated by this observation, we
conjecture that a state can be found such that the two
terms in Θk vanish separately on N−

k ,
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θk ¼ 0 and
δSout
δVðyÞ ¼ 0: ð25Þ

In analogy with the classical construction, we also take the
shear tensor to vanish at all orders in ℏ along N−

k ,

ς ¼ 0: ð26Þ

These considerations place nontrivial constraints on the
limit state we seek. For θk and ς to vanish everywhere on
N−

k , the stress tensor component Tkk must vanish on N−
k .

Moreover, note that θk need not vanish on σ, where only
Θk ¼ 0 is required. It follows that generically, θk must
jump discontinuously, by an amount

Δθkjσ ¼ −
4Gℏffiffiffiffiffiffiffiffiffi
hðyÞp δSout

δVðyÞ
����
σ

: ð27Þ

By Raychaudhuri’s equation, this implies the presence of a
delta function term in the stress tensor at σ. Combining
these results, we conclude that

Tvv ¼
ℏ
2π

δSout
δVðyÞ

����
σ

δðvÞ; v ≤ 0; ð28Þ

i.e., in the region N−
k ∪ σ.

To summarize, we conjecture the existence of a state with

Tvv ¼
ℏ
2π

δSout
δVðyÞ

����
σ

δðvÞ; v ≤ 0; ð29Þ

ς ¼ 0; v < 0; ð30Þ

δSout
δVðyÞ ¼ 0; v < 0: ð31Þ

Equation (29) trivially implies that

Z
v

−∞
dvTvv ¼ 0; ð32Þ

and we will use this property in Sec. IV.2 In addition, we
assume that the remaining EW conditions listed in Eq. (11)
can be met at the classical level.
With these assumptions, the existence of a classical HRT

surface on N−
k is guaranteed by the argument summarized

around Eq. (12). This surface satisfies θl ¼ 0. A quantum
stationary surface X can be found nearby (in the Gℏ → 0

limit), by solving iteratively for θl ¼ − 4Gℏffiffiffiffiffiffiffi
hðyÞ

p δS
δUðyÞ, where

the functional derivative refers to the shape deformation
along the l congruence.
Finally, we need to show thatX is quantumHRT, i.e., it is

the quantum stationary surface homologous to σ with
smallest generalized entropy. This proceeds in exact anal-
ogy with the classical argument [13], with the QFC
replacing the NEC, so we will not spell out the argument
here. See [21] for details.

IV. QUANTUM FIELD THEORY LIMIT OF
COARSE-GRAINED QUANTUM GRAVITY

STATES

In this section, we study the implications of our con-
jecture for quantum field theory decoupled from gravity.
We will apply our proposal to input states that are small
perturbations of the Killing horizon of a maximally
extended vacuum solution such as Kruskal; see Fig. 2.
In the perturbative setting, any quantum marginally

trapped surface σ will be at a distance of order G from
the Killing horizon and so will lie on the horizon as G → 0.
We can think of the area and null expansion of σ as fields
defined on the unperturbed Killing horizon whose changes
are sourced by the state of the matter fields on the horizon.
Thus, every cut of the Killing horizon can be viewed as
quantum marginally trapped, and our conjecture can be
applied.
We will first establish notation and review some standard

results in Sec. IVA. In Sec. IV, we will derive some
interesting additional properties of the coarse-graining
states that must hold in the perturbative setting. In the
limit as G → 0, our conjecture thus implies the existence of

FIG. 2. Coarse graining behind a Killing horizon. Any cut V0

can be viewed as a quantum marginally trapped surface in the
limit as G → 0. The state ρ>V0

on the Cauchy surface Σ of the
outer wedge is held fixed. The coarse-grained geometry is
the original geometry. The stationary null surface N−

k is the past
of V0 on the Killing horizon. The coarse-grained quantum state
demanded by our proposal lives on N−

k ∪ σ ∪ Σ. We identify the
properties the state must have, and we show that the Ceyhan and
Faulkner “ant states” satisfy these.

2Strictly, we must allow for the possibility that a state with the
properties we conjecture does not itself exist. It suffices that the
properties we require can be arbitrarily well approximated by
some family or sequence of states (as in the example of Sec. V).
In this case, Eq. (29) need not imply Eq. (32), so the latter
property should be considered explicitly as part of our refined
conjecture.
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states with both the properties established in the previous
section, and the additional properties derived here, in
quantum field theory on a fixed background. This is an
in-principle testable conjecture about quantum field theory.

A. Notation, definitions, and standard results

Consider a quantum field theory on a background with a
Killing horizon and an arbitrary global state ρ defined on
the horizon. Let v be the affine parameter on the Killing
horizon, u the affine parameter that moves off of the Killing
horizon (associated with null vectors k and l, respectively),
and take y to be the transverse coordinates on a cut VðyÞ of
the horizon. The cut defines a surface σ, which we assume
to be Cauchy splitting as usual.
Let the right half-space state ρ>V0

be the restriction of ρ
to the half-space v > V0ðyÞ as in Fig. 2,

ρ>V0
≡ Tr≤V0

ρ; ð33Þ

where the trace is over the algebra associated with the
complement region. Let us denote the von Neumann
entropy of ρ>V0

by

SðV0Þ ¼ −Trρ>V0
log ρ>V0

: ð34Þ

Let σ ≡ jΩihΩj be the global vacuum, which can be
reduced to the right vacuum σ>V0

¼ Tr≤V0
σ. The vac-

uum-subtracted von Neumann entropy of ρ>V0
is

ΔSðV0Þ ¼ SðV0Þ þ Trσ>V0
log σ>V0

: ð35Þ

The right (half-)modular Hamiltonian K is defined by the
relation

σ>V0
¼ e−KðV0Þ

Tre−KðV0Þ : ð36Þ

The right modular energy in a global state ρ is
hKðV0Þi≡ Tr½KðV0Þρ>V0

�, and the vacuum-subtracted
right modular energy is

ΔKðV0Þ≡ hKðV0Þi − Tr½σ>V0
KðV0Þ� ð37Þ

¼ 2π

ℏ

Z
dy

Z
∞

V0ðyÞ
dv½v − V0ðyÞ�hTvvi; ð38Þ

where the explicit expression is due to Bisognano and
Wichmann [22] and its generalization to arbitrary cuts of
Killing horizons [23,24]. The relative entropy of ρ>v0 with
respect to the reduced global vacuum, σ>v0 , is defined as

SrelðV0Þ≡ Sðρ>V0
jσ>V0

Þ ð39Þ

≡ Trρ>V0
log ρ>V0

− Trρ>V0
log σ>V0

: ð40Þ

It follows from this definition that

SrelðVÞ ¼ ΔKðVÞ − ΔSðVÞ: ð41Þ

We will often be interested in derivatives, where the
vacuum-subtraction drops out. For example,

δK
δVðyÞ ¼

δΔK
δVðyÞ ¼ −

2π

ℏ

Z
∞

v
dṽhTvvðyÞi: ð42Þ

Similar definitions apply to the region v < V0; we denote
the associated “left” quantities with an overbar. Strictly, we
define the left and right quantities in terms of the limit
as ϵ → 0 of the open intervals ð−∞; V0ðyÞ þ ϵÞ and
ðV0ðyÞ þ ϵ;∞Þ, respectively. The small shift ensures that
any distributional sources at V0ðyÞ contribute asymmetri-
cally to the left but not to the right quantities. (We will see
that in the minimum energy states of interest in this paper,
the stress tensor generically has a delta function at V0ðyÞ.
Our choice resolves an associated ambiguity, attributing
this energy entirely to the left.)
The relative entropy satisfies positivity and monotonicity,

Srel ≥ 0;
δSrel
δV

≤ 0: ð43Þ

Via Eq. (41), monotonicity implies

δK̄
δV

≥
δS̄
δV

≥
δS
δV

: ð44Þ

The second inequality follows from the strong subadditivity
of the von Neumann entropy,

SBC þ SCD ≥ SB þ SD; ð45Þ

applied to the intervals B¼ð−∞;v0Þ;C¼ ½v0;v0þδ�;D¼
ðv0þδ;∞Þ in the limit as δ → 0 [12].

B. Additional properties of the coarse-graining states

Our conjecture says that the coarse-grained state will
have vanishing Tvv and constant right entropy in the left
region,

hTvvi ¼
ℏ
2π

δS
δVðyÞ

����
σ

δðv − V0ðyÞÞ; v ≤ V0; ð46Þ

δS
δVðyÞ ¼ 0; v < 0: ð47Þ

In particular, in the strong form of Eq. (32), these properties
imply the ant conjecture (see Appendix).
But additionally, on the Killing horizon, the nested

inequalities (44) hold. Combined with the above equations,
this implies that the left von Neumann entropy is also
constant,

RAPHAEL BOUSSO et al. PHYS. REV. D 101, 046001 (2020)

046001-8



0 ¼
Z

VðyÞ

−∞
hTvvi ≥

δS̄
δVðyÞ ≥

δS
δVðyÞ ¼ 0 ð48Þ

⇒
δS̄

δVðyÞ ¼ 0; v < V0ðyÞ: ð49Þ

By Eqs. (32), (41), and (42), it follows that the left relative
entropy is constant,

δS̄relðρ<V jσ<VÞ
δVðyÞ ¼ 0; v < V0ðyÞ: ð50Þ

But the relative entropy is a measure of the distinguish-
ability of the state ρ<V from the vacuum σ<V . Suppose that
by moving up the cut V, i.e., by gaining access to a larger
region, one could perform some measurement that would
better distinguish ρ<V from the vacuum. Then the relative
entropy of the larger region would have to be greater. Thus,
Eq. (50) implies that all observables restricted to the
difference between the left domains of dependence asso-
ciated to cuts V0ðyÞ and VðyÞ (as in Fig. 3) need to register
vacuum values. In particular, the stress tensor one-point
function must vanish,

hTμνðxÞi ¼ 0; x ∈ DðV0Þ −DðVÞ: ð51Þ

It is more subtle to draw conclusions about hTμνðxÞi
when x is on the boundary of the region (marked by red in
Fig. 3), u ¼ 0, v < V0. Because Tμν does not exist as an
operator unless it is smeared to both sides of this boundary,

it will not be in the left operator algebra, and it cannot be
used to distinguish ρ<V from the vacuum σ<V .
We will now give a rough physical argument that certain

components of hTμνðxÞi must vanish also on the Killing
horizon below the cut, u ¼ 0, v < V0. We emphasize that
this argument is not rigorous, as it borrows from classical
intuition. (In forthcoming work, we will explore a more
detailed coarse-graining proposal involving a family of
states; in that setting a rigorous argument can be given.)
Physically, hTvvi can be thought of as the momentum

orthogonal to an observer’s worldline in the (u, v) plane, in
the limit as the observer moves at the speed of light in the v
direction. Similarly, Tiv is the transverse momentum seen
by such an observer. Since all observables in the algebra
associated to DðV0Þ −DðVÞ have to register vacuum
values, no excitations can enter this region. By causality,
therefore, the state on the null surface u ¼ 0, v < V0 can
only differ from the vacuum by matter moving along it, i.e.,
purely in the v direction. This implies hTvvi ¼ 0, consistent
with Eq. (47) above. It also implies the new result,

hTivi ¼ 0; v < V0: ð52Þ

Conservation of the stress tensor

−∂vhTuvi − ∂uhTvvi þ ∂ihTivi ¼ 0; ð53Þ

combined with (46) then yields

hTuvi ¼ const: ð54Þ

We conclude that coarse-grained states on Killing
horizons must satisfy not only Eqs. (46) and (47) but also
Eqs. (49), (50), (52), and (54).
Crucially, these results pertain to quantum field theory

on a fixed background, so they can be checked in a rigorous
setting. In the next section, we will see that all of the above
properties are indeed satisfied by the ant states constructed
by Ceyhan and Faulkner [4]. This proves our conjecture in
the Killing horizon limit.

V. EXISTENCE OF COARSE-GRAINING
STATES IN QFT LIMIT

In this section, we show that the “predictions” of the
previous section have already been confirmed. We consider
a recent explicit construction of states in QFT by CF [4]. CF
constructed these states in order to prove a conjecture by
Wall [25] that we will discuss in detail in Appendix below.
For now, we merely verify that they satisfy the properties
we found for the coarse-graining state on Killing horizons
in the nongravitational limit: Eqs. (46), (47), (49), (50),
(52), and (54).
Consider a cut V0ðyÞ of the Rindler horizon u ¼ 0,

and let AV0
, A0

V0
be the algebra of operators associated

to the region fu ¼ 0; v > V0ðyÞg and its complement,

FIG. 3. The spacetime region associated to the interval
V < v < V0 on the null surface for which all observables in
the algebra should register vacuum values in the coarse-graining
state.
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respectively. Given a global state jψi, we can consider its
restriction to AV0

. One can then purify this restriction in
different ways, including the trivial purification. We will be
interested in the purification introduced in [4], which is
based on modular flow.
For the global vacuum jΩi, recall that the full modular

Hamiltonian associated to the cut V0 defines a modular
operator via KV0

¼ − logΔΩ;AV0
and that Δis

Ω;AV0
simply

acts as the boost that fixes V0. We note that ΔΩ;AV0
is

related to the reduced density matrix in Eq. (36)
by ΔΩ;AV0

¼ log σ>V0
⊗ 1<V0

− 1>V0
⊗ log σ<V0

.
For a general state jψi that is cyclic and separating, one

can define the relative modular operator as [22,26,27]

Δψ jΩ;AV0
¼ S†ψ jΩ;AV0

Sψ jΩ;AV0
; ð55Þ

where

Sψ jΩ;AV0
αjψi ¼ α†jΩi; ∀ α ∈ AV0

ð56Þ

defines the Tomita operator.
We then purify jψi restricted to AV0

using the Connes
cocycle

jψ si ¼ u0sjψi; u0s ¼ ðΔ0
ΩÞisðΔ0

ΩjψÞ−is ∈ A0
V0
: ð57Þ

The Connes cocycle can roughly be thought of as a half-
sided boost that fixes the state restricted to AV0

but
stretches all of the excited modes in the complement
region. Specifically, expectation values of operators in
AV0

are left invariant, whereas expectation values of
operators in A0

V0
are equivalent to those evaluated in the

state Δ−is
Ω jψi. This follows (restricting to cyclic and

separating states for simplicity) from the relation
ðΔ0Þisψ jΩΔ−is

Ωjψ ¼ 1, which implies

jψ si ¼ Δ−is
Ω usjψi: ð58Þ

If we consider an operator O0 ∈ A0
V0
, then ½us;O0� ¼ 0 so

hψ sjO0jψ si ¼ hψ jΔis
ΩO

0Δ−is
Ω jψi: ð59Þ

Note that v ¼ V0ðyÞ is a fixed point of the boost.
In the limit s → ∞, all of these excitations become soft.

More specifically,

hTvvisjv<V0ðyÞ≡hψ sjTvvðvÞjψ sijv<V0ðyÞ
¼e−4πshψ jTvvðV0þe−2πsðv−V0ÞÞjψijv<V0ðyÞ;

ð60Þ

which just follows from the usual algebra of half-sided
modular inclusions. Hence, hTvvis → 0 as s → ∞ for
v < V0ðyÞ.

Not only that but also

lim
s→∞

Z
v

−∞
dvhTvvis → 0; v < V0ðyÞ: ð61Þ

To see what this implies about the energy of the boosted
side, we make use of the sum rule derived in [4] for null
derivatives of the relative entropy,

2πðPs − e−2πsPÞ ¼ ðe−2πs − 1Þ δSrelðψ jΩ;AVÞ
δV

����
V0

; ð62Þ

where

P ¼
Z

∞

−∞
dvhTvviψ ð63Þ

is the average null energy of the original state, Ps is the
average null energy of jψ si, and

Srelðψ jΩ;AVÞ ¼ −hψ j logΔψ jΩ;AV
jψi ð64Þ

is the relative entropy of the original state for some general
cut VðyÞ.
The relative entropy can also be written as

Srelðψ jΩ;AVÞ ¼ hKViψ − SðVÞ ð65Þ

and moreover [4]

δhKViψ
δV

����
V0

¼ −2π
Z

∞

V0ðyÞ
dvhTvviψ : ð66Þ

Thus, in the limit s → ∞, we find using Eq. (61),

hTvvijv≤V0ðyÞ ¼ −
1

2π

δS
δV

����
V0

δðv − V0ðyÞÞ; ð67Þ

as desired. This reproduces both Eqs. (46) and (47).
As a final point, note that under the Connes cocycle we

also have the following properties:

hTuvis→∞ ¼ hTuvðV0Þiψ ; ð68Þ

hTivis→∞ → 0: ð69Þ

This very easily reproduces the properties Eqs. (52)
and (54).

VI. DISCUSSION

We end by discussing the boundary interpretation of the
generalized entropy of a QMT surface. We will also briefly
describe future work on a systematic algorithm for con-
structing the states we conjectured in Sec. III.
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A. Boundary dual

Within AdS=CFT, it is natural to ask whether the coarse-
graining prescription for Souter in Sec. III has a boundary
dual. In other words, there must exist a boundary state dual
to the bulk coarse-grained semiclassical state of Sec. III.
Based on Eq. (24), we know that the boundary dual to this
state is a mixed state that maximizes the boundary von
Neumann entropy subject to fixing the semiclassical state
inOW ½μ�. Since in Sec. III we only considered a case where
we have reflecting boundary conditions at infinity, fixing
OW ½μ� amounts to fixing the past boundary of OW ½μ�,
labeled N−lðtiÞ in Fig. 4.
Therefore, the question of whether there is a natural

boundary dual to our bulk coarse-graining prescription
reduces to that of whether fixing the semiclassical state on
N−lðtiÞ has a natural interpretation in the boundary. Our
answer to this question is very similar to the simple entropy
Ssimple prescription of [5,13].
Since we would like to refer to the bulk as little as

possible, we define the QMT surface μ associated to a time
slice ti of the boundary by constructing an ingoing null
surface from ti and marking the first QMT surface on it. In
general, this surface could reach caustics before reaching μ;
Ref. [13] deals with this technicality. Here we ignore this
issue by restricting to special classes of states (e.g.,
perturbations to Killing horizons).
Let ρðtiÞ be the original boundary state at time ti. We

would like to construct a boundary state with maximum
von Neumann entropy, which agrees with the semiclassical

bulk state on N−lðtiÞ. In order to accomplish this, we must
find a boundary definition of F , the set of density matrices
dual to the semiclassical state on N−lðtiÞ.
Let us first consider F to be the states that agree with

ρðtiÞ on simple boundary observables A on t > ti. Simple
observables are defined to be boundary operators whose
associated excitations propagate causally in the bulk [5,13],
so these data fix the bulk causal wedge of t > ti (C½ti� in
Fig. 4). However, C½ti� ⊆ OW ½σti �, so in general this set F
would not be constrained enough to fix all of the data
on N−lðtiÞ.
The discrepancy between C½ti� and OW ½σti � arises from

matter that enters the black hole to the future of σti . This
causes the event horizon to grow and lie properly inside of
the outer wedge. To fix all of OW ½σti � given ρðtiÞ, one must
turn on boundary sources that will absorb the future
infalling excitations and achieve C½ti� ¼ OW ½σti �. This
may seem acausal, but so is the definition of simple
operator as an operator that can be represented by local
boundary operators smeared over space and time.
Therefore, the coarse-graining set F should consist of the

states such that the simple boundary observables A agree
with those of ρðtiÞ even after both states have been subject to
turning on various simple sources on the boundary,

SsimpleðtiÞ ¼ max
ρ̃∈F

Sðρ̃Þ; ð70Þ

with

F ¼ fρ̃∶hEAE†iρ̃ðtÞ ¼ hEAE†iρ; t ≥ ti; ∀Eg; ð71Þ

where A is the set of simple observables and E denotes
unitaries associated with turning onvarious simple boundary
sources.
Note that C½ti� ⊆ OW ½σti � in all semiclassical states [15].

Therefore, subjecting the states to various simple sources is
never going to make a slice larger than N−lðtiÞ causally
accessible from the boundary. Given the state ρðtiÞ, there
exists a fine-tuned choice of sources that will make
C½ti� ¼ OW ½σti �. But since this choice is state dependent
and difficult to specify from a pure boundary perspective,
we choose the boundary coarse-graining family F to agree
with ρðtiÞ on simple data subject to all simple sources
turned on.
So far, we have defined A as the set of boundary

observers that correspond to bulk excitations that propagate
causally. The classical analysis of Refs. [5,13] further
specified A to consist only of one point functions of all
local operators on the boundary. This will fix the states of
the classical fields in the bulk that are causally determined
by the boundary region t ≥ ti. Since here we are interested
in fixing the quantum state of the bulk fields on N−lðtiÞ, our
set A needs to include higher point function of local bulk
operators.

FIG. 4. We would like to fix the data on N−lðtiÞ (green thick
line), while coarse graining in the interior of the QMT surface.
Simple data in the boundary region t > ti fix the causal wedge
C½ti� and thus fix only a portion of N−lðtiÞ. In order to fix all of
N−lðtiÞ, one must allow for sources that remove the excitations
(red arrows) that enter the black hole after σ; this can cause the
causal wedge to grow to include N−l. In the coarse-graining
set F , the simple data must agree for all allowed sources.
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However, we are still interested in maintaining locality in
the bulk and therefore want to disallow a large density of
local probes in any bulk region. This is following the
expectation that such excitations would cause large back-
reaction and therefore a breakdown of locality [28]. From a
boundary perspective, a local bulk operator in the causal
wedge is dual to a smeared boundary operator [29].
Therefore, our set A needs to include all products of
smeared boundary operator as long as there is not an OðNÞ
number of overlaps in the support of the smeared operators.
This choice ofA in Eq. (71) is a natural candidate for fixing
the quantum state on N−lðtiÞ; we leave a thorough inves-
tigation of this issue to future work.
We refer the reader to [13] for a careful demonstration of

Ssimple ¼ Souter in the bulk classical limit.

B. Semiclassical stretched states

In this paper, we started from a classical construction in
general relativity, whose quantum interpretation is the coarse
graining of a quantum state so that its entropy matches the
area of a marginally trapped surface. We elevated this to a
semiclassical conjecture thatwe interpret as a coarse graining
that will match the generalized entropy of a quantum
marginally trapped surface, while holding fixed the exterior
quantum state. In the QFT limit, our conjecture is confirmed
by the limit of the CF sequence of states [4].
Thus, we were able to derive a nontrivial, testable

property of QFT from a hypothetical assumption about
quantum gravity. This is similar to how the QNEC was
derived from the QFC, a hypothetical extension of the
classical focusing property of general relativity. This is a
satisfying connection. QFT has not been directly probed in
this limit, and a direct verification of the CF limit or of the
QNEC would constitute a test of our ideas about quantum
gravity.
Interestingly, there appears to be a larger set of relations

of the type we explored here. Our starting point, the EW
construction, is essentially unique. However, the CF

construction produces a one-parameter family of states,
given an input state and a cut on a Killing horizon. Here we
only made use of the limit approached by these states as the
flow parameter diverges. But we expect that there exists a
classical construction (which may limit to the EW con-
struction) that matches the entire one-parameter CF family.
In the special case where the cut is a bifurcation surface

of the Killing horizon, the CF construction admits an
interesting intuitive interpretation: all correlators of oper-
ators restricted to the left (or to the right) behave as if we
had boosted the state on the left side of the cut (but not on
the right). In QFT, a one-sided boost would result in a
divergent-energy shock at the cut, because it would destroy
the vacuum. But the CF flow is more subtle; in a sense it
boosts only the “excited part” of the state on N−

k , while
leaving the vacuum entanglement across the cut intact.
This suggests a simple classical analog of CF flow. At

the classical level, a half-sided boost is innocuous. It can be
applied to initial data on the null surface N−

k with no ill
consequences at the cut. However, a generic cut of a Killing
horizon is not a bifurcation surface and hence is not a fixed
point of the Killing flow.
Nonetheless, one can construct a sequence of geometries

by a construction we will call the left stretch. Given the
state and affine parameter v on the entire Killing horizon
Nk, rescale V → V 0 ¼ esV on the left side N−

k , and do
nothing on the right V → V 0 on Nþ

k . This will rescale all v
derivatives of classical fields by e−s. To preserve the inner
product kala ≡ gabð∂vÞað∂uÞb ¼ −1, rescale the u deriva-
tives at constant (v, y) by es. Then glue the two halves back
together, treating V 0 as a true affine parameter; see Fig. 5.
For the full initial data on N, we need to know not only

the intrinsic geometry but also θl, the expansion in the null
direction off of Nk. This is obtained by holding θl fixed on
Nþ

k and integrating the cross-focusing equation

ka∇aθl ¼ −
1

2
R − θkθl þ χ2 þ∇ · χ þ 8πGTkl ð72Þ

FIG. 5. The left stretch is a classical analogue of the CF flow that generalizes it to nontrivial geometries. Left: the null surface Nk split
by the marginally trapped surface σ. Middle: the affine parameter is rescaled on N−

k but held fixed on Nþ
k . This is the same initial data in

nonaffine parametrization. Right: the two pieces are glued back together, treating the new parameter as affine. This yields inequivalent
initial data.

RAPHAEL BOUSSO et al. PHYS. REV. D 101, 046001 (2020)

046001-12



to obtain θl on N−
k . Since all terms on the right-hand side

scale trivially, this rescales the difference θl − θljV0
by es.

Because θl is not given by a simple rescaling unless
θljV0

¼ 0, the left stretch results in physically inequivalent
initial data even in the left exterior of σ alone. The intrinsic
data on N−

k are stretched, as measured by a ruler defined by
the evolution of the extrinsic curvature θl.
Interestingly, the left stretch is physically sensible if and

only if the cut satisfies θk ¼ 0. This is because the
expansion θk along Nk is determined not only by the left
stretch itself, but also by the Raychaudhuri equation, and
the two methods must agree. Let the inaffinity κ be defined
by kb∇bka ¼ κka. Affine parametrization corresponds to
κ ¼ 0 everywhere. The left stretch implements

VðyÞ → esH½−VðyÞþV0ðyÞ�VðyÞ; ð73Þ
whereHðvÞ is the Heaviside step function and v ¼ V0ðyÞ is
the marginally trapped surface σ. This generates a nonzero
inaffinity

κ ¼ ð1 − e−sÞδ½VðyÞ�: ð74Þ
The Raychaudhuri equation for nonaffine parametrization
reads

ka∇aθk ¼ −
1

2
θ2k − ς2k − κθk − 8πGTkk: ð75Þ

We insist that the new parameter V 0 be treated as affine,
which means we are demanding that the inaffinity term κθ
vanishes even after the left stretch. By Eq. (74), this will be
the case if and only if θk ¼ 0 at the cut.
Importantly, Eqs. (5), (7), and (11) become satisfied in

the limit as s → ∞. These are precisely the conditions
imposed by EW for the classical coarse-graining construc-
tion. In this sense, the left stretch can be viewed as
generating a one-parameter interpolation from the original
initial data to the coarse-grained data.3

We close with two brief remarks. At the level of
semiclassical gravity, the left stretch should naturally
combine with the CF construction, so that not only the
geometric and classical data, but also the quantum initial
data are stretched. Moreover, we expect that the left stretch
(applied classically to the RT or semiclassically to the
quantum RT surface) is the gravity dual of the CF flow
applied to the boundary of anti-de Sitter space.
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APPENDIX: ANT CONJECTURE AND
PROPERTIES OF ENERGY-MINIMIZING

STATES

In Sec. V, we showed that the Ceyhan-Faulkner con-
struction proves our conjecture in the pure-QFT limit. The
original purpose of the CF construction, however, was to
prove Wall’s ant conjecture [12] (and thus, the quantum
null energy condition [2]). It is therefore of interest to ask
how closely related our coarse-graining conjecture is to the
ant conjecture on Killing horizons. It is easy to see that
Eqs. (46) and (47) imply the ant conjecture. Conversely, we
will show in this section that the ant conjecture implies
Eqs. (46) and (47), but only in 1þ 1 dimensions.
In Appendix A 1, we will review the ant conjecture. In

Appendices A 2 and A 3, we establish some general
properties that energy-minimizing states must satisfy. We
show that the minimum energy completion has vanishing
stress tensor on the unconstrained half-space, with all of the
remaining energy appearing as a shock immediately on
the cut. We also show that for a pure minimum energy state,
the von Neumann entropy of semi-infinite regions is
constant so long as the region’s boundary lies on the
unconstrained side. In 1þ 1 dimensions, we can also show
that the integrated left stress tensor vanishes. Thus, the ant
conjecture implies Eqs. (46) and (47), the key properties of
the field theory limit of our coarse-graining conjecture. In
higher dimensions, we are unable to establish this result.

1. Ant conjecture

Wall’s “ant argument” for the quantum null energy
condition in 1þ 1 dimensions invokes an ant that has
walked left from þ∞ to v0 (see Fig. 6). That is, given a
global state ρ, the ant has knowledge only of the right half-
space state ρ>v0 . Pausing for rest, the ant contemplates how
much energy it might still encounter in the remainder of its
path, the interval ð−∞; v0�. Because of global energy
conditions, this amount is bounded from below.
Let Mðv0Þ be the lowest energy of any global state that

reduces to the same ρ>v0 .
4 More precisely,

3However, there are interesting differences to the EWanalysis.
For example, the left stretch yields divergent Tuu, as does the CF
limit. Yet, EW argue that this can be avoided. There may be a
larger family of relevant states.

4We should point out two differences in our conventions
compared to [12]. First, we have switched the side on which the
state is held fixed, from left to right. Second, in [12], M was the
infimum of the energy density integrated only over the comple-
ment of that fixed half-space, whereas here it is the infimum the
global energy. This choice is more convenient as otherwise the
presence of distributional sources at the cut v0 would lead to
ambiguities and require a more elaborate definition. In this
respect, our conventions agree with [4].
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Mðv0Þ≡ inf ρ̂

�Z
∞

−∞
dṽhTvvijρ̂

�
: ðA1Þ

The infimum is over all global states ρ̂ that agree with ρ in
the region v > v0: Tr≤v0 ρ̂ ¼ ρ>v0 . A strictly larger set of
global states will agree with ρ on a smaller region, ρv1 ,
v1 > v0, so the infimum can only decrease with v,

∂vMðvÞ ≤ 0: ðA2Þ

One can readily establish a lower bound on MðvÞ. The
global energy appearing in the infimum can be written as
ðℏ=2πÞð∂vK̄ − ∂vKÞ by Eq. (42) and its left analog.
Moreover, Eq. (44) must hold for all states appearing in
the infimum, so by adding ∂vK to it, one finds that

Mðv0Þ ≥ −
ℏ
2π

∂vSreljv0 ; ðA3Þ

where we have used Eq. (41). Note that the lower bound is
determined solely by the input state ρ.
Wall conjectured [12] that this inequality is saturated,

Mðv0Þ ¼ −
ℏ
2π

∂vSreljv0 : ðA4Þ

This conjecture is equivalent to the existence of a sequence
of states ρ̂ðnÞ, all of which reduce to ρ>v0 on the right, such
that

lim
n→∞

Z
∞

−∞
dṽhTvvijρ̂ðnÞ ¼ −

ℏ
2π

∂vSreljv0 : ðA5Þ

Here we will assume the conjecture to be true. We will be
interested in certain universal properties of the states in this
sequence that emerge in the limit as n → ∞.

2. Properties of the minimum energy completion
in 1 + 1 dimensions

For compactness of notation, we will ascribe any limiting
properties of the states ρ̂ðnÞ as n → ∞ to a “limit state” ρ̂∞.
We stress that such a state need not exist. Rather, ρ̂∞ is
shorthand for limn→∞ ρ̂ðnÞ, where the limit should be moved
outside of any maps of the state to other quantities.
Moreover, we indicate ρ̂∞ as the argument of a map by
the superscript ∞. For example,

S∞ðv0Þ ¼ lim
n→∞

½−Trρ̂ðnÞ>v0 log ρ̂
ðnÞ
>v0 �: ðA6Þ

By Eq. (A4) and the discussion leading to Eq. (A3), the
state ρ̂∞ must saturate both inequalities in Eq. (44),

∂vK̄∞jv0 ¼ ∂vS̄∞jv0 ¼ ∂vS∞jv0 : ðA7Þ

The first equality implies

∂vS̄∞reljv0 ¼ 0: ðA8Þ

Applying the left analogs of Eqs. (A2) and (A4) to M̄ (with
ρ̂∞ as the input state!), we have

∂2
vS̄∞rel ≥ 0 ðA9Þ

for all v. The above two consequences of Wall’s conjecture,
combined with positivity and monotonicity of the left
relative entropy,

S̄∞rel ≥ 0; ðA10Þ

∂vS̄∞rel ≥ 0; ðA11Þ

imply that

∂vS̄∞rel ¼ 0 for all v < v0: ðA12Þ

This is a very strong condition and it intuitively suggests
that for v < v0 we have a vacuumlike state. In particular, all
local observables in the region between v and v0 for v < v0
need to register vacuum values; otherwise, we would have
S∞relðv0Þ > S∞relðvÞ. This is particular tells us that

hTvvðvÞijρ̂∞ ¼ 0 for v < v0: ðA13Þ

The above equation combined with Eq. (A12) implies

FIG. 6. The ant conjecture in 1þ 1 dimensions. A left-walking
ant has access to all the information in the right wedge. It asks
what is the least amount of additional energy it might still
encounter to the left of v0. The conjecture states that this is
ℏS0=2π, where S0 is the right derivative of the von Neumann
entropy of the reduced state on the right, evaluated at the cut. We
show that this statement is equivalent to the nongravitational limit
of our coarse-graining conjecture.
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∂2
vS̄∞ ¼ 0 ⇒ ∂vS̄∞ ¼ α for v ≤ v0: ðA14Þ

In fact, in 1þ 1 CFTs, we can argue that α ¼ 0 by invoking
the strengthened version of the QNEC [30,31],5

hTvvi ≥
ℏ
2π

∂2
vS̄þ 6ℏ

c
ð∂vS̄Þ2: ðA15Þ

Now, Eq. (A12) implies that

hTvvi ¼
ℏ
2π

∂2
vS̄ for v < v0; ðA16Þ

which together with Eq. (A15) implies that ∂vS̄ ¼ 0. So, we
conclude that for v < v0,

∂vS̄∞ ¼ 0 and ∂vS̄∞rel ¼ 0 ⇒ ðA17Þ

lim
ϵ→0

Z
v0−ϵ

−∞
dṽhTvvijρ̂ð∞Þ ¼ 0: ðA18Þ

We also know that

lim
ϵ→0

�Z
v0þϵ

−∞
dṽhTvvijρ̂∞

�
¼ ℏ

2π
∂vSjv0 : ðA19Þ

This along with Eq. (A17) implies that the minimum energy
state contains a shock (a delta function in energy density) at
v0 and vanishing energy to its left,

hTvvi ¼
�
ℏ
2π

∂vSjv0
�
δðv − v0Þ for v ≤ v0: ðA20Þ

If ρ̂∞ is a pure state,6 this further implies that

∂vS ¼ 0 for v < v0: ðA21Þ

In fact, we expect that ρ̂∞ can always taken to be pure. The
basic idea is that any density operator can be purified by a
suitable auxiliary system. In general, the auxiliary systemhas
to be external, but we now argue it can be taken to be distant
soft modes in the quantum field itself.
Suppose we had identified a sequence ρ̂ðnÞ that limits to a

mixed ρ̂∞. Finiteness of the energy requires that each state
in the sequence looks like the vacuum in some sufficiently
distant left region v < vðnÞ with vðnÞ < v0. We can take
vðnÞ → −∞ as n → ∞. We can add a purification of the
state ρ̂ðnÞ in soft wave packets localized to the region
v < vðnÞ. This results in a new, pure state and we redefine

ρ̂ðnÞ to be that state. Since we have not modified the state in
the region v > v0, it will still reduce to the given right state
ρ>v0 ; and since the region v < vðnÞ is semi-infinite, we can
take the purifying wave packets to have arbitrarily small
energy. In particular, we can take their contribution to the
energy to vanish in the limit as n → ∞.

3. Higher-dimensional case

The generalization of the above result to higher dimen-
sions is straightforward. We can consider any Killing
horizon N ¼ R × B, with v ∈ R an affine parameter along
light rays orthogonal to the d − 2 dimensional spatial
surface B with collective coordinates y.
The analog of the 1þ 1 dimensional ant is now an army

of ants that have walked along the null generators from
v ¼ þ∞ to the position v ¼ VðyÞ, so that they know the
state ρ>VðyÞ (see Fig. 7). The ants again ask about the
minimum global energy consistent with this knowledge,
M½VðyÞ�. This quantity can only decrease under deforma-
tions of VðyÞ that are everywhere positive,

δM
δVðyÞ ≤ 0: ðA22Þ

The definition of M differs from the 1þ 1 case only
through an additional transverse integral over dd−2y. It can
be shown [32,33] that the modular Hamiltonian, too, is
simply the sum of the local Rindler energies associated
with the individual null generators, Eq. (38),

ΔKðV0ðyÞÞ¼
2π

ℏ

Z
dd−2y

Z
∞

V0ðyÞ
dvðv−V0ðyÞÞTvv: ðA23Þ

By the analog of Eq. (44),

δK̄
δVðyÞ ≥

δS̄
δVðyÞ ≥

δS
δVðyÞ ; ðA24Þ

FIG. 7. A general cut of the Rindler horizon in d > 2. An army
of ants marches down along the null direction toward the cut.
Given the state above the cut, they ask what is the minimum
energy still to come.

5We thank Aron Wall for suggesting the use of strengthened
QNEC here.

6The conclusion would extend to mixed states under the
assumption that ΔSðvÞ remains bounded from below for any v
in the limit as n → ∞. The status of this assumption is not clear to
us, however.
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one finds

M ≥ −
ℏ
2π

δSrel
δVðyÞ : ðA25Þ

The ant conjecture again demands that this be an
equality. That is, there exists a global state ρ̂∞ that saturates
Eq. (A25) (or if not, saturation can at least be approached,
in the limit of a sequence of global states). The same
arguments as in the 1þ 1 dimensional case imply that ρ̂∞

satisfies

δS̄∞rel
δVðyÞ ¼ 0 for all v < V0ðyÞ: ðA26Þ

Exactly, as in the 1þ 1 case, the above condition implies

hTvvðvÞijρ̂∞ ¼ 0 for v < V0ðyÞ; ðA27Þ

δ2S̄∞

δVðy1ÞδVðy2Þ
¼ 0 ⇒

δS̄∞

δVðyÞ ¼ α for all v < V0ðyÞ;

ðA28Þ

where α is some constant. As was discussed at the end of
the previous section, we can take ρ∞ to be a limit of pure
states, where we additionally have

δS∞

δVðyÞ ¼ α for all v < V0ðyÞ: ðA29Þ

At this point, it would be nice to argue that α ¼ 0 as in
the 1þ 1 dimensional case, but we will leave this to future
work. If we assume that α ¼ 0, then the purity of the global
state implies

δS̄∞

δVðyÞ ¼ 0 for all v < V0ðyÞ; ðA30Þ

and together with Eq. (A26), one obtains

lim
ϵ→0

�Z
V0ðyÞ−ϵ

−∞
dṽhTvvijρ̂∞

�
¼ 0 ðA31Þ

for all y. Note that Eq. (A31) does not otherwise follow
from Eq. (A27): because ρ̂∞ is defined as a limit of a
sequence, it would be possible for hTvvi to approach zero
while its integral approaches a finite value. Assuming the
ant conjecture, that Eq. (A25) is an equality, it follows that

hTvvðv; yÞijρ̂∞ ¼
�
ℏ
2π

δS
δVðyÞ

���
V0

�
δðv − V0ðyÞÞ

for v ≤ V0ðyÞ: ðA32Þ
To summarize, in 1þ 1 dimensions, the ant conjecture

implies the key properties of the coarse-graining states we
conjectured: Eqs. (46) and (47) hold on a Killing horizon.
In greater than 1þ 1 dimensions, this implication obtains
only with the unproven assumption that α ¼ 0 above.
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